Softw Syst Model (2015) 14:1105-1125
DOI 10.1007/s10270-013-0389-6

@ CrossMark

SPECIAL SECTION PAPER

Querying process models by behavior inclusion

Matthias Kunze .- Matthias Weidlich - Mathias Weske

Received: 23 September 2012 / Revised: 27 May 2013 / Accepted: 11 October 2013 / Published online: 3 December 2013

© Springer-Verlag Berlin Heidelberg 2013

Abstract Business processes are vital to managing orga-
nizations as they sustain a company’s competitiveness. Con-
sequently, these organizations maintain collections of hun-
dreds or thousands of process models for streamlining work-
ing procedures and facilitating process implementation. Yet,
the management of large process model collections requires
effective searching capabilities. Recent research focused on
similarity search of process models, but querying process
models is still a largely open topic. This article presents an
approach to querying process models that takes a process
example as input and discovers all models that allow replay-
ing the behavior of the query. To this end, we provide a notion
of behavioral inclusion that is based on trace semantics and
abstraction. Additional to deciding a match, a closeness score
is provided that describes how well the behavior of the query
is represented in the model and can be used for ranking. The
article introduces the formal foundations of the approach and
shows how they are applied to querying large process model
collections. An experimental evaluation has been conducted
that confirms the suitability of the solution as well as its
applicability and scalability in practice.

Keywords Process model search - Behavioral querying -
Trace inclusion - Process model repositories

Communicated by Dr. Selmin Nurcan.

M. Kunze - M. Weske
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
e-mail: matthias.kunze @hpi.uni-potsdam.de

M. Weske
e-mail: mathias.weske @hpi.uni-potsdam.de

M. Weidlich ()
Technion—Israel Institute of Technology, Haifa, Israel
e-mail: weidlich@tx.technion.ac.il

1 Introduction

Business process models explicitly capture the knowledge to
carry out operations and services of an organization. Hence,
process models are essential knowledge assets and are stored
and maintained in process model repositories for reference,
e.g., for documentation, automation, and certification, and
to enable reuse, which leads to more efficient and consis-
tent process design [2]. As business process management has
gained influence toward sustaining a company’s competitive-
ness, many organizations maintain hundreds or thousands
of business process models [2,60]. Such collections com-
prise, for instance, reference processes. Examples provided
in [24] include the SAP reference model collection (~600
models), a collection of reference models for Dutch munici-
palities (~ 600 models), and a collection of business services
toward insurance management provided by IBM (~ 250 mod-
els). An Australian insurance company reportedly maintains
about 6,000 process models [24] and a Chinese railway car
manufacturer even several hundred thousand [65].

Effective use of this knowledge asset requires, in par-
ticular, powerful capabilities to access the information and
search for process models. Recent work has largely addressed
similarity search, which generally addresses duplicate detec-
tion [25], e.g., to find similar process models in the model
collections of two companies after a merger or acquisition.
The general property of these similarity measures is a com-
parison of the number of shared features. If two models share
only few features relative to their size, they will exhibit little
similarity, even if one model is contained in another, signifi-
cantly larger one. Hence, similarity search is not well suited to
find process models of which only few yet important aspects
are considered a priori. Process model querying addresses
such cases where a query is formulated by a user to discover
process models that comply with this query [52]. It is use-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-013-0389-6&domain=pdf

1106

M. Kunze et al.

ful to avoid the creation of duplicates, as it allows searching
for processes before modeling. By querying, existing process
logic can be discovered, reused, and revised, which shortens
the design time and increases the quality of newly created
process models.

Typically, querying requires a specific language to express
certain requirements of the query and map them to features
exposed by candidate models. In this article, we propose a
novel querying approach that takes a regular process model
as input and discovers all process models that comply with
the example in their behavior. It has been inspired by Zloof,
who proposed querying by example for relational databases,
where ‘the user basically formulates his query [...] with an
example of a possible answer’ [79]. Quite similar, a querying
approach is presented, where a process model that consists
only of few activities and control flow relations between them
acts as an example and any possible answer must include the
example’s behavior.

Our contribution is twofold. First, we introduce a notion
for behavioral inclusion between query and candidate process
models, called abstract trace inclusion, and a measure for
ranking matching models. A trace is a sequence of activ-
ities that can be executed in a certain order by a business
process. Informally, abstract trace inclusion requires that for
every trace of the query, a matching model must be able
to produce a trace that contains all activities of the query
trace in the same order. In other words, a matching model
must be able to replay the behavior of the query. To rank
matching models, we propose an asymmetric closeness mea-
sure that quantifies the amount of abstraction required to
achieve abstract trace inclusion. Abstract trace inclusion and
closeness can be decided for process models with a finite
state space. Our second contribution is the characterization
of abstract trace inclusion and closeness based on succes-
sor relations. For process models given as sound free-choice
workflow-systems, deciding inclusion and computation of
closeness can be done efficiently. Successor relations also
form the basis for an index data structure that enables fast
and scalable process model querying.

This article builds upon the ideas of our previous work
[44], which introduced behavior inclusion based on behav-
ioral relations. Here, we take a different approach by first
defining behavior inclusion and closeness for trace seman-
tics, whereas behavioral relations are only used in a second
step to achieve efficient reasoning. Based on this, we illus-
trate the design of an efficient querying system and evaluate
it toward its effectiveness, i.e., how well it aligns with human
assessment of matching, and its efficiency, i.e., search per-
formance and scalability in a practical setting.

The article is structured as follows. The next section briefly
introduces the background of process model querying by a
motivating example. Formal preliminaries, namely net sys-
tems, successor relations, and process alignments, are given

@ Springer

in Sect. 3, before we present the concepts to match and
rank candidate process models against a query model in
Sect. 4. We illustrate how these concepts are applied for
process model querying and how they can be used for effi-
cient querying of process models in Sect. 5. The organization
and results of our evaluation are presented in Sect. 6. We dis-
cuss related work in Sect. 7, before Sect. 8 concludes the
article.

2 Motivating example

We illustrate the topic addressed in this article and the dif-
ference between behavioral querying and similarity with an
example that provides the basis for later discussions. Fig-
ure 1 shows various business processes modeled in BPMN
that handle customer requests regarding the mending of pre-
viously sold devices, due to service notifications or cus-
tomer complaints. All processes include the activity man-
age cost that covers actions with regard to evaluating costs
and accounting the correct cost center. Spare parts must be
ordered and delivered to the customer, and the warehouse
stock must be updated. Also, an invoice is sent to the customer
for the provided service. Please note that these processes may
be initialized by different triggers, i.e., start events, and that
the process in Fig. 1c either manages the cost or sends an
invoice, depending on an earlier decision whether the device
is under warranty or not. We refer to the events and activities
by their annotation, i.e., A—F for activities and X and Y for
start events, hereafter.

Process model querying is a fundamental function of busi-
ness process repositories and targets at the discovery of
process models. In the following, the term query denotes
the specification of the search question. We refer to mod-
els from a repository, against which the query is evaluated,
as a candidate. If the candidate satisfies the requirements of
a query, we call it a march. Querying essentially targets at
discovering knowledge for reuse. For instance, before mod-
eling a business process in the first place, a user may want to
search for existing process models that contain the required
behavior. In that case, the user could extract the fragment of a
match and reuse it in their own model. Alternatively, the user
may search for completions for a process stub [41,53]. In
such cases, queries would consist of only few elements that
are requested, i.e., a set of activities and behavioral relations
between them.

Example queries that outline the expressiveness of our
approach are depicted in Fig. 2. Figure 2a presents a purely
sequential query, which expresses that all three activities shall
be carried out by a matching process in the same order as in
the query. This is obviously in line with process models in
Fig. 1b, c. The process in Fig. la matches this query too,
because the parallel gateway allows for the interleaving exe-

Querying process models by behavior inclusion

1107

manage
cost (A)

order spare
parts (B)

product (C)

deliver

service
notification (X)

X

Q—f

customer
complaint (¥)

send invoice
(D)

manage

(a)

cost (A)

service
notification (X)

send
invoice (D)

manage

customer stock (E)
complaint (¥) (b)
D
device not] warranty
B =T
parts (B) invoice (D)
manage

stock (E)

deliver
product (C)

customer
complaint (¥)
device under

warranty

replace
product (G)

manage
cost (A)

DN

warranty

warranty.state =
“valid”

Fig. 1 Example process models

order spare
parts (B)
customer
complaint (¥)

send
invoice (D)

)

(a)

deliver
product ()

manage
stock (E)
manage
cost (A)

send

invoice (D)

service
notification (X)

(b)

order spare
parts (B)

(©)

Fig. 2 Example queries

cution of actions B and D, which includes that B can be
executed before D. This coincides with the requirement of
the query although they are structurally distinct from each
other, i.e., the sequence flow edge between B and D of the
query has no counterpart in the match. The query in Fig. 2b
requests a process that allows delivering the product and
manage the stock in parallel or interleaving order, i.e., their

(c)

[valid]

actual order should not be restricted by a matching process,
and Fig. 2c requests models that provide a choice between
cost management and sending an invoice after ordering spare
parts. We will discuss these examples in more detail, in
Sect. 4.

A comprehensive body of work addresses the computation
of similarity between pairs of process models, both by struc-
tural and behavioral aspects [7]. However, similarity search
of process models [25] is not a promising solution to dis-
cover models in our setting, as similarity evaluates how much
two process models resemble each other. While either of the
example queries has at least one precise match among the
candidates, queries and candidates are not similar at all, in
particular, since the queries are much smaller than the can-
didates. Instead, querying aims at retrieving all models that
precisely match a given query, even if the match is a signifi-
cant extension of the query’s features [44].

3 Preliminaries

This section defines preliminaries for our work. We first dis-
cuss notions and notations for net systems. Then, we turn
to alignments between net systems and introduce different
successor relations.

@ Springer

1108

M. Kunze et al.

3.1 Net systems

We first clarify notations for sequences. A sequence over a
set S of length n € N is a function o : {1,...,n} — S.
Ifo@i) =s; fori € {1,...,n}, we write 0 = (s1,...,S,)
with () as the empty sequence. The length of o is denoted by
|o|. The set of all finite sequences over S is denoted by S*.
Concatenation of a sequence v € S* and s € §, denoted by
o =v;sisdefinedaso : {1,...,|v]|+ 1} — S, such that
forl <i <|vl:o@)=v@E)ando(Jv|+1) =s.

Process models may be captured as workflow (WF-) sys-
tems [69], a dedicated class of Petri nets. For many common
process description languages, such as the business process
model and notation (BPMN), event driven process chains
(EPC), and the business process execution language (BPEL),
net-based formalizations have been presented, see [49] for an
overview. Based on [59], we recall basic notions of nets and
net systems.

Definition 1 (Net) A net is atuple N = (P, T, F) with P
and T as finite disjoint sets of places and transitions, and a
flow relation F € (P x T) U (T x P).

We write X = P UT for all nodes and denote the irreflexive
transitive closure of F by FT.Forx € X, ex = {y €
X | (y,x) € F}isthe pre-set, xe :={y € X | (x,y) € F}
is the post-set, and e(xe) ;= {z € X |y € X A (x,y) €
F A (z,y) € F}. Anet N is free-choice, ifft V p € P with
|[pe| > 1holds e(pe) = {p} [19]. As we will see later, free-
choice nets are characterized by a close relation between their
structure and their semantics. WF-nets have been defined
in [69] as follows.

Definition 2 (WF-net) Anet N = (P, T, F) is a WF-net, iff
N has an initial place i € P with ei = J, a final place o € P
with oe = @, and the short-circuitnet N' = (P, TU{t.}, FU
{(o, 1), (t.,1)}), t. ¢ T, of N is strongly connected.

We define semantics of nets as follows. Let N = (P, T, F)
beanet. M : P +— Nisamarking of N, M denotes all mark-
ings of N. M (p) returns the number of tokens in place p. [p]
denotes the marking where place p contains just one token
and all other places contain no tokens. For any transition
t € T and any marking M € M, t is enabled in M, denoted
by (N, M)[1),iffV p € ot [M(p) > 1]. Marking M’ is reach-
able from M by firing of ¢, denoted by (N, M)[t)(N, M")
such that M’ = M — et + te, i.e., one token is taken from
each input place of # and one token is added to each output
place of 7.

A sequence of transitions ¢ = (f,...,t;,), n € N,
is a firing sequence, if and only if there exist markings
My, ...,M, € M, such that foralli e N, 1 < i < n
it holds (N, M;_1)[#;)(N, M;). We say that o is enabled in
M, denoted by (N, My)[o). For any two markings M, M’ €

@ Springer

)

(c) O

Fig. 3 Net systems for example processes. a Net system S| of Fig. la.
b Net system S, of Fig. 1b. ¢ Net system S3 of Fig. 1c

(a)
@—[r[»0—{s]-0—[o}-0
(b) (c)
O—{c}-0—
@”i - e IC e
O

Fig. 4 Net systems for queries. a Net system Q; of Fig. 2a. b Net
system Q7 of Fig. 2b. ¢ Net system Q3 of Fig. 2¢

M, M’ isreachable from M in N, denoted by M’ € [N, M),
if there exists a firing sequence o leading from M to M’.
Firing of o in M is denoted by (N, M)[o)(N, M").

A net system, or system, is a pair S = (N, M;), where N
is anet and M; is the initial marking of N. A WF-system is a
pair S = (N, M;), where N is a WF-net with initial place i
and M; = [i]. System S is free-choice, iff N is free-choice.

The exemplary business process models and queries cap-
tured in BPMN in Figs. 1 and 2 can be mapped to net systems
following the formalization approaches presented by Dijk-
man et al. [23] for the control flow and by Awad et al. [3]
for the data perspective. The latter is needed for represent-
ing the data artifacts and their influence on the control flow
routing for the model in Fig. 1c. Figures 3 and 4 show the net
systems obtained for our examples. The initial marking of a
net is derived from the entry points of the business process
model [18].

Formalizations of business process models that employ
basic control flow routing, such as AND-gateways and XOR-
gateways, can be mapped to free-choice net systems. As dis-
cussed in [49], however, advanced control flow concepts such

Querying process models by behavior inclusion

1109

as OR-gateways and exception handling can typically not be
represented with free-choice net systems. Also, capturing the
data perspective may result in non-free-choice net systems.
The latter is illustrated by our examples since all net systems
except for the one formalizing also the data perspective of
a business process model, i.e., the net system in Fig. 3c, are
indeed free-choice. In order to obtain Petri nets that follows
a WF-net structure, it may also be needed to apply refactor-
ing techniques to normalize business process models given
in other languages [70].

In this article, we assume trace semantics for net sys-
tems. Traces are sequences of activity occurrences of a busi-
ness process. Trace semantics of process behavior are purely
sequential and concurrently enabled transitions are captured
by interleaved firing [33]. Hence, the set of traces of a system
S = (N,M;)isdefinedby T(N,M;) ={oc € T*|IM €
MI(N, Mp)[o)(N, M)]}.

Further, we recall the soundness property that was estab-
lished as a generic correctness criterion for business process
models [68]. It requires WF-systems (1) to always termi-
nate, and (2) to have no dead transitions [68]. Both require-
ments imply proper termination, i.e., for all reachable mark-
ings holds that a token in the final place implies the absence
of tokens for all other places. A system (N, M;) is live, iff for
every marking M € [N, M;) and t € T, there exists a mark-
ing M’ € [N, M) such that (N, M")[t). System (N, M;) is
bounded, iff [N, M;) is finite. It is sound, iff the short-circuit
system (N’, M;) is live and bounded.

Finally, we recall that for sound free-choice net systems,
there exists a close relation of syntax and semantics. That
is, for each path in such a net, there exists a firing sequence
that executes each transition on that path in the respective
order [39].

3.2 Alignments

In order to evaluate whether a query matches a candidate
process model, first and foremost, an alignment between cor-
responding elements in both models needs to be identified.
Once net systems are used for modeling a business process,
transitions represent the active parts, i.e., the activities and
events of the process. Consequently, an alignment of two net
systems is defined as a relation over their transitions, thereby
capturing correspondences between the models.

Definition 3 (Alignment) Let S = (N, M;) and §' =
(N',M)), N = (P,T,F)and N' = (P',T', F'), be net
systems. An alignment ~ C T x T’ associates correspond-
ing transitions of both systems to each other.

An alignment relation captures correspondences between
single transitions. However, business process models may
assume different levels of modeling granularity so that sets
of activities, or sets of transitions of two net systems, need to

be related to each other. Formally, such complex 1:n or even
n:m correspondences can still be captured with the presented
notion of an alignment by including the Cartesian product of
the two transition sets in the relation.

Correspondences between process models can be defined
manually [21]. Yet this is practically not applicable for the use
case of search in large process collections. Our work there-
fore assumes that an alignment can be constructed without
human intervention. Finding correspondences automatically
relates to the matching problem known for data schemas and
ontologies [28]. Recently, various works adapted techniques
from these fields for identifying correspondences between
process models, see [12,22,26,45,72]. To overcome termi-
nological heterogeneity, the majority of approaches toward
process model search employs string based methods, e.g.,
substring containment, or edit distances, such as the Leven-
shtein distance [46]. Cohen et al. [16] provides a compre-
hensive overview of such techniques. Also, techniques from
natural language processing [51], e.g., stop word elimina-
tion, word-stemming, and the application of linguistic mod-
els, e.g., WordNet [56], have been used to identify correspon-
dences, cf. [26,45].

However, resolving differences in model granularity is far
from trivial and only partially addressed by existing match-
ing techniques [72]. Since automatic matching is crucial for
evaluating a query against a large set of candidate models,
in the remainder of this paper, we assume that only single
pairs of transitions of two models correspond to each other.
Further, to keep notation concise, we abstract from the actual
alignment relation that is constructed between the transitions
of a query and a candidate model. That is, for two net sys-
tems § = (N, M;) and §' = (N', M]), N = (P, T, F) and
N’ = (P, T’, F'), we consider two transitions t € T and
t' € T’ to be equal, if and only if they are related by the
constructed alignment relation, 7 ~ ¢’.

In our exemplary candidate models (Fig. 1) and query
models (Fig. 2), we observe a rather homogeneous vocabu-
lary so that construction of an alignment is straightforward.
For the respective net systems given in Figs. 3 and 4, we
already abstracted from the alignment relation. That is, equal
labels indeed hint at equal transitions.

3.3 Successor relations

Our goal is not only to evaluate queries against candidate
process models, but also to provide a ranking for match-
ing models. To this end, we need a measure for behavioral
distance between two models. Since queries typically refer
only to a few transitions of the candidate models, this mea-
sure needs to be fine-granular and be defined on the level of
single transitions. Against this background, our work builds
on k-successor relations as defined in [75]. They capture the
minimal distance between the occurrences of two transitions

@ Springer

1110

M. Kunze et al.

Table 1 Minimal k-successor relations for example net systems from
Fig. 3

XYABCDEF
X|- - 134356 |[XYABCDE |[yYABCDEG
Y- 23245 X|- 22343 Y- 413421
Al 23245 Y| 22343 A|l - - -
B 1122 A . 1111 B 231
cl-- - -111 B|--1-121 cl-1 - -1 -
D|- 1111 c¢| -1 11 Dl - - .
El- -1 -1 D|- - 1- 1 E|-2 12 -
Fl- - -1 E[- -1 11 G|-3 -2 1
(a) &3 (b) & (0) &3

in a dedicated trace, or any trace of a system. As such, they
allow for measuring a behavioral distance between models by
comparing the minimal occurrence distances for transitions
that are part of either model.

Definition 4 (k-Successor relation) Let S = (N, M;) be a
system, N = (P, T, F),and k € N. The k-successor relation
DZ C T x T foratrace o € T (N, M;) is defined by:

x>fye A <i<lo|[o@)=xA0o(+k) =y]

The k-successor relation > ,f C T x T for system S is defined
by:

x>;§y<:>3cfeT(N,Mi)[x>Zy]

Both successor relations are the basis for the definition of an
up-to-k-successor relation and a minimal k-successor rela-
tion, either for a trace or for a system. Let S = (N, M;) be
a system and k € N. Then, the up-to-k-successor relation
>?C T x T foro € T(N, M;) is defined by x >7 y &
31 <! <k[xD>] y], whereas the equivalent for §, >,f§
T xT,isdefinedby x >¥ y & 31 <l <k[x>}y]
The minimal k-successor relation Eg C T xTforo e
T (N, M;)is defined by x >7 vy & x >7 y A (x, y) €>7_4,
whereas the equivalent for §, E,f C T x T, is defined by
by E,fy & X |>,f YA (x,y) g_f>,ffl.

In [75] it was shown that for each system S = (N, M;),
N = (P, T, F), there exists a unique successor bound bg
such that all up-to-k-successor relations with by < k are
equal. Further, if § = (N, M;) is a sound free-choice WF-
system, the 1-successor relation along with the set of transi-
tions enabled in M; provides a complete characterization of
traces [75].

Table 1 shows the minimal k-successor relations of the
net systems in Fig. 3. For each pair of transitions, a value in
the matrix denotes the k of the minimal k-successor relation,
which holds for that pair. For the sake of clarity, we disre-
garded transitions that have no label in Table 2. Further, the
up-to-1-successor relations for the net systems in Fig. 4 are
illustrated in 2 (the symbol x means that the respective pair
is part of the relation).

@ Springer

Table 2 Up-to-1-successor relations for query net systems from Fig. 4

Y B D X CE A B D
Y| x - Xl x x A
B|- - x cl- - x B|lx - x
(@) > ®) > (0 >F

4 Fundamentals of behavior inclusion

Our approach assumes a regular process model as a search
query, i.e., an example of what the process models sought
from a repository can do. This relies on a notion of behavior
inclusion: Whatever behavior the query allows for, shall be
supported by a matching model. A match may, nevertheless,
extend the behavior of the query. In order to rank the results,
i.e., promote more relevant matches to the user, we introduce
the notion of closeness that quantifies how much additional
behavior a match offers, compared to a query. A model that
extends a query less than another model is behaviorally closer
and therefore considered more relevant to the user’s search
intention.

This section presents the formal definition of our approach
to behavioral querying. First, Sect. 4.1 presents a notion of
abstract trace inclusion that is used to characterize behavioral
matches. In Sect. 4.2, we show how these notions are decided
for bounded net systems and sound free-choice WF-systems.
We elaborate on the expressiveness of the proposed query
notion in Sect. 4.3. Abstract trace inclusion relies on a notion
of trace abstraction. For net systems that show abstract trace
inclusion, closeness evaluates the degree of trace abstraction
to achieve inclusion required for ranking. The computation
for bounded net systems and sound free-choice WF-systems
is presented in Sect. 4.4.

4.1 The notion of abstract trace inclusion

In this work, we focus on trace semantics of process models in
terms of net systems. Traces have been proposed as a means
to capture and compare the behavior of process models [33],
which has since seen wide application in the field of process
model search [7].

Behavioral inclusion of a query in a matching model
implies that each trace a query provides shall be contained
in a trace of the matching model, modulo other transition
occurrences. However, traces of a query may contain transi-
tion occurrences that can be misleading. Let T be the subset
of the transitions of a net system that represents activities
in the original business process model, i.e., transitions T\T
have been introduced during the transformation of a business
process into a net system to preserve the execution seman-

Querying process models by behavior inclusion

1111

tics of the process. In our example net systems, these tran-
sitions are depicted without a label. Obviously, these tran-
sitions should not be considered for a query. Therefore, we
define projected traces that discard all occurrences of transi-
tions that have no business semantics.

Definition 5 (Projected trace) Let S = (N, M;), N =
(P, T, F), be a system, and T C T. We define a short-hand
notation for transition occurrences of a trace 0 € T™* up to
index j, such that T:U = {t, € o|x < j Aty € T}.Then, the

— T*
projection of trace o by T is defined by o = |J i:"(‘)"‘ @, ;)
with7; € T, suchthat 3j € N[(j, ;) € o AT = |T 7]

Consider Q> of Fig. 4b, where the final transition has been
introduced to obtain a workflow net from the query model.
Since this transition conveys no business semantics it shall
be disregarded in the traces of Q». Hence, the set of pro-
jected traces of a net system is defined by 7 (N, M;) =
{ceT* |30 eT* MeM[(N, M)[o)(N, M)]}.

To actually decide behavior inclusion, we start by defining
the notion of loose abstraction for traces. Intuitively speak-
ing, a sequence of transitions is a loose abstraction of a trace,
if it is obtained from the trace by removing some occurrences
of transitions. This is different from the notion of abstraction
known in behavior inheritance [6], which abstracts all occur-
rences of a transition. We highlight this aspect by referring
to the following definition as loose abstraction.

Definition 6 (Loose abstraction) Let S = (N, M;), N =
(P, T, F) be anetsystem and 7" C T a set of transitions.
Leto € T(N, M;) be a trace and o’ € (T’)* a sequence of
transitions. Sequence o’ is a loose abstraction of o, denoted
by o’ = t(0), iff there exists an injection f : ¢’ — o such
that

e f((i,x))=(j,x)andi < j, and

e f((i,x)) = (j,x) and f((G + 1,y)) = (k, y) implies
Jj <k

Loose abstraction is the basis for abstract trace inclusion,
which captures the intuition of behavioral containment of a
query in a matching model. It requires each trace of one net
system to correspond to a trace of a second system, once a
certain set of transition occurrences has been abstracted.

Definition 7 (Abstract trace inclusion) Let S = (N, M;)
and ' = (N',M)), N=(P,T,F)and N' = (P', T', F'),
be net systems. S’ shows abstract trace inclusion with S,
denoted by S’ C S, iff for all projected traces o’ €
T(N', M) there exists a trace 0 € 7 (N, M;) and it holds
o =1(0).

For an example, consider the query model shown in Fig. 2a
and its corresponding net system Q7 in Fig. 4a, which can
produce only the trace o’ = (Y, B, D).

Net system Sy, depicted in Fig. 3a, can produce the trace
o ={(Y,7,B, C, E, D, F), for which o’ is an abstraction,
illustrated by the highlighted transition occurrences. In fact,
each net system depicted in Fig. 3 provides at least one trace
that can be abstracted to o’ and therefore shows abstract
trace inclusion with Q1. Query Q3, depicted in Fig. 3c, can
produce the traces (B, D) and (B, A). Whereas the first trace
is an abstraction of above trace o, too, S cannot produce any
trace where A is executed after B. Consequently, S| does not
show abstract trace inclusion of Q3.

Abstract trace inclusion induces a notion of a match
between a query model and some process model. This match
is complete in the sense that every trace of the query model is
an abstraction of some trace of the matching process model.
In contrast, we may speak of a partial match, if abstract trace
inclusion holds only for certain traces of the query model.
Without further restrictions, however, this notion of partial
matching is of limited use. A trace is any firing sequence
o that is enabled in the initial marking M; of a net sys-
tem (N, M;), cf. Sect. 3.1. Even if the empty trace would
be excluded, traces may consist of only one occurrence of
a transition enabled in M;. Hence, any candidate model that
shows at least a single trace containing one of the transitions
enabled in the initial marking of the query would be con-
sidered to be a partial match. Hence, we resort to complete
matches, hereafter.

4.2 Deciding abstract trace inclusion

From Definition 7 follows that a match is decided by com-
paring all projected traces of a query with potentially all
traces of a candidate. This yields a sufficient condition for
abstract trace inclusion. Yet, due to cyclic dependencies, the
net system of a process model may have an infinite set of
traces. Abstract trace inclusion can be decided by means
of the state space for bounded net systems, but remains
a computationally expensive task. We therefore present a
necessary condition that can be evaluated more efficiently
based on the successor relations introduced earlier. For sound
free-choice WF-systems, the necessary and sufficient condi-
tions coincide, i.e., abstract trace inclusion can be decided
efficiently.

Bounded net systems Trace equivalence and inclusion are
decidable for unlabeled net systems since they are reduced to
the reachability problem [32]. Abstraction of traces, however,
implies that equivalence and inclusion of traces cannot be
reduced to a problem for unlabeled net systems. Hence, we
are able to state decidability only for bounded net systems
that have a finite state space.

Theorem 1 Abstract trace inclusion is decidable for
bounded net systems.

@ Springer

1112

M. Kunze et al.

Proof Since the net systems are bounded, their behavior can
be represented by finite labeled transition systems. Each tran-
sition in this system may be subject to abstraction. This is
incorporated by augmenting the transition system with an
additional silent transition per non-silent transition that has
the same source and target state. Then, the result follows
from decidability of trace inclusion for finite labeled transi-
tion systems [67]. O

Deciding abstract trace inclusion for bounded net systems is
computationally hard in the general case. In fact, the prob-
lem of deciding whether two labeled transition systems show
trace inclusion is PSPACE-complete [67].

However, if the successor relations of query and candidate
net systems are known, a necessary condition for abstract
trace inclusion can be specified based on the containment of
correspondences of query transitions in the candidate net sys-
tem and the notion of successor inclusion. It holds between
two net systems, if successorship of transitions in one system
implies successorship of the transitions in the other system.
The intuition behind is that a query model must not define
successorship between two transitions that cannot be mir-
rored by a matching model even if abstraction is applied.
Since there is a successor bound for k-successor relations,
cf. Sect. 3.3, successor inclusion requires only the investiga-
tion of all relations up to this bound.

Definition 8 (Successor inclusion) Let S = (N, M;) and
"= (N',M), N=(P,T,F)and N = (P, T, F'), be
net systems, and >lf;, C T xT and >1§s C T x T their
successor relations, respectively.

S shows successor inclusion of S’, denoted by §" & S, iff
>ié §>[fs and T’ C T.

As successor inclusion only requires comparing all succes-
sors of the query against those of a candidate, it can be com-
puted in quadratic time to the number of transitions in the
query net system if the successor relations are known, which
is more efficient than computing abstract trace inclusion.
Hence, candidate models can be excluded from an exhaus-
tive investigation to decide abstract trace inclusion, if they
do not include all successor relationships required by the

query.
Theorem 2 Let S and S’ be WF-systems. Then,
SES=S S

Proof Follows from the definition of T and the defini-
tion of x >,§S y: From x ;4;28 y follows that A o €
T(N, M;) [x >ZS yl,andthus A1 <i < |o|,1 <k

<
bslo(i))=xAo(@@+k)=y] O

We clarify the necessary condition with the following exam-
ple. Any up-to-k-successor relation of candidate model S}

@ Springer

does not contain the pair (B, A) € > ,)Q; , 1.e., there is no
3

trace such that B is executed before A in S;. Consequently,
S| cannot show abstract trace inclusion with Q3.

Sound free-choice WF-systems For the distinguished class
of sound free-choice WF-systems, the notion of successor
inclusion is even sufficient to decide abstract trace inclusion.

Theorem 3 Let S and S’ be sound free-choice WF-systems.
Then,

SCSe S as.

Proof (=) Follows from Theorem 2.
(<) By induction on the length of a trace &’ € T (N, M)).
(Base) Let o’ = (x). Since S is sound, there is a trace o €
T (N, M;) witho(j) = x for 1 < j < |o|. Hence, it holds
o' =1(0).
(Step) Let 5';y € T(N', M)), 0 € T(N,M;), and 7' =
7(0).Leto’(|o’]) = x and, without loss of generality assume
that o (Jo'|) = x either. Since x >3y it holds x >1§S y. Let
M be the marking with (N, M;)[o)(N, M). Assume that x is
not enabled in M. Then, x > lfs y implies either (1) x F ™y or
(2) x and y are enabled concurrently in some marking M, €
[N, M;), cf. Lemma 1 and Theorem 1 in [74]. If (1), then
o can be extended with transitions #q, ..., %, € T such that
o;t1;... gy € T(N, M;), cf. Theorem 1 [74]. Consider
(2). Assume M» ¢ [N, M) for all markings M, that enable
x and y concurrently. Then, one of those markings M, must
have been reached after firing o(j), | < j < |o|, when
firing o in M;. Since o (|o|) = x, it holds x >l§s o(j+ 1),
a contradiction with M, ¢ [N, M). Since M, € [N, M), o
may be extended by firing all transitions ¢, ...,#, € T to
reach M, which again yields o; t1; ...;t,; ¥y € T (N, M;).
O

Successor inclusion and thus abstract trace inclusion is
decided efficiently.

Corollary 1 Let S and S', N=(P,T,F) and N' =
(P', T, F"), be sound free-choice WF-systems. Then, S’ C §
is decided in O (n3) time withn = max(|[P UT|, |P' UT')).

Proof Follows from the computation of k-successor relations
of sound free-choice WF-system in O (n?) time with n as the
number of nodes [75] and Theorem 3. O

4.3 Vocabulary and expressiveness of a query

The term vocabulary refers to the concepts of a language
by which it is possible to express syntactically correct
statements. In our case, the vocabulary used to express
a query equals the vocabulary used to express a process
model, because we assume a regular process model as query

Querying process models by behavior inclusion

1113

that describes an example of the desired behavior. Eval-
uation of the query is conducted on an abstraction over
the behavioral semantics expressed by this query, that is,
execution traces. This abstraction allows searching among
process models that have been created with different process
modeling languages, and query and candidate model are
not required to be expressed in the same modeling lan-
guage given that Petri net formalizations for these languages
exist. This is the case for the majority of common busi-
ness process modeling languages such as BPMN, EPC, and
BPEL [49].

The expressiveness of a query language is restricted by the
provided vocabulary and the underlying matching approach.
The reuse of common business process modeling languages
to express queries and the concept of abstract trace inclusion
determine that a query can request the presence of behavior
in a match, but not the absence of activities or behavioral
relationships between them. We argue that this restriction is
in line with the use case we aim for: to enable non-expert
users finding process models that provide desired behav-
ior. Query languages that provide a richer expressiveness,
such as expressing the absence of concepts, e.g., [8,15], are
more complex and make it difficult to formulate even simple
queries.

Abstract trace inclusion for bounded net systems and suc-
cessor inclusion for sound free-choice WF-systems support
the expression of occurrence of activities, their ordering, and
the co-occurrence of several activities in a trace. Each activ-
ity contained in a query must be contained in a matching
model. More precisely, each transition that appears in a trace
of the query must also be contained in at least one trace of
the match to hold abstract trace inclusion. The same holds
for successorship relations. If a pair of transitions appears
in any order in a trace of the query, the same order must
be mirrored by the successor relation of the match, including
repetition of activities. Co-occurrence refers to causal depen-
dencies between actions, i.e., if two activities co-occur in a
trace of the query, they must also occur together in a trace of
the match. The compliance of these properties in all traces of
a match can, however, not be enforced, which is in line with
the query being an abstraction of the behavior of a matching
model.

Based on this discussion, we investigate matching the
example queries with the provided process models. For this
purpose, we resort to the basic workflow patterns sequence,
parallel split, and exclusive choice that are represented in the
example queries in Fig. 2. The corresponding net systems are
depicted in Fig. 4.

Sequence. A sequential path in a query model, e.g., O
in Fig. 4a, requires a match to provide a trace that exe-
cutes corresponding transitions in the same order. This
may be satisfied, if the corresponding transitions are on

a path in the candidate model, as it is the case for S»
and S3 in Fig. 3. But, since our approach considers the
actual behavior, rather than graph structures, it may also
be matched by models that do not show such a path. This
becomes apparent in the successor relations, i.e., if a pair
of transitions is contained in the successor relation, there
exists a trace that contains occurrences of these transi-
tions in the required order. For instance, the concurrent
enabling of B and D in S; allows for interleaved firing,
which includes the order B >1§; 1 D requested by Q1. In
contrast, Sy is not a match for Q3, as it does not allow
executing B before A, whereas this is required by the
query.

A transition ¢ that is part of a loop of the query is a
successor to itself, i.e., r > ;fs t, and needs to be matched
by candidates, for instance, by cyclic dependencies, too.

Parallel split. A parallel split allows for interleaved firing
of the parallel activities, as they become enabled con-
currently, cf. Fig. 4b. Consequently, the query can pro-
duce traces containing any order of execution and suc-
cessor relation pairs of parallel transitions are symmet-
ric, e.g., C >bQQ22 E and E >bQQ22 C in Table 2b. Conse-
quently, the ordering of corresponding transitions must
not be restricted in a matching model, i.e., the match must
also offer symmetric relation pairs. Hence, models S7 and
S3 of Fig. 3, where actions C and E are strictly ordered,
are no matches for Q,, whereas S is, due to the parallel
split. The interleaved ordering of transitions may also be
matched by a cyclic structure in a candidate if it contains
corresponding transitions [74].

Exclusive choice. As a query cannot require the absence of a
behavioral relation, exclusive choice does not express the
mutual exclusion of two activities in traces of a matching
model. In comparison with sequence and parallel split
that require co-occurrence of transitions in at least one
trace, this is relaxed for transitions of a query that are
exclusive. For instance, transitions A and D of Q3 in
Fig. 4c are not in a successor relation. While it is required
that these transitions appear in traces of a match, they
are not required to co-occur in a common trace. Never-
theless, co-occurrence is allowed in any order, including
interleaving order. For our examples, this ensues that S
matches Q3. Although the exclusive gateway is struc-
turally matched in S3, this candidate is not a match due
to the implicit place between B and D, which renders
the net, depicted in Fig. 4b, non-free-choice. Hence, the
query trace (B, A) cannot be mirrored in S3.

The triggering of a process, in terms of start events, can
also be formulated in a query up to certain limitations. Since
the transformation of process models to net systems [23,49]
also maps events to transitions, they can be included in the
query as well, as is shown for the queries in Fig. 2a, b. Hence,

@ Springer

1114

M. Kunze et al.

events are treated similar to activities and can be used for
querying as discussed above. Since queries cannot express
the absence of behavior, processes that execute activities
before these events cannot be excluded.

4.4 The notion of closeness

Once process models that match a query model in terms of
abstract trace inclusion have been identified, we are interested
in a ranking of these models, to assist users in determining
which models are more relevant to their query than others.
This ranking is guided by the amount of abstraction required
to achieve abstract trace inclusion, where less abstraction
leads to a better match, since the model is closer to the
query. To obtain a ranking, this section presents a closeness
measure.

The intuition behind the closeness measure can be sum-
marized as follows. Abstract trace inclusion requires that any
two transitions that follow each other in some trace of the
query model, also follow each other in some trace of the
matching model. Still, several transition occurrences may
be abstracted in the trace of the matching model. For each
pair of transitions in direct successorship in a trace of the
query model, we determine the minimal number of transi-
tion occurrences that need to be abstracted in some trace of
the matching model. This provides us with a measure how
close the behavior of the match is to the behavior of the query
in terms of single transition pairs. For an example, consider
the trace 0 = (Y, 7, B, C, E, D, F) of S in Fig. 3a and the
query trace E’Ql = (Y, B, D) of Q in Fig. 4a. For the suc-
cessor pair (Y, B) of the query trace E’Ql, the occurrence
of the unlabeled transition T must be removed from o; for
the successor pair (B, D) of Eél, transition occurrences C
and E must be removed from o. However, S; also allows
executing D directly after B. In this case, no transition occur-
rences need to be removed from o to achieve abstract trace
inclusion.

Lower closeness values mean that, for a transition pair of
the query, more transition occurrences of traces of the match
need to be abstracted to achieve abstract trace inclusion.
Closeness is utilized as a ranking score so that it is applied
only when abstract trace inclusion has already been checked.
In the same fashion as the decision of abstract trace inclusion,
also for the ranking, we first discuss bounded net systems and
later turn to sound free-choice WF-systems, which offer the
opportunity to compute closeness more efficiently. Finally,
we discuss the case of trivial queries comprising a single
activity.

Bounded net systems To quantify the amount of abstraction
needed to achieve abstract trace inclusion, we first establish
the grounding for such a measure by the set of shortest suc-
cessor maximal traces. Here, the intuition is to obtain set

@ Springer

Fig. 5 Cyclic net system

ol
® t

of traces that is finite, but characterizes the essentials of the
behavior of a net system. We interpret such behavioral essen-
tials in terms of the 1-successor relation. Hence, we require
all traces to be maximal regarding the 1-successor: any pos-
sible extension of a trace must not add information on a new
successor dependency. Since there may be an infinite number
of such traces, we consider only the shortest trace of those
with equal 1-successors.

Definition 9 (Shortest successor maximal traces) Let T (N,
M;), N = (P, T, F)beasetof traces. Then, the set of short-
est successor maximal traces is defined as 7,4 (N, M;) C
T (N, M;) such that o € 7,4 (N, M;) iff

e o is successor maximal, i.e., for all x € T holds that
either o;x ¢ T(N,M;) orif o;x € T(N, M;) then
o(j)=o(lo])ando(j+ 1) =xforsome 1l < j < |o],
and

e o is the shortest of those with equal successors, i.e.,
Yo' € T(N, M;)suchthato'(j) =xando’(j+1) =y
implieso(l) =xando(l+1) =yforl < j < |o’| and
1 <I < |ol|,itholds |o| < |67].

Consider the net system depicted in Fig. 5 that com-
prises a loop. Due to the cyclic dependency between
transitions #; and #3, there exists an infinite set of traces,
{{t), (i, &), (b, b, B), (t, b, B, b)), (b, b, B, b, B),...}
Firing & and #; adds new 1-successors to traces. However,
after the first complete iteration, i.e., when & has been
executed the second time, no information is added to the
direct successorship of any of the transitions. Therefore,
the set of shortest successor maximal traces for this net is
{(t, b, 15, b))}

Using this notion, we are ready to define the closeness
measure for ranking models that match a query based on
the amount of abstraction required to achieve abstract trace
inclusion. Following the above argumentation, we base the
measure on pairs of transitions that succeed each other in
some query trace and proceed step-wise: First, closeness is
defined for a transition pair, grounded on a query trace and a
trace of the matching model that induces the smallest amount
of abstraction. This is conceptually related to the topic of
trace alignment, cf. [11], which seeks to find the optimal
alignment between two traces, such that they resemble each
other as closely as possible. The closeness between the net
systems of a query and a match is derived by considering
all transition pairs that succeed each other in some query
trace.

Querying process models by behavior inclusion

1115

Definition 10 (Closeness) Let S = (N, M;) and S’ =
(N', Ml.’), N = (P,T,F) and N' = (P',T',F'), be
bounded net systems, >,f/ CT'xT, E,f/ CT' xT, >,f C
T x T, and E,‘f C T x T their up-to-k-successor and mini-
mal k-successor relations with successor bounds bg and bg,
respectively.

For a pair of transitions (x, y) e>f/ the closeness in S is
defined as

(0 if (x,y) ¢>7 for
0 € Tyax (N, M;),
7 € Tpax(N', M),

clx,y) = 7 =1(0)

__min 1/vk otherwise
7 Tax (N M),
0 €Tnax (N, M;),

[7'=7(0).(x,y)eDy]

The overall closeness of S’ to S is defined as

c(x, y)
Z ‘>f/ :

p(S',8) =

, s
(x,y)€ >7

In our example, all candidate models depicted in Fig. 1
are matches for the query Q; of Fig. 2a, cf. Sect. 4.3. For
Si, c(Y,B) = 1/«/5, due to the trace with the shortest dis-
tance between Y and B results in B being a 2-successor of
Y. ¢(B, D) = 1/\/T = 1, because, in S;, D can be executed
directly after B. For the closeness of example models with
Q1 we obtain the following values:

p(Q1, 81) = 1IN & .85
p(Q1, $5) = U2 0.7
p(Q1, S3) = WIS .79

From the net systems in Fig. 3, it becomes apparent that S is
in fact the closest model to Q3 as only transition A needs to
be abstracted to achieve abstract trace inclusion. Comparing
S> and S3 shows that closeness prefers models with close
successors: Although the number of abstracted transitions to
achieve abstract trace inclusion is 2 in both net systems, S3
receives higher closeness due to the direct successorship of
(Y. B).

Closeness relates to the amount of abstraction and yields
a value in the interval (0, 1]. A value of 0 cannot be achieved
as all successorships of a query are mirrored in a match,
eventually. Closeness should equal 1, if all traces of a query
model show trace inclusion with the matching model without
any abstraction.

Property 1 LetS = (N, M;)and S’ = (N’, M}) be bounded
net systems. Then,

T(N,M))ST(N,M)=p(S.S)=1.

This property follows directly from the definition of p(S’, S).
For bounded net systems without further restrictions, the
reverse does not hold true, though. The measure is based
on successorship of transitions so that, for instance, differ-
ences in how often a transition occurs may not be taken into
account. Since we apply the measure only for ranking of
models for which abstract trace inclusion has already been
determined, however, this aspect is of minor importance.

Computation of closeness for a given pair of models
imposes challenges. The construction of shortest successor
maximal traces requires investigation of the complete state
space of the model and therefore has to cope with the state
explosion problem [67]. Note, however, that this set may be
precomputed for models since it does not depend on the query
model. While this adds to the required space to store process
models in repositories, it saves time during search, which we
consider more valuable.

Sound free-choice WF-systems Again, closeness can be char-
acterized based on successor relations for sound free-choice
WE-systems. We define successor closeness as follows.

Definition 11 (Successor closeness) Let S = (N, M;) and
S = (N’,Mi’), N=(P,T,F)and N = (P, T, F'), be
sound free-choice net systems, and >g;/ C T x T and
>1§S C T x T their successor relations, respectively.

For a pair of transitions (x, y) € >f/ the successor closeness
in S is defined as

if (x, y) ¢>;§S
otherwise

0
cs(x,y) = [1/\/; with (x, y) € &}

The overall successor closeness of S’ to S is defined as

(s = Y Sy

Y
) N
()C,})E>]

>

Since the set of successors for a net system grows only with
the square of the number of transitions in the net, it offers
a significant improvement over precomputing and storing
shortest successor maximal traces. Indeed, closeness coin-
cides with successor closeness, for sound free-choice WF-
systems.

Theorem 4 Let S and S’ be sound free-choice WF-systems.
Then,

ps (8.8)=p(5.9).

Proof Let S = (N, M;), N = (P, T, F), be a system. Let
o € T(N,M;) witho(Jo]) = x and (x,y) € >7. Let M
be the marking with (N, M;)[o)(N, M) and, without loss
of generality, assume that no transition t € T, t # y, ot N
xe = (Jis enabled in M. If there exist a transition sequence
oy =(t1,...,t_1) € T* such that (N, M)[o2)(N, M>) and

@ Springer

1116

M. Kunze et al.

(N, M;)[y) independent of trace o, then the closeness for a
transition pair is independent of the relation between query
and model traces. Indeed, the existence of a sequence o3
follows from Theorem 35 in [75] stating that EIS and, thus,
>‘f provides a complete characterization of trace semantics
of S once the set of transitions {t € T | (N, M;)[t)} enabled
in M; is known. O

Again, consider the example processes and query Q. Mod-
els S and S are sound free-choice WF-systems, and we
can compute their closeness to Qp purely based on the
successor relations. From Tables 1a and 2a we observe,
for instance that Y >1Q1 Band Y Iz;‘ B, and B >1Ql D and
B Efl D, respectively. For the sound free-choice net sys-
tems, we obtain following successor closeness: p;(Q1, S1) =
INHUNT ~ 0.85 and pg(Q1, $2) = LZVZ ~ 071,
The observation that p5(Q1, S1) = p(Q1, S1) along with
ps(Q1, 8$2) = p(Q1, $?) is in line with Theorem 4.

In the same manner as for the case of deciding abstract
trace inclusion, the utilization of successor relations has the
advantage that it allows for efficient computation. Combined
with Theorem 4, it is possible to decide a match and com-
pute closeness efficiently, if query and candidate are sound
free-choice WF-systems, and only resort to abstract trace
inclusion and closeness when they are not. Indeed, for sound
free-choice WF-systems, closeness is computed in low poly-
nomial time to the size of the model.

Corollary 2 Let S and S', N = (P,T,F) and N' =
(P',T', F), be sound free-choice WEF-systems. Then,
ps(S’, S) is computed in O(n3) time withn = max(|P U T|,
P’ UT]).

Proof Follows from the computation of k-successor relations
of sound free-choice WF-system in O (n°) time with n as the
number of nodes [75] and Theorem 4. O

Trivial queries The aforementioned closeness measures
quantify the amount of abstraction needed between pairs of
activities or transitions, respectively. Consequently, they are
not applicable for trivial queries that comprise a single activ-
ity and for which the successor relation is empty. For these
cases, we argue that an activity that is closer to the beginning
of a process or its end may be considered more important,
as it represents a preliminary step or a result of a process.
We incorporate this idea in a closeness measure for trivial
queries as follows.

Definition 12 (Closeness for trivial queries) Let S =
(N,M;) and " = (N',M)), N = (P,T,F) and N' =
(P',T', F'), be bounded net systems, such that 7/ = {r'}.
>,f CTxT,and E;f C T x T the up-to-k-successor and
minimal k-successor relations of S with successor bound bg.
LetT; ={t e T |30 € T(N,M;) : 0(1) = t} and

@ Springer

T, ={t € T |30 € T(N,M;), Mi[o)M : o(|o]) =
t APt e T : M[t')} be sets of initial and final transitions of
S.

For a pair of transitions (x, y) € (TUT') x (TUT"), close-
ness for trivial queries is defined as

0 if (x.y) #>5
x. y) 1 ifx=1y
colx,y) =
oty 1/~Vk+1 otherwise

with (x, y) € lz,f

The overall closeness of the trivial query S’ to S is defined
as

00(S,8) = max(max co(t, 1),

teT; ' eT’ te

max
T,,t'eT’

co(t', t))

Given a trivial query that consists only of activity deliver
product (C), represented by the net system Q = ((@, {C},
@), ¥) it is obvious that all candidate models (Fig. 3) sat-
isfy abstract trace inclusion. To rank these models, we
compute po(Q, S1) = max(\%, \/LZ’ \/LZ) ~ 0.58 (T; =

- - I e
{Xv Y}’TO - {T})5 pO(Qa S2) - maX(\/z, \/Za ﬁ)
0.58 (T; = {X. Y}. T, = {r}), po(Q. $3) = max(z. J5)
~0.71(T; ={Y}, T, = {D, A}).

5 Efficient querying based on behavior inclusion

Having discussed the conceptual background for query-
ing based on behavior inclusion, we now turn the focus
on the application of the presented concepts for efficient
querying and also discuss limitations of the presented
approach.

The most simplistic technique to find all models that match
a given query is to compare the query with each model,
decide a match, and compute its closeness as to provide a
ranking of all models that satisfy the query. The search time
of such an approach can be approximated by the product of
the number of models in the collection and the average time
to decide a match. Hence, it grows linearly to the size of
the process model collection and cannot be considered very
efficient.

In order to make search efficient, it is required to avoid
exhaustively examining every process model in the collec-
tion [58], and exclude process models that cannot satisfy the
matching criterion early. A typical solution to this problem
is commonly referred to as the filter and verification para-
digm known from graph databases, cf. [61], and consists of
two phases. In the first phase, referred to as filter, all process
models that cannot satisfy the given query are excluded by
an inexpensive operation and a candidate set is produced that
is significantly smaller than the original model collection. In
a subsequent verification phase, each process model of the

Querying process models by behavior inclusion

1117

Table 3 Example inverted index

Key Models

(A, B) {S1, S2}
(N {S1, 82}
(B,A) {S2}

(B, 0 {S1, S2, S3}
(B.D) {S1, 2, S3}
(C, A {S2, S3}
(C.D) {S1, S2, 83}
(Y, A {S2, S3}
(Y, B) {S1, S2, S3}

candidate set is examined exhaustively to decide a match.
Additional computation, e.g., the computation of closeness
to provide a ranking, is only performed in the latter phase.
Therefore, optimization of the search performance generally
addresses to optimize the filter phase to be most effective,
i.e., exclude as many process models as possible, while the
used operations should be very fast.

In our case, we benefit from the necessary condition of
trace inclusion, i.e., all successor relation pairs of the query
QO must be included in the successor relation of a matching
process model P, i.e., >bQQ - >pr’ cf. Theorem 2. In order
to save computation time, we can reduce this to matching
only the 1-successor relation of a query, i.e., we require that
>1Q C >,’;P, cf. Definition 11.

Based thereon, we utilize an inverted index to quickly find
a candidate set. Inverted indexes store a set of attributes and
for each attribute a list of records that show this attribute [40].
Here, such an attribute is a successor relation pair and the
associated records are process models that comprise this rela-
tion.

To construct the inverted index, we examine all process
models of a collection. For every process model, we extract
all successor relation pairs (x, y) €> ,fp and add each as a key
to the inverted index. If two or more models share a relation,
only one key will be added to the index which points to a list of
these models. By requesting a key, the index allows for quick
identification of all process models that contain this particular
successor relation. The index also allows for the iterative
addition and removal of process models by adding models
and keys or removing models from the list of corresponding
keys; if a key does not point anymore to at least one process
model, it is removed. Table 3 shows an excerpt of such an
index for the example processes, shown as net systems in
Fig. 3, derived from their successor relations, cf. Table 1.

Filter To discover the candidate set in the filter phase, we
extract the 1-successor pairs from the query and use it to
find models in the inverted index. That is, we request the
conjunction of these relations, which returns a candidate set
of models that include all 1-successors from the query and
hence satisfy the necessary condition of a match.

Consider the example query Q3 depicted in Fig. 4c.
It comprises the following I-successor relation, which
are highlighted in the inverted index, cf. Table 3: >?3=
{(B, A), (B, D)}. 1t is easy to see that only model S; includes
both relation pairs.

For trivial queries comprising only a single activity or
transition, respectively, we observe that the successor relation
is empty. Consequently, we use the aforementioned index in
a slightly different way. That is, we search for models whose
key contains the requested activity in either position of the
index entry. Note that according to the notion of abstract trace
inclusion, cf. Definition 7, answering such a trivial query
requires that in a matching model the respective activity must
be executable. This is a stronger statement than requiring that
the activity must exist in the process model.

Verification For each model in the candidate set, we then ver-
ify the sufficient condition of a match, i.e., decide a match
with the sufficient condition and compute its closeness to the
query as a score for ranking several result models. Whenever
possible, we rely on successor inclusion and the closeness
definition p; for sound free-choice WF-systems, as it allows
deciding a match and computing closeness more efficiently
than abstract trace inclusion and closeness p for bounded
net systems. As the successor closeness ps; can be com-
puted purely by the minimal k-successor relations, cf. Defi-
nition 11, we also store the minimal k-successor relations of
sound free-choice WF-systems, when adding the respective
process model to the index. For process models that are not
traced back to sound free-choice WF-systems but bounded
net systems, we need to exploit the state space of the respec-
tive models to decide abstract trace inclusion and compute
the closeness toward the query. Finally, for trivial queries
comprising a single activity, the closeness definition given in
Definition 12 applies.

Limitations Turning to the applicability of the presented
approach, we observe that its major limitation is the require-
ment of boundedness of process models. Process models that
cannot be traced back to bounded net systems, i.e., that have
an infinitely large state space, are not considered by our
approach. For unbounded net systems abstract trace inclu-
sion may not be decidable and closeness cannot be computed.
However, unboundedness is commonly seen as a behavioral
error of a process model [68] that should be resolved prior
to making the model available for reuse in a process model
repository.

@ Springer

1118

M. Kunze et al.

6 Evaluation

To evaluate our approach toward effectiveness and efficiency,
we conducted a series of experiments. This section first elab-
orates on the used data set and experimental setup, before we
turn to the obtained results.

6.1 Data set

We used two experimental data sets based on the SAP refer-
ence model collection [17]. Published by business software
vendor SAP in 1997, it comprises over 600 process models
in EPC notation which represent reference processes imple-
mented in the SAP R/3 system. Mendling [55] elaborates
on a variety of characteristics of this model collection. The
choice to use models from this collection is motivated by two
aspects in particular. On the one hand, a variety of models
in this collection show a functional overlap and thus qualify
for experiments on querying process models. Yet, the models
use a homogenous vocabulary, which makes the construction
of an alignment straight-forward. Consequently, this collec-
tion allows us to focus on the evaluation of the actual query
mechanism limiting the bias that is induced by the perfor-
mance of a technique for matching the activities and events
of two process models. On the other hand, these models have
repeatedly been used for empirical research in this field, e.g.,
to evaluate the effectiveness of process model similarity mea-
sures with regards to human assessment [21,42].

Since we utilize execution semantics of process models
to query by means of behavior inclusion, we had to exclude
models that showed syntactic errors or ambiguous instanti-
ation semantics [18]; both issues prohibit deriving correct
execution semantics. The latter issue refers to a missing start
join, i.e., due to multiple start events that cannot be joined in a
single node, it is not possible to decide upfront which events
instantiate the process, and consequently makes it impossi-
ble to derive an initial marking, cf. Sect. 3.1. Hence, for our
experiments, we used a subset of the models in that collec-
tion.

6.2 Setup

Given the homogenous vocabulary of the SAP reference
model collection, we leveraged the string edit distance [46]
as a basis to compute the similarity of activity labels. That
is, we established a correspondence between two activities,
if the similarity of their labels exceeds a certain threshold.
For the experiments presented in the remainder, we selected
a similarity threshold of 0.65.

We implemented query matching and closeness computa-
tion, presented in Sect. 4, in Java using the jBPT library'.

1 http://code.google.com/p/jbpt/.

@ Springer

For the inverted index, we adopted Apache Lucene?. We
extracted all eventual successor relation pairs of a process
model, i.e., > 117)})’ and used these as index terms, referencing
the process’ net system and its minimal k-successor relation.
In the filtering phase, we extracted all 1-successor relation
pairs from a query, i.e., > ?, and searched for a conjunction
of these terms in the index.

In a first experiment, we tested the effectiveness of the
proposed approach. We set up an experiment to measure how
well querying by behavior inclusion correlates with human
assessment. For this experiment, we chose 34 candidates of
the SAP dataset. From the candidates, we manually gen-
erated 10 query models and paired each query model with
10 of the candidates. Seven process modeling experts were
then asked to determine for each pair of query and candi-
date process model, whether the process model matches the
query and to rank all matches according to their favor. To
decide a match, they were given the guideline that “a match-
ing process model shall be able to replay the behavior of a
query”. For each query, we computed the list of candidates
that showed abstract trace inclusion ranked by their closeness
and compared this list with the expert judgment.

We measure effectiveness in terms of precision (the ratio
of relevant identified models and all identified models) and
recall (the ratio of relevant identified models and all relevant
models). The motivation for using these measures is that, in
contrast to similarity search of process models, querying of
process models induces a fixed and well-defined result set,
i.e., set of relevant models for a query. We relied on macro-
averaging so that precision and recall values are aggregated
by the arithmetic mean over the results for all query mod-
els. To evaluate the effectiveness of the closeness scores for
ranking query results, we assess the correlation between the
closeness values and the ranking according to human judg-
ment.

In a second experiment, we assessed the performance of
our approach and its scalability as follows. For increasing
sizes of a base model collection, we searched for 100 ran-
domly chosen queries and measured the median search time
over these search runs. The query models were chosen ran-
domly from the model collection to account for various levels
of complexity when processing queries. We conducted each
search run twice with the same queries, respectively: first as
a sequential search, where we compared the query with each
model in the current collection and second as efficient search
by means of the filter and verification approach using the
inverted index, presented in Sect. 5.

All experiments have been conducted on a 2.8GHz CPU
running a Java 1.7 virtual machine with 1GB of heap mem-
ory assigned, of which only 400MB were used. Matching
has been implemented single threaded. For sound free-choice

2 http://lucene.apache.org/core/.

http://code.google.com/p/jbpt/
http://lucene.apache.org/core/

Querying process models by behavior inclusion

1119

human ranking

closeness

Fig. 6 The obtained closeness values relative to the average human
ranking, dashed lines indicating the linear least-squares regressions for
all ten different queries

WF-systems, minimal k-successor relations have been pre-
computed and cached in memory, to exclude times for succes-
sor computation and I/O operation during search. This aligns
with the outlined indexing approach, where these relations
are computed and stored when a model is added to the index.

6.3 Results

Testing the effectiveness of the presented approach to behav-
ioral querying against the human assessment, we obtain a
mean precision value of 0.983 and a mean recall value of
0.698. Clearly, the former indicates that identified models
are indeed considered by the process modeling experts to be
results for the query. Also, we consider the recall value to be
acceptable since querying yields correct matches, whereas
humans may be more forgiving when comparing process
models. Further, we observe that the mean recall values have
a standard deviation of 0.27 among all queries. We found the
cause for this in one particular query that obtained a con-
siderable low recall value of 0.167. This query features two
activities that emerge from a parallel gateway. However, sev-
eral subjects considered process models as a valid match,
if they allow executing both activities in at least one of the
possible orders. Hence, for some types of queries, partial
match results appear to be also relevant, an aspect that shall
be addressed in future work.

With respect to the closeness based ranking, Fig. 6 indeed
shows that high closeness values are obtained for models that
are also ranked high according to human judgment. Figure 6
also illustrates the linear least-squares regressions for all ten
different queries (on average, the R? value of the regres-
sion models is 0.61). Those further underpin the trend of
high closeness values being obtained for models that are also
ranked high by humans. For our comparably small data set,
however, these results turned out to be not statistically sig-
nificant.

We conducted a detailed inspection of the models and
their rankings to understand in which cases the closeness
measure approximates the human ranking well. We illus-
trate our observations with the examples given in Fig. 7.
Here, the query (a) consists of an activity Delivery Process-
ing (A) followed by Goods Issue Processing (B). All three
candidates from the SAP reference model match this query;
paths that provide traces complying with abstract trace inclu-
sion of the query are highlighted bold. Process model (b)
is a perfect match and therefore has an optimal closeness.
This is in line with the human assessment, which ranks (b)
high. For the remaining two models, we notice that model
(c) requires execution of one activity, C, between A and B,
whereas process model (d) requires execution of two activ-
ities, D and E. Hence, model (c) is closer to the query
than model (d). However, for this case, the human rank-
ing preferred model (d). We attribute this to the fact that
model (c) is larger than model (d), i.e., it has more nodes.
We observed that models requiring less effort to comple-
ment the query were often ranked higher than more com-
plex models. As such, the appropriateness of the closeness
measure for ranking models that show significant differ-
ences in their sizes has to be further investigated in future
work.

Turning to the evaluation of efficiency, Fig. 8 shows the
required search time in milliseconds for the baseline sequen-
tial search (dashed curve) and efficient search (solid curve) on
a logarithmic scale. For the efficient search, we further illus-
trate the amount of time that has been used by the Lucene
inverted index to exclude models in the filter phase (dot-
ted curve). The difference between the dotted and the solid
curve represents the amount of time required for the valida-
tion phase of efficient search.

For the sequential search, we observe a strong raise until
50 models that results from the choice of query models.
At these times, less then half of all query models are con-
tained in the collection. Hence, only very few models are
found that share correspondences with a query and qualify
for deciding a match. From there on, the curve indicates linear
growth from 12 to 30 s median search time over the increas-
ing process model collection. At a collection size of 450
models, sequential search consumed approximately 15.5 s
on average. The negative peaks in the curve stem from the
complexity of the chosen queries. Some queries were trivial
or rather simple. If many such queries were chosen for search
at a certain collection size, the median search time dropped
significantly.

Using the inverted index, in turn, shows a significant gain
in search speed with a median remaining below 25 ms for
all 450 models in the collection and a maximal average
search time being 551 ms. With these numbers, the index
shows a performance of two orders of magnitudes faster than
sequential search. Looking at the curve for filter pruning (dot-

@ Springer

1120 M. Kunze et al.

Gy
A e |

B Goods
Issue
Processing

Goods
B Issue
Processing

(@) (b)

Delivery
s relowant
for billing

Monitoring
of Legal
Controls

Leﬂ:‘ Transportation Immm
o C Planning

is processed and Processing

ssve
510 be carried out

Goods
Goods B Issue
B Issue. Processing
Processing

(d)

Fig. 7 Example query a and process models b—d from the SAP reference model that share activities A and B in the same execution order. Identical
activities in are marked by indices A—FE. Due to space limitations, labels are not readable on purpose

@ Springer

Querying process models by behavior inclusion

1121

100000 -
- 10000 4
E
)
£ 1000 -
S
ﬁ sequential search
o 100 efficient search
S N~)
i filter pruning
O
S
9]
IS

1 T

T T T
0 100 200 300 400
collection size

Fig. 8 Search efficiency over increasing size of a model collection for
sequential (dashed curve) and efficient (solid curve) search

ted curve), the inverted index proves to be very effective in
excluding invalid candidates early. That is, the median veri-
fication time constitutes only 1 ms, expressed by the close-
ness and affinity of the curves for efficient search and filter
pruning.

7 Related work

This work has been inspired by Query by Example [79],
a visual query language for relational data bases, where a
user provides constant values for some attributes and leaves
the others blank. All records that contain these values for the
respective attributes are returned in response. Hence, the user
proposes an example that becomes completed by the query
processor. The simplicity of this approach suggests that also
non-expert users become able to query a database [79]. We
applied this idea to the domain of business process models,
where a user proposes an incomplete example, which is com-
pleted by the query response.

Process model search Process model search is generally
approached from two different perspectives: similarity search
and querying [24]. Similarity search addresses such use
cases, where duplicates or sufficiently similar process mod-
els are sought, given a rather complete specification of a
query process model. For example, to integrate two process
model collections or to identify reference processes for a set
of process variants [24]. A number of similarity measures for
process models has been investigated exhaustively in [7]. In
contrast to similarity search, also referred to as inexact match-
ing, querying imposes exact matching, where the query is a
precise specification of only those aspects that are relevant.
A match can extend a query to a large extent, which would
result in a rather low similarity of query and match. Con-
sequently, means for matching must ensure that the aspects
formulated in the query are consistently met in a matching

model. Querying is particularly useful in the phase of process
model design, e.g., to find models that already comprise the
desired process or to discover potential completions for an
incomplete process model [41,53]. Search may be guided by
the structure or the behavior of process models [7,25,42].

Structural search Simple approaches to structural similar-
ity compute the ratio of common features, e.g., activities,
compared with the overall number of these features [26,
76] or map more complex features into high-dimensional
spaces and compute a distance between corresponding vec-
tors [38]. The former can easily be reused for querying,
by requiring that all features of the query must be con-
tained in a matching model [9,63]. This is more compli-
cated for approaches based on vector spaces, as distance
functions consider all dimensions and not only those of a
query.

Similarity search techniques that resort to the graph edit
distance [13], e.g., [21,47], can be used for querying only to a
very limited extent, as the graph edit distance is a symmetric
relation. Common subgraph isomorphisms [14] have been
used to assess the similarity of process models, cf. [31,34].
Such approaches can be altered to suit querying by requiring
that each edge in the query model is either represented as an
edge or a path in a matching model [20,50]. Closely related
is [37], where a path-based index is proposed that stores paths
of length n from a process model graph in an inverted index.
An index structure that stores hierarchical decompositions
of process model graphs is introduced in [66], where iden-
tical fragments of process models are unified. This allows
for efficient identification and retrieval of process models
from a repository that share exact-matching fragments with a

query.

Behavioral search Graph based approaches to business
process model search suffer from the issue that most lan-
guages are not grounded on a small set of semantically
orthogonal concepts but allow for different ways to model
equal or very similar behavior. This suggests relying on the
execution semantics for search.

Techniques to evaluate the behavioral similarity of process
models may be based on the state space [1,57,64] or sets
of execution sequences of process models [1,30]. However,
due to the state explosion problem [67], computation of both
is hard and requires various reduction techniques [29]. For
instance, in [71], the authors propose principal transition
sequences that abstract from recurring states, e.g., due to
loops, and hence truncate infinite sequences. We tackled the
problem of infinite traces by the notion of shortest successor
maximal traces, cf. Definition 9.

To avoid the exponential growth of these models induced
by concurrency, successor relations may be used as ground-
ing for similarity assessment. Such relations, also used in

@ Springer

1122

M. Kunze et al.

this work, express whether a pair of activities can occur in
a certain order in any execution of the process model. Two
variants of such relations have been used for process model
search: (a) 1-successor relations that capture pairs of activi-
ties that can occur directly after one another [27,36,78]; (b)
eventual successor relations that capture pairs of activities
that may co-occur in a process execution, also if they do not
occur directly after one another [27,35,42]. Successor rela-
tions may be derived from the model structure [74] or Petri
net unfoldings [35,73].

Most of the approaches use the Jaccard-coefficient of suc-
cessor relations to assess the behavioral similarity of a query
and a candidate model [27,36,42,78]. Since the Jaccard-
coefficient is symmetric, these approaches apply to similar-
ity search. However, successor relations may be compared
asymmetrically, cf., [35,44], to be used for querying; an
approach also followed in this work.

Often query and candidate models are assumed to stem
from the same domain, i.e., are represented as process graphs.
For querying, specific query languages have also been pro-
posed for specific process modeling languages. For instance,
BP-QL [8] focuses on BPEL processes, BPMN-Q [4,5]
addresses BPMN, and IQM-QL [15] requires a propri-
etary XML-based representation of process models. Lin-
ear temporal logic may also be used as a query language,
see [65]. Our approach avoids introducing a new language
to express queries, but rather enables reuse of the process
modeling language. We argue that this approach can be
more easily adopted by non-expert users who have little to
no background in formulating queries by means of formal
languages.

The authors of [35] propose a query language that com-
prises behavioral relations combined with logical operators.
This is similar to our approach, in that we also extract behav-
ioral relations from the query and use them to decide on
matching models. However, in [35] a query is a textual speci-
fication of successor relations. Moreover, their approach can-
not ensure that several behavioral relations can be satisfied
in one trace; for each behavioral relation there might be a
distinct trace which contains this relation. In our approach,
behavioral inclusion is based on traces, and hence, all behav-
ioral relations that appear in a trace of the query must also
appear in a trace of a match.

Indexing and ranking Most work on process model search
neglects efficiency of search, but rather focuses on the match-
ing techniques. The time to search for matching process mod-
els is approximately the product of the number of compari-
son operations required and the average time for comparison
computation. In general, obtaining a search result requires
exhaustive search, i.e., comparing the query with each candi-
date model. It is virtually infeasible to provide a meaningful
ordering among process models, which inhibits the use of

@ Springer

many traditional index structures. Mapping features to vec-
tor spaces, e.g., by activities, control flow edges, or behav-
ioral relations, yields thousands of dimensions that will grow
whenever models are added to the repository and therefore
become unmanageable [10].

In the context of similarity search, this can be tackled with
the use of metric space index structures [77], which parti-
tion a set of models purely by distance and allow excluding
partitions of the candidate model set, if they cannot contain
satisfactory matches. However, this requires the similarity
measure, or distance, to be a metric. Both the graph edit dis-
tance and the Jaccard coefficient yield a metric [48] and have
been used for metric space indexing in [42,43].

Other solutions use a two-phase approach of filtering and
verification discussed earlier. For instance, in [4,8,34-37] an
inverted index has been applied to exclude those models that
share no activities with the query. We followed a similar route
in this work, and used containment of successor relations as
anecessary condition for a match. The inverted index is used
to exclude invalid candidates early, and we precisely decide a
match and assess the quality of a match in terms of closeness
in the verification phase.

Almost none of the discussed approaches toward query-
ing of process models addresses the ranking of search results.
The approach presented in [50] proposes using precision and
recall measures introduced in [1] that quantify shared behav-
ior in comparison with the allowed behavior of the match and
the query, respectively. In prior work [44], we leveraged the
ratio of common activities to the size of the matching model
to prefer models that add less additional behavior than oth-
ers. Here, we introduced the notion of closeness to measure
the amount of abstraction required to match a model with a

query.

8 Conclusion

Nowadays, companies maintain large collections of business
process models, often using repositories to manage them.
Although such collections bear a knowledge asset of great
value, we see that business processes are often designed
from scratch, whereas the existing knowledge could have
improved the design process in many ways. Reuse suggests
to increase efficiency and quality of designed models and to
improve consistency among several models. Yet, in order to
reuse this knowledge asset, effective process modeling search
capabilities are required, in particular, by means of process
querying.

In this article, we presented a novel querying approach
for process models. A query comprises an example process
model that contains only few yet relevant activities and their
ordering relations. Model that are complete with respect
to the query and are able to replay it are considered a

Querying process models by behavior inclusion

1123

match and are presented in a ranked order. Ranking is
guided by the semantic closeness of a match to the query,
i.e., by the amount of behavioral abstraction from the
query.

Our approach is based on abstract trace inclusion, which
requires that each trace a query can produce is included in
an abstraction of at least one trace of a matching model. A
ranking score, closeness, evaluates how much abstraction is
needed to match a process model with a query and is used
to provide a ranking among several matches to one query.
For the class of sound free-choice WF-systems, successor
relations have been proven to decide a match and compute
closeness efficiently. We illustrated how these concepts can
be used to query process models and support the construction
of an index structure.

We evaluated our approach toward its effectiveness by
means of a user study, where we focused on the appropriate-
ness of our approach compared with a human assessment of
potential matches. In a quantitative experiment, we measured
search times for increasing sizes of process model collections
and showed that the index structure provides good scalability
in a practical setting.

Our experiments indicated that also partial matching of a
query model is worth to be followed upon. This requires fur-
ther investigation toward human assessment and expectations
when searching by means of behavior inclusion. Accord-
ingly, we may adapt semantics of extracting behavioral rela-
tions from queries and matching these with behavioral rela-
tions of candidate models. Another direction for future work
is the investigation of approaches, where one query cannot
be satisfied by a single model, but by a composition of mod-
els. This would assist in the creation of new models out of
existing knowledge in the fashion of dynamically assem-
bling a model from modules. We have approached this in
earlier work [5,62], yet this addressed only structural search
approaches with limited capabilities.

References

1. Aalst, WM.P.V.D., Medeiros, A.K.A.D., Weijters, A.J.M.M.:
Process equivalence: comparing two process models based on
observed behavior. In: International Conference on Business
Process Management (BPM 2006), vol. 4102 of Lecture Notes in
Computer Science, pp. 129—-144. Springer (2006)

2. Akkiraju, R., Ivan, A.: Discovering business process similarities:
an empirical study with SAP best practice business processes. In:
Service-Oriented Computing, Lecture Notes in Computer Science,
vol. 6470, pp. 515-526. Springer (2010)

3. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing
data anomalies in process models. In: Rinderle-Ma, S., Sadiq S.W.,
Leymann F. (eds.) Business Process Management Workshops, Lec-
ture Notes in Business Information Processing, vol. 43, pp. 5-16.
Springer (2009)

4. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of busi-
ness process models. In: Proceedings of the 2008 12th International

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

IEEE Enterprise Distributed Object Computing Conference, pp.
85-94. IEEE Computer Society, Washington, DC (2008). doi:10.
1109/EDOC.2008.11

. Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by selection: a

reuse-based approach for business process modeling. In: Proceed-
ings of the 30th International Conference on Conceptual Modeling,
ER’11. Springer

. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. J. Log.

Algebr. Program. 47(2), 47-145 (2001)

. Becker, M., Laue, R.: A comparative survey of business process

similarity measures. Comput. Ind. 63(2), 148-167 (2012)

. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying busi-

ness processes with bp-ql. Inf. Syst. 33(6), 477-507 (2008). doi: 10.
1016/j.is.2008.02.005

. Belhajjame, K., Brambilla, M.: Ontology-based description and

discovery of business processes. In: Enterprise, Business-Process
and Information Systems Modeling, Lecture Notes in Business
Information Processing, vol. 29, pp. 85-98. Springer, Berlin
(2009)

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is
“nearest neighbor” meaningful? In. In International Conference on
Database Theory, pp. 217-235 (1999)

Bose, R.PJ.C., van der Aalst, W.M.P.: Trace alignment in process
mining: opportunities for process diagnostics. In: Proceedings of
the 8th International Conference on Business Process Management,
BPM’10, pp. 227-242. Springer, Berlin (2010)

Branco, M.C., Troya, J., Czarnecki, K., Kiister, J.M., Volzer, H.:
Matching business process workflows across abstraction levels.
In: R.B. France, J. Kazmeier, R. Breu, C. Atkinson (eds.) MoD-
ELS, Lecture Notes in Computer Science, vol. 7590, pp. 626-641.
Springer (2012)

Bunke, H., Allermann, G.: Inexact graph matching for structural
pattern recognition. Pattern Recognit. Lett. 1(4), 245-253 (1983).
doi:10.1016/0167-8655(83)90033-8

Bunke, H., Shearer, K.: A graph distance metric based on the max-
imal common subgraph. Pattern Recogn. Lett. 19, 255-259 (1998)
Choi, L., Kim, K., Jang, M.: An xml-based process repository
and process query language for integrated process management.
Knowl. Process Manag. 14(4), 303-316 (2007). doi:10.1002/kpm.
290

Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of
string distance metrics for name-matching tasks. In: S. Kambham-
pati, C.A. Knoblock (eds.) [IWeb, pp. 73-78 (2003)

Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model. Prentice-
Hall Inc., Upper Saddle River, NJ (1997)

Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng.
68, 777-792 (2009). doi:10.1016/j.datak.2009.02.013

Desel, J., Esparza, J.: Free-Choice Petri Nets. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cam-
bridge (1995)

Deutch, D., Milo, T.: Querying structural and behavioral properties
of business processes. In: Proceedings of the 11th International
Conference on Database Programming languages, DBPL07, pp.
169-185. Springer, Berlin (2007)

Dijkman, R., Dumas, M., van Dongen, B., Kédrik, R., Mendling, J.:
Similarity of business process models: metrics and evaluation. Inf.
Syst. 36(2),498-516(2011). doi:10.1016/j.i.2010.09.006. Special
Issue: Semantic Integration of Data, Multimedia, and Services
Dijkman, R.M., Dumas, M., Garcia-Baifiuelos, L., Kiirik, R.:
Aligning business process models. In: EDOC, pp. 45-53. IEEE
Computer Society (2009)

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis
of business process models in bpmn. Inf. Softw. Technol. 50(12),
1281-1294 (2008)

@ Springer

http://dx.doi.org/10.1109/EDOC.2008.11
http://dx.doi.org/10.1109/EDOC.2008.11
http://dx.doi.org/10.1016/j.is.2008.02.005
http://dx.doi.org/10.1016/j.is.2008.02.005
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1002/kpm.290
http://dx.doi.org/10.1002/kpm.290
http://dx.doi.org/10.1016/j.datak.2009.02.013
http://dx.doi.org/10.1016/j.is.2010.09.006

1124

M. Kunze et al.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Dijkman, R.M., Rosa, M.L., Reijers, H.A.: Managing large col-
lections of business process models: current techniques and chal-
lenges. Comput. Ind. 63(2), 91-97 (2012)

Dumas, M., Garcia-Bafiuelos, L., Dijkman, R.M.: Similarity search
of business process models. IEEE Data Eng. Bull. 32(3), 23-28
(2009)

Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity
between semantic business process models. In: APCCM *07: Pro-
ceedings of the 4th Asia-Pacific Conference on Conceptual Mod-
elling, pp. 71-80. Australian Computer Society Inc., Darlinghurst,
Australia (2007)

Eshuis, R., Grefen, P.: Structural matching of BPEL processes. In:
Proceedings of the 5th European Conference on Web Services, pp.
171-180. IEEE Computer Society, Washington, DC (2007). doi: 10.
1109/ECOWS.2007.26

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin
(2007)

Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N.,
Volzer, H., Wolf, K.: Instantaneous soundness checking of indus-
trial business process models. In: U. Dayal, J. Eder, J. Koehler,
H.A. Reijers (eds.) BPM, Lecture Notes in Computer Science, vol.
5701, pp. 278-293. Springer (2009)

Gerke, K., Cardoso, J., Claus, A.: Measuring the compliance of
processes with reference models. In: On the Move to Meaningful
Internet Systems: OTM 2009, Lecture Notes in Computer Science,
vol. 5870, pp. 76-93. Springer, Berlin (2009)

Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral match-
making for service retrieval. In: Proceedings of the IEEE Interna-
tional Conference on Web Services, pp. 145-152. IEEE Computer
Society, Washington, DC (2006). doi:10.1109/ICWS.2006.37
Hack, M.: Decidability questions for petri nets. Ph.D. thesis, M.L.T.
(1976)

Hoare, C.A.R.: A Model for Communicating Sequential Processes.
Tech. rep., Oxford University Computing Laboratory (1980)

Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar business
process models based on structure. In: On the Move to Meaningful
Internet Systems: OTM 2011, Lecture Notes in Computer Science,
vol. 7044, pp. 56-63. Springer, Berlin (2011)

Jin, T., Wang, J., Wen, L.: Querying business process models based
on semantics. In: Proceedings of the 16th International Conference
on Database Systems for Advanced Applications: Part II, DAS-
FAA’11, pp. 164-178. Springer, Berlin (2011)

Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar workflow
models based on behavior. In: Web Technologies and Applica-
tions, Lecture Notes in Computer Science, vol. 7235, pp. 677-684.
Springer, Berlin (2012)

Jin, T., Wang, J., Wu, N., Rosa, M.L., ter Hofstede, A.H.M.: Effi-
cient and accurate retrieval of business process models through
indexing—(short paper). In: Meersman et al. [54], pp. 402-409
Jung,J.Y.,Bae,J., Liu, L.: Hierarchical business process clustering.
In: IEEE SCC (2), pp. 613-616. IEEE Computer Society (2008)
Kiepuszewski, B., Hofstede, A.H.M.T., van der Aalst, W.: Funda-
mentals of control flow in workflows. Acta Inform 39, 143-209
(2002)

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting
and Searching, 2nd edn. Addison-Wesley, Reading, MA (1973)
Koschmider, A.: Ahnlichkeitsbasierte Modellierungsunterstiitzung
fiir Geschiftsprozesse. Ph.D. thesis, Universitit Karlsruhe (TH),
Fakultit fiir Wirtschaftswissenschaften (2007)

Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity: a
proper metric. In: Proceedings of the 9th International Confer-
ence on Business Process Management, BPM 11, pp. 166-181.
Springer, Heidelberg (2011)

Kunze, M., Weske, M.: Metric trees for efficient similarity search
in process model repositories. In: Proceedings of the 1st Interna-

@ Springer

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

tional Workshop on Process in the Large (IW-PL *10). Hoboken,
NJ (2010)

Kunze, M., Weske, M.: Local behavior similarity. In: BPMDS 2012
and EMMSAD 2012, LNBIP, vol. 113, pp. 107-120. Springer
(2012)

Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman,
R.M., Stuckenschmidt, H.: Probabilistic optimization of semantic
process model matching. In: A.P. Barros, A. Gal, E. Kindler (eds.)
BPM, Lecture Notes in Computer Science, vol. 7481, pp. 319-334.
Springer (2012)

Levenshtein, V.: Binary codes capable of correcting deletions,
insertions and reversals. Sov. Phys. Doklady 10, 707 (1966)

Li, C., Reichert, M., Wombacher, A.: On measuring process model
similarity based on high-level change operations. In: Q. Li, S. Spac-
capietra, E.S.K. Yu, A. Olivé (eds.) ER, Lecture Notes in Computer
Science, vol. 5231, pp. 248-264. Springer (2008)

Lipkus, A.: A proof of the triangle inequality for the Tanimoto
distance. J. Math. Chem. 26, 263-265 (1999)

Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations
for business processes: a survey. In: Transactions on Petri Nets and
Other Models of Concurrency, chap. 2, pp. 46—63. Springer, Berlin
(2009)

Lu, R., Sadiq, S.: On the discovery of preferred work practice
through business process variants. In: Proceedings of the 26th Inter-
national Conference on Conceptual Modeling, ER’07, pp. 165—
180. Springer, Berlin (2007)

Manning, C.D., Schiitze, H.: Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA (1999)
Markovic, I., Costa Pereira, A., Francisco, D., Mu noz, H.: Query-
ing in Business Process Modeling, pp. 234-245 (2007)

Markovic, I., Pereira, A.C.: Towards a formal framework for reuse
in business process modeling. In: Business Process Management
Workshops, Lecture Notes in Computer Science, vol. 4928, pp.
484-495. Springer, Berlin (2007). doi:10.1007/978-3-540-78238-
4-49. http://www.springerlink.com/content/xqg3 144410255660/
Meersman, R., Dillon, T.S., Herrero, P. (eds.): On the move to
meaningful internet systems: OTM 2010—Confederated Interna-
tional Conferences: CooplS, IS, DOA and ODBASE, Hersonissos,
Crete, Greece, October 25-29, 2010, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 6426. Springer (2010)
Mendling, J.: Metrics for Process Models: Empirical Foundations
of Verification, Error Prediction, and Guidelines for Correctness,
Lecture Notes in Business Information Processing, vol. 6. Springer
(2008)

Miller, G.A.: Wordnet: a lexical database for english. Commun.
ACM 38, 39-41 (1995). doi:10.1145/219717.219748

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.:
Matching and merging of statecharts specifications. In: Proceed-
ings of the 29th International Conference on Software Engineer-
ing, ICSE 07, pp. 54-64. IEEE Computer Society, Washington,
DC (2007). doi:10.1109/ICSE.2007.50

Preparata, F.P., Shamos, M.I.: Computational Geometry: An Intro-
duction. Springer, New York (1985)

Reisig, W.: Petri Nets: An Introduction, Monographs in Theoretical
Computer Science. An EATCS Series, vol. 4. Springer (1985)
Rosemann, M.: Potential pitfalls of process modeling: part B.
Bus. Process Manag. J. 12(3), 377-384 (2006). doi:10.1108/
14637150610668024

Sakr, S., Al-Naymat, G.: Graph indexing and querying:
a review. Int. J. Web Inf. Syst. 6(2), 101-120 (2010).
doi:10.1108/17440081011053104. http://www.emeraldinsight.
com

Sakr, S., Awad, A., Kunze, M.: Querying process models reposito-
ries by aggregated graph search. In: Proceedings of the 3rd Inter-
national Workshop on Reuse in BPM, p. (to appear) (2012)

http://dx.doi.org/10.1109/ECOWS.2007.26
http://dx.doi.org/10.1109/ECOWS.2007.26
http://dx.doi.org/10.1109/ICWS.2006.37
http://dx.doi.org/10.1007/978-3-540-78238-4-49
http://dx.doi.org/10.1007/978-3-540-78238-4-49
http://www.springerlink.com/content/xqg31444r0255660/
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1109/ICSE.2007.50
http://dx.doi.org/10.1108/14637150610668024
http://dx.doi.org/10.1108/14637150610668024
http://dx.doi.org/10.1108/17440081011053104
http://www.emeraldinsight.com
http://www.emeraldinsight.com

Querying process models by behavior inclusion

1125

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

Shao, Q., Sun, P,, Chen, Y.: Wise: A workflow information search
engine. In: Proceedings of the 2009 IEEE International Confer-
ence on Data Engineering, pp. 1491-1494. IEEE Computer Soci-
ety, Washington, DC (2009). doi:10.1109/ICDE.2009.89
Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph sim-
ilarity. In: Proceedings of the 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’06), pp. 426-440 (2006)

Song, L., Wang, J., Wen, L., Wang, W., Tan, S., Kong, H.: Query-
ing process models based on the temporal relations between tasks.
In: Proceedings of the 2011 IEEE 15th International Enterprise
Distributed Object Computing Conference Workshops, EDOCW
"11, pp. 213-222. IEEE Computer Society, Washington, DC (2011)
doi:10.1109/EDOCW.2011.12

Uba, R., Dumas, M., Garcia-Bafiuelos, L., Rosa, M.L.: Clone detec-
tion in repositories of business process models. In: S. Rinderle-Ma,
F. Toumani, K. Wolf (eds.) BPM, Lecture Notes in Computer Sci-
ence, vol. 6896, pp. 248-264. Springer (2011)

Valmari, A.: The state explosion problem. In: Petri Nets, Lec-
ture Notes in Computer Science, vol. 1491, pp. 429-528. Springer
(1996)

van der Aalst, W.M.P.: Verification of workflow nets. In: ICATPN
’97: Proceedings of the 18th International Conference on Appli-
cation and Theory of Petri Nets, pp. 407-426. Springer, London
(1997)

van der Aalst, W.M.P.: The application of petri nets to workflow
management. J. Circ. Syst. Comput. 8(1), 21-66 (1998)
Vanhatalo, J., Volzer, H., Leymann, F., Moser, S.: Automatic work-
flow graph refactoring and completion. In: Proceedings of the 6th
International Conference on Service-Oriented Computing, ICSOC
’08, pp. 100-115. Springer, Berlin (2008)

Wang, J., He, T., Wen, L., Wu, N., Ter Hofstede, A.H.M., Su, J.: A
behavioral similarity measure between labeled petri nets based on
principal transition sequences. In: Proceedings of the 2010 Interna-
tional Conference on On the Move to Meaningful Internet Systems,
vol. Part I, OTM’10, pp. 394-401. Springer, Berlin (2010)
Weidlich, M., Dijkman, R., Mendling, J.: The icop framework:
identification of correspondences between process models. In: Pro-
ceedings of the 22nd International Conference on Advanced Infor-
mation Systems Engineering, CAiSE’10, pp. 483—-498. Springer,
Berlin (2010)

Weidlich, M., Elliger, F., Weske, M.: Generalised computation of
behavioural profiles based on petri-net unfoldings. In: M. Bravetti,
T. Bultan (eds.) WS-FM, Lecture Notes in Computer Science, vol.
6551, pp. 101-115. Springer (2010)

Weidlich, M., Mendling, J., Weske, M.: Efficient consistency mea-
surement based on behavioral profiles of process models. IEEE
Trans. Softw. Eng. 37(3), 410-429 (2011)

Weidlich, M., van der Werf, J.M.E.M.: On profiles and footprints—
relational semantics for petri nets. In: S. Haddad, L. Pomello (eds.)
Petri Nets, Lecture Notes in Computer Science, vol. 7347, pp. 148—
167. Springer (2012)

Yan, Z., Dijkman, R.M., Grefen, P.: Fast Business Process Similar-
ity Search with Feature-Based Similarity Estimation. In: Meersman
et al. [56], pp. 60-77

Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search:
The Metric Space Approach. Springer, Secaucus, NJ (2005)

Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net sim-
ilarity measure based on transition adjacency relations. Comput.
Ind. 61(5), 463-471 (2010)

Zloof, M.M.: Query by example. In: Proceedings of the May 19-22,
1975, National Computer Conference and Exposition, AFIPS 75,
pp. 431-438. ACM, New York, NY (1975). doi:10.1145/1499949.
1500034

Author Biographies

Matthias Kunze is a postdoc-
toral researcher at the Hasso Plat-
tner Institute (HPI) of IT Sys-
tems Engineering at the Univer-
sity of Potsdam, Germany. He
received his Masters degree from
the University of Potsdam in
2009 and his Ph.D. in 2013. The
core subject of his research is
on methodologies to search effi-
ciently in large process model
repositories. He made contribu-
tions to process model similar-
ity and querying, data structures
and algorithms for indexing, and

methods to facilitate the reuse of search results. His further research
interests include event processing and correlation with process models,
and process modeling methodologies. Matthias Kunze has published
his results in several workshops and conferences.

Matthias Weidlich is a research
fellow and adjunct lecturer at
the Technion—The Israel Insti-
tute of Technology. He received
his Ph.D. in Computer Science
from the Hasso Plattner Insti-
tute (HPI), University of Pots-
dam, Germany, in 2011. His
research focuses on processes as
the basis of behavioral model-
ing and analysis with contribu-
tions related to process model
matching, consistency analy-
sis, process transformations, and
compliance monitoring. Further,

his research interests include data interoperability and reasoning in
event-processing environments. His results appeared in journals, such
as IEEE Transactions on Software Engineering, Information Systems,
The Computer Journal, and Acta Informatica. He is on the editorial
board of Elsevier’s Information Systems and a member of ACM and

IEEE.

Mathias Weske is chair of
the business process technology
research group at Hasso Plattner
Institute of IT Systems Engineer-
ing at the University of Potsdam,
Germany. His research interests
include business process mod-
eling, process choreographies,
business process methodologies,
and service-oriented computing.
Dr. Weske has published twelve
books and over 100 scientific
papers in journals and confer-
ences. He is on the steering com-
mittee of the BPM conference

series, a member of ACM, IEEE, and GI. Dr. Weske has published
a textbook on business process management, and he leads the BPM

Academic Initiative.

@ Springer

http://dx.doi.org/10.1109/ICDE.2009.89
http://dx.doi.org/10.1109/EDOCW.2011.12
http://dx.doi.org/10.1145/1499949.1500034
http://dx.doi.org/10.1145/1499949.1500034

	Querying process models by behavior inclusion
	Abstract
	1 Introduction
	2 Motivating example
	3 Preliminaries
	3.1 Net systems
	3.2 Alignments
	3.3 Successor relations

	4 Fundamentals of behavior inclusion
	4.1 The notion of abstract trace inclusion
	4.2 Deciding abstract trace inclusion
	4.3 Vocabulary and expressiveness of a query
	4.4 The notion of closeness

	5 Efficient querying based on behavior inclusion
	6 Evaluation
	6.1 Data set
	6.2 Setup
	6.3 Results

	7 Related work
	8 Conclusion
	References
	Author Biographies

