
Softw Syst Model (2015) 14:1323–1347
DOI 10.1007/s10270-013-0392-y

SPECIAL SECTION PAPER

Example-driven meta-model development

Jesús J. López-Fernández · Jesús Sánchez Cuadrado ·
Esther Guerra · Juan de Lara

Received: 13 June 2013 / Revised: 8 November 2013 / Accepted: 29 November 2013 / Published online: 19 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract The intensive use of models in model-driven
engineering (MDE) raises the need to develop meta-models
with different aims, such as the construction of textual and
visual modelling languages and the specification of source
and target ends of model-to-model transformations. While
domain experts have the knowledge about the concepts of
the domain, they usually lack the skills to buildmeta-models.
Moreover, meta-models typically need to be tailored accord-
ing to their future usage and specific implementation plat-
form, which demands knowledge available only to engineers
with great expertise in specific MDE platforms. These issues
hinder a wider adoption of MDE both by domain experts
and software engineers. In order to alleviate this situation,
we propose an interactive, iterative approach to meta-model
construction, enabling the specification of example model
fragments by domain experts, with the possibility of using
informal drawing tools likeDia or yED. These fragments can
be annotated with hints about the intention or needs for cer-
tain elements. A meta-model is then automatically induced,
which can be refactored in an interactive way, and then com-
piled into an implementation meta-model using profiles and
patterns for different platforms and purposes. Our approach
includes the use of a virtual assistant, which provides

Communicated by Dr. Perdita Stevens and Dr. Jürgen Kazmeier.

J. J. López-Fernández · J. S. Cuadrado · E. Guerra · J. de Lara (B)
Computer Science Department, Universidad Autónoma de Madrid,
28049 Madrid, Spain
e-mail: Juan.deLara@uam.es

J. J. López-Fernández
e-mail: Jesusj.Lopez@uam.es

J. S. Cuadrado
e-mail: Jesus.Sanchez.Cuadrado@uam.es

E. Guerra
e-mail: Esther.Guerra@uam.es

suggestions for improving the meta-model based on well-
known refactorings, and a validation mode, enabling the val-
idation of the meta-model by means of examples.

Keywords Meta-modelling · Domain-specific modelling
languages · Interactive meta-modelling · Meta-model
induction · Example-driven modelling · Meta-model design
exploration · Meta-model validation

1 Introduction

Model-driven engineering (MDE) makes heavy use of mod-
els during the software development process. Models are
usually built using domain-specific modelling languages
(DSMLs) which are themselves specified through a meta-
model. A DSML should contain useful, appropriate primi-
tives, and abstractions for a particular application domain.
Hence, the input from domain experts and their active
involvement in the meta-model development process are
essential to obtain effective, useful DSMLs [34,37,38,43,
53].

The usual process of meta-model construction requires
first building (a part of) the meta-model which only then
can be used to build instance models. Even though software
engineers are used to this process, it may be counter-intuitive
anddifficult for non-meta-modelling experts,whomayprefer
drafting example models first and then abstract those into
classes and relations in a meta-model. As Oscar Nierstrasz
put it, “…in the real world, there are only objects. Classes
exist only in our minds” [45]. In this way, domain experts
and final users of MDE tools are used to work with models
reflecting concrete situations of their domain of expertise, but
not with meta-models. Asking them to build a meta-model
before drafting example models is often too demanding if

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-013-0392-y&domain=pdf

1324 J. J. López-Fernández et al.

Fig. 1 Different meta-model realizations depending on its future usage

they are not MDE experts. In general, an early exploratory
phase ofmodel construction, to understand themain concepts
of the language and document the language requirements, is
recommended for DSML engineering [12,37].

While MDE experts are used to work with special-
ized meta-modelling tools—like those provided by Eclipse
EMF [52]—this is seldom the case for domain experts.
These latter may find easier, more intuitive and flexible using
sketching and drawing tools in the style of PowerPoint or
Visio to build models and examples, than using, e.g. the
EMF’s tree-based editor. Moreover, once an initial version of
a meta-model is built, it needs to be validated in collabora-
tion with the domain experts.WhileMDE experts are used to
inspect meta-models, for domain experts, a validation based
on examples (again, built using sketching tools) would be
more adequate, as they may lack the required expertise in
conceptual modelling to fully understand a meta-model.

Another issue that makes meta-model construction cum-
bersome is the fact that meta-models frequently need to be
fine-tuned depending on their intended use: designing a tex-
tual modelling language (e.g. with Xtext1), a graphical lan-
guage (e.g. with GMF [33] or Eugenia [39]), or the source or
target of a transformation. As illustrated in Fig. 1, the particu-
lar meta-model usage may impact on its design, for instance
to decide whether a connection should be implemented as
a reference (e.g. for simple graphical visualization), as an
intermediate class (e.g. for a more complex visualization, or
to enable iterating on all connection instances), as a bidi-
rectional association (e.g. to allow back navigation if it is
used in a transformation), or as an intermediate class with
composition (e.g. to enable scoping). The use of a specific
technological platform, like EMF [52], has also an impact on
how meta-models are actually implemented, e.g. regarding
the use of composition, the need to have available a root class,
and the use of references. As a consequence, the implemen-
tation meta-model for a particular platform may differ from
the conceptual meta-model as elicited by domain experts.

1 http://www.eclipse.org/Xtext/.

Specialized technical knowledge is required for this imple-
mentation task, hardly ever found in domain experts, which
additionally has a steep learning curve.

In order to alleviate this situation, this paper presents a
novel way to define meta-models and modelling environ-
ments. Its ultimate goal is to facilitate the creation of DSMLs
by domain experts without proficiency in meta-modelling
and MDE platforms and technologies. For this purpose, we
propose an iterative process for meta-model induction in
which model fragments are given either sketched by domain
experts using drawing tools like Dia2 or yED,3 or using a
compact textual notation suitable for engineers (not necessar-
ily meta-modelling experts). In both cases, they can annotate
the intention of the different modelling elements. From these
fragments, a meta-model is automatically induced, which
can be refactored if needed. The system provides sugges-
tions of possible improvements based on well-known refac-
torings [30], quality issues for conceptual schemas [2], meta-
model design patterns [10], and anti-patterns [29]. Once
an initial version of the meta-model is obtained, it can
be validated against new model examples, and the system
reports any problematicmodel element as well as themissing
meta-model elements needed to accept the model examples.
Finally, the resulting meta-model is compiled into a given
technology (e.g. EMF orMetaDepth [20]), optimized for a
particular purpose (e.g. visual or textual language, transfor-
mation) and a particular tool (e.g. Xtext or GMF).

This paper is an extended version of the preliminary
work presented in [16]. In particular, in this extended ver-
sion, we provide a detailed account of additional design and
domain annotations, some of which are translated into OCL
constraints in the synthesized meta-model. We have also
extended our tools with additional annotations and refac-
torings, support for an additional sketching tool and more
sophisticated importing capabilities, a virtual assistant mod-
ule that reports refactoring opportunities and automates their

2 http://projects.gnome.org/dia/.
3 http://www.yworks.com/en/products_yed_about.html.

123

http://www.eclipse.org/Xtext/
http://projects.gnome.org/dia/
http://www.yworks.com/en/products_yed_about.html

Example-driven meta-model development 1325

application, and a validation mode to automate testing of
meta-models. The paper has also been enlarged with more
extensive explanations, a more complete and challenging
example, the presentation of the design of our solution, and
more comprehensive related work. While in this work, we
concentrate on presenting the different concepts, design deci-
sions and tool support of our approach, an empirical evalua-
tion with our industrial partners is left for a future contribu-
tion.
Paper organization Section 2 overviews the working scheme
of our proposal. Its main steps are detailed in the following
sections: specification of fragments (Sect. 3), meta-model
induction and refactoring (Sect. 4), example-based meta-
model validation (Sect. 5), and compilation of the induced
meta-model for different purposes and platforms (Sect. 6).
Next, Sect. 7 presents tool support. Finally, Sect. 8 compares
with related research, and Sect. 9 ends with the conclusions
and lines of future work.

2 Bottom-up meta-modelling

Interactive development [48] promotes rapid feedback from
the programming environment to the developer. Typically, a
programming language provides a shell to write pieces of
code, and the running system is updated accordingly. This
permits observing the effects of the code as it is developed
and exploring different design options easily. This approach
has also been regarded as a way to allow non-experts to per-
form simple programming tasks or to be introduced to pro-
gramming, since a program is created by defining and testing
small pieces of functionality that will be composed bottom-
up instead of devising a complete design from the beginning.
In a similar vein, example centric programming [27] pro-
motes examples as first-class citizens in the programming
process, as programs (abstractions) are iteratively and inter-
actively developed from concrete examples.

Inspired by interactive and example centric programming,
we propose a meta-modelling framework to facilitate the
integration of end-users into the meta-modelling process, as
well as permitting engineers with no meta-modelling exper-
tise to build meta-models. The design of our framework is
driven by the following requirements:

• Bottom-up Whereasmeta-modelling requires abstraction
capabilities, the design of DSMLs demands, in addition,
expert knowledge about the domain in two dimensions:
horizontal and vertical [5]. The former refers to tech-
nical knowledge applicable to a range of applications
(e.g. the domain of Android mobile development), and
experts are developers proficient in specific implemen-
tation technologies. The vertical dimension corresponds
to a particular application domain or industry (e.g. insur-
ances) where experts are usually non-technical people.

Our proposal is to let these two kinds of experts build the
meta-models of DSMLs incrementally and automatically
starting from example models.
Using example models is appropriate in this context, as
these two kinds of users may not be meta-modelling
experts. Example models document requirements of the
DSML to be built, provide concrete evidence on the
specific use of the primitives to be supported by the
DSML, and can be used for the automated derivation of
its meta-model. Afterwards, the induced meta-model can
be reviewed by ameta-modelling expert who can refactor
some parts if needed.
Finally, domain experts also play a crucial role in meta-
model validation. Thus, we encourage their collabora-
tion in this task by proposing an example-based valida-
tion process where end-users can feed the system with
concrete examples of valid and invalid models, and the
system reports whether they are correct according to the
current version of the meta-model, and the reason why
they are not.

• Interactive A meta-model can become large, and it may
address different separate concerns. In practice, its con-
struction is an iterative process in which an initial meta-
model is created; then, it is tested by trying to instantiate
it to create some models of interest, and whenever this is
not possible, the meta-model is changed to accommodate
these models [37]. The performed changes may require
the detection of broken models and their manual update.
Our proposal aims at supporting this interactive meta-
model construction process. Hence, we do not advocate
building a complete meta-model in one step, but the
meta-model is “grown” (using the terminology of Test-
Driven Development [31]) as new fragments gathering
more requirements are inserted. If a new version of the
meta-model breaks the conformance with existing mod-
els, the problem is reported together with possible fixes.

• Exploratory The design of a meta-model is refined dur-
ing its construction, and several choices are typically
available for each refinement. To support the exploration
of design options, we should let the developer annotate
the example models with hints about the intention of the
different model elements, which are then translated into
somemeta-model structural design decision or into addi-
tional integrity constraints. If fragments contain conflict-
ing annotations, this is reported to the developer who can
decide among the different design options. We also con-
sider the possibility of rolling back a decision.

• Guided by best-practices Since the users of this approach
may not be meta-modelling experts, we consider a vir-
tual assistant which suggests the application of meta-
modelling design guidelines, best practices, and refac-
torings that help to improve the quality of the current
version of the meta-model.

123

1326 J. J. López-Fernández et al.

Fig. 2 Working scheme of bottom-up meta-modelling

• Implementation-agnostic The platform used to imple-
ment a meta-model may enforce certain meta-modelling
decisions (e.g. the use of compositions vs. references, or
the inclusion of a root node). This knowledge is some-
times not even available to meta-modelling experts, but
only to experts of the particular platform. For this rea-
son, we postpone any decision about the target plat-
form to a last stage. The meta-models built interactively
are neutral or implementation-agnostic, and only when
the meta-model design is complete, it is compiled for a
specific platform.

Starting from the previous requirements, we have devised
a novel process to build meta-models that is summarized in
Fig. 2. First, a domain expert creates one or more example
fragments using some tool with sketching facilities, such as
Visio, PowerPoint, yED, or Dia. The examples do not need
to be complete models, but they can concentrate on some
specific concern of the language. These examples are trans-
formed into untyped model fragments made of elements and
relations (step 1). An engineer can manipulate these frag-
ments, define new ones, and provide further annotations
expressing his particular insight of certain elements in the
fragments (step 2). A meta-model is automatically induced
from the fragments and their annotations (step 3), and it can
be visualized to gather feedback about the effect of the frag-
ments. At this point, there are two ways to evolve the meta-
model: by adding new model fragments and updating the
meta-model accordingly, or by performing some refactor-

ings suggested by the virtual assistant (step 4). In both cases,
the process is monitored by the engineer, who can customize
some aspects of the meta-model induction algorithm, as well
as selectwhich of the suggested refactorings should be finally
applied. In addition, a checking procedure detects possible
conformance issues between the new meta-model and the
existing fragments, reporting potential problems and updat-
ing the fragments if possible (step 5). Once a first version of
the neutral meta-model is obtained, end-users may validate it
by building test casesmade of examplemodels (step 6). Thus,
in the style of the xUnit framework [7], domain experts can
feed the tool with sets of conforming and non-conforming
examples to check whether the induced meta-model accepts
the former and rejects the latter. The previous steps form an
iterative process, so that new fragments can be added, and
further validation checks performed. Finally, in step 7, the
user selects a platform and purpose of use, and the neutral
meta-model is compiled into an implementation one, follow-
ing the specific idioms of the target technical space.

Altogether, our proposal involves two roles: domain expert
and engineer. Domain experts are expected to provide back-
ground knowledge of the domain in the form of sketches;
thus, no technical knowledge is assumed from them. Engi-
neers should be familiarwithmeta-modelling, though knowl-
edge of concretemeta-modelling platforms is not required, as
they will supervise the evolution of the neutral meta-models.

Realizing this approach poses several challenges. First of
all, we foresee a process where both engineers and non-
technical experts develop model fragments. Hence, they
must be provided with a comprehensive set of annotations

123

Example-driven meta-model development 1327

to express domain insights (mostly for domain experts) or
specify design intentions (mostly for engineers). For non-
technical experts, fragments are defined by sketches that have
to be interpreted, for instance taking advantage of spatial rela-
tionships (e.g. containment). Secondly, the induction process
is not a batch operation, but it is an interactive process that
must take into account both the current version of the meta-
model and the previous and new model fragments, detect-
ing conflicts if they arise. Thirdly, a mechanism to let the
users supervise the decisions of the induction algorithm has
to be defined. Besides, as some users might not be meta-
modelling experts, a virtual assistant needs to be available to
suggest suitable refactorings. Fourth, in order to ease the par-
ticipation of the domain experts in the testing phase, we pro-
pose a validation based on concrete examples (possiblymade
with the sketching tools) of allowed and forbidden mod-
els, together with a comprehensive feedback of the detected
errors. Finally, we compile meta-models for specific plat-
forms and uses, which requires studying the requirements of
the considered platforms. All these issues are discussed in
Sects. 3, 4, 5, and 6.

3 Definition of model fragments

In our approach, users provide model fragments—examples
of concrete situations—fromwhich ameta-model is induced.
We call them fragments, because they do not need to be
full-fledged models. For example, by concentrating on some
aspect of interest, model fragments may miss attributes or
relations, so that they do not need to be correct when evalu-
ated as full models.

Model fragments can be specified by a domain expert, typ-
ically using a drawing tool, or by an engineer, using a more
concise syntax. In both cases, fragments can include annota-
tions about the intention of a certain part of the fragment and
to guide the induction process. Fragments are used both as
a documentation of specific requirements of the meta-model
and to automatically induce themeta-model, as wewill see in
Sect. 4. We normally use the term “sketch” to refer to model
fragments made using a drawing tool.

As a running example, suppose we need to build an educa-
tional modelling language that will be used to plan the course
syllabus, describe the structure of the courses, and organize
the teaching of the professors. Figure 3 shows an example
model fragment as would be drawn by a domain expert (a
professor) using a drawing tool (yEd in this case). The frag-
ment contains a course named “Design project”, with one
group in the morning and another one in the afternoon, and
one professor teaching each group. One of the professors is
also the coordinator of the course.

In order to link the symbols used in the sketches with their
meaning, we use another diagram serving as a kind of legend,

Fig. 3 A model fragment for an educational DSML

Fig. 4 Legend for the symbols used in sketches

or basic reference model for them. Figure 4 shows the leg-
end for the example. This is a natural, technology-agnostic
way for non-experts to specify the meta-model types, resem-
bling the legend of a map, as suggested by Bézivin [8]. This
also allows using different symbols for the same concept
(e.g. for professors) in order to enable more intuitive, flexi-
ble sketches.

Listing1 shows the sketchofFig. 3 using the textual syntax
that the engineer would use. Actually, the fragment does not
need to be manually written, but we have an importer forDia
and yED drawings that translates the sketches into textual
fragments. The name of the types used is obtained from the
legend shown in Fig. 4. We will provide the technical details
of this translation in Sect. 7.2.

1 fragment edu1 {
2 c : Course {
3 attr name = ‘‘Design Project’’
4 attr course = 2
5 attr semester = 2
6 @cycleWith(teaches, course)
7 ref coordinator = p1
8 }
9 g1 : Group {
10 attr code = ‘‘PADS221’’
11 attr shift = ‘‘morning’’
12 ref course = c
13 }

123

1328 J. J. López-Fernández et al.

14 g2 : Group {
15 attr code = ‘‘PADS226’’
16 attr shift = ‘‘afternoon’’
17 ref course = c
18 }
19 p1 : Professor {
20 attr name = ‘‘Juan’’
21 ref teaches = g1
22 }
23 p2 : Professor {
24 attr name = ‘‘Eduardo’’
25 ref teaches = g2
26 }
27 }

Listing 1 Model fragment in textual syntax

Both the designers and the domain experts can pro-
vide annotations to guide the induction process. These can
be either domain or design annotations. Domain annota-
tions assign a meaning or feature to certain aspects of
the fragment elements, reflecting some knowledge of the
domain. For instance, the annotation @cycleWith attached
to the coordinator reference indicates that this refer-
ence should form “a cycle” with references teaches and
course, that is, the coordinator of a course should teach a
group of the course. It is not necessary to repeat the same
annotation for all objects of the same kind, but it is enough to
annotate one of them. In the example, the annotation@cycle-
With was added by the domain expert in the graphical frag-
ment, but could also be added by the engineer in the textual
syntax fragment, after the sketch is imported.

Table 1 shows the supported domain annotations (first col-
umn), the type of element they can annotate (second column),
and their possible parameters (third column).4 Domain anno-
tations are copied from the fragment to the induced meta-
model and typically produce an OCL invariant when this
neutral meta-model is compiled for a specific platform (see
last column of the table). The advantage of using domain
annotations instead of directly OCL constraints is twofold.
On the one hand, annotations are simpler to use for non-meta-
modelling experts, as they are higher level than pure OCL.
On the other hand, annotations get compiled into different
OCL expressions depending on the properties of the anno-
tated element (e.g. the direction of the involved references or
theirmultiplicity), and on the particular compilation platform
(as the same element can be compiled differently depending
on the target platform). In the following, we explain the sup-
ported domain annotations.

The three first annotations in the table are applicable to
classes. Thus, the@unique annotation is used to mark a cer-
tain class as a singleton [32] (i.e. there is at most one object of
the class in eachmodel). It can also be applied to attributes, in
which case they become object identifiers. The @container

4 The “Element” and “Parameter” columns refer to the meta-model
elements to which the annotation is applicable (i.e. class, reference,
attribute), even if the annotations are initially included in a fragment, at
the model level.

annotation denotes that a class is a container of other classes.
This has the effect of marking as composition the relation
between the container and the containees. The @connector
annotationmarks a class as connector. It is used by our sketch
importer to point out attributed associative classes derived
from edges in the sketch.

As an example, Fig. 5 shows a sketch expressing that stu-
dents are enrolled in groups by a registration number. List-
ing 2 shows the result of importing the sketch, where the
relation has been transformed into the class EnrolledIn
tagged as @connector. As we will discuss in Sect. 6, this
annotation has different effects depending on the target plat-
form: while a normal class is generated in EMF, an associa-
tive class (an Edge) is generated inMetaDepth [20]. In the
listing, the engineer has manually tagged the studentId
attribute as @unique. Moreover, note that fragments do not
need to include all attributes for each object (e.g. the Group
lacks the shift attribute), but only the relevant ones for the
given scenario.

1 fragment edu2 {
2 s : Student {
3 attr name = "Peter Parker"
4 @unique attr studentId = 123456700
5 }
6 g : Group {
7 attr code = "PADS221"
8 }
9 @connector
10 c : EnrolledIn {
11 attr regNum = 123
12 ref student = s
13 ref group = g
14 }
15 }

Listing 2 Students enrolled in groups (textual syntax)

The rest of domain annotations in Table 1 denotes
constraints over references: @acyclic forbids cycles of a
given reference;@irreflexive forbids self-loops;@cycleWith
requires a number of references to commute, i.e. the anno-
tated reference should form a cycle with the others;@inverse
marks a reference as the inverse (or opposite) of another one;
@covering indicates that a set of references with common
target class is jointly surjective, i.e. any object of the target
class should receive at least one of them;@tree indicates that
a reference type spans a tree (as several disjoint trees may
appear, we actually check for forests, namely, that there are
no cycles, and no object has two incoming references of the
type);@subset restricts the values held by a multivalued ref-
erence to be a subset of the values held by another one;@xor
requires that exactly one reference of a set of references has
a value, whereas the rest of references in the set should be
empty or undefined; and @nand forbids all references in a
set to have values at the same time. By providing this library
of annotations, we aim at facilitating the definition of com-
monly re-occurring meta-model constraints, even by people
who are not proficient in OCL. If more complex, specific

123

Example-driven meta-model development 1329

Table 1 Domain annotations for model fragments and meta-models

123

1330 J. J. López-Fernández et al.

Fig. 5 Another model fragment: students enrolled in groups

constraints were needed, they would need to be encoded by
hand in the resulting meta-model.

While domain annotationsmake explicit expected features
of some elements in the DSML, design annotations refer to
meta-modelling design decisions that should be reflected in
the meta-model generated from the fragments. These deci-
sions can also be incorporated later by refactoring the induced
meta-model, but the engineer is given the possibility to define
them in advance using annotations.

Table 2 summarizes the supported design annotations so
far. The @general annotation specifies that a certain refer-
ence or attribute should be kept as general as possible, i.e. it
should be placed as high as possible in themeta-model inher-
itance hierarchy. This may cause the creation of an abstract
class in the meta-model, as a parent of all classes owning the
reference or attribute. The annotation can also be attached
to objects, and then, a common parent class is created for
all of them, and the maximal set of their common attributes
is pulled-up to the created class. As their name suggest, the
annotations @composition and @bidirectional mark a ref-
erence to be composition or bidirectional, respectively. The
@bidirectional annotation differs from @inverse in that it
states a design property of a single reference (that can be navi-
gated backwards), whereas@inverse annotates two opposite
references. @bidirectional may have different compilations
depending on the specific meta-modelling platform (e.g. an

Edgewould get generated inMetaDepth, while two oppo-
site references would be generated in EMF).

Altogether, annotations are a means to record an insight
of the user at a given point in the running session. Domain
annotations provide some domain knowledge, which usually
results in OCL constraints attached to the resulting meta-
model. Design annotations normally affect the structure and
organization of the meta-model, and as we will see in Sect. 4,
they are used to guide the meta-model induction process by
triggering refactorings. Nonetheless, note that using annota-
tions in fragments is optional, as the induction algorithm is
able to obtain a meta-model starting from unannotated frag-
ments (albeit probably of worse quality or less precise).

4 Bottom-up meta-model construction

Whenever the user enters a new fragment, the meta-model is
updated accordingly to consider the new information. The
annotations in the fragment are transferred to the meta-
model, and this may trigger meta-model refactorings. Any
conflicting information within and across fragments, like the
assignment of non-compatible types for the same field, is
reported to the user and automatically fixed whenever pos-
sible. Moreover, a virtual assistant provides suggestions on
possible meta-model refactorings, applicable on demand.

In the following subsections, we describe our meta-
model induction algorithm, howmeta-model refactorings are
applied, the strategy for conflict resolution, and the recom-
mendations suggested by the virtual assistant.

4.1 The meta-model induction algorithm

Given a fragment, our algorithm proceeds by creating a new
meta-class in the meta-model for each object with distinct
type. If a meta-class already exists in the meta-model due to

Table 2 Design annotations for
model fragments and
meta-models

Annotation Element Parameter Meaning

@general Class Class Takes every annotated class and
pulls common features up to
another superclass which can be
specified via a parameter. The
superclass can be either new or
existent. If the parameter is
omitted, a heuristically inferred
name is provided for a new
common superclass

@general Attribute, reference – Pulls the annotated elements up to
an existing common superclass,
or to a new common superclass if
none exists

@composition Reference – Marks the given reference as a
composition

@bidirectional Reference – Marks the given reference as
bidirectional

123

Example-driven meta-model development 1331

the processing of previous fragments or other objects within
the same fragment, then the meta-class is not newly added.
Then, for each slot in any object, a new attribute is created
in the object’s meta-class, if it does not exist yet. Similarly,
for each reference stemming from an object, a reference type
is created in its meta-class, if it does not exist. The lower
bound of references is set to the minimum number of tar-
get objects connected to each object of source type, while
the upper bound is set to the maximum number of target
objects in the fragment. Actually, the user can configure the
defaults for the lower (0 or theminimum in the fragment) and
upper (unbounded or the maximum in the fragment) bounds
of references. In case of selecting an unbounded maximum
by default, the algorithm checks if the reference name is sin-
gular, in which case it keeps the maximum of the fragment
(and the user gets the recommendation of changing the name
to plural if such maximum is greater than one, see Sect. 4.4).

Once the meta-model has been produced, the user is
allowed to decrease the lower bound and augment the upper
bound of any reference induced by the algorithm. Moreover,
as a consequence of processing a new fragment, the cardinal-
ity of a reference in the induced meta-model might also be
relaxed: its new lower bound is set to the minimum between
its current value in the meta-model and the minimum in the
fragment, while its new upper bound is set to the maximum
between its current value in the meta-model and the maxi-
mum in the fragment. Figure 6 shows a scheme of this situ-
ation.

If two references with the same name and stemming from
objects with the same or compatible type point to objects of
different type, our algorithm creates an abstract superclass
as target of the reference type, with a subclass for the type
of each target object. This situation is illustrated in Fig. 7,
where the new abstract class BC is created as parent of both
B and C. Should the B class be abstract and the C object
define features that are compatible with those in B, then BC
would not be generated, but the new class C would be cre-
ated as a child of B. The lower bound of the reference type
r is set to min(a, 1) because it should accept at least one

Fig. 6 Processing a reference with different cardinalities in the meta-
model and a fragment

Fig. 7 Processing a reference with different target type in the meta-
model and a fragment

Fig. 8 Another fragment: scheduling of a course syllabus

element (the one provided in the fragment), but the previ-
ous lower bound (value a) may be zero. As the fragment
has just one reference of type r, the upper bound b of the
reference is kept in the meta-model. As we will explain in
Sect. 4.3, any automatic design decision made by the induc-
tion algorithm is reported to the user, who can change the
design.

The algorithm also applies the previous refactoring if
a fragment contains a multivalued reference holding two
objects of twodifferent classes.As an example, Fig. 8 shows a
fragment, illustrating the structure of a course syllabus. The
course has a calendar made of weeks, where only the first
week is shown. In this week, two theory and one laboratory
classes have been scheduled, all covering the topic “Design
patterns”.

Listing 3 shows the fragment once imported and trans-
lated into textual syntax. Our injector recognizes spatial rela-
tions like containment and annotates classes Calendar and
Week with one @container annotation each and appropri-
ate parameters referring to the contained objects. Thus, even
if the containment relations are not depicted in the sketch,
appropriate relations are inferred. In addition, the engineer
has manually annotated one of the topics references as
@general to hint the system that this reference should be gen-
eralized (line 16). He has also annotated the weekNumber
attribute as@unique to prevent differentweekswith the same
number (line 11).
1 fragment edu3 {

123

1332 J. J. López-Fernández et al.

2 c : Course {
3 ref calendar = ca
4 }
5 @container(w)
6 ca : Calendar {
7 ref week = w
8 }
9 @container(tc1, tc2, lc)

10 w : Week {
11 @unique
12 attr weekNumber = 1
13 ref elements = tc1, tc2, lc
14 }
15 tc1 : TheoryClass {
16 @general
17 ref topics = t
18 }
19 tc2 : TheoryClass {
20 ref topics = t
21 }
22 lc : LabClass {
23 ref topics = t
24 }
25 t : Topic {
26 attr topic = "Design patterns"
27 }
28 }

Listing 3 Scheduling of a course syllabus (textual syntax)

Figure 9 shows the meta-model induced from this frag-
ment, when the engineer configures the default value for the
lower bound of references to be the minimum cardinality in
the fragment (instead of 0), and the maximum to unbounded
(taking into account the grammatical number). This is the
convention that we follow from now on. Being plural, refer-
ence elements and topics receive an upper bound of *,
while the rest are assigned an upper bound of 1. The lower
bound of reference topics is 1 because all theory and lab
classes refer to one topic. Since we work with references
(as opposed to associations), the meta-model only keeps the
cardinality of the target end of the references. As the only
Week object in the fragment is connected to three classes,
this becomes the lower bound of the elements reference.
Additionally, the@general,@unique, and@container anno-
tations are copied from the fragment to themeta-model. In the
case of@container, the class of the parameters is extracted.
As the reference elements is multivalued and contains
classes with different type, the algorithm creates an abstract
common superclass named Class. The name of this new
class is generated by the algorithm, using the heuristic of

Fig. 9 Meta-model induced from the fragment in Listing 3

Fig. 10 Scheme of the refactoring triggered by @general

Fig. 11 Result of refactoring the meta-model in Fig. 9

selecting the maximum common postfix of the names of the
children classes. This decision can be overridden by the user,
as we will see in Sect. 4.3.

4.2 Refactoring of meta-models

The design annotations are transferred from the fragments to
the meta-model and may trigger refactorings in it. For exam-
ple, Fig. 10 shows a scheme of the refactoring triggered by
the@general annotation applied to a reference, which is sim-
ilar to the pullup refactoring [30]: it pulls up the annotated
attribute or reference as general as possible in the inheritance
hierarchy. If the annotated attribute or reference is shared by
two classes that are not related through inheritance, then an
abstract, parent class is created for them so that the attribute
or reference can be pulled-up (i.e. Fowler’s extract superclass
refactoring [30] is applied). The target end of the pulled ref-
erence receives as lower bound the minimum of the original
lower bounds, and as upper bound the maximum of the orig-
inal upper bounds.

Figure 11 shows the result of executing this refactoring to
the meta-model in Fig. 9, due to the@general annotation in
reference topics. This reference is simply pulled-up from
both TheoryClass and LabClass, as a common parent
class Class already exists.

4.3 Supervising decisions

Our induction process and the triggered refactorings are auto-
matedmechanisms. If there are several available design alter-
natives, then our algorithm takes a decision; therefore, some
supervision on behalf of the user may be needed. Our aim
is that the environment assists the user in refining the meta-
model interactively as it is being built. To this end, our induc-

123

Example-driven meta-model development 1333

tion algorithm records the decisions taken and presents pos-
sible alternatives to the user in the form of “open issues”.

Each open issue presents one or more alternatives, each
one of them associatedwith a refactoring.Whenever an alter-
native is selected, the corresponding refactoring is applied
to the meta-model. This interactive approach enables non-
expert users to refine a meta-model by observing the effects
of their actions and following suggestions from the environ-
ment.

On the other hand, our induction algorithm is conservative
as it does not break the conformance of previous fragments
when the meta-model needs to be changed to accommodate
new fragments; if the algorithm finds a disagreement, then it
raises a conflict. However, the resolution of an open issue by
means of a refactoring may break the conformance. Accord-
ing to [13], changes in meta-models can be classified into
non-breaking, breaking and resolvable, and breaking and
unresolvable. Our refactorings automatically update the frag-
ments if a change is non-breakingor resolvable. For unresolv-
able ones, the user is asked to provide additional information
or to discard the no longer conformant fragment.

We have defined two kinds of open issues: conflict and
automatic, which are briefly explained next.

Conflict The processing of new fragments may imply updat-
ing the meta-model to adjust the cardinality of existing
references or add new classes, among other modifica-
tions. If a fragment contains contradictory information, then
a conflict arises. For instance, there is a conflict if the
same attribute is assigned incompatible types in different
objects (e.g. if a Week object defines an attribute attr
weekNumber=“week-1”, and another one defines attr
weekNumber=2, as the data type of the former is tex-
tual, while the second is numerical). In this case, our algo-
rithm chooses one of the types (e.g. string) and notifies the
conflict and the alternative to the user (e.g. choosing inte-
ger). This open issue must be resolved at some point by
the designer. Changing the type of an attribute from integer
to string is an example of breaking and resolvable change
(e.g. weekNumber=2 would be automatically changed to
weekNumber=“2”), while changing the type from string
to integer is breaking and unresolvable and therefore requires
the intervention of the user (e.g.weekNumber=“week-1”
should be manually given a valid value). Our algorithm
chooses by default an alternative that is non-breaking or, at
least, resolvable.

In addition, we support the definition of conflicts and sub-
sumption relations between annotations. In the latter case,
the annotation that is weaker can be removed. An error is
reported if the same element is annotatedwith two conflicting
annotations, or if the meta-model structure is not compatible
with some annotation. In particular, we detect and notify the
following issues:

• a cycle of references annotated with@containment,
• a cycle of @container and containee objects,
• a class annotated as@unique, if it receives a multivalued
reference,

• annotations on the same set of references where one sub-
sumes the other:@xor and@nand (xor subsumes nand),
@acyclic and @tree (tree subsumes acyclic), @irreflex-
ive and @acyclic (acyclic subsumes irreflexive).

Automatic These are decisions automatically taken by the
induction algorithm when several alternatives exist. For
instance, the name of the superclass automatically introduced
for TheoryClass and LabClass is built by taking the
maximal postfix that is in camel case (i.e. Class), or other-
wise, the algorithm simply adds the prefix “General” to the
concatenation of the name of the subclasses. The user is noti-
fied about this design decision and is offered the possibility
of changing the superclass’ name. Similarly, the induction
algorithm assigns a cardinality to the new references, and
afterwards, the user can lower the minimum cardinality or
increase the maximum cardinality of these references.

4.4 Recommendations

We have integrated a virtual assistant which continuously
monitors the meta-model to detect places where the meta-
model design can be improved and recommend solutions,
based on well-known design patterns, refactorings, and style
guidelines. Table 3 shows the recommendations currently
supported, which we categorize into structural and style sug-
gestions. All recommendations are activated when their con-
dition is met (third column), and if accepted by the user, they
will trigger a certainmeta-model refactoring (fourth column).
In practice, the user may turn off the recommender, and we
are currently working on fine-tuning the frequency at which
recommendations are made.

The Inline class recommendation is given when a class B
is referenced from another class A through a reference with
cardinality 1..1. Accepting the recommendation merges
the two classes, i.e. the attributes and incoming/outgoing
references of B are copied into A, and B is removed. This
well-known refactoring [30], which makes sense if class B
does not add much value by itself, results in simpler meta-
models with less classes. For instance, in the meta-model of
Fig. 11, the assistant recommends to inline class Calendar
into Course, as well as class Week into Calendar. While
the former may be appropriate, the latter is not as, actually,
the maximum cardinality of the reference is not correct at
this stage of the iteration (i.e. a calendar may contain more
than 1week).

The Pullup features recommendation detects maximal
sets of common features and references among the exist-
ing classes, and proposes either pulling the features up if a

123

1334 J. J. López-Fernández et al.

Table 3 Recommendations for meta-model improvement

Name Element Condition Effect

Structural suggestions

Inline class Class A class A refers to a class B
using a reference with
cardinality 1..1

Classes A and B are merged

Pullup features Class A set of classes define common
features

The common features are
pulled-up to a new or existing
common superclass

Generalize references Class and reference A set of classes A1, . . . , An
receive references r1, . . . , rn
from a class B

A common abstract superclass
A is created for A1, . . . , An ,
if it does not exist. References
r1, . . . , rn are replaced by a
new reference r from B to A,
with cardinality

Replace class by integer Class A featureless class without
children is target of a
reference

The class is removed. An
integer attribute is added to
the source class of the
reference

Remove abstract class Class A featureless abstract class has
no incoming references

The class is removed

Naming style suggestions

Number conflict Class, attribute, reference (1) a multivalued feature has
singular name, or (2) a class
has plural name, or (3) a
monovalued feature has
plural name

(1) suggests using a plural
name, (2) suggests using a
singular name, (3) suggests
using a singular name or
changing the multiplicity to

Class prefix Attribute and reference The name of a feature has the
form 〈owning-class-name〉X

Suggests renaming the feature to X

Class camel case Class The name of a class is not in
upper camel case

Converts the class name to
upper camel case, taking care
of underscores and slashes

Feature camel case Attribute, reference The name of a feature is not in
lower camel case

Converts the feature name to
lower camel case, taking care
of underscores and slashes

common superclass exists, or creating a common abstract
superclass if the affected classes do not share a common par-
ent. This is another well-known refactoring [30], which leads
to simpler meta-models by removing duplicate fields. Tech-
nically, we use the clustering methods of Formal Concept
Analysis [17] to detect sets of common features. For exam-
ple, in themeta-model of Fig. 9, the assistant suggests pulling
up the reference topics to the existing superclass Class.
Hence, the assistant frees the engineer from annotating this
reference with @general.

The Generalize references recommendation proposes the
creation of a commonabstract superclass A for a set of classes
C = {A1, . . . , An} that receive a set R = {r1, . . . , rn} of ref-
erences from another class B. In addition, a reference r from
B to A is created, “merging” the reference set {r1, . . . , rn},
which gets deleted. The cardinality of r is [∑ri∈R ai , b],
where [ai , bi] is the cardinality of reference ri , and b = ∗
if some bi = ∗, else b = ∑

ri∈R bi . This recommendation
leads to a better structuredmeta-model, extracting a common
superclass for the A1, . . . , An classes that reflects their com-

Fig. 12 Generalize references recommendation

monality (all can be accessed from B).As an example, Fig. 12
shows to the left a meta-model where the assistant suggests
generalizing the references theory and practice. The
result of applying this recommendation is shown to the right:
the abstract superclass Class is introduced, and the original

123

Example-driven meta-model development 1335

Fig. 13 Replace class by integer recommendation

references are merged into the new reference classes. In
addition, OCL invariants are generated to ensure the same
cardinality of each class as in the original meta-model.

TheReplace class by integer recommendation appears if a
featureless classwithout children is referenced fromonly one
class. In such a case, it is recommended to replace the class
by an integer attribute in the source class of the reference, as
this attribute should suffice to count the number of objects in
the collection. Applying this recommendation leads to sim-
pler meta-models, with less classes. Figure 13 illustrates this
recommendation, which has been applied twice. Additional
OCL invariants derived from the cardinality constraints are
generated, to take care of the allowed integer values.

The Remove abstract class removes an intermediate fea-
tureless abstract class from an inheritance hierarchy. This
class may have been created due to a generalization of some
common features, which at some point have been generalized
again to a higher class.

Regarding naming style suggestions, if a reference is mul-
tivalued but its name is singular, the assistant suggests chang-
ing the name to plural. If a reference is monovalued but its
name is plural, the assistant suggests either changing the
name to singular, or increasing the upper multiplicity to *.
Thedefault recommendation in this case canbe configuredby
the user. For example, ifwe change the cardinality ofweek to
0..* in Fig. 11, the assistant suggests the use of a plural name,
such as weeks. If an attribute name contains the name of the
owning class as prefix, the assistant suggests the removal of
the prefix (as recommended in [6]). As an example, the vir-
tual assistant suggests renaming the attribute weekNumber
of class Week as number. The resulting meta-model after
applying these two recommendations is shown in Fig. 14.
Further suggestions take care of the capitalization of fea-
ture and class names, reflecting widely used modelling style
guidelines [46].

5 Example-based validation

The collaboration of the domain experts is key to validate
the meta-model and guarantee that it meets the requirements
expected from the DSML. However, domain experts without

Fig. 14 Applying some naming style refactorings to the meta-model
in Fig. 11

knowledge of meta-modelling may find inspecting a meta-
model difficult. Hence, in order to promote a more active and
effective role of the domain experts in this process, we sup-
port an example-based validation of meta-models. The idea
is to let the experts test the meta-model by just providing
valid and invalid model examples and return a comprehensi-
ble feedback of the test results.

More in detail, domain experts can define test suites (in
the style of the xUnit framework), containing a collection of
test cases. Each test case can be either a complete model or
a model fragment and can be classified as valid (the meta-
model should accept it) or invalid (the meta-model should
not accept it). In order to process a test suite, we use the
meta-model induction algorithm presented in Sect. 4.1. The
induction algorithm applied to a valid fragment should pro-
duce no changes in the meta-model—meaning that the meta-
model accepts the fragment—whereas its application to an
invalid fragment is expected to produce changes in the meta-
model. For the case of completemodel examples, in addition,
the minimum cardinality of associations and the OCL con-
straints derived from domain annotations are checked (dis-
conformities in the maximum cardinality of references are
already handled by the algorithm, which triggers appropri-
ate meta-model changes). If the test fails, an explanation
of the reason is returned as feedback. A further advantage
of this approach is that validation becomes more intuitive
for domain experts, as it can be done using sketches, which
provide a suitable concrete syntax of models. This contrasts
with using the tree-based model editor provided by EMF for
instantiating a meta-model.

As an example, Fig. 15 shows a model example used for
testing the meta-model in Fig. 14. The example corresponds
to the planning of a course with 2weeks. If we mark this
test as “model example” and “valid”, the system reports the
following disconformities:

1. The unique constraint is violated (value 1 is repeated
in attribute number).

123

1336 J. J. López-Fernández et al.

Fig. 15 Model example used for validation

Fig. 16 Fragment describing the structure of the syllabus

2. The reference next between topics does not exist in the
meta-model.

3. The referencesubtopicsbetween topics does not exist
in the meta-model.

4. The reference syllabus between a course and a topic
does not exist in the meta-model.

5. The class Course does not define the following attri-
butes: name, course, and semester.

These errors are produced for two reasons: firstly, because
the @unique constraint is violated (there are two Week
objectswith the samevalue for the attribute number), and sec-
ondly, because the fragments used in the meta-model induc-
tion process neglected the structure of the syllabus’ topics
and the course attributes. While we can use the model exam-
ple as input to our induction process, a better alternative is to
provide more focussed, intensional fragments that document
better a certain aspect of the DSML. In this way, we sketch
the fragment in Fig. 16 to convey the topic structure of a syl-
labus, where the domain expert added the annotation @tree
to one of the subtopics references, and @acyclic to the
next reference.

The meta-model that results from processing this new
fragment is shown in Fig. 17.

Fig. 17 Resulting meta-model

6 Compilation for specific platforms

The bottom-up meta-modelling process results in a concep-
tual meta-model that still needs to be implemented in a par-
ticular platform (e.g. EMF, MetaDepth) and tweaked for a
particular purpose. For example, in EMF, an extra root class
is frequently added if the models need to be edited with the
default tree editor, making heavy use of composition asso-
ciations. If we aim at creating a model-to-model transfor-
mation, then we often implement references as bidirectional
associations to ease the definition of navigation expressions.
Therefore, we propose to define a number of transforma-
tions from the obtained neutral, conceptual meta-model into
implementation ones for specific platforms and purposes.

Figure 18 shows a feature model that gathers some com-
pilation variants from the neutral meta-model. We currently
support two platforms: EMF andMetaDepth. For each one
of them, one can select different profiles or purposes: trans-
formation, visual language, and textual language definition.
Each platform and profile have different options that help to
fine-tune the compilation.

We have also considered meta-model modularity by
enabling the reuse of recurrent meta-model excerpts. A typi-
cal example is adding an existing expression language to the
meta-model. At compilation time, the user selects the reused
meta-model which will be integrated with the developed one.
There are twomodularity variants:merge and extension.With
merge, the compiled meta-model consists of the developed
meta-model plus the reused meta-model, which are merged
at certain points selected by the user in a wizard (in the style
of UML package merge [23]). For example, in the case of
merging an expression language into our meta-model, if the
expression language supports variable references, the merge
points will be common meta-classes to represent the notion
of “Expression” and “VariableDeclaration”, and the result-
ing meta-model will include the whole hierarchy for expres-
sions, as well as the common meta-class to represent vari-
able declarations. On the contrary, with extension the devel-
oped meta-model just imports the reused meta-model and
uses its meta-classes as types of references or by extend-
ing them. For instance, to reuse an expression language, its

123

Example-driven meta-model development 1337

Fig. 18 Feature model for meta-model compilation

meta-model will be imported, and there will be references to
the “Expression” meta-class at each place where an expres-
sion may occur. To integrate variable references, it will be
necessary to make every meta-class that acts as variable dec-
laration inherit from “VariableDeclaration” so that it is com-
patible with the imported expression language meta-model.
InMetaDepth, this is implemented using a dedicated meta-
model extension facility [21], whereas EMF requires explicit
cross-references between the meta-elements.

In both cases, the user needs to select the connection points
(e.g. meta-classes to represent expressions and variable dec-
larations); the difference is how the connections are realized.
In the merge approach, the final implementation consists of
only one meta-model, which contains a copy of the elements
of both meta-models. This permits implementing the rest
of the artefacts of the language (e.g. concrete syntax and
transformations) independently of the development of the
reused meta-model, as the final meta-model is not coupled
to the original reused meta-model. Instead, in the extension
approach, any change to the reused meta-model is readily
visible in the language implementation. This has the advan-
tage that it is possible to reuse other artefacts, typically the
concrete syntax. Hence, the choice of the modularity variant
will be motivated by the desired degree of coupling with the
reused meta-model.

Next, we enumerate the different compilations that we
have considered up to now.

• EMF platform This compilation produces an Ecoremeta-
model, using the rules detailed in Table 4. The uri and
prefix of the meta-model (rule #1) are asked to the user by
means of a wizard. Optionally, by setting the Editable flag
to true (rule #7), the compilation generates a root class and
composition associations to allow any class to be reachable
from the root class via composition associations. In par-
ticular, the root is added containment references pointing

Table 4 Compilation rules for EMF

Neutral meta-model Ecore

1 Meta-model EPackage

nsPrefix = <parameter>

nsURI = <parameter>

2 Class EClass

3 Relation EReference

eType = target type

lower bound = target lower bound

upper bound = target upper bound

4 if annotated with@bidirectional:
creates opposite reference in target
class

5 if annotated with@composition or src.
type annotated with @container(tar.
type):

containment = true

6 Attribute EAttribute

eType = lookup(Attribute type)

7 Editable flag EClass, Set(EReference)

to every class not referenced by another class annotated
with@container. The compilation of domain annotations
produces OCL constraints in the Ecore meta-model (see
Table 1).

• MetaDepth platform This compilation produces a
MetaDepth meta-model, which takes advantage of
some special features of MetaDepth, like Edges to
model bidirectional associations and associative classes.
Table 5 shows the compilation rules. Although Meta
Depth supports multi-level modelling, we limit the com-
pilation to a standard meta-model (i.e. not multi-level),
leaving the re-organizationof themeta-model into several

123

1338 J. J. López-Fernández et al.

Table 5 Compilation rules for MetaDepth

Neutral meta-model MetaDepth

1 Meta-model Model with potency 1

2 Class without
@connection

Node

3 Relation without
@bidirectional

Reference
type = target type

lower bound =target lower bound

upper bound =target upper bound

4 if annotated with@composition or src.
type annotated with@container(tar.
type):

Constraint

5 Relation with
@bidirectional

Edge

6 Class with
@connector

Edge

7 Attribute Attribute

type = lookup(Attribute type)

8 if annotated with@unique

identifier = true

levels to future work. Please note that, as inMetaDepth
all models are editable, no such feature is needed (as
in EMF). The compilation of references follows a simi-
lar strategy to that for EMF (rule #3), but we generate an
Edge for@bidirectional references (rule #5) and@con-
nector classes (rule #6). Moreover, asMetaDepth does
not natively support containment references, additional
OCL constraints need to be generated to ensure that the
contained objects do not belong to (i.e. are not pointed
by) two different containers (rule #4). Finally, as in EMF,
domain annotations may get compiled into extra OCL
constraints.

• Transformation profile In this profile, we can configure
two aspects to optimize navigation expressions. By select-
ing Opposite Navigation, selected relations become bidi-
rectional, so that writing navigation expressions will be
easier in languages making use of query expressions (like
QVT). The Global Reference Iteration option should be
selected when we foresee having to iterate over references
in a global scope. A typical example is the need to apply
transformation rules to inheritance relationships, which
is typically hard if the child–parent relationship is only
represented as a reference. In this case, an intermediate
class is generated to permit the iteration. In the afore-
mentioned example, we could generate a “Generalization”
meta-class. If MetaDepth is selected as target platform,
both options generate an Edge, which is navigable in both
directions.

• Textual language profile In Xtext, there is the conven-
tion of using a feature called “name” to allow cross-
references to objects. Thus, any class that is target of
a non-containment reference must include an attribute
“name”; otherwise, it is added by the compilation. Addi-
tionally, Xtext offers the possibility to automatically
provide import facilities for textual files as well as
to integrate a DSML with Java types. This requires
adding certain classes and attributes to the meta-model,
which is automatically done by the compiler if the vari-
ants Import Aware and Java Integration are selected.
Finally, some DSMLs may require associating the line/-
column information with the elements (this is even
required in tools like TCS), which is implemented mak-
ing all classes inherit from a common LocatedElement
class.

• Visual language profile In this case, we can select whether
to include in classes attributes to store the size and position
of elements in the canvas.

As an example, Fig. 19 shows at the top the neutral meta-
model obtained by the induction process when the fragments
in Figs. 3, 5, 8, and 16 are considered, and the refactorings
explained in Sect. 5 are performed. The meta-model is com-
piled to EMF using the transformation profile, and select-
ing the Editable, Global Reference Iteration, and Opposite
Navigation options. The system requests the name of the
root class (EducationalSystem is selected), the refer-
ences to be iterated (the reference topics is selected, to
facilitate metrics that require counting the number of cov-
ered topics in every course), and those to be made bidirec-
tional (reference course is selected). The resulting meta-
model is shown to the bottom of Fig. 19, where we have
replicated class EducationalSystem to enhance read-
ability. The references from classes annotated with @con-
tainer to the classes indicated in the annotations are com-
piled into composition relations. This is the case for the refer-
ences from Calendar to Week, and from Week to Class.
The root class EducationalSystem is introduced, with
containment relations to all classes that do not participate
in any other containment relation. To facilitate the iteration
over the instances of the topics reference, an intermediate
class CoveredTopic is added, since Ecore does not sup-
port associations, but only references. As the course ref-
erence was selected for opposite navigation, a new reference
groups is created as the opposite ofcourse. Finally, some
OCL invariants are generated from the @acyclic, @tree,
@cycleWith, and @unique annotations. For the latter case,
we cannot use the standard EMF id property for attributes,
because in that case, the checking for uniqueness is done
between objects of every class having some id attribute, and
not only among Week objects.

123

Example-driven meta-model development 1339

Fig. 19 Compiling to EMF for transformation

7 Tool support

Realizing our proposal requires specialized, integrated tool
support that has to go beyond the dominant style of meta-
modelling nowadays, which is mostly top-down and with
limited interactivity support. To this end, we have imple-
mented a tool for Eclipse (called metaBUP) that gives inter-
activity to our approach.5

We present our tool in this section, which is organized as
follows:wefirst explain the architecture of our solution; then,
we detail the transformation from sketches into fragments,
and finally, we illustrate the different steps in the construction
of a meta-model using our tool.

5 Available at http://www.miso.es/tools/metaBUP.html.

Fig. 20 Tool architecture

7.1 Architecture

Our tool has six major building blocks, which are depicted
in Fig. 20, and briefly summarized in the following.

Session manager This module coordinates the different
components at the user interface level and persists the ses-
sion state to be able to resume it in subsequent sessions.
The manager also communicates with the Fragment editor
to gather new fragments, apply the inference algorithm using
theMeta-model inferencer, and then visualize the result using
theMeta-model visualizer.

Sketch importerThe most usual way the domain expert
is intended to materialize his examples is by drawing them
with a general-purpose sketching tool. Thus, we have created
an import facility which converts sketches drawn with Dia
or yED into fragments processable by our tool. As we will
detail in Sect. 7.2, this import step is performed by means of
two model transformations.

Meta-model inferencer This component takes care of
updating the meta-model when new fragments are entered,
as described in Sect. 4. Implementation-wise, since our
approach is technology-agnostic, we have created a meta-
model to represent meta-models in a generic way, indepen-
dently of any meta-modelling platform. We have called it
Generic Meta-model in Fig. 20. Hence, a meta-modelling
session maintains a model of this kind, instead of a meta-
model in a particular technology such as Ecore.

Meta-model validator This module is in charge of test-
ing whether a sequence of test cases is accepted or not by
the current meta-model. For this purpose, internally, the val-
idator clones the current meta-model, which is passed to the
meta-model inferencer to obtain the list of changes thatwould
be produced when processing the test cases. In addition, for
those test cases that are model examples (as opposed to frag-
ments), the validator checks whether they fulfil the semantics
of the domain annotations as well as the lower cardinality
constraints.

123

http://www.miso.es/tools/metaBUP.html

1340 J. J. López-Fernández et al.

Fig. 21 Meta-model for representing sketches

Assistant Whenever the meta-model is updated, the assis-
tant component analyses the new version of the meta-model
to provide naming or structural change recommendations,
according to the suggestions previously shown in Table 3.
The assistant also takes care of applying the recommenda-
tions selected by the user. This module has an extensible
architecture which makes easy the addition of new recom-
mendations, annotations, and associated refactorings in a
modular way. For the pullup feature recommendation, we
have used the Colibri Java library6 for formal concept analy-
sis.

Meta-model visualizerWe have implemented a visualizer
for the instances of our generic meta-model using the Zest
framework,7 so that the user can see the meta-model evolve.

Compiler The compiler component contains the logic to
compile a neutral meta-model into a platform-dependent,
purpose-specific one, according to the compilation profiles
presented in Sect. 6. Thus, it just consumes a neutral meta-
model, asks the user for missing information required by the
selected profile (e.g. the name of a root class), and generates
an implementation meta-model accordingly.

Once we have seen the main elements of the architecture,
we explain our support for processing sketches.

7.2 Sketch importer

To engage domain experts in the process of developingmeta-
models, we have developed a facility to import free-form dia-
grams sketched with tools such as Dia, yED, Powerpoint or
Visio. To support working with a variety of sketching tools,
the import process is performed in two steps: firstly, the dia-
gram file with the sketch is converted to a model conforming
to the meta-model shown in Fig. 21, which is a generic meta-
model to represent diagrams; then, this model is transformed
into a model fragment conformant to the meta-model shown
in Fig. 23, which can be processed by our tool.

6 http://code.google.com/p/colibri-java/.
7 http://www.eclipse.org/gef/zest.

The generic meta-model we use to represent the sketches
read fromdifferent tools is shown in Fig. 21 and encompasses
the following features:

• Type of diagram elements There are three types of ele-
ments in a diagram: Symbol, representing an element
of the diagram that does not contain other elements;
Connection, which is typically a line or an arrow con-
necting two elements; and Container, which repre-
sents a shape that may have elements “physically” inside.
Thus, the Containermeta-class captures in a uniform
way the explicit containment relationship in sketches.

• Position of elements The position and size of any element
in the diagram are stored in attributes x, y, width, and
height, defined in SketchElement.

• Implicit containment Most sketching tools allow the
overlapping of elements in a diagram, but the toolmaynot
necessarily interpret this as containment. The meta-
model represents this case with the overlapped ref-
erence, which we calculate in a post-processing step by
using the position of the elements.

• Labels Elements may have Labels attached, for which
we always store their raw text value. In addition, we
distinguish three kinds of labels depending on the for-
mat of the text value: KeyValueLabels are labels
with the form “key = value”, which are useful to indi-
cate attributes of the symbols; AnnotationLabels
have the format “@name(param1, param2, …)”, useful
to define annotations with an arbitrary number of para-
meters; andPlainLabels for labels with any other text
format, which allow giving a name to symbols, connec-
tions, and containers.

• Element identification We use the elemId attribute to
identify each kind of element (symbols and containers)
uniquely, in order to be able to match them with the ele-
ments described in the legend. The calculation of this
attribute depends on how each sketching tool identifies
elements (e.g. using a unique id). Then, once an element
is matched with another element in the legend, the type
attribute is filled. If no match is found, a sensible type
is automatically derived from the information provided
by the sketching tool for the element. The elemId and
type attributes also apply to connections, but so far,
we do not support assigning types to connections in the
legend (e.g. depending on the colour of an arrow), and
therefore, we just assign default values.

We currently support the import of diagrams created with
Dia and yED. So far, the sketching meta-model has shown to
be expressive enough to represent the relevant information
extracted from diagrams created with both tools.

Figure 22 shows an excerpt of the model obtained after
processing the sketch shown in Fig. 8. The objects corre-

123

http://code.google.com/p/colibri-java/
http://www.eclipse.org/gef/zest

Example-driven meta-model development 1341

Fig. 22 Excerpt of the sketch model obtained from the sketch shown
in Fig. 8

sponding to symbols or containers in the sketch have been
adorned with the original images to facilitate their identifi-
cation. The symbol for course (a blackboard) is connected
via a Connection object to the cal container, and the con-
nection has a plain label conveying that the container acts
as the calendar of the course. Thus, it is possible to con-
nect symbols to containers, as well as connecting symbols
(like the connection between symbols theory1 and topic).
The week1 container is explicitly contained into the cal con-
tainer, whichmeans that the sketching tool recognizedweek1
as an element inside cal, and our importer could fill the
elements reference. In contrast, the sketching tool did not
recognize that theory1 is inside the week1 container (which
is clearly the case because the bounding box of the symbol
overlaps with the area defined by the container). To handle
this issue, our importer has an additional post-processing step
to check whether overlapped elements exist and thus fill the
overlapped reference. This allows subsequent processing
steps to give containee semantics to the overlapped elements.

The second step consists of transforming the model repre-
senting a sketch (like that in Fig. 22) into a model fragment
(like that in Listing 3). The meta-model for model frag-
ments is shown in Fig. 23. A fragment is made of objects
with attributes and connected by references, all of which can
be annotated. Annotations can have an arbitrary number of
parameters. Each parameter may have an optional name, to
facilitate its understanding. We also provide some flexibility
when writing parameters, allowing a set of elements to be
inlined as n parameters if the annotation has only the set as
parameter. In this way, these three annotations are equiva-
lent: @container(containee={tc1, tc2, lc}),
@container({tc1, tc2, lc}), @container
(tc1, tc2, lc).

Fig. 23 Meta-model for representing fragments

The transformation of sketches into model fragments,
which is relatively straightforward, uses some heuristics to
improve the quality of the generated fragment. The mapping
is as follows:

• Each Symbol is transformed into an Object. In the
example, course, theory1, and topic are transformed into
objects.

• Each Container is transformed into an Object anno-
tated with @container. The contained objects, either
explicitly or implicitly, become containee parameters
for the container annotation. In the example, this is the case
of cal and week1. According to the elements reference,
week1 becomes a containee of cal, whereas according to
theoverlapped reference, theory1 becomes a containee
of week1.

• A Connection without attributes is transformed into
a Reference owned by the object that corresponds to
the source symbol of the connection. To avoid generating
many monovalued references, connections with the same
name (see name resolution below) pointing to objects of
the same type are grouped into a multivalued reference.

• AConnectionwith key-value labels is transformed into
an object with attributes, annotated with@connector, and
containing two references pointing to the source and target
objects.

• Each KeyValueLabel is transformed into an Attri-
bute. The value found in the sketch is parsed to detect
whether it is a decimal value, an integer, a boolean value,
or a string. In the example, the topic object will have a
string attribute with value “Design patterns”.

• EachAnnotationLabel is transformed into anAnno-
tation, provided that the name of the annotation label is
valid (i.e. it is an annotation defined by our system). Any
parameter that refers to elements in the sketch is resolved
to the actual fragment elements (objects and features).

• The first PlainLabel (if any) of an Object or
Container is used as the name for the generated object.

123

1342 J. J. López-Fernández et al.

Fig. 24 Example of interaction with the tool

We check for duplicate names and add a numeric postfix
if this is the case.

• The first PlainLabel (if any) of a Connection is
used as the name of the generated reference or connector
object. If no label is provided, we use the name of the target
object to derive the name of the reference or the type of
the generated connector object.

Although the sketch meta-model supports creating a con-
nection to another connection, we do not consider this case in
the mapping since neither Dia nor yED support this feature.

7.3 The tool in action

Next, we present our tool by going through an interaction
example that is shown in Fig. 24. Firstly, a sketch (label 1)
is built in yED and imported into the textual format of our

tool (label 2). The tool has three tabs in the upper right panel:
one with the current fragment in textual syntax (tab “Shell”,
which is shown in the windowwith label 2), one with the cur-
rent induced meta-model (tab “Metamodel”, which is shown
in the window with label 3), and another one with the history
of the inserted fragments (tab “History”). The lower panel of
the tool has two tabs: one with recommendations offered by
the virtual assistant (tab “Assistance”), and onewith the auto-
matic actions performed by the tool, which can be changed
by the user (tab “Open issues”).

When a new fragment is entered, a new meta-model is
induced, or the existing one is modified to accommodate
the fragment (label 3). The automatic decisions and con-
flicts occurring during the induction process are reported
to the user in the lower panel (tab “Open issues”). In
the figure, the algorithm introduced the new superclass
GeneralTheoryClassLabClass as a generalization

123

Example-driven meta-model development 1343

Fig. 25 Validating the meta-model

of others in the meta-model, and the user is prompted by
a new name. This is so as the tool can be configured to cre-
ate superclass names in different ways (e.g. concatenating
the name of the abstracted classes prefixed by “General”, as
in the figure, or taking the maximal common postfix of the
names). The user is informed about this decision and may
override the default name assigned to the created superclass
(label 4). The window with label 5 shows the class with the
new name.

These steps are performed iteratively until themeta-model
contains all primitives of the domain. At any point, the user
may validate the current meta-model. For this purpose, the
tool contains a “Validation” tab where the user can introduce
positive and negative model fragments andmodels, as shown
in Fig. 25 (the tab is to the right in the back window). The
figure shows a few test cases, the first ofwhich passed (hence,
it is markedwith a tick), and the rest resulted in errors (hence,
they are marked with a cross). A dialog window offers an
explanation of why a given test case failed.

The meta-model can be compiled for a particular purpose
and platform, which are selected by the user, as explained
in Sect. 6. The environment prompts a wizard to gather any
information required for the compilation (e.g. if a root class
needs to be introduced when compiling into EMF, the wizard
will ask its name).

8 Related work

There are some works dealing with the inference of meta-
models from models. For instance, the MARS system [36]
enables the recovery of meta-models from repositories of
models using grammar inference. The objective is being
able to use a set of models after migrating or losing their
meta-model. Actually, the induction process can be seen as

a form of structural learning [40]. In contrast, our purpose
is enabling the interactive construction of meta-models, also
by domain experts.

There are a few works using test-driven development
(TDD) to buildmeta-models iteratively. For instance, in [15],
the authors attach test cases to the meta-classes in a meta-
model. Test cases are executable models written in PHP and
perform some kind of transformation like code generation. If
a test case shows that a meta-model is inadequate, this must
be manually modified. Similarly, in [47], the authors com-
bine specifications and tests to guide the construction of Eif-
fel meta-models. Specifications are given as Eiffel contracts,
whereas tests are written using the acceptance test frame-
work for Eiffel. Another example is [49], which supports
the specification of positive and negative example models
from which test models for meta-model testing are gener-
ated. In our case, the meta-model is automatically induced
from model fragments, and there is a greater level of interac-
tivity. Moreover, meta-models are updated through refactor-
ings, which simplifies their evolution and the propagation of
changes to model fragments (i.e. side effects). A catalogue
of meta-model refactorings, although not directly related to
TDDofmeta-models, is available in [44].Weprovide support
for many of them. Moreover, to promote the collaboration of
the domain experts in the meta-model validation process, we
support an example-based approach to the testing of meta-
models. In the future, we plan to extend this approach to
allow, e.g. the testing of meta-model invariants, using some
dedicated language.

Techniques to build MDE artefacts “by example” have
emerged in the last years, but it is still novel for meta-models.
In the position paper [12], the authors identify some chal-
lenges to define DSMLs by demonstration. They discuss the
usefulness to bridge informal drawing tools with modelling
environments, as the former are the working tools of domain
experts. They also recognize the difficulty for experts toman-
ually build meta-models and suggest an iterative process.
Recently, the authors have realized their ideas in a framework
where domain experts can provide model examples using a
concrete syntax, from which a meta-model describing their
abstract syntax is inferred [11]. While their proposal is simi-
lar to ours, we also stress that meta-models may be different
depending on the target platform and usage. Hence, we sup-
port the automated induction of a neutral meta-model, its
refactoring likely due to automatic recommendations made
by a virtual assistant, its validation in collaboration with the
domain experts, and different compilations into implementa-
tion meta-models guided through annotations and selection
of configurations.

Aligned to our proposal, [4] advocates the use of examples
for eliciting, modelling, verifying, and validating complex
business knowledge in software development projects. The
authors suggest that the use of examples is a promisingway to

123

1344 J. J. López-Fernández et al.

improve the quality of structural models and foster the active
participation of end-users in the development process. We
apply this principle to the construction of meta-models. The
work in [4] was further developed in [3], considering positive
and negative examples, and proposing a process that com-
bines abstraction inference and automated example deriva-
tion. The process is supported by Clafer, a modelling tool
making uniform types and instances. While our process sup-
ports abstraction inference (meta-model induction), we do
not support negative examples or example derivation yet, but
we will consider them in future work.

In software engineering, informal modelling and sketch-
ing are normally used in early phases of requirements elic-
itation [19]. Actually, it is regular practice when gathering
user interface requirements in the form of mockups [51], and
many mockup tools exist nowadays. In a more general set-
ting, the work in [56] proposes a sketching tool indepen-
dent of the notation which is able to transform informal
sketches into more formalized models, like UML models.
Our proposal can be seen as a means to leverage fromDSML
requirements in the form of informal sketches which are used
for the construction of a meta-model. Additionally, software
requirements are often specified using natural language. Sev-
eral heuristics methods exist, like the noun-phrase [55], to
systematically derive a conceptual model from requirements
in natural language. Recently, some tools have emerged for
the automated derivation (up to some degree) of class mod-
els [22]. We plan to include support for DSML requirements
in natural language in future work. Conversely, some authors
propose the conversion of UML/OCL conceptual schemas
into natural language [9]. In our setting, this idea would be
useful as a means to validate the obtained meta-model with
domain experts and also as a means to facilitate the compre-
hension of the constraints attached to model fragments.

Several works recommend integrating end-users in the
meta-model construction process as a means to improve the
quality of the resulting meta-model. For instance, in [34], the
authors propose a collaborative approach named Collaboro
to meta-model construction which involves both domain and
technical experts. Their approach is supported by a DSL
to represent the collaborations among stakeholders, namely
change proposals, solution proposals, and comments. In [35],
we integrated Collaboro and our tool so that domain experts
can collaborate by providing examples, from which change
proposals are derived.

Another line of related work concerns the expressive-
ness of model fragments. While one could simply use object
diagrams, in [41], the authors extend object diagrams with
modalities to declare positive and negative model fragments
and invariants (i.e. fragments that should occur in every valid
diagram). Their goal is to check the consistency of a set of
object diagrams and for that purpose they use Alloy. In our
case, the goal is to automatically induce ameta-model.While

we consider negative fragments, they are not yet taken into
account by the induction algorithm, but only for validation.

In our approach, newly introduced fragments may raise
conflicts if the fragments contain contradictory informa-
tion. Some application domains where the resolution of con-
flicts has been extensively studied are model merging [42],
change propagation in software systems [28], and distrib-
uted development [14]. It is up to future work to identify
how the conflicts that may arise when evolving a meta-
model relate to these previous works. On the other hand,
our meta-model refactorings and subsequent propagation to
the model fragments can be seen as a simplified scenario of
meta-model/model evolution [13].

A way to simplify and make the development of meta-
models systematic is through design patterns. In [10], some
design patterns for meta-models are proposed, while in [50],
the requirements for meta-models are represented as use case
diagrams and the meta-models are evolved by applying pat-
terns. Related to our recommender system, in [2], the authors
present a unifying approach to define quality issues on con-
ceptual schemas. These issues include syntactical ones (like
invalid cardinalities), naming conventions [1] (like upper
camel case for the nameof classes), best practices (like redun-
dant generalizations), and basic quality issues (like concrete
classes with abstract children). The authors provide a sys-
tematic way to define such issues, including their detection
and resolution. In [26], an extensible framework for model
recommenders is presented, where different strategies can
be plugged in. We will also aim for an extension mechanism
enabling the addition of new recommendations.

Our domain annotations serve as a constraint library, in the
style of the predicates found in categorical sketches [24,25].
Categorical sketches8 are used to formalize diagrammatic
notations, like the UML. In this approach, predicates are
defined over an arity shape, which can be a graph or a family
of graphs. Thus, we believe that categorical sketches could
serve as a formal basis for our work.

Research in sketch recognition and understanding is also
complementary to our approach [18], as handwritten, more
informal sketches could be turned into fragments to feed our
system. In this line,works aiming at recognizing symbols and
relationships in handwritten sketches relying on user interac-
tion [54] fit well in our approach, since the user could define
the legend (i.e. the types in the meta-model) at the same time
that the system is being trained.

9 Conclusions and future work

In this paper, we have presented a novel approach to the
development of meta-models to make MDE more accessi-

8 Not related to the term “sketch” as we use it in this paper.

123

Example-driven meta-model development 1345

ble to non-experts. For this purpose, we have proposed a
bottom-up approach where a meta-model is induced from
model fragments, which may be specified using informal
sketching tools such asDia or yED. Sketches are transformed
into a specialized textual notation that can be directly used
by advanced users. Model fragments can be annotated to
guide the automatic induction of the meta-model and docu-
ment the intention of certain elements. The process is itera-
tive, as fragments are added incrementally, causing updates
in the meta-model, which can be refactored in the process
based on the recommendations provided by a virtual assis-
tant. To involve the domain experts in the meta-model vali-
dation process, we follow an example-based approach to the
testing of meta-models. Finally, the meta-model is compiled
for specific platforms and usage purposes.

Even though we allow the specification of negative frag-
ments, these are not currently used to induce themeta-model,
which is left for future work. We would like to perform an
empirical evaluation of the approach with our industrial part-
ners. Among the various aspects to be evaluated, the suitabil-
ity of the library of annotations we provide is of particular
interest.We also foresee the possibility of starting the process
of DSML construction using a set of informal annotations,
which can be formalized later. We also plan to improve the
tool support. One direction is to enhance collaboration by
building a web application where domain experts can sketch
fragments that are automatically integrated in the environ-
ment for their refinement by an engineer. Another goal is to
automatically build a visual modelling environment out of
the sketched fragments. It would also be interesting to pro-
vide automated support for DSML requirements expressed
in natural language, in addition to sketches. The integration
of different implementation meta-models compiled from the
same neutral meta-model, e.g. to support different syntaxes
for a DSML, is also future work.We plan to extend our meta-
model validator to allow the testing of more complex proper-
ties (e.g. meta-model invariants) using a dedicated high-level
language and provide our tool with extension mechanisms
for defining new annotations, recommendations, and refac-
torings.

Acknowledgments We thank the referees for their detailed and use-
ful comments. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139),
and by the R&D programme of Madrid Region with project “eMadrid”
(S2009/TIC-1650).

References

1. Aguilera, D., García-Ranea, R., Gómez, C., Olivé, A.: An eclipse
plugin for validating names in UML conceptual schemas. In: ER
Workshops, Volume 6999 of LNCS, pp. 323–327. Springer, Berlin
(2011)

2. Aguilera, D., Gómez, C., Olivé, A.: A method for the definition
and treatment of conceptual schema quality issues. In: ER, Volume
7532 of LNCS, pp. 501–514. Springer, Berlin (2012)

3. Antkiewicz, M., Bak, K., Czarnecki, K., Diskin, Z., Zayan,
D., Wasowski, A.: Example-driven modeling using clafer. In:
MDEBE’2013. CEUR (2013)

4. Bak, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z.,
Wasowski, A., Rayside D.: Example-driven modeling: Model =
abstractions + examples. In: ICSE, pp. 1273–1276. IEEE ACM
(2013)

5. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modular-
ity, vol. 1. The MIT Press, Cambridge, MA (2000)

6. Barker, R.: Case*Method: Entity Relationship Modelling.
Addison-Wesley Professional, Reading, MA (1990)

7. Beck, K.: Simple smalltalk testing: with patterns. Tech. Rep .4(2),
The Smalltalk Reports (1994)

8. Bézivin, J.:On the unification power ofmodels. Softw. Syst.Model.
4(2), 171–188 (2005)

9. Cabot, J., Pau, R., Raventós, R.: From UML/OCL to SBVR spec-
ifications: a challenging transformation. Inf. Syst. 35(4), 417–440
(2010)

10. Cho, H., Gray, J.: Design patterns for metamodels. In: SPLASH
Workshops, pp. 25–32. ACM (2011)

11. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific
modeling languages from end-user demonstration. In: MiSE’12
(2012)

12. Cho, H., Sun, Y., Gray, J., White J.: Key challenges for modeling
language creation by demonstration. In: ICSE’11 Workshop on
Flexible Modeling Tools (2011)

13. Cicchetti, A., di Ruscio, D., Eramo, R., Pierantonio, A.: Automat-
ing co-evolution in model-driven, engineering. In: EDOC’08,
pp. 222–231 (2008)

14. Cicchetti, A., di Ruscio, D., Pierantonio, A.: Managing model con-
flicts in distributed development. In: MODELS’08, Volume 5301
of LNCS, pp. 311–325. Springer, Berlin (2008)

15. Cicchetti, A., di Ruscio, D., Pierantonio, A., Kolovos, D.: A test-
driven approach for metamodel development. In: Emerging Tech-
nologies for the Evolution and Maintenance of Software Models,
pp. 319–342. IGI Global (2012)

16. Cuadrado, J.S., de Lara, J., Guerra, E.: Bottom-upmeta-modelling:
an interactive approach. In: MoDELS, Volume 7590 of LNCS, pp.
3–19. Springer, Berlin (2012)

17. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order,
2nd edn. Cambridge University Press, Cambridge, MA (2002)

18. Davis, R.: Magic paper: sketch-understanding research. Computer
40(9), 34–41 (2007)

19. Dawson, L.: A social-creative-cognitive (scc) model for require-
ments engineering. In: ISD (2012)

20. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In:
TOOLS’10, Volume 6141 of LNCS, pp. 1–20. Springer, Berlin
(2010)

21. de Lara, J., Guerra, E.: From types to type requirements: genericity
for model-driven engineering. Softw. Syst. Model. 12(3), 453–474
(2013)

22. Deeptimahanti, D.K., Babar, M.A.: An automated tool for gener-
ating uml models from natural language requirements. In: ASE,
pp. 680–682. IEEE Computer Society (2009)

23. Dingel, J., Diskin, Z., Zito, A.: Understanding and improvingUML
package merge. Softw. Syst. Model. 7(4), 443–467 (2008)

24. Diskin, Z.: Mathematics of UML: making the Odysseys of UML
less dramatic. In: Kilov, H., Baclawski, K. (eds.) Practical Foun-
dations of Business System Specifications, pp. 145–178. Springer,
Netherlands (2003)

25. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal arrow
foundations for visual modeling. In: Diagrams, Volume 1889 of
LNCS, pp. 345–360. Springer, Berlin (2000)

123

1346 J. J. López-Fernández et al.

26. Dyck, A., Ganser, A., Lichter, H.: Model recommenders for
command-enabled editors. In: MDEBE’2013. CEUR (2013)

27. Edwards, J.: Example centric programming. SIGPLAN Not.
39(12):84–91 (2004)

28. Egyed, A.: Automatically detecting and tracking inconsistencies in
software design models. IEEE Trans. Softw. Eng. 37(2), 188–204
(2011)

29. Elaasar, M., Briand, L.C., Labiche, Y.: Domain-specific model ver-
ification with QVT. In: ECMFA, Volume 6698 of LNCS, pp. 282–
298. Springer,Berlin (2011). See also https://sites.google.com/site/
metamodelingantipatterns

30. Fowler, M.: Refactoring. Improving the Design of Existing Code.
Addison-Wesley, Reading, MA (1999)

31. Freeman, S., Pryce, N.: Growing Object-Oriented Software,
Guided by Tests, 1st edn. Addison-Wesley Professional, Reading,
MA (2009)

32. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison
Wesley, Reading, MA (1994)

33. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit, 1st edn. Addison-Wesley Professional,
Reading, MA (2009). See also http://www.eclipse.org/modeling/
gmp/

34. Izquierdo, J.L.C., Cabot, J.: Enabling the collaborative definition of
DSMLs. In:CAiSE,Volume7908ofLNCS, pp. 272–287. Springer,
Berlin (2013)

35. Izquierdo, J.L.C., Cabot, J., López-Fernández, J.J., Cuadrado, J.S.,
Guerra, E., de Lara, J.: Engaging end-users in the collaborative
development of domain-specific modelling languages. In: CDVE,
Volume 8091 of LNCS, pp. 101–110. Springer, Berlin (2013)

36. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: a metamodel
recovery system using grammar inference. Inf. Softw. Technol.
50(9–10), 948–968 (2008)

37. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schneider, M.,
Völkel, S.: Design guidelines for domain specific languages. In:
DSM’09, pp. 7–13 (2009)

38. Kelly, S., Pohjonen, R.: Worst practices for domain-specific mod-
eling. IEEE Softw. 26(4), 22–29 (2009)

39. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C.,
Botterweck G.: Taming EMF and GMF using model transfor-
mation. In: MODELS’10, Volume 6394 of LNCS, pp. 211–225.
Springer, Berlin (2010)

40. Liquiere, M., Sallantin, J.: Structural machine learning with galois
lattice and graphs. In: ICML’98, pp. 305–313. Morgan Kaufmann,
Los Altos, CA (1998)

41. Maoz, S., Ringert, J.O., Rumpe, B.: Modal object diagrams. In:
ECOOP, Volume 6813 of LNCS, pp. 281–305. Springer, Berlin
(2011)

42. Mens, T.: A state-of-the-art survey on software merging. IEEE
Trans. Softw. Eng. 28(5), 449–462 (2002)

43. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37(4), 316–344
(2005)

44. Metamodel refactorings. http://www.metamodelrefactoring.org/
45. Nierstrasz, O.: Ten things I hate about object-oriented program-

ming. J. Object Technol. 9(5), (2010)
46. OMG. UML 2.4.1 specification. http://www.omg.org/spec/UML/

2.4.1/
47. Paige, R.F., Brooke, P.J., Ostroff, J.S.: Specification-driven devel-

opment of an executable metamodel in Eiffel. In: WISME’04
(2004)

48. Perera, R.: First-order interactive programming. In: PADL’10,
Volume 5937 of LNCS, pp. 186–200. Springer, Berlin (2010)

49. Sadilek D. A., Weißleder S.: Towards automated testing of abstract
syntax specifications of domain-specific modeling languages. In:
Volume 324 of CEUR Workshop Proceedings, pp. 21–29. CEUR-
WS.org (2008)

50. Schäfer, C., Kuhn, T., Trapp, M.: A pattern-based approach to DSL
development. In: DSM’11, pp. 39–46 (2011)

51. Shneiderman, B., Plaisant, C.: Designing the User Interface—
Strategies for Effective Human-Computer Interaction, 5th edn.
Addison-Wesley, Reading, MA (2010)

52. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-
sional, Reading, MA (2008)

53. Voelter, M.: DSL Engineering—Designing, Implementing and
Using Domain-Specific Languages. CreateSpace (2013)

54. Wenyin, L., Zhang, W., Yan, L.: An interactive example-driven
approach to graphics recognition in engineering drawings. IJDAR
9(1), 13–29 (2007)

55. Wirfs-Brock, R., Wiener, L.R., Wilkerson, B.: Designing object-
oriented software. Prentice Hall, Englewood Cliffs, NJ (1990)

56. Wüest, D., Glinz, M.: Flexible sketch-based requirements model-
ing. In: REFSQ, Volume 6606 of LNCS, pp. 100–105. Springer,
Berlin (2011)

Jesús J. López-Fernández is a
PhD student at the Computer
Science Department of the Uni-
versidad Autónoma in Madrid,
and a member of the Mod-
elling and Software Engineering
research group at this Univer-
sity. He has previously worked
at the University of Almería,
where he also developed his
Master studies on International
Business. His research inter-
ests include model-driven engi-
neering (MDE), notably meta-
modelling and domain-specific

languages. His email address is jesusj.lopez@uam.es, and his web-page
is http://jesusjlopezf.wordpress.com.

Jesús Sánchez Cuadrado is
assistant professor at the Com-
puter Science Department of
the Universidad Autónoma in
Madrid, and a member of the
Miso group at this University.
His research interests are mainly
related to model-driven Engi-
neering (MDE), notably model
transformation languages, meta-
modelling, and domain-specific
languages. On these topics, he
has published several articles in
journals and peer-reviewed con-
ferences, and developed several

tools. His email address is Jesus.Sanchez.Cuadrado@uam.es, and his
web-page is http://sanchezcuadrado.es.

123

https://sites.google.com/site/metamodelingantipatterns
https://sites.google.com/site/metamodelingantipatterns
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.metamodelrefactoring.org/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://jesusjlopezf.wordpress.com
http://sanchezcuadrado.es

Example-driven meta-model development 1347

Esther Guerra is associate pro-
fessor at the Computer Sci-
ence Department of the Univer-
sidad Autónoma in Madrid, and
an active member of the Mod-
elling and Software Engineer-
ing research group (http://www.
miso.es) at this University. She
has been a doctoral researcher
at the Institute of Theoretical
Computer Science (TU Berlin)
and the University of Rome
“Sapienza”, as well as a post-
doctoral researcher at theUniver-
sity of York (UK). She is inter-

ested in model-driven engineering, primarily in model transformations,
model transformation testing, meta-modelling, and domain-specific
modelling languages. Her email address is Esther.Guerra@uam.es, and
her web-page is http://www.ii.uam.es/~eguerra.

Juan de Lara is an associate
professor at the Computer Sci-
ence Department of the Uni-
versidad Autónoma in Madrid,
where he leads theModelling and
Software Engineering research
group (http://www.miso.es). He
holds a PhD degree in Com-
puter Science, and his research
interest like in meta-modelling,
multi-level modelling, domain-
specific languages, and model
transformation. He has been a
post-doctoral researcher at the
MSDL lab (McGill University),

the institute of theoretical computer science (TU Berlin), the depart-
ment of computer science of the University of Rome “Sapienza”, and
theUniversity ofYork (UK).His email address is Juan.deLara@uam.es,
and his web-page is http://www.ii.uam.es/~jlara.

123

http://www.miso.es
http://www.miso.es
http://www.ii.uam.es/~eguerra
http://www.miso.es
http://www.ii.uam.es/~jlara

	Example-driven meta-model development
	Abstract
	1 Introduction
	2 Bottom-up meta-modelling
	3 Definition of model fragments
	4 Bottom-up meta-model construction
	4.1 The meta-model induction algorithm
	4.2 Refactoring of meta-models
	4.3 Supervising decisions
	4.4 Recommendations

	5 Example-based validation
	6 Compilation for specific platforms
	7 Tool support
	7.1 Architecture
	7.2 Sketch importer
	7.3 The tool in action

	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References

