Softw Syst Model (2016) 15:119-146
DOI 10.1007/s10270-014-0395-3

@ CrossMark

REGULAR PAPER

Formalizing and appling compliance patterns for business process

compliance

Amal Elgammal - Oktay Turetken -
Mike Papazoglou

Willem-Jan van den Heuvel -

Received: 9 May 2013 / Revised: 9 December 2013 / Accepted: 5 January 2014 / Published online: 8 February 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract Today’s enterprises demand a high degree of
compliance of business processes to meet diverse regula-
tions and legislations. Several industrial studies have shown
that compliance management is a daunting task, and orga-
nizations are still struggling and spending billions of dol-
lars annually to ensure and prove their compliance. In this
paper, we introduce a comprehensive compliance manage-
ment framework with a main focus on design-time compli-
ance management as a first step towards a preventive lifetime
compliance support. The framework enables the automation
of compliance-related activities that are amenable to automa-
tion, and therefore can significantly reduce the expenditures
spent on compliance. It can help experts to carry out their
work more efficiently, cut the time spent on tedious manual
activities, and reduce potential human errors. An evident can-
didate compliance activity for automation is the compliance
checking, which can be achieved by utilizing formal reason-
ing and verification techniques. However, formal languages
are well known of their complexity as only versed users in

Communicated by Prof. Ulrich Frank.

A. Elgammal (B<)

Governance, Risk Management and Compliance Technology
Centre (GRCTC), University College Cork, Cork, Ireland
e-mail: aelgammal @ucc.ie

O. Turetken

School of Industrial Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, Netherlands
e-mail: o.turetken @tue.nl

W.-J. van den Heuvel - M. Papazoglou

European Research Institute in Service Science (ERISS),
Tilburg University, 5000 LE Tilburg, Netherlands
e-mail: w.j.a.m.vdnheuvel @uvt.nl

M. Papazoglou
e-mail: m.p.papazoglou@uvt.nl

mathematical theories and formal logics are able to use and
understand them. However, this is generally not the case with
business and compliance practitioners. Therefore, in the heart
of the compliance management framework, we introduce the
Compliance Request Language (CRL), which is formally
grounded on temporal logic and enables the abstract pattern-
based specification of compliance requirements. CRL consti-
tutes a series of compliance patterns that spans three struc-
tural facets of business processes; control flow, employed
resources and temporal perspectives. Furthermore, CRL sup-
ports the specification of compensations and non-monotonic
requirements, which permit the relaxation of some compli-
ance requirements to handle exceptional situations. An inte-
grated tool suite has been developed as an instantiation arte-
fact, and the validation of the approach is undertaken in sev-
eral directions, which includes internal validity, controlled
experiments, and functional testing.

Keywords Business process compliance - Compliance
patterns - Formal specification - Regulatory compliance -
Compliance management tool support - Design-time
compliance management

1 Introduction

In the light of the recent high-profile business scandals and
failures, such as Enron and Countrywide Financial, today’s
business entities are faced by an ever-growing number of
laws and regulations, such as Sarbanes-Oxley [1] and Basel
I [2]. These require organizations to audit their business
processes and ensure that they meet compliance require-
ments set forth in laws and regulations. Without explicit busi-
ness process (BP) definitions and effective internal control
structures, organizations may face litigation risks and even

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0395-3&domain=pdf

120

A. Elgammal et al.

criminal penalties. In 2012, banks had to pay exponentially
increasing fines as a result of their failure to show their full
compliance with anti-money laundering directives [3]. Nine
international institutions were sanctioned (e.g. HSBC, Stan-
dard Chartered, ING, ABN Amro), where HSBC had the
highest rank of 1,920 million dollars of a fine. Executives
and analysts of diverse industry sectors identified regulation
and compliance as the top business risk [4,5].

We define compliance as the process of ascertaining the
adherence of business processes and applications to relevant
compliance requirements, which may emerge from laws, leg-
islation, regulations, standards and code of practices (such
as ISO 9001), internal policies, and business partner con-
tracts (such as service level agreements—SLAs). From a
structural perspective, compliance requirements may fall into
four classes that pertain to the basic structure of business
processes, which are [6] as follows: (i) workflow constraints
(control-flow requirements), (ii) information usage (data val-
idation and requirements), (iii) employed resources (task
allocation and access rights), and (iv) temporal constraints.

With the ultimate objective of having absolute compli-
ance assurances, many organizations implement compliance
solutions on an ad hoc and per case basis. These solutions are
generally handcrafted for a particular compliance problem,
which creates difficulties for reuse and evolution. These solu-
tions usually lack the flexibility needed to rapidly adapt to
ever-changing business imperatives, as they usually involve
hard-coded implementations across multiple systems. This
makes it difficult to verify and ensure continuous guaran-
teed compliance. Having recognized these problems and their
implications for organizations and firms, major enterprise
software vendors have developed commercial products that
provide a bundled set of compliance solutions (e.g. Oracle
GRC Accelerators, SAP BusinessObjects, and GRC IBM
OpenPages). However, these commercial products usually
suffer from being highly proprietary (vendor lock-in) and
technology-specific as they are usually tightly interweaved
with pre-existing enterprise systems.

Efficiently addressing these problems represents an emer-
gent business need that fundamentally requires a frame-
work for managing business process compliance. This frame-
work should be sustainable throughout the complete busi-
ness process life cycle. A preventive focus is essentially
required such that compliance is considered from the early
stages of the business process design, thus enforcing compli-
ance by design [7], which must further be taken up by com-
pliance monitoring and adaptation of the running process
instances. Accordingly, we consider design-time and run-
time compliance checking and monitoring to be comple-
mentary and indispensable to ensure preventive compliance.
This responds to today’s business environment that strives
for a pro-active compliance approach; where a violation
is avoided and in case it occurs, recovery action(s) should

@ Springer

(semi-)automatically take place to mitigate/minimize the
impacts of these violations. In that respect, the main focus of
this paper is on design-time aspects of BP compliance as a
first key step towards a preventive compliance support

It is generally acceptable that compliance requirements
should be based on a formal foundation of a logical language
to enable automatic reasoning and analysis that assist in ver-
ifying and ensuring business process compliance in a sound,
complete, and predictable manner. However, it is a well-
known phenomenon that the use of formal languages cre-
ates difficulties for end-users, particularly in terms of usabil-
ity and comprehensibility. This problem represents one of
the main obstacles for the utilization of sophisticated veri-
fication and analysis tools associated with these languages.
To surmount such problems, in the heart of the framework,
we propose the Compliance Request Language (CRL) for
the abstract specification of compliance requirements that is
grounded on temporal logic, more specifically linear tem-
poral logic (LTL). CRL incorporates and integrates a series
of compliance patterns, which supports shielding the com-
plexity of logical formalizms from business and compliance
experts and facilitates their abstract specification. By apply-
ing the proposed mapping scheme, formal LTL rules, cap-
turing applicable compliance requirements, can be automat-
ically generated and directly forwarded to associated verifica-
tion tools (i.e. model checkers [8]) for automated compliance
assurance.

The contributions presented in this paper can be summa-
rized as follows:

e We propose a design-time compliance management
framework. The heart of the framework is the Compli-
ance Request Language (CRL), which is a visual pattern-
based language that is grounded on LTL and encom-
passes a series of compliance patterns in its core. Com-
pliance patterns are high-level abstractions of frequently
used compliance requirements, which help non-technical
users to abstractly represent desired properties and con-
straints. They span three out of four structural classes
of business process aspects; control flow, employed
resources, and temporal (data/information aspect is left
as a future work). As will be shown later in this paper, this
enables to address a wide range of compliance require-
ments in different application domains.

e Furthermore, CRL provides two efficient mechanisms to
allow the relaxation of some less-stringent compliance
requirements, i.e. non-monotonicity and compensations.

e To investigate the applicability and expressiveness of
CRL, we have developed an integrated software tool
suite! and employed it in two case studies that deal with

' BPCM Business Process Compliance Management Tool Suite: http://
eriss.uvt.nl/compas/.

http://eriss.uvt.nl/compas/
http://eriss.uvt.nl/compas/

Formalizing and appling compliance patterns

121

business processes of companies in two different industry
sectors.

The reminder of this paper is organized as follows: Related
work is discussed in Sect. 2. Section 3 summarizes the over-
all approach for design-time compliance management, pin-
pointing the main focus of this paper. Section 4 introduces
the case studies conducted and gives a simplified scenario
used as a running example throughout this paper. Section 5
discusses the compliance request language in detail. Section
6 presents the software toolset as a prototypical implemen-
tation of CRL and proof- of-concept. The evaluation and the
findings of the case studies are discussed in Sect. 7. Conclu-
sions and a set of lessons that are gained from our research
and development experience are portrayed in Sect. 8. Finally,
ongoing and future work is highlighted in Sect. 9.

2 Related work

In the area of design-time business process compliance man-
agement, we discuss the related work in two broad categories;
temporal logic approaches and Deontic logic approaches,
corresponding to the formal model of compliance require-
ments. Key work examples from each class are discussed
below and compared to the approach proposed in this paper.
In addition to this categorization, we also discuss key graph
pattern matching approaches that can also be applied in the
context of BP compliance.

An abstract compliance management framework is pro-
vided in [9] that incorporates the fundamental requirements
for a comprehensive lifetime support of compliance con-
straints. This framework can serve as a reference model for
the open research challenges in this area. In this article, we
address the research challenges that are related to design-time
compliance management and propose solutions to address
these issues. The research problems that we consider will be
discussed in detail in Sect. 3, pinpointing the main focus of
this paper.

2.1 Approaches based on temporal logic

Temporal logic has been successfully utilized in the literature
to formalize and reason about the correctness of software and
hardware designs and their adherence to desired properties
and constraints in diverse application domains.

Proposals based on temporal logic follow either a bottom-
up or a top-down verification approach. The core idea under-
pinning bottom-up approaches is on one side, to use a log-
ical language (e.g. linear temporal logic—LTL, computa-
tional tree logic—CTL) to formally represent compliance
requirements; and is on the other side, to transform low-level

business process specifications (e.g. modelled using BPEL—
Business Process Execution Language) to a corresponding
formal representation (e.g. a finite state automata, Petri net,
or a process algebraic representation). Next, model checking
and other verification techniques are utilized to verify the
compliance between the two specifications.

For example, in [10], an extension to computational tree
logic (CTL) is proposed to capture data-dependent con-
straints, i.e. CTL-FO+. Next, CTL-FO+ formulas are mapped
into pure CTL formulas and NuSMV model checker is uti-
lized to ensure the conformance against BPEL specifications.
In [11], real-time temporal object logic is utilized for the
formal specification of compliance requirements based on
a pre-defined domain ontology. Real-time temporal logic is
a powerful logic; however, no verification approach is pro-
vided for design-time compliance checking. In [12], UML
activity diagrams is considered, and then, PLTL (past LTL) is
exploited to capture desired properties and constraints. Simi-
larly, [13] utilizes first-order logic (FOL) to formally capture
both workflow systems and desired constraints for the detec-
tion of any constraint anomalies.

In top-down temporal logic approaches, business process
models are first represented using an abstract high-level lan-
guage. Compliance requirements and desired properties are
formalized using a temporal logic language. Next, model
checkers and other verification techniques are also utilized
for compliance checking. If the abstract BP model is com-
pliant with the set of compliance rules, a corresponding BP
model may be (semi-)automatically synthesized, e.g. as a
BPEL or BPMN (Business Process Modelling and Notation)
model. For example, [14] employs m-logic to formally rep-
resent compliance requirements. BP models are abstractly
modelled using BP-calculus, which is a formal business
process modelling language based on 7 -calculus. If business
and compliance specifications are compliant, an equivalent
BPEL program is automatically generated from the abstract
BP-calculus model.

Similarly, authors in [15] follow a top-down approach
such that LTL is exploited as the formal foundation of
compliance requirements. From a set of LTL rules (cap-
turing applicable compliance requirements) and by apply-
ing process-mining techniques, process templates are syn-
thesized semi-automatically. Similarly, a business process
synthesis approach is proposed in [16] based on temporal
business rules.

The framework proposed in this article falls in this cat-
egory and follows a bottom-up approach. We differentiate
our work by the fact that the above approaches assume expe-
rienced users who are familiar with formal languages and
mathematical theories, which is hardly the case in practice. To
overcome the usability concern of formal languages, which
represents the main obstacle of the utilization and applica-
tion of sophisticated formal analysis and verification tools,

@ Springer

122

A. Elgammal et al.

we introduce a series of high-level (visual) compliance pat-
terns as an intermediate abstract representation to their corre-
sponding formal rules. In addition, none of these approaches
addresses three structural classes of compliance requirements
in a single unified approach, e.g. in [11] workflow and real-
time constraints are supported, in [10] workflow and data
requirements are addressed. Moreover, compensations and
non-monotonic requirements, which enable the handling of
exceptional situations, are also not addressed in these works.
Additionally, we consider Business Process Execution Lan-
guage (BPEL), which is the standard language for the spec-
ification of executable and abstract business processes.

2.1.1 Graphical/pattern-based approaches

To address the usability concern of temporal logic, sev-
eral research efforts propose pattern-based and/or graphi-
cal languages to model desired properties and constraints
(e.g. [17,18] and [19]). Authors in [18] propose the BPMN-
Q language, which extends BPMN to graphically represent
compliance requirements analogously to the way business
processes are modelled in BPMN. BPMN-Q is then mapped
into past LTL (PLTL) and a model checking approach is
utilized. Similarly, Extended Process Pattern Specification
Language (EPPSL) is proposed in [20] focusing on quality
constraints.

The study in [21] utilizes Dwyer’s property specification
patterns [22] for the verification of service compositions
and introduces the logical compositions of these patterns
via Boolean operators. The CHARMY framework is pro-
posed in [23] for modelling and verifying designs in UML.
CHARMY uses Property Sequence Chart (PSC) as a visual
scenario-based language for representing required properties
and constraints, which is then mapped into LTL formulas.

In [24], a compliance checking approach is proposed that
utilizes a set of Petri net patterns. The compliance check-
ing is performed by means of aligning these patterns with
event logs of completed business process executions. This
approach focuses mainly on offline business process mon-
itoring of completed business process instances. The same
path is adopted in [25] focusing on cloud-based business
processes for the purpose of compliance certification, where
a number of Petri net patterns are introduced. In [26], Petri
net is used focusing on information flow analysis of business
process models.

The approach we propose in this paper is closely related to
the efforts discussed above. However, our work introduces
a wider set of compliance patterns coupled with a graphi-
cal notation to enhance its usability. Besides, only workflow
and data requirements classes are considered in the above
approaches. We also consider design-time compliance check-
ing as first key step towards preventive compliance support.

@ Springer

Furthermore, non-monotonicity is not addressed in any of
these works. Compensations is only addressed in [17].

DECLARE [27] and ConDec [28] are graphical pat-
tern constraint languages for the declarative specification of
workflow systems to improve their flexibility and to enable
the management of dynamic processes. DECLARE and Con-
Dec are translated into LTL and are built on the concept of
workflow patterns.

While we share the same interest of using a high-
level pattern-based language for constraint specification, the
approach we propose in this paper considers the BPEL stan-
dard. Furthermore, the language we propose (CRL) incorpo-
rates a wider range of compliance patterns that supports the
employed resources and temporal facets of business process
specifications.

The specification and verification of temporal constraints
is an important aspect in various application domains, e.g.
real-time embedded systems. Studies in [29,30] and [31]
extend Dwyer’s property specification patterns [22] with
real-time related patterns. For example, in [29], five real-
time patterns are proposed based on an analysis performed
on real-time requirements emerging from real-time embed-
ded systems. The timed pattern class as one of the integral
parts of the language (CRL) introduced in this paper supports
awider range of timed constraints. Furthermore, these studies
only focus on the temporal aspect, and no support is provided
for non-monotonic requirements and compensations.

2.1.2 Resource allocation approaches

The modelling and verification of task allocation and autho-
rization constraints have also gained significant interest, par-
ticularly in the information systems security field. Task allo-
cation and authorization constraints represent one of the four
structural aspects of compliance requirements. Some studies
in this area merely focus on the modelling and visualization
of authorization constraints inside business process models,
without offering a means for their verification. Works in [32]
and [33] fall into this category. Wolter et al. [32] propose
extensions to BPMN notations to enable the modelling and
visualization of task-based authorization constraints.

Our approach is distinguished by having a rigorous verifi-
cation method to reason about compliance requirement vio-
lations. We also agree with the argument in [7] that busi-
ness and compliance specifications are to be handled sep-
arately if we aim to automatically verify their compliance.
This is mainly because business and compliance specifica-
tions have different objectives (business perspective vs. own-
ership and governance perspectives), nature (procedural vs.
declarative), and lifecycles and may conflict with each other
resulting in a highly complicated BP models. Therefore, it
should be possible for any of these specifications to be treated
independently. However, it is also necessary for these two

Formalizing and appling compliance patterns

123

specifications to be aligned, and their interconnections are
established and maintained carefully. This can be possible
by having a close collaboration between compliance experts
and business process designers, which could be effectively
supported by tools that enable sharing and aligning concepts
and constructs that are common to both specifications.

In this context, our current work? focuses on the develop-
ment of a compliance management knowledge base (CMKB)
that incorporates and interrelates a set of ontologies capturing
various perspectives of the compliance and business spheres.
This will further facilitate the communication between dif-
ferent stakeholders with diverse backgrounds, as it will also
be possible to annotate business process models with related
compliance requirements and visualize them in a unified plat-
form. For the purpose of the main objective of this article,
i.e. automating the verification of business process models
against applicable compliance requirement in a user-friendly
manner, we assume that compliance and business specifica-
tions exist independently yet be aligned carefully.

2.2 Approaches based on deontic logic

Deontic logic is also common in specifying compliance con-
straints, especially in the context of business partner con-
tracts, e.g. SLAs. Key works include [6,7] and [34]. The
study in [34] provides the foundations of the FCL (formal
contract language) focusing on business partner contracts.
Compliance between business and compliance specifications
can be verified based on the idealness notion [34].In [7], FCL
is used to express different types of requirements emerg-
ing from laws and regulations. FCL could express compli-
ance requirements in the four compliance structural classes.
FCL also supports the specification and verification of non-
monotonic requirements.

In [35], an extension is proposed to FCL to incorporate
real-time compliance dimension, i.e. temporalized violation
logic. LKIF rule language [36] is extended with defeasible
logic (FCL) in [37] for the formal specification of compli-
ance requirements. The work in [38] proposes to extend FCL
with the notion of goals (i.e. goal compliance), such that BP
models could satisfy at the same time the goals of the organi-
zation, and the compliance requirements governing the busi-
ness. In particular, they extend and combine FCL for mod-
elling contracts and regulatory compliance, and the defeasi-
ble BIO (Belief-Intention—Obligation) logic for modelling
agents [39]. In [38], first, an abstract BP model is specified
and checked for compliance and goals satisfaction, which
is followed by the automated generation of corresponding
concrete compliant BP model.

2 Ongoing work in Governance, Risk and Compliance Technology
Centre (GRCTC), Ireland, http://www.grctc.com/, the first author is
affiliated to.

The approaches referred above implicitly assume users
who are experienced in formal theories and definitions. Fur-
thermore, associated verification techniques are not as mature
and heavily experimented as the sophisticated verification
and analysis techniques associated with temporal logic

2.3 Graph pattern matching approaches

Designing and re-designing business processes from scratch
is a highly complex, time-consuming, and error-prone task
[40]. An important challenge is to enable the querying
of business process artefacts for reusability purposes. This
can be basically achieved through the exploitation of graph
matching techniques. Dominant studies in this direction are
[40-43], and [44]. Although the motivation underlying many
of these approaches is to propose solutions for problems
regarding process similarity and process substitution, it has
been shown in [41] and [44] that these solutions could also
be employed for compliance checking.

BP-QL [41] is a novel query language for querying busi-
ness processes. It is an abstraction of the BPEL standard that
allows users to query business processes visually in a way
analogous to how business processes are specified. Com-
pliance requirements are represented as queries in BP-QL,
which describe the pattern of activities/dataflow of interest,
and then, a graph matching approach s utilized. Similarly, the
study in [42] proposes an approach that applies graph-based
rules for identifying problems in business process models.

A pattern specification and matching approach is proposed
in [43], which is based on the set theory and operations. The
approach is generic in the sense that it doesn’t assume a spe-
cific modelling language, such that any conceptual model is
treated as a graph. The approach only focuses on the spec-
ification and matching of structural patterns. The work pre-
sented in this article is distinguished by the introduction of
a wider range of patterns supporting the specification and
verification of control flow, employed resources, and timed
compliance constraints. In addition, compliance checking is
not considered in [43]; therefore, the approach’s applicabil-
ity on compliance checking of business process models is
unstudied.

Since the main focus of these approaches is not neces-
sarily on compliance management, it is unclear which forms
of compliance requirements (i.e. regarding control flow, data
validation, employed resources, and real time) are supported.
In addition, their support for the two compliance-related
concepts—non-monotonicity and compensations are inher-
ently not considered.

2.4 Summary and evaluation of related-work approaches

Table 1 presents a summary of the comparison between the
key approaches that are discussed in the sections above.

@ Springer

http://www.grctc.com/

A. Elgammal et al.

124

(suzoped
wistydiowowoy ydeid d9) ydeid
ON ON umop-dog, ydern BIEP ‘MOY [0NU0D Ppaf[eqe] parallg Tadd Pa[[eqe] parall 10-d9 [1¥] Te 10 11o9g
anbruyo9)
oyroads [9] uauaryuep
ON ON umop-dog, -uonejuowe[duy Qwn ‘Mop [onuo) ooeds are1s 44 NINd g AdOTANAd - pue I9NIIPA0D)
QN ‘$90IN0sAI
pakordwo
ON SO umop-dog, i ‘ejep ‘mop [onuo) A i aen3uey o[nI g1 - [L€] Te 10 TuRITWTRg
(eouerdwod
K1091)) QN ‘$90IN0SAI
anbruyod) oyroads pokordwo 01301 UOTIE[OIA [s¢] ojo109
ON SOX dn-wonog uonejuawo[duy ‘BIBp ‘MO [01U0D) S90RI) UONINJAXH i pazierodway, - PUE LI0JBUIIAOD)
QN ‘$90IN0SAI
pakordwo
ON SOx dn-wionog yoeoxdde ssoureapy ‘eJep ‘MOp [onuo) SQJBI) UONINOAXF NINd g 104 - [£] 'Te 30 bipeg
QN ‘$90IN0SAI
pakordwo (3oenU0d [ve€]
ON SOX dn-wonog yoeoxdde ssoureapy ‘e1ep ‘mop [onuo) SOJBI) UOTINOAXF aen3ue[-feInjeu) — 104 - ‘Te 10 1I0JRUIOA0D)
Heyd
Qouanbog [ez]
ON ON dn-wonog Suryoayd [9poN MO [onuoD) vSd swedeIp TN 111 Kadoig *Te 19 QUOTIII[O]
(ydesd (ydes3
P1O21IP PI[qE]) PR1OIP PIT[qE)
ON ON umop-doy, Sumyoyew ydein Mo [onuo) ydei3 sseo01q NINdg ydei3 K1ond) O-NINd g [$1] pemy
SOX ON dn-wonog Sun{oeyo (PO BIEP “MOY [01U0D VSd NINdg 7LD “1L'1d O-NINdg [81] T2 10 peAy
UonEIYNUIPI
monns so[nI
Suryouriq Ay Jo vjeWwOoINE sa[ni
ON ON umop-dog, ‘Surpuy yreg MO [onuoD) Qe)s ULy Tad9 ssoursnq [erodurag, - [91] Te 19 nx
sonbruyo9)
ON ON umop-dog, Sururu-ssa001g BIEP ‘MOp [0NU0D) VSA NINd g 1T - [ST] Te 10 pemy
o1307 300[q0
ON ON - SuIyoayd [9poN awn ‘mop [onuo) - - [erodwio) own-[eay - [11] Te 10 UnqIn
SX ON dn-wonog Sun{oeyo [9pON BIEp “MOY [01UOD sn[nores- & 0cATadd LT 18dd [edrydern [L1] eI NI
(1] sunmn
ON ON umop-dog, Suryoayd [9poN BIEp ‘MO [0NU0D sn[nores-dg 0¢A Tadd o130]- 1 - pue preznoqy
‘Sue[reurioy uoneoyroads
umop yoeordde 110ddns [opowt sjuowaImbar joensqe
NoeQPaS] "UOIN-UON -doy/dn-wonog UOTIBOYLIOA dd reamonng uonoensqe 4g uoneoyroads Jg douerdwo) ‘bar -dwo) Apmg

JI0oM P3Je[al JO UOTIEN[BAd pue Arewruing | d[qel,

pringer

Qs

Formalizing and appling compliance patterns

125

‘Comp. req. abstract specification’ column in Table 1 con-
tains the abstract/visual language used to represent compli-
ance requirements (if any). ‘Structural BP support’ column
indicates which BP structural facet the approach supports,
i.e. control flow, data, employed resources, and/or temporal.
‘Non-Mon.’ column indicates if the approach provides a sup-
port to the handling of non-monotonic requirements. ‘?” in
table indicates that it is unclear if the approach supports the
relevant criteria.

3 Overview of the design-time business process
compliance management

Figure 1 depicts an overview of the key practices and compo-
nents of our design-time business process compliance man-
agement approach, and highlights the parts that outline the
scope of this paper. The approach depicted in the figure is a
concretized and detailed version of the generic approach that
we previously introduced in [45].

There are two primary abstract roles involved in this
approach: (i) a business expert, who is responsible for defin-
ing and managing business processes in an organization
while taking compliance constraints into account, and (ii)
a compliance expert, who is responsible for refining, inter-
nalizing, specifying, and managing compliance requirements
stemming from external and internal sources in close collab-
oration with the business expert.

The approach encompasses two logical repositories: the
business process repository and the compliance require-
ments repository, which may reside in a shared environ-
ment. Process models including service descriptions are
defined and maintained in the BP repository, while com-
pliance requirements and all relevant concepts are defined,
maintained, and organized in the compliance requirements
repository. These repositories foster the reusability of busi-
ness and compliance specifications. We assume that these
two specifications (BPs and compliance requirements) share
the same constructs—mainly BP elements residing in the BP
repository.

The BP definition (the right-hand side of Fig. 1) involves
the specification of process models using the Business
Process Execution Language (BPEL). However, as BPEL
specifications are not grounded on a formal model, they
should be transformed into some formal representation to
enable their automated verification and analysis against for-
mally specified compliance rules. The automated mapping
of process specifications into a formal representation have
been intensively studied in the literature (e.g. [11,14,17,46]).
For this transformation, we have adopted and integrated the
mapping framework proposed in [46] (and its prototypical
implementation [47]). We have specifically chosen to exploit
this approach due to its support to handle rich data manipu-
lations via XPath expressions. This allows the analysis and
validation of data exchanged as messages between participat-

Design-time Business Process
Compliance Management
Refinement ng‘i’:éaegce
(internalization) of (Regulatlijons, laws, E)I(JS":?S
abstract compliance standards, etc.) pe
requirements
Analyzing design- Causes of N -
Refined time compliance violations/ » Deflne/Modﬂy
¢ N violations and root guidelines as d SEESS
(internalized) di Process Models
compliance causes remedies
requirements / \ /
coman \ 4 Focus of the paper N v
omplianci e —_— _—] ———— — — — End-to-end
4 ~—
Expert (- Part B Automatic)) BP Models
Specifyin I :
c P i 9 transformation of | (i.e. BPEL)
A omp Ianc(t! | I . BPEL to guarded <
I eqlrureg;: S Verification automata (GA), | Compliant
using | I results then to Promela | BPEL
I models
Pattern-based Automated iee Compliance A4
I representation of generation of pormatyispecifisd verification Corresponding |
compliance Compliance Rules ((|: :mLpTI:-a:gt::;I::) (SPIN model Promela code l BPEL Execution
l requirements (i.e. LTL rules) e } \ Checker)
—_——— ===\ — — — —

Compliance
Requirements Repository

Business Process
Repository

Fig. 1 Design-time business process compliance management approach

@ Springer

126

A. Elgammal et al.

ing services. Following this approach, a BPEL specification
is first mapped into an intermediate representation (guarded
automata—GA), and then to Promela code—the verification
language accepted by SPIN model checker [8] (Part C in
Fig. 1). A brief description of this BPEL mapping is pre-
sented in Sect. 6.2.

On the other side (left-hand side in Fig. 1), compli-
ance management practices commence with the refinement
of compliance constraints originating from various compli-
ance sources into a set of organization-specific compliance
requirements (Part A in Fig. 1). This involves not only com-
pliance but also business process domain knowledge. Our
work on this part is presented in detail in [48] and [49].
The proposed refinement approach is based on the COSO
[50] framework, which is the de facto framework used for
establishing efficient internal control systems in organiza-
tions. The refinement approach briefly involves the following
major steps:

I. Identification of the objectives and the abstract require-
ments enforced by compliance sources with which the
organization has/agrees on to comply with.

II. Performing ‘risk assessment’ to identify the risks to the
achievement of these objectives/abstract requirements
imposed by the identified compliance sources.

III. Identifying, designing, and implementing ‘controls’ to
mitigate the identified risks. Controls are concrete and
organization-specific norms to be verified, enforced, or
tested in order to ensure that compliance requirements
are satisfied.

IV. Specifying formal compliance rules for those controls
that can be formally represented and be used for auto-
mated process verification at design time and later phases.

For a more detailed discussion about this refinement
methodology and its application on two real-life case studies,
we refer the reader to [48] and [49]. To address the fourth step
in the refinement methodology, compliance expert may apply
and combine compliance patterns using the proposed high-
level pattern-based Compliance Request Language (CRL) to
render organization-specific compliance requirements (Part
B in Fig. 1). This serves as an auxiliary step to represent
internalized compliance requirements into formal statements
(as LTL formulas for our case). These CRL expressions are
then automatically transformed into LTL formulas. The ver-
ification of business process specifications (Part C in Fig. 1)
mainly involves checking formal business process specifi-
cations (i.e. Promela code) against formal compliance rules
(LTL rules) using the SPIN model checker [8]. SPIN is a
popular open source software tool that is intensively used
in both academia and industry for the formal verification of
large-scale distributed software and hardware systems. The
expected inputs to SPIN are as follows: a Promela code that

@ Springer

captures the behaviour of the BPEL specification; and a set of
LTL rules capturing relevant compliance requirements. The
outcome of SPIN is a ‘yes-no’ answer indicating whether
each LTL rule is satisfied or violated. In case of violations,
the root-cause analysis approach that we have proposed in
[51] and [52] may be conducted to analyse and reason about
the root causes of design-time compliance violations and pro-
vide the user with suggestive guidelines of how to resolve
the compliance anomalies. The business experts then alter
the process specifications taking these guidelines into con-
sideration, which is followed by the automated re-mapping
of the BPEL specification into their formal forms (GA and
Promela) and re-verifying against the set of applicable formal
compliance rules. This process iterates until all violations are
resolved and a statically compliant business process model
is produced.

The parts in Fig. 1 enclosed with dotted lines and tagged as
‘Part B” and ‘Part C’ illustrates the main focus of this paper.
In particular, it concerns with the high-level representation
of the refined compliance requirements as compliance pat-
terns using CRL, the automatic mapping of CRL expressions
into LTL formulas, and automatically verifying the resultant
formal rules against BP models for design-time compliance
assurance.

4 Case studies

In this section, we introduce two case studies that were
conducted within the scope of the EU funded research
project (http://www.compas-ict.eu). The case studies were
performed in companies operating in different industry sec-
tors and covered processes taking place in the e-business
and banking domains. Taking into account the demands for
strong regulation compliance schemes, such as Sarbanes-
Oxley (SOX), ISO 27000 and sometimes contradictory needs
of the different stakeholders, such business environments
raise several interesting compliance requirements.

The first case study involved an Internet reseller company
that offers products through online systems. The study cov-
ered a wide range of BPs, such as order processing, invoicing,
cash receipting, and delivery. The second case study covered
‘loan origination and approval’ process that takes place in the
banking domain. We use the second case study as a running
example throughout this paper. The conducts and the overall
findings of both studies are discussed later in Sect. 7.

A simplified model for the loan origination and approval
process is depicted in Fig. 2 using BPMN (Business Process
Model and Notation). BPMN is used in this section for
illustration and presentation purposes; however, we con-
sider BPEL for process specifications. The process flow can
be described as follows: Once a customer loan request is
received, the credit broker checks customer’s banking privi-

http://www.compas-ict.eu

Formalizing and appling compliance patterns

127

Issue
_ a Loan Request Send Receive
= .
5 Receive SignedContract Loan Decision
<) LoanContract
o
Receive
Loan Request

- X

o DeclineDueTo

§ Q SuspendedPrivilege All conditions

2 Access B Check g

8 Portal Custqm_er Bank R t DeclineDueTo

= Privilege equest UnsatisfiedCondition

o No Bank Information No

Yes Receive
Signed Form Perform
LoanSettlement ‘z‘
5 LoanAmount > 1M Delegate To A . -
] Supervisor if the loan A ﬁfost-processmg clerk A Notify
H amount is supetior to P periormsithe sar:e task Send Close Customer|
2 1“@", as a supervisor does LoanContract Loan Approval
E Time-out [Legal delay]
o
- g’ CreditWorthinessOK?
‘g ﬁ &5 Check DeclineDueTo
ol o Credit Worthiness BadCreditWorthniness
£
Yes | \ .
Low risk?
Evaluate —
LoanRisk =
— Ne

3 1)) sign officiall ‘@

= LoanContract

g [PeclineDueTo

= HighRisk

Fig. 2 BPMN model of the loan origination and approval process (simplified)

leges status. If privileges are not suspended, the credit broker
accesses the customer information and checks whether all
loan conditions are satisfied. Next, a loan threshold is cal-
culated, and if the threshold amount is less than 1M Euros,
the post-processing clerk checks the credit worthiness of the
customer by outsourcing to a credit bureau service. Next, the
post-processing clerk initializes the loan form and approves
the loan. If the threshold amount is greater than 1M Euros, the
supervisor is responsible for performing the same activities
instead of the post-processing clerk. Next, the manager eval-
uates the loan risk, after which she normally signs the loan
form and sends the form to the customer to sign. A legal wait-
ing time of 7 days is provided to the customer to send back
the signed contract. If a timeout occurs, which means that
7 days have passed and the customer has not sent the signed
contract, the relevant loan approval application is closed by
the system and the process terminates.

Table 2 shows an excerpt of the compliance requirements
imposed on this loan approval scenario. This table is pop-
ulated after applying our refined methodology [48,49] we
summarized in Sect. 3 (identified potential risks and other

related concepts are omitted for simplicity). The first and
second columns of the table allocate a unique reference
and an organization-specific interpretation of the require-
ment, respectively. The third column gives the high-level and
abstract compliance requirements as they appear in the com-
pliance sources (such as laws and regulatory documents),
from which they originate. Finally, the fourth column refers
to the associated compliance sources.

5 Compliance request language

In [53], we have analysed a wide range of compliance legis-
lations and frameworks, including Sarbanes-Oxley [1], Basel
III [2], IFRS [54], FINRA (NASD/SEC) [55], COSO [50],
COBIT [56], and OCEG [57], and examined a variety of
relevant works on the specification of associated compli-
ance requirements. Based on this analysis and our joint work
with two industrial companies (PriceWaterHouse Coopers—
PwC, the Netherlands and Thales Services, France), we have
iteratively and incrementally identified structural patterns of

@ Springer

128

A. Elgammal et al.

Table 2 An excerpt of the compliance requirements relevant to the case scenario

ID Refined compliance requirement (High-level) compliance Compliance sources
requirement
Req.l The customer should receive an automated email Customer’s personal data should 95/46/EC (data protection directive)

notification when his personal data is collected by
the ‘credit bureau service’

The checking of the customer bank privilege that is
followed by checking of her credit worthiness must
take place before determining the risk level of the
loan application

The activity ‘customer bank privilege check’ (to be
performed by credit broker or supervisor) should
be segregated from ‘credit worthiness check’ (to be
performed by post-processing clerk)

The branch office manager checks whether risks are
acceptable and makes either the final approval or
rejection of the request

The offer in the signed loan contract is valid for 7
working days and afterwards it is closed

Req.2

Req.3

Req.4

Req.5

Loan should be granted with
adequate level of assurance

Duties in loan processing should
be adequately segregated

Duties in loan processing should
be adequately segregated

Bank offers for customers and
third parties should be valid for

be handled confidentially

Internal bank policy

Sarbanes-Oxley Sec. 404 - ISO 27002-10.1.3

Sarbanes-Oxley Sec. 404 - ISO 27002-10.1.3

Internal bank policy

certain time periods

Req.6 If the loan request’s credit exceeds 1 million Euro
(1M €) the clerk supervisor checks the credit
worthiness of the customer. The lack of the
supervisor check immediately creates a suspense
file. In case of failure of the creation of a suspense
file, the manager is notified by the system

Checking banking privileges is optional for
trusted (gold) customers. If a trusted (gold)
customer’s loan request is less than 1M Euros, the
evaluation of the loan risk is not performed

Req.7

policy

Duties in loan processing should
be adequately segregated

Customers can take advantage of
special treatments with respect to
the customer categorization

Sarbanes-Oxley Sec. 404 - ISO 27002-10.1.3

Internal bank policy

frequently recurring (compliance) requirements imposed on
business processes. Based on the findings of the analysis, we
have also identified a set of features a formal language for
compliance requirements should possess, which is reported
in detail in [58] and [59]. This paper builds on this work
by providing an abstract pattern-based language (CRL) that
spans over three structural aspects (out of four) of compliance
requirements (control flow, employed resources, and tempo-
ral) and addresses the usability concern of temporal logic.
In addition, it supports the specification and verification of
non-monotonic requirements and compensations.

Our analysis also revealed different categorizations of
compliance requirements. Requirements can be applicable
to controls (checks) that pursue either a preventive or detec-
tive approach. Preventive controls help to keep violations
from occurring. Examples include authorizations, segrega-
tion of duties, and supervisory approval. Detective controls,
on the other hand, often produce information regarding an
occurred violation to help understand its causes. Examples
are management reviews and reconciliations.

With respect to the instruments used for the control, the
compliance requirements can also be categorized as process,
technical, and physical [57]. Process -related requirements
are relevant to the policies and practices concerning the
design and execution of BPs. Authorizations, approvals,

@ Springer

inspections, segregation of duties applied through business
tasks, and other elements are examples of such require-
ments. Technical requirements involve the use of devices
or systems mainly for authentication, encryption, or secu-
rity purposes. Examples include firewalls and intrusion pre-
vention/detection systems. Physical requirements involve
largely the institution of physical means, such as locks,
fences, and alarms, to guard critical assets. In identifying
the patterns, we focused on preventive-process controls that
can be applied for automated design-time verification. The
compliance patterns studied in this paper are not applicable or
effective for representing the compliance requirements that
are applied following a detective approach, or those that are
classified as technical or physical.

5.1 CRL meta-model

Figure 3 presents the meta-model of the Compliance Request
Language (CRL) represented by UML class diagram. The
compliance pattern class is the core element of the language,
and each pattern is a sub-type of it. A compliance pattern is
a high-level domain-specific template used to represent fre-
quently occurring compliance constraints. The compliance
pattern class is sub-divided into four main sub-classes of
patterns, namely atomic, resource, composite, and timed.

Formalizing and appling compliance patterns

129

Se;ti70n
: Compliance Rule
1 i1 3 N Ly (LTL/MLTL
------------------------- Expression j mapped to ‘ Formula)
o..1§ has o =

1.1} \L 1.n

Operand j
0..n
Composite

<

i ; s

[
Section Atomic
5.2 Patterns Patterns

Zﬁ JAN

[
Order
Patterns

Patterns

l A
Occurrence PLeadsTo

e {? [L & e ZL ﬂ}“;??"

(“Segregated |

_____________________ {otoanm) |~ G || e) %) e

LeadsTo

@D

. ,?,':,’ ﬂ?ﬁfffg

ChainLeadsTo _ElseNexi

Bounded
Exists

Fig. 3 Compliance request language meta-model

Atomic patterns deal with occurrence and ordering con-
straints. Some patterns (those ‘non-shaded’ in Fig. 3) are
adopted from Dwyer’s property specification patterns [22].
Resource patterns capture recurring requirements related to
task assignments and authorizations, such as segregation of
duties.Composite patterns are built up from combinations
(nesting) of multiple atomic patterns via Boolean operators
to allow for the definition of complex requirements. Timed
patterns are used in combination with other compliance pat-
terns to capture time-dependent constraints. We elaborate
these types of patterns in Sects. 5.2 through 5.6.

As shown in Fig. 3, an expression mainly comprises com-
pliance patterns (patterns in short) and operands. Expres-
sions can combine multiple (sub-)expressions by using
Boolean operators. For example, the expression [(P Precedes
Q) And (R Exists)] comprises two sub-expressions, where:

Precedes and Exists are atomic patterns.

P, O, and R are operands (that typically represent BP
elements).

‘And’ represents the conjunction Boolean operator.

Operands take the form of BP elements (such as activi-
ties, events, business objects), their attributes, or conditions
on them. For example, the expression ‘CreateOrder Lead-
sTo ApproveOrder’ has two operands (activities in this case)
connected via the LeadsTo atomic pattern. Similar to expres-
sions, operands can also be combined and nested via Boolean
operators, e.g.:

(USegregated

%

Section
5.4

i) |- i)
(~ Rbounded

(CheckCustomer Privilege And (Loan.Amount
>1M€’))LeadsTo (CheckCreditWorthiness.Role

(‘Supervisor’))

An expression built from compliance patterns and operands
has a direct mapping to LTL formulas. The formal description
of the CRL grammar defining its syntax can be found in
[60]. CRL has formally defined operational semantics given
by the mapping into LTL formulas [61]. In the following,
we describe compliance patterns classes in more detail by
exemplifying them using the running scenario introduced in
Sect. 4.

5.2 Atomic patterns

Atomic patterns can be used to describe the requirements that
involve basic occurrence and ordering of BP elements. They
are founded on Dwyer’s property specification patterns [22].
We extended Dwyer’s patterns with four atomic patterns:
Else, ElseNext, DirectlyFollowedBy ,and Frees. The Else and
ElseNext atomic patterns are used to represent compensations
in a way analogous to If-then-else statements. These two pat-
terns are discussed in detail in a separate section (Sect. 5.6).
Atomic patterns can be summarized as follows (given P and
Q as operands):

Occurrence patterns

@ Springer

130

A. Elgammal et al.

e P isAbsent indicates that P should never hold throughout
the BP model.

e P isUniversal indicates that P should always hold
throughout the BP model.

e P Exists mandates that P must hold at least once within
the BP model.

e P BoundedExists (atLeast/Exactly/atMost) k indicates
that P must hold at least/exactly/at most k times, respec-
tively, within the BP model.

e P ExistsOften indicates that P must hold more than once
within the BP model.

Order patterns

e P Precedes Q indicates that Q must always be preceded

by P.

e P LeadsTo Q indicates that P must always be followed by
0.

e (Py,..., P,) ChainPrecedes (Q1, ..., Q) indicates that
the sequence Q1i,..., Q;,; must be preceded by the
sequence of Py, ..., Py.

e (Py,..., Py) ChainLeadsTo (Q1, ..., Q) indicates that
the sequence Py, ..., P, mustbe followed by the sequence
O1,--+» Om-

e P DirectlyFollowedBy Q represents a strict case of the
LeadsTo pattern, which requires P to be directly followed
by Q.

e P Frees Q indicates that the second operand Q has to be
true until and including the point where the first operand P
first becomes true. For example, a requirement stated as:
‘the status of the loan request should always be pending
until the check of the loan risk returns a positive response’,
can be specified in CRL as:

Loan.Approved = ‘Yes’ Frees Loan.Status

= ‘Pending’.

Atomic patterns exemplified:

Returning back to our running example introduced in
Sect. 4, we can represent requirements Req. I and Req.2 given
in Table 2 in CRL as follows:

Req.1: The customer should receive an automated email
notification when his personal data is collected by the
‘Credit Bureau service’

R1: ((RequestBankInformation Or CheckCredit
Worthiness) Directly Followed By NotifyCustomer

Regarding Req.1, customer information is collected by
conducting a credit bureau service to check the credit wor-
thiness of the customer. In case the loan requester is already

@ Springer

a customer of the bank, the credit broker can directly access
her personal information from the bank database by invok-
ing ‘request bank information’ activity (as shown in Fig. 2).
The pattern expression R1 ensures that the customer will be
notified immediately after her data has been accessed.

Req.2: The checking of the customer bank privilege that
is followed by checking of her credit worthiness must
take place before determining the risk level of the loan
application

R2: ((CheckCustomer Bank Privilege, CheckCredit
Worthiness)ChainPrecedes EvaluateLoanRisk)

R2 uses the ChainPrecedes pattern of Dwyer’s property
specification patterns [22], which mandates the sequence of
CheckCustomerBankPrivilege and CheckCreditWorthiness
to precede EvaluateLoanRisk activity.

5.2.1 From atomic patterns to LTL

LTL [61] is a logic used to formally specify temporal proper-
ties of software or hardware designs. In LTL, each state has
one possible future and can be represented using linear state
sequences, which corresponds to describing the behaviour of
a single execution of the system. The formulas take the form
Af, where A is a universal path quantifier and f is a path
formula. A path formula must contain only atomic proposi-
tions as its state sub-formulas. The formation rules of LTL
formulas are as follows [61]:

e T and L are formulas (where T represents tautology and
L represents contradiction).

e If P € AP, where AP is a non-empty set of atomic
propositions, then P is a path formula.

e If f and g are path formulas, then —f, fV g, fAg, X,
Ff, Gf, fUg, fWg, and f Rg are path formulas (where
‘v’ represents ‘or’ and ‘A’ represents ‘and’ logical oper-
ators), such that:

e G (always) indicates that formula f must be true in
all the states of the path.

e X (next time) indicates that the formula f must be
true in the next state of the path.

e F (eventually) indicates that formula f will be true at
some state in the future.

e U (until) indicates that if at some state in the future
the second formula g will be true, then, the formula
f must be true in all the subsequent states within the
path.

e W (weak until) represents the same semantics as until;
however, it is evaluated to true if the second formula
g never occurs.

Formalizing and appling compliance patterns

131

Table 3 Mapping rules from atomic patterns to LTL

Atomic pattern

Pattern-based expression

Description

LTL representation

isAbsent

Exists

Bounded-Exists

isUniversal

Precedes

Chain-Precedes

LeadsTo
Chain-LeadsTo

Exists-Often

DirectlyFollowedBy

Frees

P isAbsent

P Exists

P BoundedExists < 2 *with
bound < 2

P BoundedExists> 2 *with
bound > 2

P isUniversal

P Precedes Q
P Precedes (S,T)

(S,T) Precedes P

P LeadsTo Q
P LeadsTo (S,T)

(S,T) LeadsTo P
P ExistsOften
P DirectlyFollowedBy Q

P Frees Q

P should not exist throughout the
BP model

P should occur at least once within
the BP model

P must occur at most 2 times
within the BP model

P must occur at least 2 times
within the BP model

P should always be true throughout
the BP model

Q must always be preceded by P

A sequence of S, T must be
preceded by P.

P must be preceded by a sequence
of S, T

P must always be followed by Q

P must be followed by a sequence
of S, T

A sequence of S, T must be
followed P

P must occur frequently within the
BP model

Requires P to be directly followed
by Q

The second operand Q has to be
true until and including the point
where the P first becomes true

G(—P)

F(P)

—“PW(PW (=PW (PW—F(P))))
—“PW(PW (=PW(P)))

G(P)

~QWP
(FSAXF(T)) — (=5 UP))

F(P) — (mPUS A=PAX(—PUT)))

G(P — F(Q))
G(P — F(SAXF(T)))

GSAXF(T)— X(F(T NF(P)))
GF(P)
G(P — X (0))

PRQ

P, Q, S and R are operands that indicate BP elements (such as activities, roles, data objects, events), their attributes, or conditions on them. The
mapping rules for Dwyer patterns (see Fig. 3 non-shaded patterns) are based on [26]. The mapping for the ExistsOften pattern is introduced in [28]

e R (release) indicates that the second formula g has to
be true until and including the point where the first
formula f firstbecomes true; if f never becomes true,
g must remain true forever. R (release) is the dual of
U (Until).

The mapping scheme from a compliance pattern into LTL
enables the automated transformation of CRL expressions
into a set of LTL formulas. Table 3 lists the mapping rules to
transit from atomic patterns into LTL.

Applying the mapping rules given in Table 3 automati-
cally generates the LTL formulas that correspond to the CRL
expressions R1 and R2 given above. The generated LTL for-
mulas of R1 and R2 are:

R1: G((Request BankInformation \/
CheckCreditWorthness)— X (NotifyCustomer))

R2': F(EvaluateLoanRisk — —EvaluateLoanRisk
U(CheckCustomer Bank PrivilegeA—Evaluate
LoanRiskAX (—EvaluateLoanRisk U Check
CreditWorthiness)))

5.3 Resource patterns

‘Employed resources’ involves mainly the task allocations,
access control, and authorization constraints, and constitutes
one of the important structural facets of BP compliance.
CRL addresses this dimension through the resource patterns,
which typically involve some basic BP concepts, in particu-
lar role, user, and task (or BP activity). We assume that tasks
are assigned to roles and users perform the tasks through the
roles they are assigned to. As shown in Fig. 3, we introduce
eight resource patterns that are described in Table 4.
Compliance requirements on employed resources typi-
cally require run-time information to be verified. That is,
many of such requirements can only be partially verified for
compliance at design time. Although the main focus of this
paper is on design-time compliance, our underlying motiva-
tion is to establish a preventive viewpoint in compliance man-
agement. This requires efficient integration of design-time
and run-time verification techniques. Accordingly, we found
it meaningful to discover and propose patterns that can also
be used to specify requirements that may only be checked at
the subsequent run-time monitoring phase. In that respect, we
mark the rules involving users to be checked and monitored at
run-time, since the assignment of specific users to particular
roles might not be known until such information is available

@ Springer

132

A. Elgammal et al.

Table 4 Resource pattern descriptions and their mapping rules into LTL

Resource pattern Description

LTL mapping rule

t PerformedBy R
activity t
t1 SegregatedFrom #,
different roles and users

t1 USegregatedFrom #,
different users
t; BoundedWith 1,
same user
(11, 1) RBoundedWith R
same role R; but different users

(t1, ta,...,t,) M-Segregated
(R], R27 ey Rm)

Roles (Ry, Ry, .

(t1,t2, ..., 1) M-USegregated Indicates that users (U1, Ua, ..

(U1, U, ..., Up) involved in the performance of activities
(112505 ty)
(t1,t2, ..., t;) M-Bounded U, Indicates that activities (¢, t2, .

performed by the same user Uy

No other role than R is allowed to perform

Activities f; and #, must be performed by

Activities #; and #; must be performed by

Activities ¢ and #; must be performed by the

Activities 71 and #, must be performed by the

.., Ry;) should be involved in

the performance of activities (1, fz, . .

., Up) should be

.., ;) must all be

G(t — t.Role(R))

G (t1.Role (R) — — (t2.Role (R))
A G (t1.User (U) — —(tp.User (U))

G (t1.User (U) = —(tr.User (U))

G(t1.User(Uy) — . User(Uy)) A G(tp.User(Uy)
— 11.User(Uy))
G (t) — t1.Role (R))) A G (t — t3.Role (R}))
N\ G— (11.User (Uy) A tp.User (Uy))
N\ G— (t1.User (Uz) A ta.User (Uz))
AlUL, Uz] € GetUser(Ry)

G(Al=izn(ti = Vi<jzm(ti.Role (R}))) Al<k<m

L t) (G(—=(A1<i<n(t;.Role(Ry))))) Such that: n, m € N are
the number of tasks and involved roles, respectively,
n>mandi, jk,leN

G(Ai=izn(ti = Vizj=n(ti.User (Uj)) Alzkzh
(G(=(A<i<n(t1.User(Uy)))) Such that: n, h € ¥ are
the number of tasks and involved users, respectively,
n>h,andi, j, k,l e R

G(A1<i<n(ti.User(Uy))) Such that n € N is the number
of tasks and i € R

at run-time. This applies to rules that are generated by using
the following resource patterns: SegregatedFrom, USegregat-
edFrom, BoundedWith, RBoundedWith MU-Segregated, and
M-Bounded.

To give an example, consider the mapping rule of the Seg-
regatedFrom pattern as given in Table 4. It is comprised of
two rules, i.e.

e f1 : G(t1.Role (R) — —(t2.Role (R)): This LTL rule
ensures that activities 7 and #, are performed by different
roles.

e G (t1.User (U) - —(tp.User (U)): This LTL
ensures that that activities 71 and #, are performed by
different users.

Rule f) can be verified during design time, while rule f
is generated and marked for subsequent run-time monitoring
due to the absence of this specific contextual information
during design time.

Resource patterns exemplified

Compliance requirements Req.3 of the running scenario
as described in Table 2 represents a resource allocation and
authorization constraint that can be represented in CRL as
follows:

@ Springer

Req.3: The activity ‘Customer bank privilege check’
(to be performed by Credit Broker) should be segregated
from ‘credit worthiness check’ (to be performed by post-
processing clerk or supervisor)

R3.1: (CheckCustomerBankPrivilege
Performed By ‘CreditBroker’)

R3.2: (CheckCreditWorthiness Per formed By
‘PostProcessingClerk’ Or ‘Supervisior’)

R3.3: (‘CheckCustomerBankPrivilege’
Segregated From CheckCreditWorthiness)

Req.3 represents the typical segregation of duties com-
pliance requirement. First, R3.1 and R3.2 ensure that
CheckCustomerBankPrivilege and CheckCreditWorthiness
activities are assigned to the appropriate personnel. Then,
R3.3 checks if these two activities are adequately
segregated.

Applying the mapping rules given in Table 4, the LTL
formulas that correspond to the pattern expressions R3.1 to
R3.3 can be automatically generated as follows:

Formalizing and appling compliance patterns

133

R3.1": G(CheckCustomer Bank Privilege — (Check
CreditWorthiness. Role(‘Credit

Broker")))

G(CheckCreditWorthiness — (CheckCredit
Worthiness. Role(‘ Post
ProcessingClerk’)CheckCreditWorthiness.
Role(‘Supervisior’)))
G((CheckCustomer Bank Privilege. Role(R)
— G(—(CheckCreditWorthiness. Role(R))
G((CheckCustomer Bank Privilege. User(U)
— G(—(CheckCreditWorthiness. User(U))

R3.2':

R3.3":

R3.4':

Asdiscussed above, the generated LTL rules R3.1’, R3.2/,
and R3.3’ are checked during design time, while rule R3.4'
is reserved for run-time monitoring.

5.4 Composite patterns

To facilitate the definition of more complex requirements,
composite patterns utilize Boolean logical operators (Not,
And, Or, Xor, Imply, and Iff) to enable the nesting of mul-
tiple patterns. For example, PLeadsTo pattern is an ‘And’
composition of ‘P Precedes Q’ And ‘P LeadsTo Q’ [21],
which indicates that operands P and Q should ‘occur’ and
must take place sequentially. Table 5 presents details regard-
ing the CRL composite patterns.

Composite patterns exemplified

Compliance requirement Req.4 of the running scenario
(Table 2) forms a combination of task allocation and com-
posite compliance requirement. It can be represented in CRL
as follows:

Req.4: The branch office Manager checks whether risks
are acceptable and makes either the final approval or
rejection of the request.

R4.1: (EvaluateLoanRisk. LowRisk = ‘No’LeadsTo

JudgeHighRiskLoan)

R4.2: JudgeHighRiskLoan PerformedB ‘Manager’

R4.3: SignOfficiallyLoanContract

PerformedBy ‘Manager’

DeclineDueToHighRisk Per formedBy

‘Manager’

(JudgeHighRiskLoan LeadsT o

(SignOfficiallyLoanContract MutexChoice

DeclineDueToHighRisk))

R4 4.

RA4.5:

Compliance requirement Req.4 can be represented using
five expressions. R4.1 checks if JudgeHighRiskLoan activity
takes place. Then, expressions R4.2, R4.3, and R4.4 ascer-
tain that corresponding activities are assigned to the proper

roles. Finally, R4.5 checks whether JudgeHighRiskLoan is
followed by either SignOfficiallyLoanContract or Decline-
DueToHighRisk (but not both or neither of them).

Applying the mapping rules given in Tables 3, 4, and 5,
the LTL formulas that correspond to the pattern expressions
R4.1 to R4.5 can be automatically generated as follows:

R4.1": G(EvaluateLoanRisk. LowRisk=‘No’ — F
(JudgeHighRiskLoan))

R4.2": G(JudgeHighRisk
Loan — JudgeHighRiskLoan. Role
(‘Manager’))

R4.3: G(SignOfficiallyLoanContract — Sign
OfficiallyLoanContract. Role
(‘Manager’))

R4.4": G(DeclineDueToHighRisk— DeclineDueT o
HighRisk. Role (‘Manager’))

R4.5': G(JudgeHighRiskLoan — (F((SignOfficially
LoanContract N\G(—DeclineDueToHighRisk))
F((DeclineDueToHighRisk N
G(—=SignOfficiallyLoanContract)))))

5.5 Timed patterns

Time dimension is another key aspect in BP compliance and
CRL addresses time-related requirements with eight patterns.
Timed patterns should be used in conjunction with other com-
pliance patterns (atomic or composite patterns) forming a
‘timed composite pattern’ expression. However, not every
timed pattern can be composed with all compliance patterns.
In total, we defined 51 possible combinations, from which a
subset is presented in Table 6. For the complete list of com-
binations, the reader is referred to [60].

Regarding the mapping from timed patterns to corre-
sponding formal statements, LTL lacks the support to such
requirements. Various extensions to LTL, such as metrical
temporal logic (MTL) and ForSpec temporal logic (FTL)
[62] have been proposed in the literature to overcome this
limitation.

We have selected MTL for this purpose as MTL extends
LTL and thus holds the same semantics (and formation rules).
MTL is interpreted over a discrete time domain (over the set
of natural numbers R). Its temporal operators can be anno-
tated with a real-time expression / that represents a specific
time interval. For example, Fxs¢ represents that in some
future state after at least a delay of 5 time units,) must hold.
MTL uses the digital-clock model [63], such that an external,
discrete clock progresses at a fixed rate. The granularity of
the time can be set by the user.

Similar to the case in resource patterns, many of the rules
generated using timed patterns can be fully checked only at

@ Springer

134

A. Elgammal et al.

Table 5 Mapping rules from composite patterns into LTL

Composite pattern Description

Atomic pattern equivalence LTL representation

P CoExists Q The presence of P mandates that Q is also present

P CoAbsent Q The absence of P mandates that Q is also absent

P Exclusive Q The presence of P mandates the absence of Q. And
presence of Q mandates the absence of P

Q Substitute P Q substitutes the absence of P

P Corequisite Q P and Q should either exist together or to be absent

together

P MutexChoice Q Either P or Q exists but not any of them or both of
them

(PExists) — QExists)
(P isabsent) — (Q isabsent)

(P Exists) — (Qisabsent))

A((Q Exists)
— (P isabsent))

(Pisabsent) — (Q exists)
(P Exists)iff (Q Exists)

F(P) — F(Q)
G(=P)—> G(—0Q)

(F(P)—> G(=O) AN(F(Q)
—- G(=P))

G(=(P)) = F(Q)
(F(P)— F(Q) ANF (D)

= ((P Exists) — (Q Exists)) — F(P))
A((Q Exists) — (P Exists))
(Pexists) Xor (Qexists) (F (PYANG (— (Q)))
= ((P exists) \ (Q isabsent)) V (F(Q) \ G(—=(P)))

V ((Qexists) \(P isabsent))

Table 6 Mapping rules from combinations of compliance/timed patterns into MTL

Timed pattern Atomic/composite

pattern

Timed composite pattern
expression

Description MTL representation

Every Exists P Exists Every k

Within LeadsTo P LeadsTo Q Within k

Substitute P Substitutes Q Within k

AtLeast After LeadsTo

Precedes

ExactlyAt LeadsTo P LeadsTo Q ExactlyAt k

Release P Frees Q ExactlyAt k

Exactly After LeadsTo

Inclusive

P LeadsTo Q AtLeastAfter k

P Precedes Q AtLeastAfter k

P LeadsTo Q ExactlyAfter k

P Inclusive Q ExactlyAfter k

Specifies the amount of time a BP
element (e.g. activity, data
object) has to hold at least once

Indicates that BP element Q has to
follow P within k time units after
the occurrence of P

Q substitutes the absence of P
within at most k time units from
the start of the BP

Indicates that BP element Q has to
follow P after k time units after
the occurrence of P

Indicates that BP element P should
occur before each occurrence of
Q. The time difference between P
and Q should be more than or
equals to k time units

Indicates that BP element Q has to
follow P exactly at time k

P must occur exactly at the elapse
of k time units from the
occurrence of Q to free it

Indicates that BP element Q has to
follow P exactly after k time
units from the occurrence of P

The presence of P mandates that Q
is also present in the next state
exactly after the elapse of k time
units from the time of occurrence
of P

Fer(P)

G(P — F<(Q))
G(=P — Fqu(Q)
G(P — F=(Q)

(=QWP) A\
(G (Q = F<—ik(P)))

G(P — F=(Q))
PR_Q
G(P — F=(X(Q)))

Fi(P = F_t (X ()

run-time as we typically lack the time information at design
time. Thus, respective compliance rules are reserved for sub-
sequent run-time compliance monitoring. In some cases,
however, the process specification can be enriched with time
relevant information. 7imeouts that are defined in BPEL mod-
els are of such kind. In these cases, verification of such rules

@ Springer

at design time is also possible to make sure that the process
is specified properly. Req.5 in Table 2 is an example of such
a requirement.

Timed patterns exemplified:

Compliance requirement Reg.5 given in Table 2 can be
represented in CRL as follows:

Formalizing and appling compliance patterns

135

Req.5: The offer in the signed loan contract is valid for 7
working days and afterwards it is closed

R5.1: ((SendSignedLoanContract LeadsT o
RecieveCustomer SignedContract) WithinT)
R5.2: ((CloseLoanContract Substitutes

RecieveCustomer SignedContract)Exactly
AfterT)

Req.5 can be represented by two expressions R5.1 and
R5.2, which use the combination of LeadsTo—Within pat-
terns, and Substitutes—ExactlyAfter patterns, respectively.
R5.1 states that SendSignedLoanContract should always be
followed by RecieveCustomerSignedContract within a time
interval less than or equal to 7 time units (days in the run-
ning scenario) from the start of the first activity. The expres-
sion R5.2 indicates that CloseLoanContract substitutes the
absence of RecieveCustomerSignedContract in the next state
after the elapse of 7 days.

By applying the mapping rules given in Tables 3, 5, and
6, the LTL/MTL formulas that correspond to R5.1 and R5.2
are as follows:

R5.1": G(SendSignedLoanContract

— F<7(RecieveCustomer Signed LoanContract)
R5.2": G(—RecieveCustomerSignedLoanContract

— F_7(X(CloseLoanContract)))

5.6 Capturing compensations with Else and ElseNext
patterns

It is important to specify compensations to the violations
of certain compliance requirements to handle certain excep-
tional situations. For example, a requirement may necessitate
‘sending a confirmation message to the customer via e-mail
after receiving her application’. A technical failure may pre-
vent this task to be performed and lead to the violation of
the requirement. In this case, it may be desirable to define
compensation actions (for example, sending a confirmation
via SMS) to repair this violation.

The compensation actions can be defined in the form of
chains such that each action repairs the violation of its prede-
cessor. This kind of requirements is analogous to if-then-else
statements, which impose a prioritization on the order of eval-
uation of its conditions and actions. We call the action that
appears just after the ‘then’ part of the if-then-else statement
as the primary action, and every action after each ‘else’ part
is called compensation action. If the primary action holds,
none of its compensations would take place. Similarly, one
and only one action from the primary action and compensa-

tion actions should hold. Such a requirement is considered
violated if neither of its primary action nor compensation
actions holds.

To enable the specification and verification of such
requirements in CRL, we use Else and ElseNext atomic pat-
terns in conjunction with LeadsTo and DirectlyFollowedBy
atomic patterns (explained in Sect. 5.2). Accordingly, a com-
pensable CRL expression can be formed as:

P (LeadsTo |DirectlyFollowedBy) Pi(Else| ElseNext)
P,...(Else|ElseNext) P,

Where:

e P is the rule condition.
e P is the primary action.
e P,...P, are the compensation actions.

‘P (LeadsTol|DirectlyFollowedBy) P;’ captures the
‘if-then’ part of the if-then-else statement. Accordingly, the
primary action P; should take place either immediately after
P holds (by the DirectlyFollowedBy pattern) or sometime
eventually (by the LeadsTo pattern). To capture the ‘else’
part, either ElseNext or Else patterns are used, indicating that
a compensation action should take place either immediately
after its predecessor action (that fails to compensate the fail-
ure) or sometime eventually, respectively.

For example, the requirement Req.6 given in Table 2 can
be represented in CRL using LeadsTo, Else, and ElseNext
patterns as follows:

Req.6: If the loan request’s credit exceeds 1 million Euro
(1M €) the Clerk Supervisor checks the credit worthi-
ness of the customer. The lack of the supervisor check
immediately creates a suspense file. In case of failure of
the creation of a suspense file, the manager is notified
by the system

R6: Loan.Amount > ‘1M’ LeadsTo CheckCredit
Worthiness. Role (‘Supervisor’) ElseNext
CreateSuspenseFileElse NotifyManager

During design-time verification, the objective is to ensure
that the sequence of the primary action and compensation
actions is structurally encoded in the BP model, and there
is a transition from one action (primary or compensation)
to the next only if the first action could not be completed
successfully. This necessitates checking the existence of a
decision point after each action that checks whether the action
is completed successfully or not. Thus, the mapping rule of a
compensable expression for design-time verification can be
defined as follows:

@ Springer

136

A. Elgammal et al.

P (LeadsTo|DireclyFollowed By) Pi(Else| ElseNext)
Py ...(Else|ElseNext) P,
=G(p — FIX(pl A<i<n—1 (F|X(piNotSucceed)
A (piNotSucceed — F|X(pi+1)))))
Where:

e G, F, X represent ‘always’, ‘eventually’ and ‘next’
temporal operators, respectively;

P represents the compensable rule condition;

P represents the primary action;

P, ..., P, are the compensation actions;

andi,n e N

piNotSucceed represents the decision point that
checks whether p; took place

Based on this mapping rule, the generated LTL formula
from the expression R6 is as follows:

R6': (G(Loan.Amount > ‘1M°— F(checkCredit
Worthiness. Role(‘Supervisior’)
A (F(checkCreditWorthiness NotSucceed)
A (checkCreditWorthiness N ot Succeed
— X (CreateSuspenseFile)))N(F (Create
SuspenseFileNotSucceed) A (CreateSuspense
FileNotSucceed — F(NotifyManager)))))

In regard to R6’, checkCreditWorthinessNotSucceed rep-
resents the checking point of the success of the previ-
ous activity, i.e. checkCreditWorthiness.Role(‘Supervisor’).
Similarly, CreateSuspenseFileNotSucceed is the checking
point of the success of CreateSuspenseFile activity. The gen-
erated LTL formula captures the static semantics of com-
pensable compliance rules and ensures that it is structurally
modelled in the relevant business process model.

5.7 Support for non-monotonic requirements

In real-life scenarios, business processes are also subject to
(non-monotonic) requirements that are less strict and can
be overridden under certain pre-defined conditions. In these
cases, a non-monotonic requirement is still considered satis-
fied if it is overridden by one of its pre-defined exceptions.
We consider CRL’s support to such requirements necessary
to enable relaxations and thereby handling exceptional situ-
ations. With respect to the strictness of the condition, excep-
tions has two types [64]:

e A strong exception on the primary rule mandates that
whenever the strong exception holds, the primary rule
must not hold. For example, for acompliance requirement

@ Springer

that demands ‘checking of customer’s bank privileges
when a new loan request is received’ can have a strong
exception that mandates ‘the check’ to be skipped if the
loan requester is a trusted customer (e.g. a customer to
the bank for more than 10 years with a good history).

e A weak exception on the primary rule indicates that when-
ever the weak exception holds, the primary rule may or
may not hold. For the same example, where the require-
ment demands ‘checking of the customer’s bank privi-
leges when a new loan request is received’ can have a
weak exception that allows ‘the check’ to be performed
as an optional task ‘if the loan amount is less that 1 mil-
lion Euro and the requester is a trusted customer’.

Following the approach in [64], in CRL, the exceptions
are specified as separate rules and linked to the primary rule
via labels (i.e. label and exception label constructs in Fig. 3).
For example, compliance requirement Req.7 in Table 2 is a
non-monotonic requirement and can be represented in CRL
as follows:

Req.7: Checking banking privileges is optional for trusted

(gold) customers, which is followed by checking the cus-
tomer loan risk. If a trusted (gold) customer’s loan request
is less than IM Euros, the evaluation of the loan risk must
not be performed

R7: ([R;]CheckCustomerBankPrivilege
LeadsTo [[R%]] EvaluateLoanRisk)
R%: (Customer.Type = ‘TrustedGold’) isUniversal
R%: (Customer.Type = ‘TrustedGold’ And Loan.
Amount < ‘1M’) isUniversal

R7 captures the primary rule, and R; and R% represent
weak and strong exceptions of the primary rule R7, respec-
tively. (R% is put in a single square brackets indicating that
it is a weak exception, while R% is enclosed between double
square brackets indicating that it is a strong exception).

The transformation of a non-monotonic expression results
in a single LTL formula that combines the primary rule with
its exceptions. To simplify the presentation of the mapping,
it is illustrated in two steps. First, the non-monotonic expres-
sion (the primary rule and its exception rules) is mapped to
the LTL rules augmented by exception labels. For example,
applying the mapping rules from Table 3 on the expression
R7, the generated (augmented) LTL rules are as follows:

R7: G ([R%] CheckCustomer Bank Privilege
— [[R%]] F (EvaluateLoanRisk))

R%: G(Customer.Type = ‘TrustedGold’)

R%: G(Customer.Type = ‘TrustedGold’ A Loan.
Amount < ‘1M”)

Formalizing and appling compliance patterns

137

Second, (augmented) LTL rules are mapped into plain LTL
formula following Algorithm 1 (which extends [64]) given
below based on the following definitions:

e Assume that L is the set of labels to be used to define
corresponding strong and weak exceptions.

e Let R be the label of the primary rule.

e Primary and exception rules constitute a set of rules in
the form of < e : f >, where e is the label, and f is the
body of the rule.

e Let < e1 : f1 > be an augmented LTL rule. If e; — L
occurs in the body of < ey : f| >, then ey depends on
e1. The dependency relation is a transitive relation.

e An augmented LTL rule is Loop Free if and only if no
label in L depends on itself. Based on these concepts,
Algorithm 1 can be specified as:

Algorithm 1:

Mapping scheme of a non-monotonic expression
into LTL

Input: L (set of rule labels), R (primary rule label)
Input: Set of augmented LTL rules T (the primary rule
along with its exceptions)
Output: R (resulting LTL rule combining rules in 7°)

l.Llet<e: fl ><e: fr>--,<e: f, >be
all the rules in T, where e is the label, such that e €
[RIUL. A formula f1 \/ foVv---V f, is constructed
which is called E(e). This is done for all labels if
the set of rules with e is not empty

2. If label a; depends on ay, and E(ap) is defined. All
occurrences of [a1](f) in E(ap) will be replaced
with E(ap) v f. The revised formula is still called
E(az)

3. If label a; depends on as, and E(aj) is defined. All
occurrences of [[a1]](f) in E(ay) will be replaced
with E(a;) — —f. The revised formula is still
called E(ap)

4. Steps 2 and 3 are repeated iteratively until no labels
e depending on R, while E(e) is not empty occurs
in E(R)

5. Finally, in E(R), all the remaining [r](f) and
[[711(f) (exceptional rules that are not defined) are
replaced with f. The generated LTL formula is still
called R

Applying Algorithm 1 to R7 and its exceptions, step 1 (in
Algorithm 1) is skipped since no exceptions have the same
label in the exception rules set. By applying step 2 (in Algo-
rithm I) to replace the weak exception R; in R7, the resulting
LTL formula is as follows:

R7: G((Customer.Type = ‘TrustedGold’
V CheckCustomer Bank Privilege)— [[R%]]
F (EvaluateLoanRisk))

Next, by applying step 3 to replace the strong exception
R% in R7', the resulting LTL formula is as follows:

R7: G((Customer.Type=‘TrustedGold’~ Check
Customer Bank Privilege)— ((Customer.T ype
= ‘TrustedGold’ NLoan.Amount ‘1M’)——
F(EvaluateLoanRisk))

Steps 4 and 5 of the algorithm are skipped as R7’ does
not contain more exceptions. The resulting R7’ is a pure
LTL formula that can be fed into the subsequent design-time
verification phase for compliance checking (Sect. 6).

6 Prototypical implementation

An implementation of the proposed design-time compli-
ance management framework is a challenging yet necessary
step to help validating the soundness of our approach. We
have developed a comprehensive experimental tool suite’
for design-time BP compliance management, implement-
ing the approach described in the above sections. Figure 4
presents three main components of the tool suite and their
relationships: Compliance Rule Manager (CRM), Design-
time Compliance Verification Manager (DCVM), and Web
Service Analysis Tool (WSAT).

6.1 Compliance Rule Manager (CRM)

The Compliance Rule Manager is a standalone application
developed with Microsoft Visual Studio environment (with
Visual Studio 2008 SDK) using C# programming language.
The upper left-hand side part of Fig. 4 depicts the internal
architecture of the Compliance Rule Manager, its compo-
nents, and their interaction with the business process and
compliance repositories. Although conceptually separated,
these repositories reside in a shared environment, which is
implemented using Oracle database (version.91).

The CRM comprises two sub-components: Compliance
Rule Modeller and Text Template Transformation Toolkit.
The Compliance Rule Modeller is a graphical modeller that is
used to visually design and create pattern-based expressions
of compliance requirements in a drag-and-drop fashion. A

3 BPCM—Business Process Compliance Management Tool Suite:
http://eriss.uvt.nl/compas/.

@ Springer

http://eriss.uvt.nl/compas/

138

A. Elgammal et al.

COMPLIANCE RULE
MANAGER

—
L_| Compliance
[] 1

Mapping
Scheme (CRL
into LTL)

Refined
Compliance
Requirements

Process
Elements

LTL Rules

Business
Process

Compliance
Repository

\

| §

!

DESIGN-TIME COMPLIANCE
VERIFICATION MANAGER

Verification Formal Check ‘==

Results SPIN
Model
LTL Rules & Checker

corresponding
Promela code

L7

]

Promela code

Fig. 4 A high-level architectural view of the interacting components of the tool suite

screenshot from the Compliance Rule Modeller is shown in
Fig. 5. The patterns and the operand types are situated on the
left side of the interface on the toolbox. The users drag and
drop these constructs on the drawing canvas to build pattern-
based expressions. The drawing canvas is divided into swim-
lanes, each belonging to a refined compliance requirement
retrieved from the Compliance Repository. As described in
Sect. 5.1, patterns and operands are the main elements that
comprise pattern-based expressions. The operands are in the
form of business process elements (such as activities, roles,
data objects, events), their attributes, or conditions on them.

When an operand type, such as an activity, is selected
from the toolbox and dragged onto the swimlane, the Com-
pliance Rule Modeller retrieves the selected type of business
process elements available in the Business Process Reposi-
tory and presents the list to the user for selection (e.g. ‘Select
an Activity’ dialogue box shown in Fig. 5).

Figure 5 shows the pattern-based representations of com-
pliance requirements Req.3 and Req.7 of Table 2. Each
requirement is represented with one or more pattern-based
expressions that capture its semantics and each expression
is enclosed in a sub-expression container. For example, the
upper swimlane in Fig. 5 graphically represents requirements
Req.3 of the running example as described in Table 2 and as
represented in expressions R3.1 to R3.3 in Sect. 5.3 in textual
form.

The Text Template Transformation Toolkit enables the
automatic generation of formal compliance rules (as LTL/
MTL formulas) based on the visual pattern-based expres-
sions. This component is implemented using Microsoft
Visual Studio 2008—T4. The output is an XML document
that contains compliance rules as LTL/MTL formulas and
their properties, as well as pattern-based expressions in text

@ Springer

formats. The output file is parsed and resulting data is for-
warded to the compliance repository together with the refer-
ences to relevant compliance requirements.

Examples of formal compliance rules generated using the
Text Template Transformation Toolkit is shown in Fig. 6.
These sample LTL formulas are based on the pattern-based
expressions given in Fig. 5 (originated from Req.3 and Req.7
in Table 2). As shown in Fig. 4, generated formal compliance
rules are input to the subsequent compliance verification and
monitoring phases of the business process compliance man-
agement framework.

6.2 Web Service Analysis Tool (WSAT)

WSAT [47] is an open source tool that implements the BPEL
mapping approach proposed in [46]. Accordingly, a BPEL
specification is first abstracted to a Guarded Automaton (GA)
representing the global sequence of messages exchanged
between participating services. GA is a finite state automa-
ton (FSA) augmented with an unbounded queue for incom-
ing messages. Guards can be specified on transitions that
are represented as XPath expressions, which enable rich data
manipulation and analysis.

Next, GA is mapped to Promela code. Promela (program
meta language) is the input language accepted by SPIN model
checker [8]. As advocated in [46], having BPEL specifica-
tions specified as GA as an intermediate step decouples the
BP specification languages and formal verification tools from
the translator. In addition, it enables the application of other
static analysis techniques, e.g. synchronisability and real-
isability analysis (we refer the reader to [46] and [47] for
further details). To be able to verify resource allocation and
authorization constraints, Roles are captured from the ‘Part-

Formalizing and appling compliance patterns

139

(> 3 3 - e O R SR
" Debugging - Microsoft Visual Studio - Experimental Hive

B e AV

ol@ R |

File Edit View Project Build Debug Data Tools Test Window Help

e RAEE RN ™ - NI TN - Y R = K2 P Debug v Any CPU

Toolbox * 2 X| pattem transformation300710t | Patter_transformation300710ami Test100111.RPat

$ o m oo S
I: 1 1 of7 (> M | X
Activity Name Search | Fill All

- | 2

=) Basic El
R Pointer
@ Expression

— || RRS

Please Select an activity name
and press OK or add a new one:

|®) Sub Expression 3y —

(O DataObject

(O Activity

D Comment

& Role

&Q PerformedBy
Event

(= Basic Patterns CreditBroker

SegregatedFrom - -
CheckCustomerBankPrivilege CheckCreditWorthines

PostProcessingClerk

‘ ID NAME DESCRIPTION ~
> CheckCreditWort.. Activiy
19 CheckCustomerP... | Activty
u Action’ Ackiviy
Ee Actiond Activy
20 | NotfyManager | Activty

TorTaCaraiaCos

m

m

R Pointer

© Exists

Processing Clerk.

@ Universal o R3: The activity ‘Customer bank privilege check’ performed by Credit Broker
should be segregated from ‘credit worthiness check’ performed by Post

»
[ok

[@ BoundedExists

@ Absent

&2 Precedes
> LeadsTo

R7.1 R7.2

K% XLeadsTo
% SegregatedFrom R7.1 R7.2
P> PLeadsTo

[+ Advanced Patterns
[+ Scope

= Boolean Operators

(»)

LeadsTo
CheckCustomerPrivilege JudgeHighRiskLoan
=

(»)
(»)

W

Universal

W)

Universal
LoanAmount
LessThan
1000000

LoanAmount rustedCustomer And
Equal Equal

True True @

R Pointer

@ And

o r7 Checking banking privileges is optional for trusted (gold) customers. If a trusted (gold) customer's loan request is less than 1M Euros, the
@ Or evaluation of the loan risk is not performed

& Imply

I @ IFE .| K} m J

Ready

Fig. 5 A user interface from the compliance rule manager

nerRole’ attribute of the ‘partnerLink’ element in the BPEL
specification. Partner links are used to link a BPEL specifica-
tion to its interacting services. The corresponding partner link
is then linked to BPEL basic activities (i.e. Invoke, Receive,
and Reply) via the ‘partnerLink’ attribute.

6.3 Design-Time Compliance Verification Manager
(DCVM)

DCVM is a web-based environment (http://eriss.uvt.nl/
compas), coded in ‘PHP’ (scripting language). It interacts
with the Compliance and BP Repositories, which share the
same environment running Oracle database (version.91). As
shown in Fig. 4, DCVM comprises two sub-components;
firstly, the Verification Handler enables users to formulate
compliance verification requests. It retrieves formal com-
pliance rules (in LTL) from the compliance repository and
BP specifications encoded in Promela code (WSAT out-
put) and feeds those to SPIN for formal compliance check-
ing. Secondly, the Verification Handler retrieves the check-
ing results from SPIN and reports the possible underlying
causes and caveats of detected violations based on the root-
cause analysis approach we previously proposed in [51,52].
SPIN implements exhaustive state search as well as multiple
optimized evaluation algorithms, e.g. partial-order reduction,

hash-compact searches, which help to solve the typical state
explosion problem.

Delivery of results in acceptable time is of utmost impor-
tant for the proposed automated BP compliance verification
approach to be adopted in practice. In order to investigate the
performance of the tool suite, we conducted an experiment
over the running scenario that we used in this paper. The
experiment was conducted on a machine with an Intel Pen-
tium 4 processor 1.7 GHz, and 4 GB RAM, with Microsoft
Windows 7 operating system installed. The following results
are reported: WSAT took around 49 s on the average to trans-
form the BPEL process of the running scenario into its corre-
sponding Promela code. The checking of the generated LTL
rules capturing compliance requirements Req.1-7 presented
in Table 2 consumed between 0.035 and 15 s for each of the
rules. It is worth noting that 15s were only consumed in the
checking of the compensation compliance requirement R6.
The average time of all other rules is 4.65s.

The peak memory use was 1,026 MB. We believe that
the results we received for the scenario are acceptable in
terms of time performance. However, considering the com-
plexity of real-life cases with large models and more com-
plex compliance rules, the need for more efficient verifica-
tion and analysis tools running on more powerful platforms is
evident.

@ Springer

http://eriss.uvt.nl/compas
http://eriss.uvt.nl/compas

140 A. Elgammal et al.

File Edit View Project Build Debug XML Data Tools Test Window Help

ArE@E-FdP %R 9~ b Debug ~ Any CPU ~ | (@ Warming | RFRR RO
|dEdds i BRe |FFZ2 0PI 8385 |
__ Pattemn_transformation300710.tt -~ Pattern_transformation300710.xml" | Test100111.RPatternl* -

j <?xml version="1.0" encoding="utf-8%"?>
B <ComplianceRules>
— <Expression Id = "Expressionl">
<Comment>This is the typical segregation of duties compliance requirement</Comment>
<PatternRule Id = "SubFormulal"™ LTLRulesIds = "795,6796,797,798,799">
(CheckCustomerBankPrivilege.Role (CreditBroker) SegregatedFrom CheckCreditWorthiness.Role (PostProcessingClerk))
<LTLRule Id = "1.1"> F(CheckCustomerBankPrivilege.Role (CreditBroker))</LTLRule>
le Id = "1.2"> F(CheckCreditWorthiness.Role (PostProcessingClerk))</LTLRule>
ule Id = "1.3"> G(CheckCustomerBankPrivilege.Role (CreditBroker)->
F (CheckCreditWorthiness.Role (PostProcessingClerk)) </LTLRule>
<LTLRule Id = "1.4"> G(~ CheckCreditWorthiness.Role (PostProcessingClerk)) Vv
(=CheckCreditWorthiness.Role (PostProcessingClerk) U CheckCustomerBankPrivilege.Role (CreditBroker))</LTLRule>
<LTLRule Id = "1.5"> G(CheckCustomerBankPrivilege.Role (Rolel) ->

I» L x

1

A
A
-

G (-~ (CheckCustomerBankPrivilege.Role (Rolel)))</LTLRule>
</PatternRule>
</Expression>
=] <Expression Id = "Expression2" N otonic = "Yes" >
TL <PatternRule Id = "SubFormulal™ sIds = "">
([R7.1]) CheckCustomerPrivilege LeadTo [[R7.2)] JudgeHighRiskLoan)
<LTLRule Id = "2.1"> G([R7.1] CheckCustomerPrivilege->F([[R7.2]] JudgeHighRiskLoan))</LTLRule>
» </Patte: e>
=] <PatternRule Id = "SubFormula2" LTLRulesIds = "">
(TrustedCustomer = True) IsUniversal
<LTLRule Id = "3.1"> G(TrustedCustomer = True)</LTLRule>

</Patte: ule>

S = "SubFormula3" LTLRulesIds = "">
((TrustedCustomer = True And (LoanAmount < 1000000))) IsUniversal
<LTLRule Id = "4.1"> G((TrustedCustomer = True A(LoanAmount < 1000000)))</LTLRule>
r </Patte: ule>
=] <NonMon Rule> G(G(TrustedCustomer = True) -> (CheckCustomerPrivilege VvV - CheckCustomerPrivilege)
= ->F (G ((TrustedCustomer = True A(LoanAmount < 1000000))) -> - JudgeHighRiskLoan)) </NonMonLTLRule>
</Expression>
L</ComplianceRules> -
« m »
Ready Ln31 Col42 Ch42 INS

Fig. 6 Examples of generated compliance rules (in LTL) to be transferred to the compliance repository

With regard to the satisfaction of each of the LTL rules,
SPIN indicated the following verification results:

It was not possible to check the compliance rule R5.2,
since the exact time where each BP activity takes place is
not modelled in BPEL, which is considered as a limita-
tion. Timeouts, however, can be modelled in BPEL, which
enabled us to verify such rules (e.g. R5.1). An exten-
sion to BPEL is required to capture these time annota-
tions that capacitate the checking of these time-dependent
compliance constraints during design time, which is con-
sidered as an open research point. Nevertheless, compli-
ance rule R5.2 and similar time-dependent compliance con-
straints can be specified using CRL timed patterns and can
be reserved for the subsequent run-time monitoring, where
time information is available. Analogously, compliance rule
R3.4 could not be checked due to the absence of user’s
information and the same rule can be reused for run-time
verification.

e Compliance requirement Req.1 is violated.
e Compliance requirement Req.2 is satisfied.
e Compliance requirement Req.3 is satisfied.

Compliance rule R3.1 is satisfied.

Compliance rule R3.2 is satisfied.

Compliance rule R3.3 is satisfied.

Compliance rule R3.4: could not be checked (details
are given below)

e Compliance requirement Req.4 is satisfied.

e Compliance rule R4.1 is satisfied.
e Compliance rule R4.2 is satisfied.
e Compliance rule R4.3 is satisfied.
e Compliance rule R4.4 is satisfied.

e Compliance rule R4.5 is satisfied. 7 Evaluation

e Compliance requirement Req.5:

The utility of a design artefact must be rigorously demon-
strated via well-executed evaluation methods [65]. Observa-
tional methods, such as case studies and field studies, allow
an in-depth analysis of the artefact and the monitoring of its

e Compliance rule R5.1 is satisfied.
e Compliance rule R5.2: could not be checked (details
are given below)

e Compliance requirement Req.6 is violated.
e Compliance requirement Req.7 is violated.

@ Springer

use in multiple projects within the technical infrastructure of
the business environment.

Formalizing and appling compliance patterns

141

In Sect. 4, we have introduced two case studies that
involved processes operating in e-business and banking
domains. The case studies involved the specification of the
compliance requirements (using the CRL) that are applied
on companies’ processes with the main objective of inves-
tigating the applicability and expressiveness of compliance
patterns that have been introduced as an integral part of the
compliance management approach and implemented in the
Compliance Rule Manager Software tool. The case studies
also allowed us to experiment with the use of the Compli-
ance Rule Manager for building graphical representations of
pattern-based expressions and automatically generating cor-
responding formal compliance rules.

For each case study, the case study team—comprising both
compliance and business experts—followed a three-phased
approach, which involves the following activities:

e In the first phase, the team analysed the normative spec-
ifications (i.e. compliance sources, such as regulations,
legislations, domain standards, internal policies) that the
companies in the case studies were to comply with and
identified high-level compliance requirements imposed
on the processes. This phase resulted in 52 high-level
requirements for the first case and 7 requirements (some
of which are listed in Table 2 as examples) in the second
case study.

e In the second phase, grounded on the high-level require-
ments that were identified and the current design of
the processes, the team iteratively refined company-
specific interpretation of these requirements in textual
forms (examples of these refined/internalized compli-
ance requirements are also given in Table 2). The require-
ments are also categorized with respect to the control
approach (preventive or detective) and control means
(process, technical, or physical). The team generated 122
refined requirements in the first and 13 requirements in
the second case study.

e The final phase involved the construction of pattern-
based expressions (of process requirements that are
applicable to preventive approach) through the use of the
Compliance Rule Manager Software tool.

Table 7 gives the type and number of compliance require-
ments covered within the case studies and whether the case
study participants were able to express these requirement
effectively using patterns introduced in this paper.

As shown in Table 7, the requirements that are classi-
fied as process and can be handled using preventive con-
trol approaches constituted the majority. These requirements
were of particular interest to us, as this type of constraints
is the main target for the pattern-based representations and
formalization. They involved rules concerning mainly segre-

gation of duties, access rights, condition-based sequencing
of activities, and data processing requirements. Under this
category of requirements (i.e. preventive process), the case
study teams were successful in expressing all segregation-
of-duties requirements in both case studies. Requirements
concerning access rights / authorizations, activity sequenc-
ing were also successfully expressed using the CRL, as it
has rich constructs to capture the constraints on the con-
trol flow and resource (e.g. role/user assignments) aspects of
processes.

Participants were able to express 72 of such require-
ments (out of 82) using the Compliance Rule Modeller
tool, while 10 requirements that were tagged as ‘preven-
tive process’ could not be expressed using available patterns.
These requirements mainly involved constraints regarding
data processing, e.g. rules that are related to the structure
and integrity of the data manipulated within the processes.
They typically demanded for sequential numbering of certain
business objects, such as orders or invoices.

Despite the limitations discussed above, we can conclude
that within the preventive-process category of compliance
requirements, the proposed patterns were effective means
for expressing compliance requirements of certain concerns.
In particular, the concerns that influence the control flow,
resource (roles, actors, etc.) and temporal aspects of BP are
accurately expressed by patterns.

The process requirements that are controlled follow-
ing the detective approaches involved mainly manage-
ment reviews,reconciliations andperformance monitoring.
The support by the CRL patterns for the representation and
formalization of such requirements is inherently missing, as
their verification often requires manual checks to guaran-
tee assurance. Technical requirements were preventive and
involved the use of specific techniques for data encryp-
tion, data retention and authentication mechanisms. Physical
requirements were also preventive in nature that demanded
locks or guards to protect against unauthorized access to
physical assets. CRL is not designed to address these types
of requirements.

In addition, we can compare our approach to major
related-work efforts that are discussed in Sect. 2 (and is drawn
as a comparison in Table 1). Accordingly, we can conclude
that our approach is the only one that satisfies all the criteria
considered for the comparison. More specifically:

e The approach presented in this paper incorporates a high-
level graphical pattern-based compliance specification
language that addresses the usability concern of formal
languages.

e The approach is based on a rigour formal foundation of
temporal logic (i.e. LTL), which is widely experimented
on large-scale systems in various application domains,

@ Springer

142

A. Elgammal et al.

Table 7 Categories and numbers of compliance requirements covered in the case studies

Type of controls

Number of comp. requirements

Effectively expressed using

CRL patterns?
Case St. 1: Case St. 2: loan Total Yes No
internet reseller processing
Process
Preventive® 71 11 82 72 10
Segregation of duties (SOD)?* 30 2 32 32 -
Access rights/authorizations 10 3 13 13 -
Activity sequencing 21 6 27 27 -
Data processing 10 - 10 - 10
Detective 38 - 38 - 38
Management reviews and reconciliations 30 - 30 - 30
QoS/performance monitoring 8 - 8 - 8
Technical
Preventive 5 2 7 - 7
Detective - - - - -
Physical
Preventive 8 - 8 - 8
Detective - - - - -
Total 122 13 135 72 63

4 Segregation of duties (SOD) involves the separation of the control of a process among different roles/individuals in order to decrease the risk of

fraud/mistake by one person

and incorporates sophisticated verification and analysis
tools, such as model checkers.

e The approach considers the Business Process Execution
Language (BPEL) standard, which is the de fact standard
for web services orchestration.

e The approach supports the specification and verifica-
tion of three out of four classes of compliance require-
ments, i.e. control flow, employed resources and time
constraints. Support of data constraints is an ongoing
work.

e The approach provides efficient solutions to support non-
monotonic requirements and compensations, and to rea-
son about root causes of detected compliance violations
and guide the user in their resolution.

Furthermore, as part of the EU COMPAS project, we have
received positive feedback from COMPAS industrial part-
ners (PricewaterhouseCoopers Netherlands and Thales Ser-
vices France) with whom we worked closely to validate and
evaluate the proposed solutions. The feedback we received
was based on their continual meetings with their customers,
mainly from the banking domain. Carrying out surveys to
investigate the perceived usefulness of the approach is con-
sidered one of the future work directions which we high-
lighted in Sect. 9.

@ Springer

8 Conclusions and lessons learnt

Business processes form the foundation for all organizations,
and as such, are impacted by industry regulations. With-
out explicit BP definitions, effective and expressive compli-
ance frameworks, organizations face litigation risks and even
criminal penalties. Compliance management should be one
of the integral parts of BPM, such that compliance require-
ments should be based on a formal foundation of a logical
language to enable future reasoning techniques for verifying
and ensuring BP compliance starting from the early stages
of the business process design.

This paper contributes by a comprehensive design-time
compliance management framework that encompasses in its
core a high-level and rich pattern-based compliance spec-
ification language for facilitating the formal specification
of compliance requirements on BPs. The case studies we
conducted showed the expressive power of the patterns that
we proposed. We believe that using graphical patterns could
significantly facilitate the work of the compliance and BP
experts by shielding the complexity of the formalizms off
from the end-users.

CRL is formally based on temporal logic, i.e. LTL/MTL.
We consider CRL as an extensible open language as mapping
rules from CRL pattern classes into other formal languages
may also be defined. This will enable the specification of
some requirements that are not expressible in LTL. Since the

Formalizing and appling compliance patterns

143

expressive power of CRL is limited to the expressive power of
LTL, then these requirements are also inexpressible in CRL.

As a proof-of-concept, an integrated tool suite has been
developed, where CRL is implemented as a graphical proto-
type, which enables the specification of compliance require-
ments intuitively using patterns in a drag-and-drop fashion
and automates the process of transforming these definitions
into logical formulas. The approach is further evaluated and
validated by its application on two case studies performed
with two industrial companies.

Managing compliance of business processes requires a
multi-faceted approach as the problem involves not only tech-
nical aspects rooted in various fields that have to be bridged
(such as computer science, business process management,
formal methods, and legal studies) but also social and orga-
nizational aspects as it highly involves knowledge work. No
matter how sophisticated the offered solutions and the under-
lying technologies are, BP compliance management cannot
be fully automated. Having efficient techniques and solu-
tions in place can only facilitate and improve the quality of
the work involved.

As also shown by the case studies we conducted, the auto-
mated verification and monitoring of compliance is possible
only for a certain segment of requirements. Several techni-
cal and process- related requirements necessitate checks and
controls that have to be performed manually by compliance
experts.

Automated tools and techniques should also allow for flex-
ible solutions and human intervention to cope with the non-
monotonicity of real life with frequent exceptions. Besides,
wide adoption by the industry is only possible if the auto-
mated techniques and solutions allow compliance to be man-
aged (cost) effectively. In addition, such solutions should not
only provide plain verification results but also give insight
into the root causes of compliance violations and propose
alternative solutions as remedies.

9 Future work

Future research and development work is ongoing in several
directions to enhance and fully support the comprehensive
compliance management framework. Ongoing work focuses
on the integration of the design-time compliance manage-
ment approach proposed in this article with the subsequent
run-time monitoring and management. In particular, the work
presented in this paper will be integrated with the compliance
monitoring approach introduced in [66] on the basis of the
Compliance Request Language. That is, from pattern-based
CRL expressions, design-time and run-time formal rules can
be automatically generated for both design-time and run-time
compliance assurances.

Ongoing work also involves basing the compliance man-
agement framework on semantic repositories. This involves
building a set of inter-related semantic ontologies (e.g.
business process ontology, compliance ontology) using the
Ontology Web Language (OWL2.0) standard as part of a
central compliance management knowledge base. This will
allow us to conduct a set of preliminary structural analysis
using the reasoning tools associated with these technologies
and ensures the ontological alignment between compliance
and business specifications.

To facilitate the communication between different stake-
holders, we are working on the interpretation and encoding of
the anti-money laundering regulation using the Semantics of
Business Vocabulary and Business Rules (SBVR) standard
[67]. Future work will include the integration of the resultant
SBVR specifications [68] with the compliance management
approach presented in this paper to facilitate the compliance
refinement process we previously proposed in [48] and [49].

On a more fine-grained perspective, our analysis of LTL
with respect to a set of desired features of CRL [59] revealed
a number of limitations. In particular, a support for checking
the consistency among compliance requirements is required,
as conflicts and contradictions may rise between compliance
rules, especially when they originate from various compli-
ance sources.

The case studies we conducted investigated the applica-
bility and expressiveness of the compliance patterns that we
proposed in this paper. Our future work should also con-
sider experiments to explore their perceived usefulness and
efficiency, possibly through application of some prominent
technology adoption models. The validation of the proposed
approach will be further intensified by its application on var-
ious case studies on prospective users of the patterns and
developed tool suite.

Acknowledgments The authors gratefully acknowledge Pricewa-
terhouseCoopers (Netherlands), Thales Services (France), and other
COMPAS project partners for their effort in providing and participating
in the case studies and scenarios, and their valuable contributions. Spe-
cial thanks to Dr. Guido Governatori (NICTA, Australia) for reviewing
the paper and for his valuable comments.

References

1. SOX: Sarbanes-Oxley Act of 2002. In: Congress, U.S. (ed.), (2002)

2. Bank for International Settlements: Basel III: International frame-
work for liquidity risk measurement, standards and monitoring
(2010)

3. Accutiy. Visualising trends in anti-money laundering com-
pliance. http://www.accuity.com/industry-updates/free-resources/
trends-in-aml-compliance-infographic/. Accessed 28 Nov 2013

4. Ernst & Young: The Top 10 Risks For Business. The Ernst & Young
Business Risk Report (2010)

5. Hartman, T.: The Cost of Being Public in the ERA of Sarbanes-
Oxley. Foley & Lardner LLP (2006)

@ Springer

http://www.accuity.com/industry-updates/free-resources/trends-in-aml-compliance-infographic/
http://www.accuity.com/industry-updates/free-resources/trends-in-aml-compliance-infographic/

144

A. Elgammal et al.

6.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Goedertier, S., Vanthienen, J.: Designing compliant business
processes with obligations and permissions. In: International Busi-
ness Process Management Workshops (BPM), Austria, pp. 5-14
(2006)

Sadiq, S., Governatori, G., Naimiri, K.: Modeling control objec-
tives for business process compliance. In: Business Process
Management-BPM’09 Proceedings, pp. 149-164 (2007)
Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng.
23, 279-295 (1997)

Ly, L.T., Rinderle-Ma, S., Goser, K., Dadam, P.: On enabling inte-
grated process compliance with semantic constraints in process
management systems. Inf. Syst. Front. 14(2), 195-219 (2012)
Halle, S., Villemaire, R., Cherkaoui, O.: Specifying and validating
data-aware temporal web service properties. IEEE Trans. Softw.
Eng. 35, 669-683 (2009)

Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations
expressed as logical models. In: 18th International Annual Confer-
ence of Legal Knowledge and Information Systems, Belgium, pp.
37-48 (2005)

Eshuis, R.: Symbolic model checking of UML activity diagrams.
ACM Trans. Softw. Eng. Methodol. 15, 1-38 (2006)

Wang, H.J., Leon Zhao, J.: Constraint-centric workflow change
analytics. Decis. Support Syst. 51, 562-575 (2011)

Abouzaid, F., Mullins, J.: A calculus for generation, verification,
and refinement of BPEL specifications. Electron. Notes Theor.
Comput. Sci. (ENTCS) 200, 43-65 (2008)

Awad, A., Gore, R., Thomson, J., Weidlich, M.: An iterative
approach for business process template synthesis from compliance
rules. In: 23rd International Conference on Advanced Information
Systems, Engineering, pp. 406-421 (2011)

Yu, J., Han, Y., Han, J., Jin, Y., Falcarin, P., Morisio, M.: Synthesiz-
ing service composition models on the basis of temporal business
rules. J. Comput. Sci. Technol. 23, 885-894 (2008)

Liu, Y., Muller, S., Xu, K.: A static compliance-checking frame-
work for business process models. IBM Syst. J. 46,335-361 (2007)
Awad, A., Weidlich, M., Weske, M.: Specification, verification and
explanation of violation for data aware compliance rules. In: 7th
International Conference on Service Oriented Computing (ICSOC-
Service Wave’09), vol. 5900, pp. 500-515. Springer, Berlin (2009)
Geist, D.: The PSL/sugar specification language: a language for all
seasons. In: The Correct Hardware Design and Verification Meth-
ods Conference, pp. 21-24 (2003)

Khaluf, L., Gerth, C., Engels, G.: Pattern-based modeling and for-
malizing of business process quality constraints. In: CAiSE’11,
pp- 521-535 (2011)

Yu,J.,Manh, T., Han, J., Jin, Y.: Pattern based property specification
and verification for service composition. In: K.A. et al. (eds) WISE
2006, LNCS-4255, pp. 156—-168. Springer, Berlin (2006)

Dwyer, M., Avrunin, G., Corbett, J.: Property specification pat-
terns for finite-state verification. In: 2nd International Workshop
on Formal Methods on Software, Practice, pp. 7-15 (1998)
Pelliccione, P., Inverardi, P., Muccini, H.. CHARMY: a frame-
work for designing and verifying architectural specifications. IEEE
Trans. Softw. Eng. 35, 325-346 (2009)

Ramezani, E., Fahland, D., van der Aalst, W.: Where did i
misbehave? Diagnostic information in compliance checking. In:
10th International Conference on Business Process Management
(BPM), pp. 262-278. Springer, Berlin (2012)

Accorsi, R., Sato, Y.: Automated certification for compliant cloud-
based business processes. Bus. Inf. Syst. Eng. (BISE) 3, 145-154
(2011)

Accorsi, R., Lehmann, A.: Automatic information flow analysis
of business process models. In: 10th International Conference on
Business Process Management (BPM), pp. 172-187. Springer,
Berlin (2012)

@ Springer

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE:
full support for loosely-structured processes. In: EDOC’07, pp.
287-300 (2007)

Pesic, M., van der Aalst, W.: A declarative approach for flexible
business processes management. In: BPM’06 Workshops (2006)
Konrad, S., Cheng, B.: Real-time specification patterns. In: Interna-
tional Conference on Software Engineering (ICSE’05), USA, pp.
15-21 (2005)

Giblin, C., Muller, S., Pfitzmann, B.: From Regulatory Policies
to Event Monitoring Rules. Zurich Research Laboratory, Zurich
(2006)

Gruhn, V., Laue, R.: Specification patterns for time-related prop-
erties. In: 12th Int’l Symposium on Temporal Representation and
Reasoning, pp. 198-191 (2005)

Wolter, C., Schaad, A.: Modeling of task-based authorization con-
straints in BPMN. In: Business Process Management (BPM 2007),
pp- 64-79. Springer, Berlin (2007)

Ahn, G., Sandhu, R., Kang, M., Park., J.: Injecting RBAC to secure
a web-based workflow system. In: RBAC *00, pp. 1-10 (2000)
Governatori, G., Milosevic, Z., Sadiq, S.: Compliance check-
ing between business processes and business contracts. In: 10th
International Enterprise Distributed Object Computing Conference
(EDOC 2006), pp. 221-232 (2006)

Governatori, G., Rotolo, A.: Justice delayed is justice denied: logics
for a temporal account of reparations and legal compliance. In:
Computational Logic in Multi-Agent Systems, vol. 6814, pp. 364—
382 (2011)

Thomas, F.: Constructing legal arguments with rules in the legal
knowledge interchange format (LKIF). In: Computable Models of
the Law, Languages, Dialogues, Games, Ontologies, vol. 4884, pp.
162-184 (2008)

Palmirani, M., Governatori, G., Contissa, G.: Modelling temporal
legal rules. In: International Conference on Artificial Intelligence
and Law, pp. 131-135 (2011)

Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Design-
ing for compliance: norms and goals. In: 5th International Confer-
ence on Rule-Based Modeling and Computing on the Semantic
Web, pp. 282-297 (2011)

Governatori, G., Rotolo, A.: Bio logical agents: norms, beliefs,
intentions in defeasible logic. J. Auton. Agents Multi Agent Syst.
17, 36-69 (2008)

Markovic, 1., Pereira, A.C., Stojanovic, N.: A framework for query-
ing in business process modelling. International Multikonferenz
Wirtschaftsinformatik, Germany, pp. 1703-1714 (2008)

Beeri, C., Eyal, A., Kamenkovich., S.: Querying business
processes. In: 32nd International VLDB Conference, Korea, pp.
343-354 (2006)

Kiihne, S., Kern, H., Gruhn, V., Laue, R.: Business process model-
ing with continuous validation. J. Softw. Evol. Process 22, 547-566
(2010)

Delfmann, P, Herwig, S., Lis, L., Stein, A., Tent, K., Becker, J.:
Pattern specification and matching in conceptual models: a generic
approach based on set operations. Enterp. Modell. Inf. Syst. Arch.
5,24-43 (2010)

Awad, A.: BPMN-Q: A language to query business processes. In:
2nd International Workshop on Enterprise Modelling and Informa-
tion Systems Architectures: Concepts and Applications (EMISA),
Germany, pp. 115-128 (2007)

Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
Towards a comprehensive design-time compliance management: a
roadmap. In: 15 International Business Information Management
Conference (15th IBIMA), Egypt, pp. 1480-1484 (2010)

Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Ser-
vices. World Wide Web (WWW), pp. 621-630. ACM Press, USA
(2004)

Formalizing and appling compliance patterns

145

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Fu, X., Bultan, T., Su, J.: WSAT: a tool for formal analysis of web
services. In: 16th International Conference on Computer Aided
Verification, USA, pp. 510-514 (2004)

Turetken, O., Elgammal, A., van den Heuvel, W.J., Papazoglou,
M.: Enforcing compliance on business processes through the use
of patterns. In: 19th European Conference on Information Systems
(ECIS 2011), Finland (2011)

Turetken, O., Elgammal, A., van den Heuvel, W., Papazoglou,
M.: Capturing compliance requirements: a pattern-based approach.
IEEE Softw. 29, 28-36 (2012)

COSO: Internal Control: Integrated Framework. The Committee
of Sponsoring Organizations of the Treadway Commission (1994)
Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou,
M.: Root-cause analysis of design-time compliance violations on
the basis of property patterns. In: 8th International Conference on
Service-Oriented Computing ICSOC’10), USA, pp. 17-31 (2010)
Elgammal, A., Turetken, O., van den Heuvel, W.: Using patterns for
the analysis and resolution of compliance violations. Int. J. Coop.
Inf. Syst. 21, 31-54 (2012)

COMPAS Project, Deliverable 2.1: State-of-the-Art in the Field of
Compliance Languages (2008)

IFRS: International Financial Reporting Standards. International
Accounting Standards Board (2001)

FINRA: The Financial Industry Regulatory Authority, “FINRA
Manual” (2008)

COBIT: Control Objectives for Information and related Technol-
ogy: COBIT, 4.1. IT Governance Institute (2007)

OCEG: GRC Capability Model, Ver 2.0. Open Compliance and
Ethics Group (2009)

Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
On the formal specification of regulatory compliance: a compara-
tive analysis. In: International Performance Assessment and Audit-
ing in Service Computing Workshop, ICSOC’ 10 workshops, USA
(2010)

Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.:
On the formal specification of business contracts and regulatory
compliance. In: 4th Workshop on Formal Languages and Analy-
sis of Contract-Oriented Software, EPTCS, Pisa, Italy. pp. 33-36
(2010)

Elgammal, A.: Towards a comprehensive framework for business
process compliance. Ph.D. Dissertation. Information Management
Department, Tilburg University, Tilburg University Press, pp. 284
(April 2012)

Pnueli, A.: The temporal logic of programs. In: 18th IEEE Sym-
posium on Foundations of Computer, Science, pp. 4657 (1977)
Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T,
Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi,
M., Zbar, Y.: The ForSpec temporal logic: a new temporal property-
specification language. Lecture Notes In Computer Science, vol.
2280 (2002)

Alur, R., Henzinger, T.: Real-time logics: complexity and expres-
siveness. Inf. Comput. 104, 35-77 (1993)

Baral, C., Zhoa, J.: Non-monotonic temporal logics for goal specifi-
cations. In: 20th International Intelligence Conference on Artificial
Intelligence (IICAI-07), India, pp. 236-242 (2007)

Hevner, A., March, S., Park, J., Ram, S.: Design science in infor-
mation systems research. MIS Q. 28, 75-105 (2004)

Sebahi, S.: Business process compliance monitoring: a view based
approach. Laboratoire d’InfoRmatique en Image et Systemes
d’information (LIRIS), Ph.D. University Lyon 1, Lyon (2012)

67. OMG: Semantics Of Business Vocabulary And Business Rules

(SBVR), Version 1.0. (2008)

68. Abi-Lahoud, E., Butler, T., Chapin, D., Hall, J.: Interpreting regu-

lations in SBVR. In: RuleML (2013)

Amal Elgammal is a post-
doctoral Researcher in the Gov-
ernance, Risk Management and
Compliance Technology Centre
(GRCTC) at University College
Cork. Her main research interests
include Business process man-
agement, business process com-
pliance management, service-
oriented computing, business
process monitoring and auditing,
and ontology engineering. Con-
tact her at aelgammal @ucc.ie.

Oktay Turetken is an Assistant
Professor in the School of Indus-
trial Engineering at Eindhoven
University of Technology. He
holds a Ph.D. in Information Sys-
tems. His research focuses on the
modeling, improvement, matu-
rity, governance and compliance
of business processes. Contact
him at o.turetken @tue.nl.

Willem-Jan van den Heuvel is
a full professor in computer sci-
ence at the Department of Infor-
mation Systems, Tilburg Univer-
sity and managing director of the
ERISS. His main research inter-
ests revolve around (cloud) ser-
vice engineering, service gov-
ernance, performance analytics
of software-enabled service net-
works, and business transac-
tion management. Contact him
at W.J.A.M.vdnHeuvel @uvt.nl.

@ Springer

146

A. Elgammal et al.

Mike Papazoglou is the chair
of the Computer Science Depart-
ment at Tilburg University. He’s
also the scientific director of
the ERISS and the EC’s Net-
work of Excellence, S-Cube.
His research interests include
service-oriented computing, Web
services, large-scale data shar-
ing, business process manage-
ment, and federated informa-
tion systems and distributed
computing.

Papazoglou has a PhD in micro-
computers systems engineering
from the University of Dundee, Scotland. He’s a Golden Core Member
and a Distinguished Visitor of the IEEE Computer Society. Contact him
at m.p.papazoglou@uvt.nl.

@ Springer

	Formalizing and appling compliance patterns for business process compliance
	Abstract
	1 Introduction
	2 Related work
	2.1 Approaches based on temporal logic
	2.1.1 Graphical/pattern-based approaches
	2.1.2 Resource allocation approaches

	2.2 Approaches based on deontic logic
	2.3 Graph pattern matching approaches
	2.4 Summary and evaluation of related-work approaches

	3 Overview of the design-time business process compliance management
	4 Case studies
	5 Compliance request language
	5.1 CRL meta-model
	5.2 Atomic patterns
	5.2.1 From atomic patterns to LTL

	5.3 Resource patterns
	5.4 Composite patterns
	5.5 Timed patterns
	5.6 Capturing compensations with Else and ElseNext patterns
	5.7 Support for non-monotonic requirements

	6 Prototypical implementation
	6.1 Compliance Rule Manager (CRM)
	6.2 Web Service Analysis Tool (WSAT)
	6.3 Design-Time Compliance Verification Manager (DCVM)

	7 Evaluation
	8 Conclusions and lessons learnt
	9 Future work
	Acknowledgments
	References

