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Abstract As more domain-specific languages (DSLs) are
designed and developed, the need to evaluate these languages
becomes an essential part of the overall DSL life cycle.
Corpus-based analysis can serve as an evaluation mecha-
nism to identify characteristics of the language after it has
been deployed by looking at how end-users employ it in
practice. This analysis that is based on actual usage of the
language brings a new perspective which can be considered
by a language engineer when working toward improving
the language. In this paper, we describe our utilization of
corpus-based analysis techniques and exemplify them on the
evaluation of the Puppet and ATL DSLs. We also outline an
Eclipse plug-in, which is a generic corpus-based DSL analy-
sis tool that can accommodate the evaluation of different
DSLs.

Keywords Domain-specific languages · DSL · Corpus ·
Analysis · ATL · Puppet

1 Introduction

Domain-specific languages (DSLs) provide their users with
a more expressive and easier-to-use language that is tar-
geted for a particular domain than what general-purpose
languages (GPLs) can offer [23]. These DSLs are built by
language engineers who are tasked with developing lan-
guages that represent domain-specific concepts in an effec-
tive way. The growing popularity of language workbenches
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(e.g., Xtext1) has provided assistance for language engineers
to develop DSLs and their supporting infrastructure in a more
automated way. Hence, such language workbenches support
the potential for more DSLs to be developed in the near
future.

After the initial development of a DSL, the language
engineer should monitor several characteristics of the DSL
in order to detect possible evolution opportunities that can
further improve the language in future versions. The iden-
tification of such characteristics can be done through a
post-deployment analysis of the DSL. However, it has been
observed that this type of evaluation on DSLs has received
less focus compared to the actual development of DSLs [9].

In this paper, we focus on analysis techniques based on the
evaluation of the corpus of a DSL. A DSL corpus in this case
consists of instances of a DSL reflecting its actual usage by
end-users. By evaluating how a DSL was used by its users, we
seek to determine characteristics that can help the language
engineer to evolve his or her language. We believe corpus-
based analysis can provide information regarding a DSL that
can complement other analysis techniques focusing on other
aspects of the DSL. The analysis techniques described in this
paper can be applied to DSLs that offer a textual notation,
which can also include DSLs that have a primary concrete
syntax that is not textual, but offer a secondary or intermedi-
ate textual representation.

The remainder of this paper is structured as follows: the
next section describes the motivation and contributions of our
work in more detail. Section 3 introduces the DSL corpora
that are used with the analysis techniques that are described
in Sect. 4. Section 5 summarizes observations from the use
of the analysis techniques, and Sect. 6 describes threats to
validity related to our evaluations. Section 7 describes our

1 http://www.eclipse.org/Xtext.
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Fig. 1 DSL analysis activities
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Eclipse plug-in that generalizes these analysis techniques.
Section 8 offers related work, and Sect. 9 concludes the paper
and summarizes future work.

2 Motivation

DSL analysis can be performed at various stages of the lan-
guage’s life cycle as can be seen in Fig. 1. Pre-deployment
analysis activities can include domain analysis during the
initial design of the language [23] and the utilization of for-
mal methods to verify, for example, the satisfiability of the
language [5]. After the DSL has been deployed, analysis can
be performed on the metamodel representing the DSL [26],
on individual models of the DSL [24] and on the results of
the DSL (i.e., its run-time execution [12] or its final gener-
ated artifact [1]). In addition, analysis of the language can be
performed by considering user feedback on the usage of the
DSL [7,14,16].

This paper follows a different approach that focuses on
DSL corpus analysis (highlighted in Fig. 1) after the lan-
guage has been deployed and once a reasonable corpus of
DSL instances from users becomes available. Evaluating a
language based on how it is actually used can yield inter-
esting characteristics about the language. For example, van
Amstel et al. [31] identified some tedious coding related to
variable initialization in the DSL that they evaluated, which
prompted the need to modify the language to eliminate the
tedious task. The identification came from the authors man-
ually looking at the instances or corpus of the DSL. Such a
scenario motivates the need to provide a mechanism in which
language engineers can obtain characteristics of the language
by performing analysis on the available corpus of their DSL.

It should be noted that corpus analysis in GPLs has
received much focus from the research community. While
corpus analysis activities for DSLs resemble those for GPLs,
we describe the following characteristics that highlight dif-
ferences between GPL and DSL corpus analysis in terms
of importance and coverage and justify the development of
specific techniques for the case of DSLs.

Non-programmer—As many DSLs are to be used by indi-
viduals with no computer programming experience, these
individuals may not be well suited to express what type of
change or evolution is needed to improve a DSL. In contrast,
GPLs are typically used by programmers or software engi-

neers who in many cases have adequate knowledge about
programming languages. Therefore, while for GPLs we can
rely on user feedback to get informative suggestions regard-
ing the improvement of the language, in general we cannot
expect the same from DSL users. For DSLs, finding other
means of evaluating the language in addition to user feed-
back can further assist in the evolution of a language. In this
case, the role of corpus analysis becomes more important to
identify implicit characteristics of the language.

Smaller user base—Typically, because of the specificity of
a DSL, its user base will be small compared to that of a
GPL. This also reduces the opportunities of a reactive user
feedback and reinforces the need for proactive techniques
that anonymously analyze the properties of the DSL.

Differing goals and scope of analysis—The analysis of GPLs
as compared to DSLs can be based on differing goals. For
example, the elimination of code clones (i.e., duplicated sec-
tions of code) in GPLs can be done by modularizing the code,
whereas for DSLs, a new language construct or metamodel
element could be considered. The scope of analysis can also
differ. For example, analyzing every metamodel element of
a DSL can be beneficial because of what each element rep-
resents in the domain. In contrast, analyzing every language
construct in a GPL can potentially be overkill as some con-
structs are less important and need to be grouped with other
constructs first to provide better analysis targets.

The need for generalized techniques—Due to the specific
nature of a DSL, the number of DSLs in existence can be
potentially much larger compared to that of GPLs. Again,
because of the growing popularity of language workbenches,
the effort it takes to develop a DSL is reduced and hence pro-
vides the potential for more DSLs to be generated. GPL cor-
pus analysis has mainly been focused on popular languages
such as C, C++, and Java. The complexity and sheer size
of these languages allow for many opportunities to analyze
the languages from different angles and justify the develop-
ment of specific techniques only useful for a single GPL. By
comparison, DSLs can be smaller in size and thus developing
analysis tools for a specific language becomes less efficient as
acknowledged by Monperrus et al. [24]. Hence, when devel-
oping analysis tools including those that analyze the corpus
of a DSL, a generalized mechanism is needed to allow for
a large coverage of languages that can be supported by the
tools.

123



Analysis of domain-specific languages 891

In this paper, we seek to utilize corpus-based analysis tech-
niques to determine characteristics of DSLs based on the
actual usage of the languages. The following are the main
contributions of this paper:

– The proposal of a set of corpus-based analysis techniques
for DSLs and their utilization for the evaluation of two
DSLs. The techniques were selected, because of their
potential to identify properties of DSLs for the language
engineer and because they are generic in a sense that they
can be applied to many DSLs.

– The description of an Eclipse plug-in offering corpus-
based analysis techniques that is applicable for multiple
DSLs. This generic method works on the EMF-based
representation of DSL instances and their corresponding
metamodels.

3 Corpus information

Before describing the analysis techniques we investigated,
we first introduce the DSL corpora used as illustrative exam-
ples in the remainder of the paper. The chosen DSLs were
Puppet2 and ATL [18]. The Puppet DSL is part of a server
automation tool that is used for expressing system configu-
rations. The ATL DSL is used in the context of model-driven
engineering (MDE) to express transformations of models that
conform to a source metamodel to models that conform to a
target metamodel. These DSLs were selected mainly because
of the public availability of a corpus for each language con-
sisting of a considerable number of models that could be used
to provide significant results and interpretations of the char-
acteristics of both DSLs when applying on them the analysis
techniques described in the next section.

The corpus for the analysis of Puppet comes from Pup-
petForge,3 a publicly accessible Web site that allows Pup-
pet users to share and download modules. Modules repre-
sent projects containing multiple Puppet models related to
the configuration of certain aspects of a server. The corpus
was downloaded through Geppetto,4 an Xtext-based IDE for
Puppet. At the time of download, 176 modules consisting of
728 Puppet models were retrieved. During the initial runs of
clone detection related to the clone analysis technique that is
described in Sect. 4.3, it was noticed that an exact copy of one
module called “lab42-activemq” existed in a sub-directory of
another module called “puppetlabs-activemq.” We removed
the duplicate copy of the “lab42-activemq” module in the
“puppetlabs-activemq” module. This omission reduced the
total model count from 728 to 706 models.

2 http://docs.puppetlabs.com/learning.
3 http://forge.puppetlabs.com.
4 http://cloudsmith.github.com/geppetto.

The corpus for the analysis of ATL was taken from the
ATL transformation zoo,5 a publicly accessible Web site that
lists transformation scenarios that have been contributed by
ATL users. The site consists of about 100 transformation
scenarios, where each scenario can contain multiple ATL
transformation models, as some scenarios require interme-
diary steps in their processes. Hence, more than 200 ATL
transformation models were available among these scenar-
ios. However, only 189 models were used in our analysis,
because upon manual observation, several of the models in
the zoo were near exact duplicates of each other similar to
the case of the duplicate Puppet module.

The corpora of Puppet and ATL differ in terms of model
sizes. Out of the 706 models from the Puppet corpus, the
largest model contains 2,466 model elements and the aver-
age size of the models is 79. In comparison, out of the
models from the ATL corpus, the largest model contains
12,500 model elements and the average size of the models
is 772.

4 Corpus-based analysis techniques

In the following subsections, we will propose the uti-
lization of several corpus-based DSL analysis techniques.
Although the evaluation is performed on a corpus consist-
ing of instances represented in the concrete syntax of the
language, the evaluation is performed at the abstract syntax
level, i.e., our analysis is geared toward the understanding of
characteristics of the DSL’s metamodel elements.

The techniques that will be applied are: instance analysis,
which seeks to identify the usage characteristics of meta-
model elements, relationship analysis, which seeks to iden-
tify relationship characteristics among metamodel elements,
and clone analysis, which seeks to identify duplicate usage
of a collection or sequence of metamodel elements in the
language. We consider these techniques to form an impor-
tant group of techniques to assist the language engineer of
a DSL to identify useful characteristics of the language.
These techniques are generic enough to be applied to many
DSLs.

In all three analysis techniques, we evaluated the EMF
model representations of the DSL instances in their respec-
tive corpora to associate metamodel elements with their
usages in each model. For Puppet, the EMF models were
obtained from the in-memory representation of Puppet files
in Geppetto. This is possible as Xtext, which Geppetto is
based on, represents a DSL instance or file as an EMF model.
For ATL, we obtained the EMF models by injecting ATL files
as models using the ATL IDE.6

5 http://www.eclipse.org/atl/atlTransformations.
6 http://www.eclipse.org/atl.
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4.1 Instance analysis

Instance analysis considers the extent of the usage of a meta-
model element as evidenced in the corpus of a DSL. This
basically implies counting the number of times an element is
used in the corpus. Adapting the evaluation of instances to all
metamodel elements in a DSL is feasible, because in contrast
with GPLs, the number of DSL primitives tends to be much
smaller. In addition, these elements in many cases represent
a specific concept in the domain, hence this counting for all
elements is meaningful and the identification of instances of
the use of all elements can potentially show how frequent a
domain concept is being represented in the DSL.

The simple statistic of counting the number of times a
metamodel element is used in the corpus can suggest the
popularity or lack there of for the actual use of the element by
DSL users. From a language improvement perspective, the
existence of several rarely used elements could potentially
signal a language that was over-developed and that could be
pruned by removing the unused elements. In contrast, the
high usage of an element can potentially signal the need to
focus future language improvements around that element.

More specifically, we consider two metrics for instance
analysis. The first is the number of times a metamodel ele-
ment is used throughout the corpus of a DSL. This provides
a general count of the usage of metamodel elements in the
corpus. A second metric is to count in how many models a
metamodel element is used at least once. In this case, we can
see how distributed the usage of the a metamodel element is
among the models in the corpus.

The remainder of this subsection reports on the instance
analysis of Puppet and ATL and shows how the metrics com-
puted were useful to uncover interesting data as confirmed by
the feedback provided by individuals who work closely with
these languages. For Puppet, the instance analysis revealed
characteristics related to the use of a newly supported fea-
ture and the varied use of interpolated strings. For ATL, the
analysis revealed the extent of the use of imperative features
in the mainly declarative ATL language.

4.1.1 Puppet

Tables 1 and 2 document usage of Puppet metamodel7 ele-
ments. Table 1 documents each usage of a metamodel ele-
ment, whereas Table 2 documents in how many Puppet
models a metamodel element was used at least once and
subsequently the percentage of models in the corpus that the
element is used in. The elements followed by a (*) denote
abstract elements in the metamodel.

7 https://code.google.com/a/eclipselabs.org/p/dsl-analysis/wiki/
Metamodels.

As can be seen in both tables, most elements were used
in the corpus. Abstract elements were correctly unused, but
still a few elements were not used at all. It could be the case
that these elements represent a specific concept that is very
rarely used in the Puppet language. In the extreme case, they
could signal the non-use of such elements and the need to
decide whether they should be supported in future versions
of the language.

A separate observation considers the use of the IfExpres-
sion element. In Table 2, out of 706 Puppet models, 89 con-
tained IfExpression. Half of the models (i.e., 42) contained
ElseExpression. However, only two models containedElseIf-
Expression. ElseIfExpression was not initially implemented
even though it was part of the language definition.8 The fea-
ture was eventually supported, but as of our download of the
modules from PuppetForge, the usage of ElseIfExpression is
still very limited. This observation could signal that in fact
adding this construct was not really necessary and, if the sit-
uation does not change, could be removed if later on it is
decided to simplify the language.

The results of our Puppet instance analysis were for-
warded to the developer of Geppetto. The developer sug-
gested a customized query to determine the pattern of usage
of text and interpolated variables. In Puppet, variable names
can be interpolated within strings. This introduces several
options of interpolating variables in strings, which in some
cases can be inefficient. For example, using curly brackets
with variables reduces ambiguities of identifying variables.
In order to determine the dominant practice of variable inter-
polation, more detailed instance analysis on the metamodel
elements associated with strings values and variables can be
performed. In this case, the initial instance analysis results
became a stepping stone for identifying more specialized
queries on a DSL that can provide further details on the use
of the language.

4.1.2 ATL

Table 3 documents the total usage of each ATL metamodel7

element, whereas Table 4 documents in how many and the
percentage of ATL models a metamodel element was used
at least once. Again, the elements followed by a (*) denote
abstract elements in the metamodel. As our research group
is the developer of ATL, we were able to ask team members
who are experts in ATL to evaluate the metamodel element
instance data. ATL is primarily a declarative language, but
in certain situations allows for imperative coding. Although
supported, imperative style coding is discouraged in ATL.
Because of this, the developer was encouraged to see that
the metamodel elements associated with the imperative part
of ATL was not used much (i.e., CalledRule and its associ-

8 http://projects.puppetlabs.com/issues/2713.
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Table 1 Puppet metamodel element usage (all instances)

Name Total Name Total Name Total

VerbatimTE 10,278 DefinitionArgumentList 230 MatchingExpression 3
LiteralNameOrReference 8,378 Definition 210 ElseIfExpression 2

DoubleQuotedString 7,280 CaseExpression 186 ExprList 1

AttributeDefinition 6,169 EqualityExpression 185 UnquotedString 1

VariableExpression 3,106 ElseExpression 96 AppendExpression 0

ResourceBody 2,132 ParenthesisedExpression 89 AttributeOperation* 0

AttributeOperations 1,964 LiteralUndef 65 BinaryExpression* 0

ResourceExpression 1,785 VirtualNameOrReference 57 BinaryOpExpression* 0

VariableTE 1,676 ImportExpression 44 Expression 0

AtExpression 1,476 LiteralRegex 39 ExpressionBlock* 0

SingleQuotedString 1,368 CollectExpression 34 ICollectQuery* 0

ExpressionTE 1,304 RelationshipExpression 33 InterpolatedVariable 0

SelectorEntry 1,116 VirtualCollectQuery 21 IQuotedString* 0

AssignmentExpression 948 OrExpression 20 LiteralExpression* 0

DefinitionArgument 795 UnaryNotExpression 16 LiteralName 0

LiteralBoolean 733 AndExpression 14 MultiplicativeExpression 0

PuppetManifest 706 AttributeAddition 13 ParameterizedExpression* 0

LiteralDefault 639 ExportedCollectQuery 13 ShiftExpression 0

SelectorExpression 557 HashEntry 13 StringExpression* 0

FunctionCall 538 NodeDefinition 11 TextExpression* 0

HostClassDefinition 507 LiteralHash 8 UnaryExpression* 0

LiteralList 373 AdditiveExpression 4 UnaryMinusExpression 0

Case 367 InExpression 4

IfExpression 261 RelationalExpression 4

ated ActionBlock were used only 78 and 135 times as seen
in Table 3). Furthermore, it can be seen that only 25 out of
189 models evaluated used these elements as seen in Table
4, which also shows only a limited number of transforma-
tions that used these elements. These data can be taken into
consideration in future changes to ATL in terms how much
support for imperative style coding should be continued.

4.2 Relationship analysis

Instance analysis is mainly concerned with the usage of indi-
vidual elements within the corpus. In contrast, in relation-
ship analysis, we consider how certain elements are present
together or are grouped together based on a particular cri-
terion to determine interesting relations among two or more
elements. It should be noted that in many cases two or more
metamodel elements will always be related, because together
they form a complete construct in the language. For exam-
ple, an ElseExpression will always be associated with an
IfExpression. We would like to identify more non-common
relationships among the metamodel elements. Such relation-
ships could suggest, for example, a sub-language within the
DSL, because of the strong relationships among a group of

metamodel elements. This could help us realize that our DSL
needs to be further decomposed in order to make sure it is
really domain-specific.

Clustering is a technique originating from the field of
data mining that can be used to associate two or more ele-
ments [13]. One type of clustering evaluates distance values
between elements to determine a grouping or cluster of ele-
ments that are considered “related.” Elements that have a
closer distance value could be considered to be more related
with each other. In our case, we adapt the clustering technique
such that the distance values between metamodel elements
are determined by counting the number of times a pair of
metamodel elements is used in the same “instance.” We con-
sider an instance as a model; hence, when a pair of metamodel
elements is used in the same model, then we increment the
count for that element pair. For example, consider metamodel
elements A, B, and C and models X, Y, and Z. If models X
and Y both contain metamodel elements B and C, and model
Z contains metamodel elements A and B, then Table 5 shows
a matrix that represents the co-occurrences among the meta-
model elements. In the matrix in Table 5, each metamodel
element is represented by a row and column. The cells con-
tain the number of times one metamodel element was associ-
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Table 2 Puppet metamodel element usage (model count)

Name Total (%) Name Total (%) Name Total (%)

PuppetManifest 706 (100 %) SelectorEntry 96 (14 %) MatchingExpression 2 (<1 %)

LiteralNameOrReference 657 (93 %) SelectorExpression 96 (14 %) RelationalExpression 2 (<1 %)

DoubleQuotedString 481 (68 %) IfExpression 89 (13 %) ExprList 1 (<1 %)

VerbatimTE 481 (68 %) EqualityExpression 59 (8 %) UnquotedString 1 (<1 %)

ResourceBody 477 (68 %) ElseExpression 42 (6 %) AppendExpression 0 (0 %)

ResourceExpression 477 (68 %) ParenthesisedExpression 28 (4 %) AttributeOperation* 0 (0 %)

AttributeDefinition 465 (66 %) ImportExpression 22 (3 %) BinaryExpression* 0 (0 %)

AttributeOperations 465 (66 %) LiteralUndef 22 (3 %) BinaryOpExpression* 0 (0 %)

HostClassDefinition 409 (58 %) OrExpression 15 (2 %) Expression 0 (0 %)

AtExpression 295 (42 %) VirtualNameOrReference 15 (2 %) ExpressionBlock* 0 (0 %)

VariableExpression 290 (41 %) CollectExpression 14 (2 %) ICollectQuery* 0 (0 %)

FunctionCall 204 (29 %) LiteralRegex 14 (2 %) InterpolatedVariable 0 (0 %)

AssignmentExpression 181 (26 %) NodeDefinition 11 (2 %) IQuotedString* 0 (0 %)

LiteralBoolean 178 (25 %) ExportedCollectQuery 10 (1 %) LiteralExpression* 0 (0 %)

SingleQuotedString 175 (25 %) RelationshipExpression 10 (1 %) LiteralName 0 (0 %)

LiteralList 173 (25 %) UnaryNotExpression 8 (1 %) MultiplicativeExpression 0 (0 %)

ExpressionTE 171 (24 %) AndExpression 5 (1 %) ParameterizedExpression* 0 (0 %)

DefinitionArgumentList 159 (23 %) AttributeAddition 5 (1 %) ShiftExpression 0 (0 %)

DefinitionArgument 153 (22 %) InExpression 4 (1 %) StringExpression* 0 (0 %)

VariableTE 151 (21 %) VirtualCollectQuery 4 (1 %) TextExpression* 0 (0 %)

LiteralDefault 148 (21 %) AdditiveExpression 3 (<1 %) UnaryExpression* 0 (0 %)

Definition 135 (19 %) ElseIfExpression 2 (<1 %) UnaryMinusExpression 0 (0 %)

Case 116 (16 %) HashEntry 2 (<1 %)

CaseExpression 116 (16 %) LiteralHash 2 (<1 %)

ated with another metamodel element. This value is what we
consider as the ”distance” between two metamodel elements
(i.e., the larger the number, the closer the distance between
the elements).

We record all pairwise instances of metamodel elements
in each model of the corpus. For example, Tables 6 and 7
display the top pairwise relationships for Puppet and ATL
metamodel elements, respectively. In the tables and in the
clustering processes of the DSLs that we evaluated, the pair-
wise relationships involving the PuppetManifest element for
Puppet and the OclModel, OclModelElement, VariableExp,
and NavigationOrAttributeCallExp elements for ATL were
excluded, because these elements appeared in all models (i.e.,
as seen in Tables 2, 4, respectively). This was the only consid-
eration of element relationships that was performed based on
manual observation. No semantic-based relationships were
specifically considered at this point.

We use a stand-alone clustering tool called gCluto9 to per-
form agglomerative clustering in which elements are clus-
tered until a predefined number of clusters has been reached.
The input of the clustering mechanism is the pairwise rela-

9 http://glaros.dtc.umn.edu/gkhome/cluto/gcluto/overview.

tionship counts as the distance values between a pair of
elements. Since the clustering process considers pairs with
smaller distance values to be more related, we need to calcu-
late the inverse of each value.

The evaluation of some clusters revealed relationships of
metamodel elements of interest, such as the related use of two
types of switch statements in Puppet. Other clusters revealed
no relationship of interest even after further manual analysis.
Both types of observations are described in the remainder of
this subsection. The elements in the described clusters are
not fully independent elements, in that in some cases they
are closely located within the metamodel structure. However,
their relationships are not forced due to structural constraints
of the metamodel. It should be noted that large models could
potentially influence the results of this analysis, because these
models represent a large number of recorded co-occurrences.
However, these models represent a way of using the language
that should be included in the results.

4.2.1 Puppet

Figure 2 shows a dendrogram of 10 clusters of Pup-
pet metamodel elements. In cluster no. 3, SelectorEntry,
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Table 3 ATL metamodel element usage (all instances)

Name Total Name Total Name Total

VariableExp 25,251 IfStat 503 Library 13

OclModelElement 18,021 Parameter 403 OrderedSetType 8

NavigationOrAttributeCallExp 16,231 LetExp 379 Query 8

Binding 14,105 Attribute 316 OrderedSetExp 3

OclModel 10,932 IntegerType 273 BagExp 0

OperationCallExp 7,792 RealType 257 BagType 0

StringExp 7,697 BooleanType 217 CollectionExp* 0

OperatorCallExp 5,613 SetType 209 CollectionType* 0

VariableDeclaration 4,940 ExpressionStat 202 DerivedInPatternElement 0

SimpleOutPatternElement 4,785 OclUndefinedExp 199 Element 0

CollectionOperationCallExp 3,287 IterateExp 169 InPatternElement* 0

Iterator 2,257 Module 168 IterateInPatternElement 0

OutPattern 2,006 LazyMatchedRule 143 LoopExp 0

SimpleInPatternElement 1,960 RuleVariableDeclaration 142 ModuleElement* 0

IteratorExp 1,956 TupleTypeAttribute 141 NumericExp* 0

InPattern 1,940 ActionBlock 135 NumericType* 0

MatchedRule 1,797 ForEachOutPatternElement 115 OclExpression* 0

IfExp 1,484 SetExp 109 OclFeature* 0

StringType 1,132 CalledRule 78 OclType* 0

SequenceExp 1,106 TuplePart 77 OutPatternElement* 0

Helper 1,021 TupleType 74 PatternElement* 0

OclFeatureDefinition 1,021 RealExp 68 Primitive* 0

IntegerExp 974 MapElement 55 PrimitiveExp* 0

BooleanExp 717 OclAnyType 55 PropertyCallExp* 0

Operation 702 MapType 50 Rule* 0

OclContextDefinition 687 LibraryRef 36 Statement* 0

BindingStat 681 TupleExp 29 Unit 0

SequenceType 670 MapExp 28

EnumLiteralExp 535 ForStat 17

SelectorExpression, Case, and CaseExpression are clus-
tered together. SelectorExpression andCaseExpression func-
tion similar to the Switch-statement in Java. The differ-
ence between SelectorExpression and CaseExpression is
that the former returns a value, while the latter does not.
Based on Table 2, CaseExpression occurs in 116 mod-
els and SelectorExpression in 96 models. If a large num-
ber of models contained both elements or one of them
was by far most common than the other, it could sug-
gest the need to consolidate their functionalities. A deeper
analysis revealed that only 36 models contained both ele-
ments, and hence, not many models contained both meta-
model elements. From a different angle, in Table 1, Selec-
torExpression was used 557 times compared to 186 for
CaseExpression. This could support consolidating the ele-
ments as one is used much more than the other in all
models.

4.2.2 ATL

Figure 3 shows a dendrogram of 10 clusters of ATL meta-
model elements. Metamodel elements representing the dif-
ferent types used in ATL are clustered together (i.e., ordered
sets in cluster no. 2, tuples in cluster no. 4, and maps in cluster
no. 8). In addition, a grouping of elements used together can
also be seen. The elements representing the core functionality
of ATL can be seen in the grouping in the last part of cluster
no. 10. Module elements consist of InPattern elements rep-
resenting the source models and OutPattern elements repre-
senting the target models. Binding elements define the trans-
formation between the source and target models. In addition,
elements related to the imperative part of ATL can also be
seen in cluster 3, where CalledRule and ActionBlock ele-
ments are associated with the imperative expression Bind-
ingStat, ExpressionStat, and IfStat.

123



896 R. Tairas, J. Cabot

Table 4 ATL metamodel element usage (model count)

Name Total (%) Name Total (%) Name Total (%)

OclModel 188 (99 %) BooleanExp 78 (41 %) Query 8 (4 %)

OclModelElement 188 (99 %) LetExp 75 (40 %) MapElement 6 (3 %)

VariableExp 188 (99 %) IterateExp 65 (34 %) OrderedSetExp 3 (2 %)

NavigationOrAttributeCallExp 187 (99 %) BooleanType 59 (31 %) OrderedSetType 2 (1 %)

OperationCallExp* 176 (93 %) EnumLiteralExp 44 (23 %) BagExp 0 (0 %)

Module 168 (89 %) IntegerType 41 (22 %) BagType 0 (0 %)

Binding 167 (88 %) LazyMatchedRule 39 (21 %) CollectionExp* 0 (0 %)

OutPattern 167 (88 %) RuleVariableDeclaration 38 (20 %) CollectionType* 0 (0 %)

SimpleOutPatternElement 167 (88 %) OclUndefinedExp 37 (20 %) DerivedInPatternElement 0 (0 %)

InPattern 165 (87 %) SetType 30 (16 %) Element 0 (0 %)

SimpleInPatternElement 165 (87 %) LibraryRef 28 (15 %) InPatternElement* 0 (0 %)

MatchedRule 162 (86 %) ActionBlock 25 (13 %) IterateInPatternElement 0 (0 %)

OperatorCallExp 160 (85 %) CalledRule 25 (13 %) LoopExp 0 (0 %)

CollectionOperationCallExp 159 (84 %) ForEachOutPatternElement 24 (13 %) ModuleElement* 0 (0 %)

VariableDeclaration 159 (84 %) SetExp 22 (12 %) NumericExp* 0 (0 %)

Iterator 158 (84 %) BindingStat 19 (10 %) NumericType* 0 (0 %)

StringExp 155 (82 %) ExpressionStat 18 (10 %) OclExpression* 0 (0 %)

IteratorExp 146 (77 %) MapExp 17 (9 %) OclFeature* 0 (0 %)

Helper 144 (76 %) MapType 17 (9 %) OclType* 0 (0 %)

OclFeatureDefinition 144 (76 %) IfStat 15 (8 %) OutPatternElement* 0 (0 %)

IfExp 129 (68 %) RealType 15 (8 %) PatternElement* 0 (0 %)

OclContextDefinition 116 (61 %) Library 13 (7 %) Primitive* 0 (0 %)

Operation 115 (61 %) OclAnyType 10 (5 %) PrimitiveExp* 0 (0 %)

SequenceExp 103 (54 %) RealExp 10 (5 %) PropertyCallExp* 0 (0 %)

IntegerExp 101 (53 %) ForStat 9 (5 %) Rule* 0 (0 %)

StringType 101 (53 %) TupleExp 9 (5 %) Statement* 0 (0 %)

SequenceType 95 (50 %) TuplePart 9 (5 %) Unit* 0 (0 %)

Parameter 82 (43 %) TupleType 9 (5 %)

Attribute 80 (42 %) TupleTypeAttribute 9 (5 %)

Table 5 Sample co-occurrence matrix

A B C

A – 1 0

B 1 – 2

C 0 2 –

It should be noted that not all clusters are meaning-
ful. Cluster no. 5 displays a potential relationship between
ForEachOutPatternElement and IterateExp, but upon man-
ual examination of the ATL models involved, only one of
the models contained IterateExpwithin aForEachOutPatter-
nElement element. In the remaining models, the two elements
were found in differing locations in the models in which case
did not suggest a relationship of interest.

4.3 Clone analysis

Clone analysis is concerned with the detection and evalua-
tion of duplications in the usage of a language. This analysis
technique was first considered in GPLs. The term code clones
refers to duplicated sections of code. The similarity among
these clones can vary from being exact duplicates of each
other to being near duplicates of each other based on looser
matching properties, which, for example, allows for differing
names or the addition/deletion of a few statements.

One reason for the need of clone analysis on DSLs is that
such activity has not received as much attention compared to
the evaluation of cloning in popular GPLs. Figure 4 shows
a tag cloud that is based on the number of times a language
was evaluated for cloning in papers listed in a bibliography of
clone-related papers.10 It can be seen that most research on

10 http://students.cis.uab.edu/tairasr/clones/literature.
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Table 6 Top Puppet metamodel element relationships

Elements Count

LiteralNameOrReference–ResourceBody 467

ResourceExpression–LiteralNameOrReference 467

ResourceExpression–ResourceBody 467

AttributeOperations–AttributeDefinition 463

LiteralNameOrReference–AttributeDefinition 463

LiteralNameOrReference–AttributeOperations 463

ResourceBody–AttributeDefinition 463

ResourceBody–AttributeOperations 463

ResourceExpression–AttributeDefinition 463

ResourceExpression–AttributeOperations 463

Table 7 Top ATL metamodel element relationships

Elements Count

Module–Binding 167

Module–OutPattern 167

Module–SimpleOutPatternElement 167

OutPattern–Binding 167

OutPattern–SimpleOutPatternElement 167

SimpleOutPatternElement–Binding 167

Binding–InPattern 165

Binding–SimpleInPatternElement 165

InPattern–SimpleInPatternElement 165

Module–InPattern 165

software clones has mainly focused on GPLs, such C, C++,
and Java.

The evaluation of clones can be performed for various
reasons. For example, detected clones can be evaluated for
elimination of the associated duplication. Higo et al. pro-
poses a metric-based approach to identify clones for refac-
toring activities to modularize the code associated with the
clones [15]. Modularization by abstracting a section of code
into a function is a common activity in GPLs. For DSLs, such
modularization is also possible, if the language supports it.
In contrast, a separate solution for DSLs would be to cre-
ate a new metamodel element that represents the commonly
cloned constructs. In this case, cloning is removed by the
addition or modification of the language itself.

In GPLs, clone detection is typically performed on syntac-
tically meaningful sections of code. For example, all methods
in an object-oriented language are compared. At a higher
granularity level, all statements in the language are com-
pared. For DSLs, the question posed is what are “meaningful”
sections in the language? This must be determined during the
adaption of clone detection for a particular DSL. In the case
of Puppet, a statement metamodel element is conveniently
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Fig. 2 Puppet metamodel element clustering
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Fig. 4 Tag cloud of languages focused in clone research

part of the language. Hence, we adapt clone detection for
Puppet by evaluating all statement metamodel elements and
their underlying sequence of elements for cloning. We con-
sider this element as representing a meaning collection of
constructs of the language. Determining the proper grouping
of elements to evaluate may not be as straightforward in other
DSLs. In Sect. 7, we consider a more general mechanism that
detects elements that are fully contained within another ele-
ment in an EMF model without specifically focusing on one
top-level metamodel element during the detection.

We detect clones using the suffix tree technique [11],
because of its popularity as a clone detection technique
[2,8,19,29]. In some usages of this technique (i.e., [8,29]),
the abstract syntax tree representation of the language is used
to generate a suffix tree, which is then subsequently searched
for duplicate sequences. In our case, we use the EMF-based
representation of Puppet instances to generate the tree. The
results of the detection process must be associated with the
actual concrete syntax of Puppet to allow the display of actual
code snippets that are identified as clones. We use features
from the Xtext infrastructure to re-associate the abstract syn-
tax to the concrete syntax. Because currently ATL does not
have an Xtext-based solution, an evaluation of ATL is not
included in this subsection. However, we refer the reader to
our previous work on the clone analysis of the object con-
straint language (OCL) part of ATL in [28].

The evaluation of the results of the clone detection is given
in the remainder of this subsection. The analysis revealed
that cloning in Puppet occurs throughout the corpus that was
evaluated. Hence, it is not restricted to a specific module or
specific authors of the modules.

4.3.1 Puppet

For the case of Puppet, we perform detection in the state-
ment level of the Puppet models. The detection identifies
statements that are Type I and II clones [3]. Type I clones are
clones that are exactly the same where whitespace and com-
ments are ignored. Type II clones are clones that may have
the same sequence or structure of metamodel elements, but
can differ in terms of the values associated with the elements.
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Table 8 Exact clones in Puppet

Statement filter Clone groups SLOC

All 96 756 (4 %)

Three or more nodes 42 434 (3 %)

Six or more nodes 33 391 (2 %)

10 or more nodes 16 250 (1 %)

Table 9 Parameterized clones in Puppet

Statement filter Clone groups SLOC

All 197 4,492 (26 %)

Three or more nodes 195 4,443 (26 %)

Six or more nodes 182 4,238 (25 %)

10 or more nodes 151 3,673 (21 %)

Tables 8 and 9 provide a general summary of cloning in
Puppet showing the amount of Type I (exact) and Type II
(parameterized) clones, respectively. Different sizes of state-
ments were considered during the detection process, which
was intended to remove any small clones that may be super-
fluous because of its size. It can be seen that considerable
cloning occurs in the statement level in Puppet (i.e., around
20 % of all SLOC in Table 9).

As stated previously, modules are a collection of Puppet
models related to the configuration of certain aspects of a
server. In PuppetForge, modules written by the same author
can also be identified. We next consider the distribution of
clones among the Puppet modules. This is related to where
each clone in a clone group is located. A clone group in this
case contains clones that represent the same duplication. Four
types of distributions are considered:

– Single: the clones in a clone group reside in the same
model

– Module: the clones in a clone group reside in the same
module

– Author: the clones in a clone group reside in two or more
modules having the same author

– Multiple: the clones in a clone group reside in two or
more modules having different authors

Table 10 depicts the distribution of Type II clones within
their respective clone groups. If we combine the Module and
Author distributions, we can see three distributions that each
comprise one-third of the clone groups in Puppet:

– Clone groups with clones all residing in a single model
– Clone groups with clones residing in one or more mod-

ules written by the same author

– Clone groups with clones residing in multiple modules
of different authors

This observation suggests that the occurrence of cloning is
evident throughout the Puppet modules that were evaluated.
In other words, cloning is not restricted to specific models
or modules written by specific authors. Hence, the extent of
cloning that is commonplace throughout the Puppet corpus
suggests that any effort to deal with the clones through, for
example, introducing a new metamodel element can be con-
sidered as a general language solution.

5 Discussion

The main implication of this work is that the three analysis
techniques and their associated results that are applied to
DSLs have yielded information about each language based
on their respective corpora, which are highlighted below. We
have focused on analysis techniques that can be applied to
multiple DSLs and thus become beneficial for the analysis
of more than one language. Related to this, an Eclipse-based
plug-in that is described in Sect. 7 offers potential for the
analysis techniques to be performed on other Xtext-based
DSLs.

A common knowledge gained from the results is the pop-
ularity of usage of certain metamodel elements. For example,
in Puppet the ElseIfExpression was not used as much as the
related if and else expressions. Similarly, between the two
types of select statements, one is more prominently used than
the other. This information can be used as the basis for decid-
ing to drop the unused constructs from future versions of the
language. The popularity of metamodel element usage can
also provide insight into whether a DSL is being used as it is
intended. For example, for ATL, the corpus analysis revealed
a promising trend of the use of the declarative constructs of
the language compared to the usage of imperative constructs
that were included in the language. In this case, the DSL
developer is reassured regarding the declarative usage of the
language. These observations in both Puppet and ATL were
not necessarily based on the most numerous elements listed
in Tables 1, 2, 3 and 4. Instead, based on the knowledge of the
language, certain elements in the table were focused on after
observing their instance rate. Hence, knowledge and experi-
ence with the DSL are essential in interpreting numbers put
forth by

The corpus analysis also revealed a common trend in the
DSL, in which case it can provide initial evidence of the
need to manage the particular trend in the language usage.
For example, in Puppet, clone analysis revealed a common
trend of cloning occurring throughout the language usage.
The developer can determine whether these clones need to
be eliminated through modularization features in future lan-
guage versions.
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Table 10 Parameterized clone
distribution Distribution All Statement filter

3 or more nodes 6 or more nodes 10 or more nodes

Single 65 (33 %) 64 (33 %) 61 (34 %) 56 (37 %)

Module 18 (9 %) 18 (9 %) 18 (10 %) 11 (7 %)

Author 52 (26 %) 52 (27 %) 49 (27 %) 46 (30 %)

Multiple 62 (31 %) 61 (31 %) 54 (30 %) 38 (25 %)

The initial analysis results can also be a stepping stone
to more detailed analysis on a DSL. For example, in Pup-
pet, further analysis of how DSL users interpolate string
was suggested by the Puppet IDE developer after evaluat-
ing the results from our initial analysis. Further analysis of
instances can include statistical distributions to find trends of
occurrences of the metamodel elements. Related to the co-
occurrence matrix described in Sect. 4.2, a heat map can be
superimposed on the matrix to visualize high co-occurrence
instances. In addition, more detailed analysis can be obtained
through the use of other related analysis techniques. For
example, latent semantic analysis (LSA) [6] could be consid-
ered as part of relationship analysis to determine more latent
relationships embedded in the corpus of a DSL. These rela-
tionships can be based on LSA of naming usage in the corpus
of the DSL if such a feature is available in the language.

Despite the observations outlined above related to the ATL
and Puppet DSLs, a major challenge for corpus-based analy-
sis on DSLs in general is the availability of a corpus for these
DSLs. The evaluation of GPLs is aided by source code that
is widely available from public repositories such as Source-
Forge and in individual open source project repositories. We
have observed that this is not the case for DSLs. This situa-
tion has also been noted by other researchers [17,27]. Pub-
lic repositories containing a DSL corpus are not as widely
available as GPLs. This may be due to the fact of the domain-
specific nature of the languages, which limits their number
of users. Another possibility is the sometimes proprietary
nature of a DSL, which restricts the exposure of an associ-
ated corpus to the public.

6 Threats to validity

Despite our analysis techniques being generic in the sense
that they can be applied to any DSL, the fact that they have
been validated using only two specific DSLs is a clear threat
to validity of this study. More DSLs need to be examined
in order to confirm the usefulness of corpus-based analysis
techniques. As commented before, a major hurdle for this
extended analysis is the limited availability of repositories of
DSL models. However, the sizes of the corpora used in our

analysis are comparable in size to the corpora used in other
related DSL corpus analysis research. The corpora used in
related work that will be described in Sect. 8 consisted of
between under 100 to over 1,000 items/models. The corpora
sizes of ATL (i.e., 189 models) and Puppet (i.e., 706 models)
are comparable to other corpora evaluated.

The quality of the corpus can also be a bias in the analysis.
A corpus must be representative of the DSL instances cre-
ated by end-users. For instance, one of the ATL developers we
consulted with suggested that the ATL corpus we were using
mainly consisted of good (i.e., well-written) ATL transforma-
tions, which could explain why the presence of (undesired)
imperative constructs was very limited. This could inevitably
threaten the validity of the analysis results. To alleviate this,
the corpus of a DSL must be evaluated to determine whether
it is representative of the users of the DSL and not only of,
for instance, expert users.

Related to clone analysis, the concrete syntax of a DSL
can be very different from that of popular GPLs such as C
and Java. In some cases, such as in Puppet, the ordering
in specific constructs is not important. For example, in the
following snippet of Puppet code, the list of attributes and
their respective values can be written in a different order, but
will mean the same in Puppet.

file {’testfile’:
path => ’/tmp/testfile’,
ensure => present,
mode => 0640,
content => ’’I’m a test file.’’,

}

Our suffix tree-based clone detection technique cannot
identify clones where elements that have the same meaning
are ordered differently. Hence, special consideration must be
included for DSLs that exhibit similar characteristics.

7 Tool support

In this section, we describe an Eclipse plug-in11 that offers
the corpus-based analysis techniques from Sect. 4 for Xtext-

11 http://code.google.com/a/eclipselabs.org/p/dsl-analysis.
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Fig. 5 DSL analysis process

generated DSLs. We selected Xtext not only due to its cur-
rent popularity as a language workbench, but also because
the DSL instances in the Xtext DSL infrastructure are rep-
resented in-memory as an EMF model [32]. EMF models in
their own right are widely used within the MDE paradigm.

Given that we process the DSL corpus through their EMF
model representations, DSLs written outside Xtext but that
are represented as EMF models can also utilize at least the
instance and relationship analysis techniques. This is because
these two techniques extract their information directly from
the models. In contrast, the clone analysis technique requires
additional information, because we must associate the con-
crete syntax of the clone segments to allow the language
engineer to actually see what parts of the corpus are cloned.
This forces to have available the Xtext infrastructure in order
to associate cloned segments of the model with the actual
DSL code.

Figure 5 outlines the DSL analysis process. The Eclipse
plug-in performs its analysis on the EMF model represen-
tation of DSL instances. For DSLs written with Xtext, APIs
are available that allow for the extraction and manipulation of
EMF models representing DSL instances by external sources
such as our plug-in. In addition, the plug-in can also obtain
the models from sources other than Xtext (i.e., other sources)
for the instance and relationship analyses, but not for clone
analysis.

It should be noted that the clone analysis for Puppet
described in Sect. 4.3 performed clone detection on all state-
ments under the Definition metamodel element in the Puppet
corpus. This allowed us to focus detection on a structurally
meaningful metamodel element. However, for the generic
clone detection version, the dependence on a specific meta-
model element of a specific DSL must be removed. In this
case, we perform suffix tree-based clone detection without
identifying a structurally meaningful metamodel element or
group. This makes the detection process require an addi-
tional step, as it must identify whole clones from the results.
In the plug-in, we only display clones that represent an entire
metamodel element and its contained objects or a sequence
of metamodel elements and their corresponding contained

objects. This is similar to the process of finding clones rep-
resenting meaningful syntactic blocks as described in [8].

The analysis report generated by the plug-in is displayed
in views and an HTML file. The top view in Fig. 6 displays
the number of times a metamodel element is used overall (i.e.,
“All count” column) and the number of models an element
is used in (i.e., “Model count” column). It should be noted
that an Eclipse plug-in that incorporates instance analysis on
individual models of Xtext-based DSLs has been proposed.12

In contrast, we seek to perform instance analysis on an entire
corpus of a DSL rather than just a single instance.

The bottom view in Fig. 6 displays the generated clusters.
For the plug-in, we replaced the gCluto stand-alone cluster-
ing tool that was used in Sect. 4.2 with Java-based libraries
from Weka13 to allow the clustering results to be directly
available in Eclipse. This is the reason for the different clus-
tering results in Fig. 6 compared to that in Fig. 2. A Newick
tree format14 can be obtained from the plug-in and exported
to a graphical renderer to display a cluster dendrogram sim-
ilar to Figs. 2 and 3.

Currently the results of the clone detection process are
displayed as an HTML file, a snippet of which can be seen in
Fig. 7. For each clone group reported by the detection
process, the number of clones in the group, the number and
names of the files that contain the clones are given. The actual
code associated with each clone is also displayed. A more
streamlined mechanism where the clones are highlighted
directly in the source editor is being considered.

8 Related work

In the following, we describe and compare several related
works that have considered the evaluation of DSL(s) based
on an available corpus.

12 http://www.sigasi.com/content/view-complexity-your-xtext-
ecore-model.
13 http://www.cs.waikato.ac.nz/ml/weka.
14 http://evolution.genetics.washington.edu/phylip/newicktree.html.
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Fig. 6 Eclipse plug-in views

Muehlen and Recker performed analysis on a corpus con-
sisting of business process modeling notation (BPMN) mod-
els [25]. Instance and relationship analyses were considered,
but clone analysis was not. Muehlen and Recker wanted to
determine what parts of BPMN were used more than others
based on the corpus. They proposed the results as a way to
educate future BPMN users on how to reduce the complexity
of BPMN models. In this sense, the target of the results is

the users of the DSL rather than the DSL language engineer,
which is who we focus on in our work.

Lämmel and Pek evaluated a corpus of the P3P Web pol-
icy language using various techniques including clone and
instance analysis [21]. The analysis provided general char-
acteristics of the P3P language such as the prevalence of
cloning among P3P files and extensions of the language that
exceeded the complexity of the base language. Although the
paper considered the abstract syntax of P3P, much of the eval-
uation is on actual values of the configuration, such as data
constants and extensions. In contrast, we deal with the eval-
uation of the use of the metamodel elements of the language.

Jeanneret et al. [17] proposed techniques to determine the
footprints of pre-defined operations on models to determine
to what extent were the elements in the models touched or
used in certain operations. The target of the results are for
the users or developers of the models to assist them in gen-
erating models with proper levels of detail as they relate to
the operations that will be performed on them. Such infor-
mation could also be beneficial for the language engineer to
consider whether the language used to create the models is
too detailed for the operations performed on them.

Monperrus et al. [24] defined a generative approach of
measuring domain-specific models. A model measurement
tool can be generated by specifying the desired metrics as
a model that conforms to a metric specification metamodel.
Our Eclipse plug-in differs in that it is generic in the sense
that it does not rely on any specific information from a DSL’s
metamodel.

The observation of cloning in UML models was consid-
ered by Störrle [27]. UML models were translated into Prolog
where the detection process was performed. As we focus on
DSLs developed in Xtext, the textual nature of these lan-
guages allowed us to adapt a cloning technique from GPLs.
We will consider incorporating a clone detection technique
that is based more on the graphical representation of DSLs.

Fig. 7 Snippet of clone detection report
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Still related to UML, several works have performed evalu-
ation on a UML corpus [4,10]. However, many of the metrics
that are reported are specific to UML (e.g., number of asso-
ciations, generalizations, and use cases). Our goal of evalua-
tion is to be applicable to different DSLs; hence, we selected
properties that are generic enough to be applied to differ-
ent languages. Nevertheless, evaluations that are specific to
a particular language is worth identifying if they can be of
benefit. In addition to these works, Kim and Boldyreff [20]
and Lange et al. [22] propose tools that can report several
types of metrics on UML corpus. However, no actual evalu-
ation was performed on a particular UML artifact.

These works and ours have a commonality in that all per-
form or facilitate the evaluation of DSLs based on the actual
usage of the language (i.e., based on a corpus). Although the
purposes of the analyses vary and the languages evaluated
differ, these works provide a growing collection of research
on DSL analysis, which can potentially contribute positively
to the overall DSL developmental process and to the DSL
community.

9 Conclusion and future work

In this paper, we have shown the extraction of DSL charac-
teristics that are based on the evaluation of the actual usage
of the language. The utilization of instance, relationship, and
clone analyses on the Puppet and ATL DSLs has revealed
useful characteristics about these languages for the respective
language engineer to take into consideration in identifying
future improvements in the language. Corpus-based analysis
can complement other DSL analysis techniques in an overall
effort to evaluate a DSL.

For future work, we will consider evaluating other DSLs
that have an associated corpus. We will also consider addi-
tional analysis techniques based on discussions with DSL
authors. For example, we have previously investigated the use
of LSA on C programs [30], which could also be considered
for DSLs. We would also like to consider shared characteris-
tics in DSLs that can point to certain useful ”design patterns”
(or on the contrary, anti-patterns) of DSLs. In addition, we
would also like to integrate our tool with other popular lan-
guage workbenches. In a separate direction, the comparisons
of analysis results of GPLs and DSLs will also be investigated
to see whether both share common characteristics or there
are actually different language structures that are common to
DSLs but not in GPLs.
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