Softw Syst Model (2015) 14:1557-1580
DOI 10.1007/s10270-013-0391-z

@ CrossMark

REGULAR PAPER

A method of refinement in UML-B

Mar Yah Said - Michael Butler - Colin Snook

Received: 20 May 2012 / Revised: 25 August 2013 / Accepted: 10 November 2013 / Published online: 14 December 2013

© Springer-Verlag Berlin Heidelberg 2013

Abstract UML-B is a ‘UML-like’ graphical front-end for
Event-B that provides support for object-oriented and state
machine modelling concepts, which are not available in
Event-B. In particular, UML-B includes class diagram and
state machine diagram editors with automatic generation
of corresponding Event-B. In Event-B, refinement is used
to relate system models at different abstraction levels. The
same refinement concepts are also applicable in UML-B but
require special consideration due to the higher-level mod-
elling concepts. In previous work, we described a case study
to introduce support for refinement in UML-B. We now pro-
vide a more complete presentation of the technique of refine-
ment in UML-B including a formalisation of the refinement
rules and a definition of the extensions to the abstract syn-
tax of UML-B notation. The provision of gluing invariants
to discharge the proof obligations associated with a refine-
ment is a significant step in providing verifiable models. We
discuss and compare two approaches for constructing gluing
invariants in the context of UML-B refinement.

Keywords Visual modelling languages - Formal
specification - UML-B - Event-B - Class diagram -
State machine

Communicated by Dr. Kevin Lano.

M. Y. Said (<)
FSKTM, Universiti Putra Malaysia, Serdang, Malaysia
e-mail: maryah@upm.edu.my

M. Butler - C. Snook
ECS, University of Southampton, Southampton, UK
e-mail: mjb@ecs.soton.ac.uk

C. Snook
e-mail: cfs@ecs.soton.ac.uk

1 Introduction

UML-B [32] is a graphical front-end for Event-B [22] that has
some similarity with UML [24,27]. Event-B is a state-based
formalism with support for refinement and proof. UML-B
supports class and state machine diagrams, concepts that
are not supported in Event-B. UML-B was originally based
on B [1] (now often referred to as ‘Classical B’), which
is a method for verified software development based on
the Abstract Machine Notation (AMN) and set theory. The
UML-B tool, supporting the current, Event-B-based, UML-
B notation, is a plug-in to the Rodin platform [3,7]. Event-B
models are generated from UML-B models by the UML-B
tool. The Rodin tools are used to report back any static veri-
fication errors and then generate and prove proof obligations
associated with the generated Event-B models. The purpose
of UML-B is twofold. Firstly, it provides two essential mod-
elling concepts that are absent in Event-B, object orientation
and event sequencing. Secondly, it provides a more approach-
able and efficient modelling notation, especially for those
familiar with UML.

Event-B was developed as an alternative to Classical B in
order to support modelling at a system’s level. Event-B distin-
guishes between contexts and machines so that machines can
be reused with different configurations. A context contains
static configuration including given sets, constants and prop-
erties (including type) of the constants. A machine, which
may see several contexts, contains state variables, invariant
properties of the variables and events that update the vari-
ables. Each event is a guarded action which may fire when
its guard is true and then executes actions, which change the
state of the variables. The guards of an event are predicates
over the variables of the machine and any local parameters
of the event. The actions are a set of parallel substitutions
which change the state of the variables.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-013-0391-z&domain=pdf

1558

M. Y. Said et al.

Refinement [1,2] is the process of building a model grad-
ually by making it more and more precise while verifying
that each refined model satisfies the abstract behaviour. The
advantage of starting with an abstract model is that impor-
tant properties can be defined in a simple model, which is
therefore less likely to contain mistakes. Refinements then
introduce detail in steps which are guaranteed to preserve the
important properties. Refinement in Event-B involves refin-
ing the model state by adding or substituting variables and
refining events into corresponding concrete versions and by
adding new events. The abstract state variables, x, and the
concrete state variables, y, are linked together by a predi-
cate called a gluing invariant J(x, y). The gluing invariant
provides the link between the abstract and concrete repre-
sentations of state that is needed to verify that each abstract
event is a correct simulation of its concrete version. Provid-
ing sufficient but provable gluing invariants can be a sig-
nificant task. The refinement concepts of Event-B must be
supported in UML-B for it to be a successful front-end to
Event-B.

An alternative step to refinement is decomposition of a
model into parts, which is important for scalability. Mecha-
nisms for decomposing Event-B models that retain composi-
tion of verification have been developed, and work to support
these in UML-B is currently underway. Decomposition is not
covered in this paper.

Our previous work in [28] detailed a case study that was
used to investigate support for class and state machine refine-
ment in UML-B. We now provide a more complete presen-
tation of the technique of refinement in UML-B. The contri-
butions of this paper are as follows:

— adescription of the intuition behind UML-B refinement,

— a formalisation of the UML-B refinement rules using the
Event-B notation,

— adefinition of the extensions to the abstract syntax (meta-
model) of the UML-B notation that were needed to support
refinement,

— adiscussion on constructing gluing invariants in the con-
text of UML-B refinement.

The organisation of the paper is as follows. In Sect. 2, we
give some background on UML-B and the generated Event-B
excluding refinement. Section 3 gives an intuitive overview
of UML-B refinement in terms of data refinement and event
refinement. Section 4 gives a formalisation of the syntactic
rules for class diagram and state machine refinement. Sec-
tion 5 describes the extensions to the abstract syntax (i.e.
meta-model) of the UML-B notation. Section 6 provides an
overview of the ATM case study development. Section 7
discusses two alternative approaches to constructing gluing
invariants. Section 9 concludes the paper. Section 8 presents
some related work.

@ Springer

2 Background of UML-B and generated Event-B

There are four kinds of diagrams in UML-B. They are pack-
age, context, class and state machine diagrams. A pack-
age diagram shows the structure and relationships between
components (machines and contexts) in a project. A con-
text diagram is similar to a class diagram but contains con-
stant data and structured types. A context diagram described
a context. A machine is specified by a class diagram and
state machine diagram(s) representing data structures that
may be changed by events or transitions. Events may be
attached to classes in a class diagram. Events can also
be represented by the transitions in a state machine dia-
gram. The semantics of a UML-B model is given by the
Event-B generated by the UML-B tool according to a set
of translation rules. The following subsections describe
more about the package, context, class and state machine
diagrams.

2.1 Package diagram

A package diagram defines the relationships between UML-
B machines and contexts in a project. Figure 1 shows an
example of a package diagram. The package diagram con-
sists of machines M1 and M2 and refinement relationship
between them. It also contains contexts CX/ and CX2 and
the extension relationship between them and which contexts
are seen by the machines.

2.2 Context diagram

A context diagram defines the static part of a model. A con-
text diagram may have classtypes. Each classtype may have
attributes and associations. An attribute defines a constant
that has a data value for each instance of a classtype. An asso-
ciation is a special case of an attribute that defines a relation-
ship between two classtypes. Figure 2 shows an example of a
context diagram. The classtype CUSTOMER has an attribute
ident and an association accounts, with the classtype BANK.
The 1..1 target multiplicity of the association accounts indi-

@ M1 G X1
Sees
Refines Extends
(;) M2 (E' X2
Sees

Fig. 1 Example of package diagram

A method of refinement in UML-B 1559
@ eg.CX1.contextDiag &2 @oca =
2¢ Palette
NEEI=E CONTEXT
(= Context Features cx1
< ClassType SETS
 CUSTOMER) @iCanstant CUSTOMER // ClassType
Attributes accounts + BANK 4 Axiom BANK // ClassType
:J fjgﬁ:?t:: EAKS 0. .n 1..1 B Theorem
(= Connections CONSTANTS .
o Association accounts // attribute of CUSTOMER
5 ident V4 attribute of CUSTOMER
Supertype
(> Class Type Features AXIOMS
o Attribute accounts.type accounts € CUSTOMER — BANK
<% CT Axiom ident.type ident € CUSTOMER — N
B CT Theorem END

Fig. 2 Examples of context diagram and Event-B translation

< Account

<% CurrentAccount < SavingAccount

Fig. 3 Subtyping a classtype in UML-B

cates that it is a total function. Axioms and theorems! may
be attached to a classtype in which case the predicate must
be true for all instances of the classtype. Classtypes are used
to define types and also to define constant attributes of those
types. The attribute ident and the association accounts are
translated as constants. Each UML-B context gives rise to
an Event-B context (i.e. the UML-B tool generates a corre-
sponding Event-B context). Figure 2 also shows the auto-
matically generated Event-B for this example. Each Event-B
statement is preceded by its label, which defines its purpose.
For example, ident.type is a label for the Event-B statement
ident € CUSTOMER — N that defines the type of the ident
attribute.

Another kind of relationship between two classtypes,
super-type (inverse subtype), is used to indicate that the
source classtype is more specific than (a subset of) the target
classtype. Figure 3 shows an example of subtyping Account
into CurrentAccount and SavingAccount. In the generated
Event-B machine, the super-type relationship will lead to the
type of the classtypes CurrentAccount and SavingAccount
being subsets of the instances of Account, i.e. CurrentAc-
count C Account and SavingAccount C Account. The sub-

1A theorem is a predicate that must be proved from the preceding
predicates.

classtypes CurrentAccount and SavingAccount give rise to
constants in the generated Event-B context.

2.3 Class diagram

A class diagram is used to describe the dynamic part of a
model. A class diagram contains classes which represent
fixed or variable subsets of the classtypes in a context dia-
gram. Classtypes define the immutable fields (including asso-
ciations), while classes define mutable fields. An object of
a class can have both immutable and mutable fields since
the class may be a subset of classtype. Like classtypes, each
class may have attributes and associations. In addition, each
class may own events and state machines. Class events and
state machine transitions own actions that may modify the
attributes and associations of any class. From each UML-B
machine, an Event-B machine is generated. The generated
Event-B consists of variables generated from the classes,
attributes, associations and state machines and events gen-
erated from the class events and state machine transitions.
From each UML-B, we also generate an Event-B context to
contain the sets and constants that are needed to define the
classes and state machines.

Similar to the super-type/subtype relationship between
classtypes, a class may also subtype another class giving rise
to similar subsets of instances, but in this case, the classes are
represented by variables in the generated Event-B machine.

An example of a class diagram is given in Fig. 4a, which
consists of classes CA and CB. In the generated Event-B
implicit context, these classes give rise to the sets CA_SET
and CB_SET, which are used as the base types (given, or
carrier, sets) for the corresponding classes. (Note that a class
may also subtype a classtype in which case these implicit base
types are suppressed.) In the generated Event-B machine,
the classes give rise to variables. The class CA contains an

@ Springer

1560

M. Y. Said et al.

© CA
Attributes
© x: N ° a_b ° CB
o .
ab: CB 45 1..1
(@)
Attribute: a b
Properties Name: a_b
Errors
Type: Class - CB
Surjective false (0)
Injective false (n)
Total true (1)
Functional true (1)
(b)
Class: CA
Properties Name: CA
Attributes i 1f
Eoaie Self Name: se
(c)

Fig. 4 Example of class diagram and class properties

attribute x of type N and an association a_b of type CB. The
multiplicity property for the association a_b shown in Fig. 4b
specifies a many-to-one relationship (i.e. total function). A
full explanation of association multiplicity may be found
in [36]. In the generated Event-B machine, the attributes x
and a_b give rise to variables. For each class, attribute and
association, a type invariant will be generated. For example,
the class CA is typed by an invariant, which specifies that CA
is a subset of CA_SET (CA € P(CA_SET)) and attribute x is
typed by the invariant x € CA — N.

Each class has a self-name property with the default value
self, i.e. the identifier that is used to represent a contex-
tual instance of a class in class events and invariants. This
default may be overridden by the modeller by setting the
self-name property. The self-name property of the class CA
is shown in Fig. 4c. A class may have events whose para-
meters, guards and actions are defined explicitly as textual
properties. Textual properties of a class, such as invariants,
guards and actions, are written in the uB (micro-B) nota-
tion [36]. uB is identical to Event-B notation except that it

@ Springer

o CA
Attributes o CB

o x: N -

° a_b: cB Attributes
— 0..n oab 1..1|°Yy:N
nvariants - o Flag: BOOL

> self-x > 1

» Machine Invariant
Vca,cb: (cbeCB A caeCA A (ca-x = cb-y)) = cb-Flag = TRUE

Fig. 5 Example of class and machine invariants

uses an object-oriented style dot notation to navigate own-
ership of class entities such as attributes and associations.
For example, i.x refers to the value of the variable x, which
belongs to instance i.

A class may own invariants to express properties of its
instances. For example, in Fig. 5, CA has an invariant self.x
> [, which says that all instances of CA must have a positive
x value. The use of the class’s self-name implies universal
quantification over the class instances. We may also place
invariants in classes when they are not universally quantified
over its instances, e.g. card(CA) > 0 in order to indicate
their relevance to the class. We may optionally form machine
invariants, which are not owned by any class. This is useful to
express properties that are not applicable to any class or are
equally applicable to several classes. For example, as shown
in Fig. 5, the machine invariant relates the class attributes x
of CA and y and Flag of CB.

2.4 State machine diagram

Figure 6a shows an example of a state machine SM. The
state machine is owned by the class CA. Figure 6b shows
its two states, A and B, and the transitions ¢/, 2, ¢t3 and 4.
The solid circle is the initial state, and the solid circle with
an outer circle is the final state. The translation to Event-B
for a state machine can be either a state set representation
or state function representation. UML-B allows modellers to
switch between these two representations. For the state set
representation, each state is represented by a variable which
is a disjoint subset of the class instances, C A:

A eP(CA)

B e P(CA)

ANB=w

That is, variable A represents the set of instances of CA that
are in the state A and similarly for B. For a state function rep-
resentation, a single variable SM represents the state machine
as a function mapping each instance of CA to an enumeration
of the set of states SM_STATES as follows:

SM_STATES = {A, B}

SM € CA — SM_STATES

A method of refinement in UML-B

1561

In this paper, the translation to Event-B is described using
the state set representation. The generated Event-B machine
for M1 is shown in the Rodin screenshot, in Fig. 7. Each
Event-B statement is preceded by its label, which describes
its purpose. For example, CA.type is a label for the Event-
B statement CA € P(CA_SET). The states A and B of state

¥ tl

© CA & A
© x: N

© a b: CB

- ¥ t2
Statemachines
<

S SM B

¥ tl

L ¥ t4

¥ t4

¥ t3

(a) (b)

Fig. 6 Example of state machine diagram. a Class CA, b state machine
SM

INVARIANTS

CA.type CA € P (CA_SET)

CB.type CB € P (CB_SET)

X.type x € CA— N

a_b.type a_beCA— (B

A.type A e P (CA)

B.type B € P (CA)

disjointStates B,A BnA=go
EVENTS
t1 =
ANY

self // constructed instance of class CA
WHERE

self.type self € CA_SET \ CA
THEN

SM_enterState A : A = A u {self}

CA_constructor : CA = CA v {self}
END
t2 =
ANY

self // contextual instance of class CA
WHERE

self.type self € CA

SM_isin_A self € A
THEN

SM_enterState B - B = B u {self}

SM_leaveState A A=A\ {self}
END

Fig. 7 Generated Event-B specification of M1

machine SM are represented by variable subsets of CA which
are disjoint (i.e. A N B = &). An instance of CA changes
its state when a transition fires. For each transition, there
is a guard that specifies that the class instance is in the
source state (labelled as .._isin_..) and actions that specify
its entry to the target state (labelled as .._enterState_..) and
its departure from the source state (labelled as .._leaveS-
tate_..). The parameter self is generated to refer to a non-
deterministically selected contextual instance of the class
CA. A transition from an initial state, such as ¢/, defines
a constructor for the class. The translation of ¢/ selects
an unused instance and adds it to the set of CA (labelled
self.type). A transition to a final state such as #4 is a destruc-
tor which removes an instance from the current instances
and from the domain of all the class variables. The tran-
sition 73 is a self-loop transition which does not change
state. Hence, in the generated Event-B, the event #3 has a
guard that specifies its source state but no actions to change
state.

Invariants and theorems can be attached to classes and/or
states and are automatically quantified over the class instances
or adorned with an antecedent representing the containing
state, as appropriate. A full explanation and examples of these
are given in [32].

2.5 Semantics of UML-B

The semantics of UML-B models is given by the generated
Event-B model, and Event-B semantics is defined by the cor-

EVENTS
3 =
ANY
self //
WHERE
self.type
SM_isin_A
THEN
skip
END

t4 =

ANY
self //

WHERE
self.type
SM_isin_B

THEN
SM_leaveState B : B =B\ {self}
CA_destructor : CA = CA \ {self}
CA.a_b_destructor a_b = {self} <« a_b
CA.x_destructor - x = {self} < x

END

contextual instance of class CA

self € CA
self € A

contextual instance of class CA

self € CA
self € B

@ Springer

1562

M. Y. Said et al.

responding proof obligations. Hence, the semantics of UML-
B can be deduced from [32] and [4]. In this section, we give
an intuitive semantics which should provide sufficient back-
ground for this paper.

Event-B models consist of variables and events. Event-
B events are considered to be spontaneous, atomic guarded
actions. When the guard of an event is satisfied, the event is
enabled and may perform its actions in a single atomic substi-
tution. Several different variables may be altered in parallel
during this substitution. An event may have no guards, in
which case it is always enabled, or no actions, in which case
itdoes not alter the state of the variables. If one or more events
are enabled, one of them will fire. Events do not fire in paral-
lel; if several events are enabled, one of them will be selected
non-deterministically to fire and this may change the enabled-
ness of the events. Notice that there is no construct to specify
a sequence of events. The feasibility of a sequence of events
is only determined by the individual guards and actions of
those events. Typically, to specify a sequence of events, a
modeller will introduce a variable that resembles a ‘program
counter’ and devise appropriate guards and actions through-
out the events to organise them into a sequence. As there is no
conditional operator in Event-B, decisions are typically mod-
elled using several alternative events. Within such a group of
events, the guards are used to provide the condition for each
alternative.

UML-B provides an alternative way to model Event-B
variables and events. The constructs in UML-B that define
data are classes, attributes, associations and state machines.
These data constructs provide additional structure to the
types of the variables but in other senses are just Event-B
variables. The constructs in UML-B that define events are
class events and state machine transitions. Class events are
‘lifted’ to a set of instances in an object-oriented manner,
and transitions impose sequencing (effectively by generat-
ing a ‘program counter’). Transitions may also be ‘lifted’
if their state machine is owned by a class. As in Event-B,
groups of class events or groups of parallel transitions may
be used to represent conditional execution. However, apart
from these convenient additions, class events and transitions
are just Event-B events. Therefore, like Event-B, UML-B
semantics is based on the underlying concept of sponta-
neous atomic guarded actions that change the state of the
variables.

Comparing with other commonly used semantics such
as UML, UML-B has no concept of external events that
may trigger transitions, no mechanism whereby one tran-
sition may invoke another and, as there is no so-called ‘big-
step’, terms such as ‘run to completion’ have no meaning.
All these things can be, and often are, modelled explicitly
when required by constructing suitable control variables and
guards.

@ Springer

2.6 UML-B model transformation workflow

Despite its name, UML-B is an entirely independent notation
from the UML. We suggest that it is ‘UML-like’ and will feel
familiar to UML users; however, it has its own meta-model
and no UML models are involved in our discussions here.
In [34], we discuss a case study where a UML model of
a railway interlocking was translated by hand into UML-B
for verification purposes. There are currently no tools that
automatically translate UML-B models to or from UML.

Initial versions of UML-B were implemented as exten-
sions to UML using the UML profile mechanism. How-
ever, UML is a very rich notation compared with our tar-
get language, Event-B, and many features of UML are
redundant to our purpose. On the other hand, even where
a UML feature seems applicable, Event-B imposes a partic-
ular semantics, which is often slightly at odds with that of
UML. We found that the combination of unused features and
‘false-friends’ caused confusion, and hence, we decided to
implement UML-B as an independent notation with its own
meta-model.

The translation from UML-B model to Event-B is per-
formed programmatically in two steps: firstly by a translation
to an internal representation of the Event-B model and then
by programmatic generation of the final Event-B model via
the Rodin API. Both steps are performed by "hand-coded’
Java programs, and the internal representation of Event-B is
represented by “hand-coded’ Java classes. Since this imple-
mentation was produced, improvements in meta-model trans-
formation technologies such as QVT [39] and the provision
of an EMF framework for Event-B [33] would facilitate an
improved model transformation approach.

2.7 UML-B meta-model

The UML-B meta-model [32] defines the abstract syntax of
the UML-B language. The UML-B meta-model is described
using the ecore notation from the Eclipse Modelling Frame-
work (EMF) [37]. The ecore notation is based on the OMG’s
Meta Object Facility (MOF), which is a subset of the UML
class diagram notation. Generalisation is used extensively
to ensure that common attributes of UML-B model elements
are defined in a way that promotes generic, reflective tooling.
The meta-model is an exact description of the abstract syntax
of the UML-B language and is used to automatically gener-
ate repository and editing utility code using the EMF tech-
nology. The Eclipse Modelling Framework is a framework
and code generation facility for building applications based
on a meta-model. Another Eclipse framework, the Graphical
Modelling Framework (GMF) [38], is used to automatically
generate the code for the UML-B graphical diagram editor.

A method of refinement in UML-B

1563

Fig. 8 UML-B meta-model
(part of)

(O UMi Bronstrainedtement

O UM Bronstruct

(3 UMLBContext

classtypes

*

(3 UMLBClassType

To give a flavour of the UML-B meta-model, we show a
small part of it in Fig. 8. There are three kinds of relation-
ships used between meta-classes in the meta-model: gen-
eralisation, reference and containment. An example of a
generalisation (a link with a large triangular arrowhead) is
from UMLBPredicate to UMLBelement, indicating that a
UMLBPredicate is a specialisation of the meta-class UML-
Belement. This means that a UMLBPredicate can be treated
as a UMLBelement and includes its properties. An exam-
ple of a reference (a link with a small arrowhead) is the
refines link from UMLBMachine to itself, which specifies
that a machine may refine at most one other machine but
may be refined by many machines. An example of a con-
tainment (a link with a solid diamond at the source end) is
the classtypes link from UMLBContext to UMLBClassType,
indicating that a context may contain many classtypes. The
meta-class UMLBelement is a base meta-class that provides
a name property and an error-marking system for recording
modelling errors, for all subtyped model elements. UML-
BconstrainedElement, which subtypes UMLBelement, pro-
vides a base meta-class for elements that own constraints
(axioms or invariants) and theorems which are elements of

O uMi Belement
o name : String
o marked : markKinds
o errors : UMLBError

constraints
0.1 (3 UMLBPredicate
h o predicate : String
0.1 *
- theorems
* contexts * | (3 UMLBMachine
* *
1
0.1
classes
extends refines
*
(3 UMLBClass

o fixed : Boolean

another subtype, UMLBPredicate. UMLBPredicate owns a
string property, predicate, to contain the text of the predicate.
UMLBMachine and UMLBContext are subtypes of UMLB-
Construct and hence indirectly UMLBconstrainedElement so
that they can own such constraints. A UMLBMachine can
also own a collection classes of UMLBClass, and a UMLB-
Context can own a collection classtypes of UMLBClassType.
Figure 8 shows a small part of the UML-B meta-model and
omits many features such as state machines, variables and
events.

3 Overview of refinement in UML-B

We first give an intuitive overview of refinement in UML-B
by explaining how it relates to Event-B refinement. Since
UML-B is based on the underlying formalism provided by
Event-B, so is its notion of refinement. The refinement tech-
niques that are available in UML-B are those of Event-B, but
the extra structuring provided by UML-B’s higher-level mod-
elling constructs is reflected in its concepts of refinement. We
have previously [28] introduced class diagram refinement

@ Springer

1564

M. Y. Said et al.

<:> CUSTOMER _¢_ NAMES

Attributes

< name: NAMES 0..n < name 1..1

Fig. 9 Example of extended context diagram

and state machine refinement but not context diagram exten-
sion. Here, we provide a more complete overview to scope
the available features and refinement choices in UML-B.

3.1 Data refinement in UML-B

In Event-B context extension, sets and constants are always
retained and may be added to. Hence, in UML-B, classtypes
may be extended with new features (attributes, associations,
axioms and theorems), but we do not need to specify which
old features, or even which old classtypes, are retained; they
all are. We need to be able to refer to the old classtypes in
order to extend them with new features. In diagrammatic
modelling terms, we need a graphic representation of the
old classtype as a container for new features. Only the new
features represent part of the refined model; the container is
a skeleton to provide contextual information that forms part
of the definition of the new features. If we do not want to
add any new features to a classtype, we can omit the skeleton
from the refined model.

For example, referring back to the example in Figs. 1
and 2, in the extended context CX2, we might add an asso-
ciation name from the extended classtype CUSTOMER to
a new classtype NAMES, as shown in Fig. 9. Notice that
we do not need to repeat anything about the previously
defined attributes of CUSTOMER or the classtype BANK
since these are still accessible from CX/. The only purpose
of the extended classtype CUSTOMER is to assist in defining
the type of the new association.

Variables, on the other hand, may be discarded in Event-B
refinement so that they can be refined by new data of a differ-
ent name and possibly a different type. Refinement relations
are captured by specifying invariant properties, called gluing
invariants, that relate the corresponding values of new and
old variables in the refined model. Variables may be retained
by repeating their name in the refinement. Hence, in UML-B
refinement, not only do we need refined classes as skeleton
containers in order to refine features of the class, but also
to indicate that the variable representing the instances of the
class is to be retained. In this case, unless we wish to refine
the class with some other data variable, we cannot omit the
skeleton even if we do not wish to alter its contained features.
(UML-B also allows classes to have a fixed set of instances
in which case their skeletons are similar to classtypes since
their instances are defined as a constant in a context.)

@ Springer

In addition, since class attributes, associations and state
machines represent variables, we need to indicate which of
these are to be retained. We do this using inherited attributes
and refined state machines. The former merely defines that
the attribute or association is to be retained, whereas the lat-
ter also acts as a container for any nested state machines
that are added in the refinement. These retained data features
must remain contained in the same classes as their abstract
counterparts in order to preserve their types, and refined state
machines must contain the same states as their abstract coun-
terparts.

The following schematic illustrates class refinement in
terms of attributes.

Class C Refined Class C

al al (inherited)

a2 a3 (new-data refine a2)
a4 (new-superposition)

In the refinement, class C inherits attribute a/ and drops
attribute a2, which is refined by a new attribute a3, and C also
has a new attribute a4. A gluing invariant is needed to relate
the dropped attribute to those that replace it. For example,
a2 could be a boolean abstraction of a threshold, which is
detailed in a3. Hence, the gluing invariant might be

Ve-ce C = (a3(c) > T < a2(c) = TRUE)

Apart from these considerations, the rules of data variable
refinement in UML-B machines are quite flexible in that we
may discard any of the previously defined variable data struc-
tures (classes, attributes, associations or state machines) and
replace them with new ones which may be of a different kind.
To do so, we must provide a gluing invariant so that the ver-
ifier can establish that the refined events have an equivalent
behaviour to the abstract events that they refine.

3.2 Event refinement in UML-B

Event-B events may be refined by retention, renaming or
splitting. When refining a retained or renamed event, para-
meters may be added or replaced, provided that the equivalent
of any removed parameter is demonstrated in a witness predi-
cate, guard conjuncts may be added or replaced as long as the
overall guard is not weakened, new actions may be added as
long as they only modify new variables, and existing actions
may be replaced provided they behave in an equivalent way,
according to the data refinement. Splitting is a special case
where a group of events, representing different conditional
cases, all refine the same abstract event that did not reveal
the individual cases. New events may be added as long as
they only alter new variables. New events are often added as
preliminary steps leading up to a refined event.

In UML-B, class events can be refined with equal flexibil-
ity. A class event can simply be retained and refined by adding

A method of refinement in UML-B

1565

to or replacing its parameters, guards and actions to reflect
the data refinements of the class diagram, or the event may
be renamed or split into several cases. The requirement to
preserve containment observed for class data features does
not apply to class events. Since event containment merely
defines a parameterisation of the event, we can move events
to different classes as long as we provide a witness to demon-
strate an equivalent for the lost class instance parameter. The
containment of an event in a particular class is chosen for
convenience so that a class parameter is automatically gen-
erated and guards and actions are automatically lifted to that
instance. The same event can always be specified by placing
it outside of the class and manually adding the class instance
parameter, adjusting the guards and actions accordingly.

The following schematic illustrates the refinement options
for five events el, e2, e3, e4 and e5, which are initially all
contained in class C.

Refined Class C

el (refines el)

e6 (efines e2)

e3a (refines €3)

e3b (refines e3)
Class D

e4 (refines e4)

witness : (selfC = selfD.assoc)

No Class (machine level event)

e5 (refines e5)

parameter: (p € C)

witness: (selfC = p)

The event el remains in class C and merely refines its
abstract version, whereas e2 has been renamed e6. Event
e3 has been split into two cases e3a and e3b, which both
refine e3. In this example, they both remain in class C, but
it is also possible to move either or both at the same time
as splitting. Event e4 has been moved to another class D.
In doing so, it loses the implicit self parameter (provided
by the UML-B to Event-B translation) for the contextual
instance of C. To satisfy the refinement, we need to provide
a replacement and specify its equivalence via a witness. In
this example, we assume some association assoc from D to
C, which can provide an instance of C. Note that all guards
and actions would need to be rewritten to take account of
the parameter change. Event e5 has been moved to machine
level (i.e. not contained in any class). Here again, we need to
provide a replacement for the lost implicit self parameter. In
this example, it is provided by a new parameter, which is an
instance of class C.

The transitions in state machines also represent Event-B
events. It is possible to refine UML-B transitions into UML-
B events by providing a data refinement that replaces the
state machine’s states with some other data that provide an
equivalent model of state. We might wish to do this when
approaching an implementation if the state machine view is
considered to be an abstract representation of some concrete
system variables. For example, a transition soundAlarm with
source state highTemp could be refined to an event with guard
temperature > limit under the data refinement state =
highTemp < temperature > limit.

Usually, however, we do not refine away our state
machines but build them up through refinement into more
elaborate models of a system where the state machine rep-
resents a central ‘mode-based’ organisation of the system’s
behaviour. Transition refinement is just as flexible as class
eventrefinement except with respect to its state machine. That
is, as with class events, we can retain, rename and split tran-
sitions, refining their behaviour to reflect data refinements,
but we cannot change the transition’s source state since this
would not preserve the abstract guard and we cannot change
its target state since this would not preserve the abstract
behaviour. The only thing we can do to transitions diagram-
matically is to split them into two or more cases with the
same source and target states. However, we can refine state
machines using a particular kind of data refinement where
we break down a state into several substates by nesting a
new state machine inside the parent state. This allows us to
reveal more detailed behaviour in the form of extra transitions
(representing new events) between those substates as well as
more detailed targets and sources (strengthened guards and
refined actions) for the incoming and outgoing transitions,
respectively, of the parent state. As a consequence, splitting
of transitions in the parent state machine is often necessary
when separate cases of the original transition are revealed by
the additional detail introduced in the nested state machine.

In summary, a state machine may be refined via two com-
plimentary techniques:

— A transition may be replaced by several transitions repre-
senting different subcases of the original transition.

— A state may be elaborated by a nested state machine adding
more detailed behaviour.

Figure 10 shows an example where a state validating is
refined by a nested state machine that adds details concern-
ing PIN number validation. However, this is a manufactured
illustration. In the current version of the UML-B tool, nested
state machines are modelled in separate diagrams from their
parent state and a transition elaboration property is needed to
link transitions in a nested state machine to the correspond-
ing incoming and outgoing transitions of the super-state. In
a nested state machine, a transition from an initial state elab-

@ Springer

1566

M. Y. Said et al.

Fig. 10 Example of
superposition refinement by
state machine nesting

¥ insert

orates exactly one incoming transition to the super-state and
a transition to a final state elaborates exactly one outgoing
transition from the super-state.

4 Formalisation of rules of refinement in UML-B

In this section, we provide a formalisation of the syntactic
rules of refinement in UML-B. We do this using the Event-B
notation. We limit ourselves to a description of the aspects
that are particular to UML-B and do not cover those features
which are a direct reflection of the corresponding Event-B
rules. For a formalisation of Event-B refinement, see Abrial’s
treatment of Event-B [4]. The formalisation is presented in
two sections, class diagram refinement and state machine
refinement. We introduce a base set ELEMENT to represent
all UML-B elements and then partition this into subsets to
represent the distinct kinds of elements.

Partition(ELEMENT, CLASSES, ATTRIBUTES,
EVENTS, STATEMACHINES, STATES, TRANSITIONS)
We refer to the UML-B machine to be refined as M1 and the

resulting refined machine as M2.
4.1 Formal definition of class diagram refinement

We define specific collections, CI, Al, EI and SM1 of the
element types to represent the class diagram of M1.

C1 C CLASSES

Al C ATTRIBUTES

E1 € EVENTS

SM1 C STATEMACHINES

We represent the containment of attributes, events and state
machines by their owning classes as functions.
containmentAl € A1 — C1

containmentEl € E1 — C1

containmentSM1 € SM1 — C1

@ Springer

<4 validating

% insert

¥ withdraw

< PINOK % withdraw

4 waitPIn * PinOk

% wrongPin

4 PINKO

fail

¥ fail

We define the components of M2, representing the result of
refinement of M1, in a similar fashion and with corresponding
constraints resulting in C2, A2, E2, SM2, containmentA2,
containmentE2, containmentSM2.

Now that we have defined M/ and M2, we represent the
changes made in going from M7 to M2. Let REM_C1 be the
subset of C1 classes which are removed and NEW_CL be the
set of new classes added in the refinement.

REM C1 C Cl1
NEW_CL € CLASSES\C1

Similarly for attributes, events and state machines.

REM_Al C Al
NEW_AT C ATTRIBUTES\A1
REM_E1 C E1
NEW_EV C EVENTS\E1
REM_SM1 C SM1
NEW_SM C STATEMACHINES\SM1

Let containmentNEW_ATT and containmentNEW_SM
represent the containment of new attributes and new state
machines in classes of M2, respectively.
containmentNEW_ATT € NEW_AT — C2
containmentNEW_SM € NEW_SM — C2

The rules defining the elements of the refined class dia-
gram in machine M2 are as follows:

Rule C1—Classes of M2: The classes of M2 consist of the
classes of M1 excluding the removed classes and adding the
new classes:

C2 = (CI\REM_C1) UNEW_CL

Rule C2—Attributes of M2: The attributes of M2 consist
of the attributes of M1 excluding the removed attributes and
adding the new attributes:

A method of refinement in UML-B

1567

A2 = (AI\REM_A1) U NEW_AT

Rule C3—Containment of the attributes of //2: The con-
tainment of attributes in M2 is the same as that of M/ omitting
the removed attributes and adding the containment of the new
attributes:?

containmentA2 = (REM_A1 4 containmentAl)
U containment NEW_ATT

Rule C4—Events of M2: The events of M2 consist of the
events of M1 excluding the removed events and adding the
new events:

E2 = (EI\REM_E1) UNEW_EV

Rule C5—State machines of M2: The state machines of M2
consist of the state machines of M1 excluding the removed
state machines and adding the new state machines:

SM2 = (SMI\REM_SM1) U NEW_SM

Rule C6—Containment of the state machines of M2: The
containment of state machines in M2 is the same as that of
M1 omitting the removed state machines and adding the con-
tainment of the new state machines:

containmentSM?2 = (REM_SM1 < containmentSM1)
U containmentNEW_SM

Notice that we do not introduce any rules about the con-
tainment of events in M2. This is because events can be freely
moved between classes. Instead, we need to define the refine-
ment relationships between the events in M2 and those in M 1.

evRefinementE2 € E2 + E1

This is a partial function since some events in E2 may rep-
resent superimposed behaviour and not refine any abstract
event (sometimes referred to as ‘refining skip’). We also
require that every retained event refines itself

Ve -e € EIN\REM_E1 = evRefinementE2(e) = e
and every removed event is refined by at least one new event.

Vr-r €e REM_E1
= dn -n € NEW_EV A evRefinementE2(n) = r

Furthermore, for every event e that has moved to a different
class, i.e. containmentE1(e)#containmentE2(e), we need to
add a witness predicate

W(ca, C2, A2, cc)

2 Where S<r removes a set S from the domain of a relation r (domain
subtraction).

with,

ca € instances(containmentEl(e))

cc € instances(containmentE2(e))

Utilising the classes C2 and attributes A2 of M2, the witness
predicate W establishes a relationship between the disappear-
ing parameter ca, representing the contextual class instance
of the abstract version of the event, and the new parameter
cc, representing the contextual class instance of the concrete
event.

The final stage is to add sufficient invariants concerning
Cl,Al, C2, A2 (and any ancillary variables used) to enable
the simulation proofs of refinement. The process of discov-
ering these invariants is discussed in Sect. 7. These steps
correspond with Event-B as covered in chapter 5 of [4].

4.2 Formal definition of state machine refinement

We define specific collections to represent the state machine
diagrams of M1

S1 C STATES

T1 C TRANSITIONS

and represent containment of these states and transitions via
functions that map each to its containing state machine.
containmentS1 € S1 — SM1

containmentT1 € T1 — SM1

We also represent the relationship between the transitions
and their source and target states with functions.
sourceStateT1 € T1 — S1

targetStateT1 € T1 — S1

The source and target of a transition must be contained in the
same state machine as the transition.

Vi-teTl =

containmentS1(sourceStateT 1(t)) = containmentT 1(t)

A containmentS1(targetStateT 1(t)) = containmentT 1(t)
We represent the transition elaborates relationship, distin-
guishing between those that elaborate an outgoing transition
of the super-state from those that elaborate an incoming tran-
sition.
elaborateOutgoingT1 € T1 =+ T1
elaboratelncomingT1 € T1 + T1
Note that these functions are injective because each elabo-
rating transition can elaborate at most one parent transition.
They are partial because the domains contain both incoming

and outgoing elaborating transitions. If an elaborating transi-
tion elaborates both an incoming and an outgoing transition,

@ Springer

1568

M. Y. Said et al.

the super-state transition is a self-loop. This is the only case
where the domains of the functions intersect.

Vt -t € dom(elaborateOutgoingTl)
N dom(elaboratelncomingT1)=elaborateOutgoingT]I (t)

= elaboratelncomingT] (t)

We define the components of M2, representing the result
of refinement of M1, in a similar fashion and with corre-
sponding constraints resulting in S2, 72, containmentS2, con-
tainmentT2, sourceStateT2, targetStateT2, elaborateOutgo-
ingT2, elaboratelncomingT2. We define the refinement rela-
tionships between the transitions in 72 and those in 71.

trRefinementT2 € T2 + T'1

This is a partial function since elaborating transitions con-
tribute to other transitions and do not directly represent
events. Also, depending on the type of refinement, 72 may
contain new transitions which do not have a refines relation-
ship.

Now that we have defined the components of M/ and M2,
we represent the changes made in going from M/ to M2. In
UML-B refinement, the structure of a refined state machine
is an elaboration of the structure of its abstraction in two
possible ways:

1. Transitions may be split into several transitions with the
same source and target states.
2. States may be elaborated by a nested state machine.

First, we describe the requirements for (1). For clarity, we
describe a refinement where only one transition is refined.
In practice, it is possible to split several transitions in one
refinement step and add nested state machines at the same
time; however, this is equivalent to making a series of simple
refinements as described here. Let ¢r be a transition of 71,
which is to be replaced by a set of new transitions 7tr in the
refinement.

treTl
Ttr C TRANSITION\T 1

Rule T1: States of M2. The states of M2 and their contain-
ment are unchanged by this refinement.

S§2 = S1 A containmentS2 = containmentS'1

Rule T2: Transitions of M2. The transitions of M2 are the
transitions of M1 with ¢r replaced by Ttr.

T2 = (T1\{tr}) U Ttr
Rule T3: Containment of the transitions of M2. The con-

tainment of transitions in M2 is the same as that of M1 except

@ Springer

that the new transitions replace ¢ and all have the same con-
tainer as tr.

containmentT?2 = ({tr} 4 containmentT 1)
U (Ttr U {containmentTI1(tr)})

Rule T4: Source and target states of M2 transitions. The
source/target states of transitions in M2 are the same as those
of M1 except that the new transitions replace ¢ and all have
the same source/target state as fr.

sourceStateT2 = ({tr} < sourceStateT 1)
U (Ttr U (sourceStateT1(tr)})
targetStateT2 = ({tr} < targetStateT])
U (Ttr U (targetStateT1(tr)})

Rule T5: Refinement relationship of M2 transitions. In
this step, we have not added any new transitions; the ‘new’
transitions of Ttr are actually different cases of tr. There-
fore, every transition of Ttr refines the original transition fr
and every other non-elaborating transition is unchanged and
hence refines itself.

dom(trRefinementT2) = T 2\(dom(elaborateOutgoingT?2)
U dom(elaboratelncomingT?2))

Vt -t € Ttr = trRefinementT2(t)
= trVt - t € dom(trRefinementT2)\Ttr
=> trRefinementT2(t) =t

Next, we describe the requirements for (2) where, in a refine-
ment, a nested state machine is added into a state of M.
For clarity, we describe a refinement where only one state is
refined. In practice, it is possible to combine this with other
refinements including refining several states in one refine-
ment step. However, this is equivalent to making a series of
single state refinements.

Let st € SI be the state which is being refined. Let IN_Tst
be the set of all incoming transitions into the state sz, i.e. those
transitions of 7/ whose target state is sz, but whose source
state is not.

IN_Tst = {t|t € T1 A targetStateTI(t)
= st A sourceStateT1(t) # st}

Let OUT _Tst be the set of all outgoing transitions from the
state st, i.e. those transitions of 7/ whose source state is st
and whose target state is not.
OUT _Tst = {t|t € T1 A sourceStateT1(t)

= st A targetStateTI(t) # st}
Let LOOP_Tst be the set of all looping transitions from the

state st, i.e. those transitions of 7/ whose source and target
states are both st.

A method of refinement in UML-B

1569

LOOP_Tst = {t|t € T1 A sourceStateTI(t)
= st A targetStateTI(t)= st}
Let sm be the new nested state machine to be added to st
and let Ssm and T'sm be its new sets of states and transitions,
respectively.
sm € STATEMACHINES\SM1
Ssm C STATES\S1
Tsm C TRANSITIONS\T 1

Let sourceStateTsm and targetStateTsm map each new tran-

sition to its source and target state, respectively.

sourceStateTsm € Tsm — Ssm

targetStateTsm € Tsm — Ssm

The new transitions are partitioned into initial, final, internal

elaborating and internal non-elaborating transitions.

partition(Tsm , INI_Tsm , FIN_Tsm , INT_ELAB_Tsm,
NON_ELAB_Tsm)

We now define one-to one mappings (injections) to represent

the elaborates relationship of the new state machine. Each

initial transition of sm elaborates one incoming parent tran-

sition of sz, each final transition elaborates an outgoing parent

transition, and each internal elaborating transition elaborates

a parent loop transition.

elaboratelncomingTsm € INI_Tsm —» IN_Tst

elaborateOutgoingTsm € FIN_Tsm —» OUT _Tst

elaborateLoopTsm € INT_ELAB_Tsm —» LOOP_Tst

Rule S1: States of M2. M2 has all the states of M1 as well
as the states of the new state machine sm.

S2 = S1U Ssm

Rule S2: Containment of the states of /2. The containment
of states in M2 is the same as that of M but adding the
containment of the new states in sm.

containmentS2 = containmentS1 U (Ssm U {sm})

Rule S3: Transitions of M2. M2 has all the transitions of
M1 as well as the transitions of the new state machine sm.

T2 =T1UTsm

Rule S4: Containment of the transitions of /2. The con-
tainment of transitions in M2 is the same as that of M but
adding the containment of the new transitions in sm.

containmentT?2 = containmentT 1 U (Tsm U {sm})

Rule S5: Source states of M2 transitions. The source state
mapping of the transitions in M2 is the same as that of M/

but adding the source state mapping of the new transitions in
sm.

sourceStateT?2 = sourceStateT 1 U sourceStateTsm

Rule S6: Target states of M2 transitions. The target state
mapping of the transitions in M2 is the same as that of M/
but adding the target state mapping of the new transitions in
sm.

targetStateT 2 = targetStateT 1 U targetStateTsm

Rule S7: Outgoing elaborating transitions of /2. The out-
going elaborations of the transitions in M2 are the same as
those of M1 but adding the outgoing and loop elaborations
of the new transitions in sm.

elaborateOutgoingT2 = elaborateOutgoingT1
U elaborateOutgoingTsm U elaborateLoopTsm

Rule S8: Incoming elaborating transitions of M2. The
incoming elaborations of the transitions in M2 is the same as
that of M1 but adding the incoming and loop elaborations of
the new transitions in sm.

elaboratelncomingT2 = elaboratelncomingT]

U elaboratelncomingTsm U elaborateLoopTsm

Rule S9: Refinement relationship of M2 transitions. The
transitions 7sm are new and therefore do not have refinement
relationships. Every other non-elaborating transition in 72 is
unchanged and hence refines itself.

dom(trRefinementT2) = T2\ (Tsm
U dom(elaborateOutgoingT?2)
U dom(elaboratelncomingT?2))
Vt -t € dom(trRefinementT2)
=> trRefinementT2 (t) = t.

5 Enhancement of the UML-B meta-model to support
refinement

This section describes enhancements to the UML-B meta-
model, which were required to support refinement of UML-B
models. We refer to the version of UML-B before the exten-
sions as UML-B Version 1 and after the extension as UML-B
version 2. (UML-B version 1 corresponds to reference [32].
UML-B version 2 was extended and used for, but not reported
in, reference [28].) Version 1 already contained some fea-
tures that are needed for refinement. These were a refines
reference feature from UMLBMachine to itself to support
machine refinement, a refines reference feature from UMLB-
guardedAction to itself to support event and transition refine-
ment relationships (UMLBguardedAction being a super-type
for both UMLBEvent and UMLBTransition) and an extends

@ Springer

1570

M. Y. Said et al.

reference feature from UMLBContext to itself to support con-
text extension. The support for refinement of model elements
that represent data was entirely missing from version 1 and
required the introduction of new meta-classes to represent
data that had already been introduced in previous refinement
levels. The support for refinement of model elements that
represent events is simpler because this can be achieved by
introducing new event elements that reference the abstract
ones. Indeed, this is how Event-B manages event refinement.
Support for event refinement was already present in version
1 apart from one minor addition that was needed to support
refinement of state machine transitions.

5.1 Support for refinement of class diagrams

In UML-B version 1, there was no mechanism to distinguish
a class that was being refined from a newly defined class.
Although a class could be retained by repeating it in the
refined class diagram, the Event-B generation would pro-
duce invariants to redefine the variables representing the class
instances at each refinement level, leading to overcompli-
cated Event-B. Similarly, there was no way to distinguish
attributes and associations that were being retained in the
refined class from those that were newly introduced. The
Event-B generation would reproduce invariants to redefine
old attributes and associations at each refinement level. To
provide better support for refinement of classes, a new meta-
class, UMLBRefinedClass, was introduced to represent the
‘skeleton’ of a refined class (Fig. 11). This, and the meta-
class for new classes UMLBClass, both subtype a common
ancestor UMLBabstractClass which provides the type for
the containment of classes in a machine. UMLBRefinedClass
has none of the properties of UMLBClass, such as name and

(3 UMLBClass 4

o fixed : EBoolean classes

(a)

© UMLBabstractClass *
. refines
1 - classes
1
(3 UMLBClass
(3 UMLBRefinedClass

o fixed : EBoolean

(b)

super-type, since a refined class should not be able to rede-
fine these properties. When such properties are needed by
the refined class, for example to display a label on the class
diagram or to generate the Event-B representation of a con-
tained attribute, they must be obtained from the original class
that has been refined. Therefore, the only property possessed
by the meta-class UMLBRefinedClass is a refines reference.
The target of this reference is of type UMLBabstractClass
to allow for a chain of several refinement levels. That is, the
target of the refines reference may, itself, be a refined class.

A similar arrangement was also introduced to support
attributes that are to be retained in a refined class. In this case,
we refer to them as ‘inherited’ attributes since they cannot
be refined in any sense. The new meta-classes are UML-
BabstractAttribute and UMLBInheritedAttribute, the latter
having a reference inherits targeting the former and the for-
mer being the target type for the containment of attributes
in classes. Note that UML-B associations are an alternative
concrete syntax for UML-B attributes; hence, no separate
meta-model arrangement is required for inherited associa-
tions.

5.2 Support for extension of context diagrams

In UML-B version 1, there was no mechanism to distin-
guish a classtype that was being extended with new features
from a newly defined classtype. If the modeller repeated the
classtype in order to extend it, the Event-B generation would
produce constants and axioms to redefine the classtype in
the context extension, leading to Event-B errors. A pattern of
meta-classes similar to that used for classes and attributes was
introduced to support extension of classtypes. The new meta-
classes are UMLBabstractClassType and UMLBExtended-

1 (3 UMLBMachine

- refines

1 (® UMLBMachine

refines

Fig. 11 UML-B meta-model enhancements to support the refinement of classes. a Previous meta-model, b changes to the previous meta-model

@ Springer

A method of refinement in UML-B

1571

ClassType, the latter having a reference extends targeting the
former and the former being the target type for the contain-
ment of classtypes in contexts. Note that nothing is needed
for classtype attributes and classtype associations because
they are always visible through extensions and therefore do
not need to be retained in an extension.

5.3 Support for refinement of state machine diagrams

In UML-B version 1, there was no mechanism to distinguish
a state machine that was being refined from a newly defined
state machine. If the modeller repeated the state machine in
order to refine it, the Event-B generation would repeat data
and constraints to represent the state machine state in the
new refinement level, leading to Event-B errors. A pattern of
meta-classes similar to that used for classes and attributes was
applied both for the refinement of state machines and for the
refinement of states, resulting in the new meta-classes UML-
BabstractStatemachine, UMLBRefined-Statemachine, UML-
BabstractState and UMLBRefinedState. Some features of
state machines, such as name, are owned by UMLBStatema-
chine and therefore not available to UMLBRefinedStatema-
chine and must be obtained via the refines relationship,
whereas some features of state machines are owned by UML-
BabstractStatemachine so that they are also available for
redefinition in a refined state machine. Most notably, a refined
state machine owns its own set of transitions so that transition
refinement can be undertaken. The containment of states is
also moved to UMLBabstractStatemachine; however, unlike
transitions, this is a consequence of the need to create new
refined states at each refinement level rather than a modelling
facility.

At this point, we note that we have used the same meta-
model pattern for all of the UML-B elements that represent
Event-B data (class, classtype, attribute, state machine and
state). The generic pattern may be described as the contain-
ment of instances of an abstract super-type which are parti-
tioned into actual model elements and ‘skeleton” model ele-
ments, the latter having a reference relationship to an instance
of the abstract super-type which should eventually, via tran-
sitive closure, provide an actual model element.

There is one final enhancement to the UML-B meta-model
which was introduced in UML-B version 2. It concerns the

relationships between the newly introduced transitions of
a nested state machine and those incoming and outgoing
transitions connected to its parent state. The nested state
machine contains some initial and final transitions which
contribute to existing events that have, in the previous level,
already been generated by the incoming and outgoing tran-
sitions of the parent state. For these initial and final tran-
sitions, we need to specify which parent transition they
contribute to so that the generation can add their guards
and actions to the corresponding existing event. Similarly,
internal transitions may contribute to self-looping transi-
tions of the parent state. To provide the reference between
the nested transition and the parent transition, two new ref-
erences, elaborates and its inverse isElaboratedBy, were
added to the meta-model as a self-reference on the meta-class
UMLBTransition.

6 Overview of ATM case study in UML-B

This section presents the development of an ATM case study
in UML-B using refinement. The development uses all the
extensions of UML-B meta-model.

The package diagram in Fig. 12 shows the contexts,
the five levels of machines and their relationships where a
machine sees a context, a context extends another context,
and a machine refines another machine. The summary of the
five machine levels is given here.

Abstract machine (ATM_A): The abstract machine mod-
els the accounts in a bank and a number of operations that
may be performed on the accounts.

First Refinement (ATM_R1): The first refinement intro-
duces a set of ATMs as a medium to withdraw money or to
check an account balance.

Second Refinement (ATM_R2): The second refinement
introduces a concept of PIN number and models an explicit
validation for cards.

Third Refinement (ATM_R3): The third refinement
introduces the request and response communication between
an ATM and the bank and splits a withdrawal into a bank
transition and an ATM transition.

Fourth Refinement (ATM_R4): The fourth refinement
models the send and receive events of the request and

ATH CXA Extends ATHM _CXRI Extends W
Sees Sees Sees
ATM A Refines ATM R1 Refines W Refines ATM_R3 Refines ATM R4

Fig. 12 ATM package diagram

@ Springer

1572

M. Y. Said et al.

@ account
Attributes
© bal: N
Events

% createAccount
¥ deposit

¥ withdraw

checkBalance

(a)

@ atm
Attributes

© atm_achal: N
© atm_cash: N

© atm_card: validCard

<4 account Statemachines
Attributes S ATM_SM
o bal .
ba ¥ insertCard
Events ¥ ejectCard
% createAccount # withdrawOK
deposit # withdrawFail

checkBalance
reloadCash
* start

(b)

< atm

Attributes
o atm_card
o atm_acbal
o atm_cash

< account

Attributes
o bal

Events
% createAccount

% deposit Statemachines

¢ ATM_SM

insertCard
ejectCardl
withdrawOK
withdrawFalil
checkBalance
ejectCard2
ejectCard3
start
reloadCash

(@

Fig. 13 Class diagrams of ATM. a Class diagrams of ATM_A, b class diagrams of ATM_R1 and ¢ class diagrams of ATM_R2

response communication between ATMs and the bank. This
is done by adding a receive event for each request and
adding a send event for each response. The send event for
request refines the abstract request event. The receive event
for response refines the abstract response event. The fourth
refinement also introduces a set of requesting ATMs whose
requests are being processed by the bank.

We outline some class and state machine diagrams of the
ATM case study referring to the refinement rules in Sect. 4.
Details of the development in UML-B can be found in [28].
Figure 13 shows some of the class diagrams of the ATM
case study. The machine ATM_A consists of a class account
(Fig. 13a) with its attribute bal and four events, namely
createAccount, deposit, withdraw and checkBalance. The
account class represents the set of accounts that currently
exist in the system. The attribute bal represents the balance
of an account.

The class diagram of ATM_R1 (Fig. 13b) contains the new
class atm and a refined class account that refines the account
class of ATM_A. These two element of classes in ATM_R1
referred to refinement Rule CI. The class atm has three
attributes which are atm_acbal, atm_cash and atm_card. The
attribute atm_acbal represents an account balance after each
cash withdrawal or checking of balance transaction via an
ATM. The attribute atm_cash represents a stock of cash in an

@ Springer

ATM. The attribute atm_card represents a card in an ATM.
The refined class account inherits the bal attribute. These
refinement elements refer to Rule C2 and C3. The refined
class account refines the two events, namely createAccount
and deposit of the abstract account class of machine ATM_A.
The other two events of its abstract class, namely withdraw
and checkBalance, are moved to the new class atm in this
refinement level as transitions in the state machine ATM_SM
of the class atm. At the abstract level, we specify the effect of
a withdrawal on the account balance. In the refinement, we
further specify that the withdrawal takes place via an ATM.
At the abstract level, it is natural to specify the withdrawal
as an event of the account class, while in the refinement, it is
natural to specify it as a transition of the atm class. The events
element refers to Rule C4, where withdraw and checkBalance
events are removed and no new event is added. The refine-
ment rules referred are Rule C5 and Rule C6 when adding the
state machine ATM_SM. The transitions of the state machine
are explained later in this section.

The class diagram (Fig. 13c) of ATM_R2 contains the two
refined classes that refine the account and atm classes of
ATM_RI1 machine. The refined class atm of ATM_R2 contains
the refined state machine ATM_SM.

Figure 14 shows some state machine diagrams of the ATM
case study. The state machine ATM_SM in Fig. 14a parti-

A method of refinement in UML-B

1573

checkBalance
ejectCard

4 active atm
withdrawoKk

. * start_ (@dTR

reloadCash

1nsertCard

(a)

withdrawFail

checkBalance

ejectCard3
<% active_atm
Statemachines
active_atm_SM
insertCard
% ejectCardl
ejectCard2
ejectCard3
withdrawOK
% withdrawFail
% checkBalance
validateCardrall
validateCardOK
retry
doAnother

ejectCard2
start

idle < # ejectCardl

% withdrawOK

%
% reloadCash insertCard

withdrawFail

(b)

ejectCard2

insertCard

» validating

yalidateCardoK # validateCardFail

transOption
Statemachines
transOption_SM
% valdateCardOK
requestWD
% requestCB
% checkBalance
% withdrawOK
% withdrawfal
ejectCard2
doAnother

¥ retry & invalidCard

ejectCardl
doAnother

< performTrans

withdrawok Statemachines

performTrans_SM
withdrawFail
checkBalance
withdrawOK
. # ejectCard3
doAnother
withdrawFail # checkBalATM
withdrawATMFail
withdrawATMOK
responseWDOK
responseWDFail
responseCB

% o
checkBalance ejectCard3

()

Fig. 14 State machine diagrams. a State machine ATM_SM of class ATM of machine AT_R1, b refined state machine ATM_SM of refined class
ATM of machine ATM_R2 and c refined state machine active_atm_SM of ATM_R3

tions the behaviour of an ATM into either an idle state (i.e.
not being used/not active) or active_atm state (i.e. is being
used). If a transition ¢/ is triggered and the current state is
the source state of ¢/, the ATM changes state. The transi-
tion start creates an instance of ATM and adds it to the set
atm_card, initialises its stock of cash as MAX_CASH and
changes its state to idle. The insertCard transition can be
triggered when an ATM is in the idle state and the inserted
card is a valid ATM card. When it is triggered, it changes the
ATM state from idle to active_atm. The reloadCash transi-
tion can trigger when an ATM is in the idle state and the ATM
cash amount is less than the MAX_CASH. The reloadCash
transition will top up the ATM cash to the maximum amount
MAX_CASH. The ejectCard transition changes an ATM state
from active_atm to idle and removes the ATM from the set
atm_card. While an ATM is in active_atm state, it means
that an ATM user can use it for withdrawal or checking an
account balance (i.e. checkBalance transition). The withdra-
wOK transition represents a successful withdrawal transac-
tion, whereas the withdrawFail transition represents a failure
possibly because the withdrawal amount exceeds the account
balance.

The refined class atm of ATM_R2 contains the refined
state machine ATM_SM (Fig. 14b), which contains the two
refined states that refine the states idle and active_atm of the
state machine ATM_SM of ATM_RI1. The transition eject-
Card is split into three transitions, namely ejectCardl, eject-
Card?2 and ejectCard3, which refine ejectCard. The other five
transitions refine themselves. This refinement refers to Rules
T1, T2, T3, T4 and T5. These rules assumed that the state
active_atm does not have state machine active_atm_SM yet.

For Rule T1, the states of ATM_R2 and their containment
are the same as ATM_RI. Referring Rule T2, ejectCardl,
ejectCard2 and ejectCard3 replaced ejectCard. As in Rule
T3, the container of the replacing transitions is the same as
ejectCard’s, similarly for their source and target states as in
to Rule T4. The refinement relationship refers Rule T5.

The state machine active_atm_SM of ATM_R?2 is like the
one in Fig. 14c but without nested state machines in states
transOption and performTrans. When the state machine
active_atm_SM 1is added, referring to Rule S1, the states
of ATM_R?2 are extended to include new states validating,
invalidCard, transOption and performTrans. Rule S2 defined
the containment of all the states. The new states contained in
the state machine active_atm_SM. For Rule S3, new transi-
tions consist of initial elaborating, final elaborating, internal
elaborating and internal non-elaborating. Initial elaborating
is insertCard. Final elaborating transitions are ejectCardl,
ejectCard2 and ejectCard3. Internal elaborating transitions
are withdrawOK, withdrawFail and checkBalance. Internal
non-elaborating transitions are validateCardOK, validate-
CardFuail, retry and doAnother. As in Rule S4, the container
of new transitions is the state machine active_atm_SM. As
in Rule S5 and Rule S6, all new transitions must have their
source and target states. Referring Rule S7, the outgoing
elaborate relationships include the new final elaborating and
internal elaborating transitions with respective outgoing tran-
sition of super-state active_atm. For Rule S8, the incoming
elaborate relationships include the new initial final elabo-
rating and internal elaborating transitions with respective
incoming transition of active_atm. Referring Rule S9, all
non-elaborating old transitions refine themselves.

@ Springer

1574

M. Y. Said et al.

Figure 14c shows a refined state machine active_atm_SM
of machine ATM_R3, which shows that the refined state tran-
sOption and the refined state performTrans have nested state
machines. This approach of elaborating states with substates
in refinement supports an incremental refinement approach.
The ATM case study has shown that the extensions of the
meta-model and drawing tools are working as expected.

The ATM case study reported in this paper differs slightly
from the one presented in [28] although they are based on the
same version of the UML-B meta-model. The differences are
as follows:

— In[28], we did not have classtypes of ATM, Card and Pin to
give rise to the sets ATM, Card and Pin in an Event-B con-
text. Instead, the sets are generated from the classes in the
class diagram and contained in the Event-B implicit con-
text. Thus, there were no context diagrams to be extended
with new classtypes. In the case study, we wanted the abil-
ity to extend the classtypes in refinements to introduce
immutable attributes. Therefore, for the ATM model in
this paper, we created a UML-B context diagram contain-
ing the three classtypes, which were then used as instances
for the classes.

— The refinement strategy is slightly changed in this paper.
In [28], the splitting of withdrawal into bank and ATM
transitions is done in the second refinement. We think this
is not reasonable because the transition withdrawal request
that causes the withdrawal ATM transition is not intro-
duced until the third refinement. It is more reasonable to
delay introducing the withdrawal ATM transition until the
third refinement. This improves the sequence of transitions
between request and response. Ideally, the response should
come when there exists a request. In this case, requestWD
is the request made by the user via an ATM machine, while
responseWDOK and responseWDFail are the responses to
the user from the ATM. This improves the cohesiveness of
the refinements and allows the second refinement to deal
with pin validation.

— In this paper, we have formalised the refinement rules and
explicitly refer to them in the ATM case study.

An archive of the UML-B development of the ATM case
study can be downloaded.> UML-B is a plug-in to the Rodin
platform, which can be downloaded.* UML-B can then be
installed from the update site contained in Rodin (Help-
Install New Software: select ‘Rodin’ update site). Instruc-
tions on using Rodin (including installation of plug-ins) are
available.”

3 ATM case study: http://eprints.soton.ac.uk/346101/.

4 http://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_
Platform/.

3 http://handbook.event-b.org/current/html/tut_install_plugins.html.

@ Springer

Table 1 Statistics from the proof effort

Machines POs aPOs iPOs
ATM_A 4 4 0
ATM_RI1 47 47 0
ATM_R2 68 68 0
ATM_R3 167 160 7
ATM_R4 149 142 7
Total 435 421 14

7 Proofs and invariants

This section discusses the proofs of the UML-B case study
and also the construction of gluing invariants using Rodin
provers.

All the proof obligations (POs) for the five machines of the
ATM case study were generated and proved using the Rodin
tool provers [3]. The statistics are outlined in Table 1 showing
the total POs for each level (POs), the number of POs which
are automatically discharged (aPOs) and the number of POs
which are interactively discharged (iPOs).

In ATM_R3, there are seven interactively discharged POs.
Three POs are discharged manually by proving that two
related states are disjoint and another four are proved by
rewriting the partition invariant into its definition. A similar
way is used to prove the seven interactively POs in ATM_R4.
Two POs are discharged by manually proving that two states
are disjoint and the other five POs are discharged by rewriting
the partition invariant.

Where refinements have been made a gluing invariant may
be needed to relate the abstract data to the new data. In gen-
eral, finding suitable invariants can be non-trivial and care
must be taken not to introduce unnecessary invariants which
can increase the proof burden as every event must be shown to
preserve them. We discuss two alternative approaches to con-
structing gluing invariants: firstly by discovery from infor-
mation provided by the prover and secondly by design, from
information in the model. Both methods are based on the
refinement pattern of nesting state machines but are not in
any way specific to the ATM case study.

7.1 Constructing a gluing invariant by discovery

Some of the gluing invariants are constructed by using guid-
ance from the undischarged proof obligations. We describe
first our method of discovering the gluing invariants. Then,
we give some examples of discovering the invariants for the
ATM case study.

In this paragraph, we describe our method for discovering
the gluing invariants. We inspect an undischarged PO, H -
G, (consisting of some available hypotheses H and a goal G)

http://eprints.soton.ac.uk/346101/
http://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/
http://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/
http://handbook.event-b.org/current/html/tut_install_plugins.html

A method of refinement in UML-B

1575

and construct an invariant of the form Vx- H> = G where H’
is a subset of the list of hypotheses H and x represents the
list of free variables that correspond to event parameters. The
selection of hypotheses 4 from H to appear in H’ is based on
these rules:

1. his of the form peS, where p is an event parameter and
S represents a state of a state machine. In particular, S is
the substate of a nested state machine.

2. The free variables of & are included in the free variables
of G.

In the next paragraphs, we describe some examples of
discovering invariants using the above rules (1) and (2). One
of the discovered gluing invariants is in the third refinement
(ATM_R3). An attempt to construct the invariant is done by
using the interactive prover. The ATM_R3 was run in a prov-
ing perspective without having any gluing invariant, which
results in a number of undischarged proof obligations. The
first undischarged PO is given here as an example. The prover
cannot discharge the guard atm_cash(self AT M) > am of
the event withdrawOK. The hypotheses and the goal are as
follows:

Hypotheses:
am € N
ac € account
selfATM € atm
¢ € ValidCard
selfATM € reqWD
selfATM € dom(atm_card)
atm_card(selfATM) = ¢
bal (ac) > am
card_account (¢)) = ac
selfATM € dom (atm_wdam)
The goal:
atm_cash (selfATM) > atm_wdam
(selfATM)

From the above PO, the prover is trying to prove that the
cash in an ATM is greater or equal to a given withdrawal
amount. This is true for any successful cash withdrawal.
According to rule (1), selfATM is the event parameter con-
cerned in the goal and regWD is a substate of a nested state
machine performTrans_SM (Fig. 14c). Therefore, from the
list of hypotheses, self AT M € reqW D is selected as one
of the hypotheses in the gluing invariant. Also, atm_wdam is
the free variable included in the goal. Thus, according to rule
(2), self ATM € dom(atm_wdam) is also selected as the

hypotheses in the gluing invariant. The required invariant is
represented in Event-B as follows:
VselfATM - selfATM € reqWD
AselfATM € dom (atm_wdam)
= atm_cash (selfATM) >
atm_wdam (selfATM)

Another example is the gluing invariant in the fourth
refinement (ATM_R4). The prover cannot discharge the guard
self ATM € dom(atm_card) of the event withdrawOK.
The hypotheses and the goal are as follows:

Hypotheses:
selfATM € atm
selfATM € recvdReqWD
selfATM € atmB
selfATM € dom(atm_wdamB)
atm_cardB(selfATM) = ¢
am = atm_wdamB(selfATM)
card_account(atm_cardB
(selfATM))= ac

The goal:
selfATM € dom(atm_card)

The prover is trying to prove that a given ATM has an ATM
card in it. Similar to the first example, following rule (1),
selfATM is the event parameter concerns in the goal and
recvdReqWD 1is the substate of the nested state machine
reqWD_SM of the substate regW D. Thus, self ATM €
recvd Req W D is selected forming the gluing invariant. The
required invariant is represented in Event-B as follows:

V selfATM - selfATM € recvdReqWD
= selfATM € dom(atm_card)

The task of finding gluing invariant is also the same
for the undischarged PO involving the guard selfATM €
dom(atm_card) of the event checkBalance, i.e. when self-
ATM is in the substate recvdReqCB. The two invariants can
be combined forming a single invariant as follows:

V selfATM - selfATM € (recvdReqWD
U recvdReqCB) = selfATM € dom(atm_card)

Another example of finding the gluing invariant in the
fourth refinement is when the prover cannot discharge the
guard atm_card(sel f AT M) = c of the event withdrawOK.

The hypotheses are the same as the first example of ATM_R4,
and the goal is as follows:

atm_card(selfATM) = atm_cardB(selfATM)

@ Springer

1576

M. Y. Said et al.

Similarly, from the PO, using rules (1) and (2), the dis-
covered gluing invariant is as follows:

V selfATM - selfATM € recvdReqWD
A selfATM € dom(atm_cardB)
= atm_card(selfATM) = atm_cardB

However, these rules are heuristics and they do not provide
a complete method for verifying refinements. But they were
sufficient to prove the refinements in our ATM development.

We would like to point out that UML-B is not a purely
graphical notation. In particular, we need to use a textual rep-
resentation of gluing invariants in order to prove the refine-
ment. All the discovered invariants are specified in UML-B
as invariants in class diagrams.

7.2 Constructing a gluing invariant by design

While it is attractive to let the prover indicate the invariants
it needs, and to have a heuristic for constructing them mech-
anistically, it is also possible to construct sufficient gluing
invariants purposefully. This can be done either before run-
ning the prover, or using the proof obligation goal as a hint.
The latter differs from the invariant discovery method in that
the gluing invariant is constructed by examining the model
rather than examining the goal and hypotheses; the goal is
only used as a hint of what to look for in the model.

An abstract model has many possible valid refinements,
but when modelling, we choose one particular refinement
and wish to verify that it is correct. The prover can verify
that it is a refinement, but it cannot tell whether it is the par-
ticular refinement we intended unless we provide some extra
information. By expressing the linkages between the abstract
model and the refined one, a gluing invariant indicates ‘why’
itis arefinement and hence indicates ‘which’ refinement was
intended. If we let the prover tell us which gluing invariant
to use, we lose this extra verification condition and there is
a danger that we will end up with a verified but wrong sys-
tem. In practice, the likelihood of constructing a valid but
wrong refinement may be remote, particularly as we get the
opportunity to examine the gluing invariants thrown up by
the prover since the discovery method is not fully automatic.
However, there is some motivation at least for a more con-
structive approach to gluing invariants so that the modeller
is forced to understand the refinement more intimately.

Therefore, as an alternative approach to invariant discov-
ery, we show how invariants can be chosen by design using
the state machine refinement structure as a guide. This sim-
ply consists of placing invariants inside the new states intro-
duced in a state machine refinement. The gluing invariant
is generally located in the new state which has outgoing
final transitions that elaborate an old transition. The incom-
ing transitions represent new preliminary steps leading up

@ Springer

to this refined transition. However, it may be necessary to
add invariants in other new states where a sequence of new
transitions is involved. Placing the invariant inside the state
implies thatitis true only while in that state and UML-B auto-
matically adds an appropriate antecedent (corresponding to
those chosen by heuristics in the discovery method) to this
effect. The invariant is chosen by looking at the guards and
actions of the incoming transitions to find properties that are
true for all incoming transitions. There are two cases; state
invariant properties may be true because the incoming tran-
sition is only taken when the property is true (and the actions
do not change it) or because the transition establishes the
property via its actions. Notice that, in the first case, such
unchanged properties might not be explicitly mentioned in
the guards if they are implied by the source state guard. There-
fore, such properties may need to be carried forward from a
previous state to the next state. Since the state invariants are
derived from the guards and actions of the incoming tran-
sitions, they are certainly true and (usually) easily proved.
Certainly, any transitions other than the incoming ones will
be easily proved since they will clearly negate the antecedent
and since the invariants are derived in a simple way from the
incoming transitions, there is also a good chance that the
automatic provers will find appropriate hypotheses easily.
Hence, it is not a problem to be quite liberal in adding these
invariants. If we have now defined everything relevant about
the source state of the subsequent outgoing refined transi-
tion, there should be sufficient information for the proof of
the refinement (otherwise, the model must be faulty). The
prover easily finds these hypotheses because it contains an
instance of the antecedent quantification in its guard (corre-
sponding to the generated source state guard). Of course this
only works if there is no interference from other events or
state machines that may be in parallel with this one, but that
is equally true of invariant discovery. (Such interference may
indicate a complex gluing invariant that is not amenable to
systematic methods or, more probably, that there is a mis-
take in the model.) Adding these state invariants is quite
easy if you understand the refinement and this is sufficient
to allow the prover to prove the PO. Effectively, state invari-
ants like this provide a link between the intermediate state
spaces in a sequence of transitions, which is exactly what the
prover is lacking. They do this by linking our explicit gener-
ated annotation of states to the underlying conceptual state
space.

As an example (Fig. 15), we show the gluing invariants
constructed for the same event, withdrawOK, of ATM_R3
that featured in the first example of invariant discovery. This
is a transition for which we have added some preliminary
transitions requestWD within a new nested state machine.
Examining the guards and actions of requestWD, we see
that the variables of interest are atm_cashA and atm_wdam
both parameterised for the instance selfATM. The parame-

A method of refinement in UML-B

1577

¥ requestwD

Guard:
am < MIN_CASH
selfATMeatm_cashA > MIN_CASH

Action:
selfATMeatm_wdam = am

. reqwD

Invariants
- selfATM € dom(atm wdam)
- selfATM-atm _cashA = selfATM-atm wdam

7 withdrawOK

Fig. 15 Gluing invariants by design

ter am is local and therefore cannot figure in the invariant.
The action sets selfATM.atm_wdam to a value, which is less
than selfATM.atm_cashA and hence the second invariant. We
need to know that atm_wdam is a partial function (and have
some experience of feasibility proof obligations) to realise
that selfATM.dom(atm_wdam) is important. There are other
invariants that we could have derived involving MIN_CASH
which would have done no harm but turn out to be unneces-
sary. After adding these state invariants, which are directly
equivalent to those added by the discovery method, the proof
completed automatically. The second example corresponds
to the same event, withdrawOK, of ATM_R4 that featured in
another example of invariant discovery. Here, all the guards
and actions are reflected as state invariants in a straightfor-
ward manner, and again, this was sufficient to automatically
discharge all the relevant proof obligations.

In the case of interference from another event, the invari-
ants might be violated. To prevent the violation, we may need
to add a guard to the interfering event. For example, consider
Fig. 15. If there was another event that was not part of the state
machine of this figure that modifies selfATM.atm_cashA,
then it could violate the invariant selfATM.atm_cashA >
selfATM.atm_wdam. An example would be an empty_cash
event with the action selfATM.atm_cashA:=0. To prevent
empty_cash from interfering with the invariant above, we
could add a guard to empty_cash, specifying that it must
not happen while there is a transaction in progress in the
ATM.

8 Related work

In this section, we outline some of the work related to refine-
ment of UML diagrams. The work on state machines refine-

% recvReqWD

Guard:
selfATM € dom(atm_card)

Action:
selfATMeatm_cardB = selfATMeatm_card
atmB = atmB U {selfATM}

4 recvdReqwWD

Invariants
'~ selfATM € dom(atm card)
'~ selfATM € dom(atm cardB)
'~ selfATM-atm cardB = selfATM-atm card
< selfATM € atmB

% withdrawOK

ment has been introduced by Snook and Walden in [35].
Their work is based on the old version of UML-B [36],
which was based on Classical B and has been extended to
include translation to an event ‘style’ of B (which was a pre-
cursor to Event-B). They introduced state elaboration and
transition elaboration techniques. The semantics of the state
machine refinement is given by Event-B. However, we pro-
vide a more precise definition of refined state machine and
we provide tool support based on UML-B, giving a differ-
ent model visualisation from the UML diagram symbol used
in [35]. We also introduce class refinement techniques which
are not dealt with in [35]. In [26], Plaska et al. have suggested
a process for refinement involving the application of patterns
that are based on the techniques introduced in [35].

The techniques of adding new attributes and associations
to a class and adding new classes to a class diagram have
been introduced in informal way for refinement of UML
class diagram [6], but no formal notation nor formal refine-
ment concept is used. Templates are introduced for attributes
and associations to specify the translation of model elements
to low-level design and implementation. Bergner et al. [6]
has also discussed on possible tool support for the templates.
Also, the technique of state elaboration has been introduced
in a refinement of UML state diagram [25] again without
a formal notion of refinement. Simons [30] has presented
four informal refinement rules of state machines. The rules
in the refinements are as follows: (1) New states must be
substates nested in the abstract states (super-states), (2) new
transitions must only connect between the substates, (3) the
incoming and outgoing transitions of the super-states must
be preserved, and (4) the self-transitions of the super-states
must be preserved. Rules (1) and (2) must also be followed
in UML-B state machine refinement. These two rules are

@ Springer

1578

M. Y. Said et al.

achieved by applying the state elaboration technique. Rule
(3) must also be followed in UML-B for a state machine
refinement to be valid. In contrast to Rule (4), in our work,
when refining self-transitions, the occurrence of the transi-
tions either can be many times or can be restricted to once.
Restriction to once means removing looping behaviour, and
this is a valid refinement since we focus on preserving safety,
not liveness, in our work. Unlike our work, Simon’s work
does not involve any formal notion and does not discuss any
tool supporting the rules.

There is much more work on combining UML with formal
notations, and we now outline some of this. However, unlike
our work, none of this work supports refinement in UML to
the best of our knowledge. Lano, Clark and Androutsopou-
los [15] present the translation of UML-RSDS into Classical
B. The work focused on translating class diagrams into B.
Each class is translated into a respective B machine. Unlike
UML-B, all classes in a class diagram are translated into
one Event-B machine. The constraint language used is OCL,
whereas we use uB. Idani et al. [10] have investigated the
reverse in which they proposed an approach and tool sup-
port for the construction of UML diagrams from B specifica-
tions. Ledang and Souquiéres have introduced an approach
for translating UML state machine diagrams into Classical
B in [18]. The translations use the state function representa-
tion, whereas UML-B supports both state function and state
set representations. Mammar and Laleau [20] have also work
on the translation of class and state diagrams into Classi-
cal B. Their work is suitable for the development of data-
oriented applications in contrast to our work which is suit-
able for process-oriented applications. Another difference is
that the refinements involve the generated abstract B models
and there is no concept of refinement in UML, whereas in
our work, the refinements involve the class and state machine
diagrams. Laleau and Polack [13] have extended the meta-
model of UML class diagrams specifically for information
system specification. The semantics of the extended meta-
model is defined in B invariants. The invariants formalise the
associations in the meta-model and rules for integrity con-
straints. In [14], tools to translate from UML class diagrams
into B machines and vice versa have been developed apply-
ing the extended meta-model and semantics in [13]. However,
[13] and [14] do not deal with refinement. Knapp et al. [12]
have investigated the validity of UML state machine refine-
ments by formalising with MTLA [21]. In contrast to our
work, their work does not consider state machine hierarchy
in refinements. New transitions and states may be introduced
in a refined state machine by replacing old states with new
states and transitions. We prefer our approach because the
relationship between abstract state machines and refinements
is clearer. In UML-B, new transitions and states may be added
in nested state machines. UML-B is more restrictive, but this
makes the refinement pattern simple and clear. Similar to our

@ Springer

work, refining self-transitions may be restricted to once as
the work does not focus on liveness properties.

Integration work of UML with Z has also been investi-
gated. Moller et al. [23] have integrated the formal method,
namely CSP-OZ [8] into UML and Java. A UML profile for
CSP-OZ is developed. A UML profile contains an extension
mechanism that consists of stereotype and tag definitions.
This profile, which integrates UML and CSP-OZ, is similar
to the UML-B profile [31] of previous version of UML-B.
In this work, class diagrams, state machines and the UML-
RT structure diagrams are translated to CSP-OZ (an inte-
grated formal method) specifications. Amadlio et al. [5] also
have investigated an integration between UML and Z. They
have introduced a framework called UML+Z for building,
analysing and refining models based on UML and Z. UML+Z
models consist of class, state and object diagrams. The inte-
gration work of UML and VDM has been done by Frey [9].
Frey has introduced a methodology where UML and VDM-
SL are used together in modelling to take advantage of both
notations. Lausdahl et al. [17] have work on a bidirectional
translation between UML class diagram and VDM++. The
translation of the sequence diagram is done from UML to
VDM-++. The translations are implemented as a plug-in to
the Overture [16] toolsets.

In Sect. 7, we discussed two simple approaches to find-
ing gluing invariants, both of which rely on UML-B state
machine refinement. Llano et al. [19] propose a method to
discover Event-B gluing invariants using automated theory
formation rather than failed proof obligation. Their approach
is more complicated than ours, requiring the construction
of data tables from simulation traces of the model, but is
more general since it does not rely on the style of refine-
ment imposed by UML-B. In [11], Ireland et al. examine
failed proof obligations but focus on finding omissions from
the model and do not focus on refinement. In contrast, our
approach assumes that the model is correct and only attempts
to find a gluing invariant.

9 Conclusions

In [28], we have introduced notions of refined class, refined
state machine and extended classtype for UML-B. We
used these notions to describe the following refinement
techniques:

— Add new attributes and associations to a refined class.

— Add new classes in a refinement.

— State elaboration.

— Transition elaboration.

— Add new attributes and associations to an extended
classtype.

— Add new classtypes in a refinement.

A method of refinement in UML-B

1579

In this paper, we provide a more extensive account of
UML-B refinement techniques. We give a formalisation for
UML-B refinement rules and describe the extensions to the
UML-B meta-model, which gives precise definition of the
notions of refined class, refined state machine and extended
classtype. The meta-model is used to extend the UML-B
drawing tools. We have applied the UML-B meta-model
extensions in the ATM case study. The Rodin tool was used
to generate and prove the proof obligations. Based on the
ATM case study, we provide two ways of constructing glu-
ing invariants.

One area that currently lacks support in UML-B is paral-
lel state machines. Although UML-B has support for mod-
elling parallel state machines within one refinement level, the
transition elaboration mechanism does not allow the parallel
state machines to be linked correctly with their parent state
machines. In future, we will extend the UML-B meta-model
to support refinement of parallel state machines.

Our experience using UML-B for modelling refinements
has been that the proof of refinements is comparatively
straightforward compared with working directly with Event-
B. This may be due to the organisational structures imposed
by the patterns generated by UML-B, for example the explicit
annotation of states that was discussed in the section on
designing gluing invariants. This is an interesting area for
future work including extending the approaches to construct-
ing gluing invariants to other refinement patterns of UML-B
and comparing ease of proof with equivalent models writ-
ten directly and freely in Event-B. Further case studies are
needed to explore this as well as to further validate the
existing techniques and develop new extensions to UML-B
refinement.

We are currently working on supporting decomposition
concepts in UML-B. Decomposition is needed to ensure scal-
ability of the method. Event-B machines may be decom-
posed into several submachines in such a way that each sub-
machine can be refined individually while preserving the
overall validity of refinement. That is, if the submachines
were recomposed, the composition would be a valid refine-
ment of the original machine before it was decomposed. We
have previously [29] introduced techniques to refine UML-
B state machines in a way that prepares for decomposition
and have introduced the concept of a UML-B composed
machine to define the composition of a number of UML-
B submachines. Our current work is to develop the UML-B
composed machine, extending its features to fully support
Event-B decomposition techniques in UML-B. We are also
extending the UML-B tooling to visualise the UML-B com-
posed machine.

Acknowledgments The authors gratefully acknowledge the financial
assistance from the ADVANCE project and the Malaysian government.
Butler and snook are funded in part by the EU FP7 ADVANCE Project
(ICT 287563), www.advance-ict.eu. Mar Yah is funded by the Ministry

Higher Education Malaysia and Universiti Putra Malaysia.We would
like to thank the reviewers for their insightful comments and feedback
on this paper.

References

1. Abrial, J.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (1996)

2. Abrial, R., Hallerstede, S.: Refinement, decomposition and instan-
tiation of discrete models: application to Event-B. J. Fundam. Inf.
77(1-2), 1-28 (2007)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F.,
Voisin, L.: Rodin: an open toolset for modelling and reasoning
in Event-B. Int. J. Softw. Tools Technol. Transf. 12, 447-466
(2010)

4. Abrial, J.: Modeling in Event-B—System and Software Engineer-
ing. Cambridge University Press, Cambridge (2010)

5. Amilio, N., Polack, F,, Stepney, S. : UML + Z: Augmenting UML
with Z, In: Software Specification Methods, pp. 81-102, Hermes
Science Publishing (2006)

6. Bergner, K., Rausch, A., Sihling, M., Vilbig, A.: Structuring and
refinement of class diagrams. In: The 32nd Annual Hawaii Inter-
national Conference, vol. 6, pp. 6018 (1999)

7. Butler, M., Hallerstede, S.: The rodin formal modelling tool, BCS-
FACS Christmas 2007 Meeting. Formal methods in Industry, Lon-
don (2007)

8. Fischer, C.: CSP-OZ: A Combination of Object-Z and CSP. Uni-
versity of Oldenburg, Germany.Technical report (1997)

9. Frey, P.: Combining UML Use Cases and VDM-SL, Paper for the
Seminar in Software Technology at the Institute for Software Tech-
nology. IST), Graz University of Technology, Austria (2000)

10. Idani, A. Ledru, L. ,Bert, D.: Derivation of UML class diagrams
as static views of formal B developments, In: International Confer-
ence on Formal Engineering Methods, pp. 37-51, Springer, Berlin-
Heidelberg (2005)

11. TIreland, A., Grov, G., Butler, M.: Reasoned modelling critics: turn-
ing failed proofs into modelling guidance. In: International Con-
ference of Abstract State Machines, Alloy, B and Z, LNCS 5977,
pp. 189-202. Springer, Berlin-Heidelberg (2010)

12. Knapp, A., Merz, S., Wirsing, M.: Refining Mobile UML State
Machines, LNCS3116, pp. 274-288. Springer, Berlin-Heidelberg
(2004)

13. Laleau, R., Polack, F.: A rigorous metamodel for UML static con-
ceptual modelling of information systems. In: International Confer-
ence on Advanced Information Systems Engineering, LNCS 2068,
pp- 402-416. Springer, Berlin-Heidelberg (2001)

14. Laleau, R., Polack, P.: Coming and going from UML to B: a pro-
posal to support traceability in rigorous is development. In: Interna-
tional Conference of B and Z, LNCS2272, pp. 517-534. Springer,
Berlin-Heidelberg (2002)

15. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: formal
verification of object oriented models. In: International Confer-
ence of Integrated Formal Method, pp. 187-206, Springer, Berlin-
Heidelberg (2004)

16. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K.,
Verhoef, M.: The overture initiative integrating tools for VDM. J.
SIGSOFT Softw. Eng. Notes 35(1), 1-6 (2010)

17. Lausdahl, K.G., Lintrup, H.K.A., Larsen, P.G.: Coupling Overture
to MDA and UML. Master Thesis (2008)

18. Ledang, H., Souquiéres, J. Contributions for modelling
UML state-charts in B. In: International Conference of Inte-
grated Formal Methods, LNCS 2335, pp. 109-127, Springer,
Berlin-Heidelberg (2002)

@ Springer

1580

M. Y. Said et al.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Llano, M. T., Ireland, A., Pease, A.: Discovery of invariants through
automated theory formation, formal aspects of computing, pp. 1—-
47. Springer, Berlin-Heidelberg (2012)

Mammar, A., Laleau, R.: A formal approach based on UML and
B for the specification and development of database application. J.
Autom. Softw. Eng. 13(4), 497-528 (2006)

Merz, S., Wirsing, M. , Zappe, J.: A spatio-temporal logic for the
specification and refinement of mobile systems, LNCS 2621, pp.
87-101. Springer, Berlin-Heidelberg (2003)

Metayer, C., Abrial, J.R., Voisin, L.: Event-B language. Tech-
nical report deliverable 3.2, EU project IST-511599—RODIN,
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. Date Last Accessed:
25/1/08 (2005)

Moller, M., Olderog, E., Rasch, H. , Wehrheim, H.: Linking CSP-
0OZ with UML and Java: a case study. In: International Conference
of Integrated Formal Methods, LNCS2999, pp. 267-286, Springer,
Berlin-Heidelberg (2004)

Object Management Group: introduction to OMG’s Unified
Modelling Language (UML). http://www.omg.org/gettingstarted/
what_is_uml.htm. Date Last Accessed:23/8/13

Object Management Group: UML 2.1.2 Superstructure Specifica-
tion. http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf.
Date Last Accessed:23/8/13

Plaska, M., Walden, M., Snook, C. : Documenting the progress of
the system development. In: Proceedings of Workshop on Meth-
ods, Models and Tools for Fault Tolerance, pp. 251-274, Springer,
Berlin-Heidelberg (2007)

Rumbaugh, J., Booch, G., Jacobson, I.: The Unified Modelling
Language User Guide. Addison Wesley, Reading (1999)

Said, M.Y., Butler, M., Snook, C.: Language and tool support
for class and state machine refinement in UML-B. In: Interna-
tional Conference of Formal Methods, LNCS 5850, pp. 579-595,
Springer, Berlin-Heidelberg (2009)

Said, M.Y.: Methodology of Refinement and Decomposition in
UML-B, Ph.D. Thesis, University of Southampton, Southampton
(2010)

Simons, A.J.H.: A theory of regression testing for behaviourally
compatible object types. J. Softw. Test. Verif. Reliab. 16(3), 133—
156 (2006)

Snook, C., Butler, M., Oliver, I.: The UML-B profile for formal
systems modelling in UML, In: UML-B Specification for Proven
Embedded Systems Design, pp 69—84, Springer, Berlin-Heidelberg
(2004)

Snook, C., Butler, M. : UML-B and event-B: an integration of
languages and tools. In: The IASTED International Conference on
Software Engineering, pp. 336-341 (2008)

Snook, C., Fritz, F., Illisaov, A.: An EMF framework for event-B.
In: Workshop on Tool Building in Formal Methods—ABZ Con-
ference, Orford, Quebec, Canada (2010)

Snook, C., Savicks, V., Butler, M.: Verification of UML models
by translation to UML-B. In International Conference of Formal
methods for Components and Objects, LNCS6957, pp. 251-266,
Springer, Berlin-Heidelberg (2012)

Snook, C., Walden, M. : Refinement of statemachines using event
B semantics, B2007: formal semantic and developmentin B. LNCS
4355, pp. 171-185, Springer, Berlin-Heidelberg (2006)

Snook, C., Butler, M.: UML-B: formal modelling and design
aided by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92—122
(2006)

The Eclipse Foundation: Eclipse Modelling Framework. http://
www.eclipse.org/emf/. Date Last Accessed: 07/08/2013

The Eclipse Foundation: Graphical Modelling Project. http:/www.
eclipse.org/gmp/. Date Last Accessed: 07/08/2013

The Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT). http://www.omg.org/spec/
QVT/. Date Last Accessed: 07/08/2013

@ Springer

Author Biographies

Mar Yah Said is a senior lec-
turer in the Software Engineering
and Information System depart-
ment of the Faculty of Computer
Science and Information Tech-
nology at the Universiti Putra
Malaysia. She earned her Ph.D.
in Computer Science from Uni-
versity of Southampton in 2010,
working with Prof. Michael But-
ler and Dr. Colin Snook on
refinement and decomposition
methods in UML-B. Her current
research extends the decomposi-
tion work in UML-B. She has the

interest to explore methods for transforming software requirements into
a formal specification, which may therefore assist usage of formal mod-
elling. She also interested to discover ways to automate test case deriva-

tion from formal specification.

Michael Butler is a Professor
of Computer Science at the Uni-
versity of Southampton where he
leads the Electronic and Soft-
ware Systems Research Group.
His main research focus is in
refinement-based formal meth-
ods for complex systems engi-
neering. Butler plays a leading
role in the development of sev-
eral tools for B and Event-B espe-
cially the Rodin toolset and he
has on-going active collaboration
with engineers in several embed-
ded systems industries. He has

served as Programme and General Chair of several leading international
conferences on formal methods, is a Fellow of the British Computer
Society and Chair of IFIP WG 2.3 Programming Methodology.

-\

Colin Snook is a senior research
fellow in the Electronic and Soft-
ware Systems Research Group
of the Electronics and Com-
puter Science department at the
University of Southampton. He
is currently working on the
FP7 Advance project develop-
ing tools for formal modelling of
cyberphysical systems and on the
EPSRC Prime project modelling
power and reliability manage-
ment of many-core computers.
Dr. Snook is known for the devel-
opment of the UML-B modelling

notation, facilitating the use of formal methods in industry and empir-
ical assessment of formal modelling notations. Dr. Snook gained his
Ph.D. at the University of Southampton in 2001. Before that, he worked
for Hawker Siddeley Dynamics Engineering (now AT Engine Controls
Ltd.) developing real-time embedded control systems in various appli-
cation domains including avionic engine controls.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org/gmp/
http://www.eclipse.org/gmp/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/

	A method of refinement in UML-B
	Abstract
	1 Introduction
	2 Background of UML-B and generated Event-B
	2.1 Package diagram
	2.2 Context diagram
	2.3 Class diagram
	2.4 State machine diagram
	2.5 Semantics of UML-B
	2.6 UML-B model transformation workflow
	2.7 UML-B meta-model

	3 Overview of refinement in UML-B
	3.1 Data refinement in UML-B
	3.2 Event refinement in UML-B

	4 Formalisation of rules of refinement in UML-B
	4.1 Formal definition of class diagram refinement
	4.2 Formal definition of state machine refinement

	5 Enhancement of the UML-B meta-model to support refinement
	5.1 Support for refinement of class diagrams
	5.2 Support for extension of context diagrams
	5.3 Support for refinement of state machine diagrams

	6 Overview of ATM case study in UML-B
	7 Proofs and invariants
	7.1 Constructing a gluing invariant by discovery
	7.2 Constructing a gluing invariant by design

	8 Related work
	9 Conclusions
	Acknowledgments
	References
	Author Biographies

