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Abstract Applying model-driven engineering (MDE) in
industrial-scale systems requires managing complex models
which may be very large. These models must be persisted
in a way that allows their manipulation by client applica-
tions without fully loading them. In this paper, we propose
Morsa, a model repository that provides scalable manipu-
lation of large models through load on demand and incre-
mental store; model persistence is supported by a NoSQL
database. We discuss some load on demand and incremental
store algorithms as well as a database design. A prototype
that integrates transparently with EMF is presented, and its
evaluation demonstrates that it is capable of fully managing
large models with a limited amount of memory. Moreover, a
set of benchmarks has been executed, exhibiting better per-
formance than the EMF XMI file-based persistence and the
most widely used model repository, CDO.

Keywords MDE · Model persistence · Model repositories ·
Model scalability · Large models · NoSQL ·
Document databases

Communicated by Prof. Tony Clark and Prof. Jon Whittle.

This work is funded by the Spanish Ministry of Science (project
TIN2009-11555) and Fundación Séneca (grant 14954/BPS/10).

J. E. Pagán (B) · J. G. Molina
Universidad de Murcia, Murcia, Spain
e-mail: jespinazo@um.es

J. G. Molina
e-mail: jmolina@um.es

J. S. Cuadrado
Universidad Autónoma de Madrid, Madrid, Spain
e-mail: jesus.sanchez.cuadrado@uam.es

1 Introduction

The increasing maturity of model-driven engineering (MDE)
technologies is promoting their adoption by large companies
[1,2], taking advantage of their benefits in terms of productiv-
ity, quality and reuse. However, applying MDE in this context
requires industry-scale tools that can operate with very large
and complex models. Model-driven modernization [3,4] is an
example of scenario where these tools would be needed to
efficiently manage very large and complex models extracted
from source code [3] or data [5] of legacy artifacts. One basic
operation of such tools is model persistence and the corre-
sponding model access, and they must satisfy two essential
requirements: scalability and tool integration.

One critical concern for the industrial adoption of MDE is
the scalability of tools when accessing large models. As noted
by [6], “scalability is what is holding back a number of poten-
tial adopters”. Several scenarios can be defined for scalabil-
ity on client applications, depending on the kind of access and
manipulation done to persisted models; e.g. a user-oriented
scenario is the one where human users do small edits on
models and visualize whole models concurrently. The sce-
nario we address in this paper is an application-oriented one,
where applications such as model transformations read only
small portions of models and process them (e.g. to create new
models or to generate different artefacts such as source code
or documentation); a persistence solution that tackles such
scenario must provide means to traverse specific parts of a
model efficiently instead of fully loading it.

One approach for tackling scalability is to partition models
via some modularization construct provided by the model-
ing language [6]. Instead of having to manage large models,
modularization would allow to keep the models at a reason-
able size. However, the complexity of large models makes it
difficult to automatically partition them into fragments that
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are easily accessible [7], hence having a scalable model per-
sistence solution would be mandatory. For example, source
code models extracted from a legacy system being modern-
ized may not be properly modularizable because of the com-
plexity of their interconnections.

The XMI (XML Metadata Interchange) format [8] is nor-
mally used for the serialization (i.e. persistence) of models.
When some operation (e.g. a model transformation) is per-
formed on a model, the stored XMI file has to be parsed
to build the model in memory as an instance of its meta-
model. For example, in the widely used eclipse modeling
framework (EMF) [9], the usual approach consists of a SAX
parser that fully reads an XMI file and builds the entire model
in memory at once. However, large models may not be fully
kept in memory, causing the parser to overflow the client.
Although XMI files support modularization through refer-
ences between modules (i.e. files), requesting a single ele-
ment from a referenced module would require its full load,
so this solution does not scale. Therefore, as noted in [7], han-
dling large models requires some mechanism that allows the
client to load only the objects that will be used. This load on
demand behaviour is a must when pursuing scalable model
persistence.

To overcome the limitations of XMI-based persistence,
model repositories [10,11] are emerging as persistence solu-
tions for large models, providing remote model access with
advanced features such as concurrent access, transaction sup-
port and versioning; some available model repositories are
discussed in Sect. 9. Currently, CDO [10] is the most mature
repository for EMF; however, it does not scale properly as
shown in Sect. 10.

Tool integration is another concern that arises when
client applications access persisted models. The integration
between a persistence solution and any client should be trans-
parent, that is, it should conform to the standard model access
interface defined by the considered modeling framework (e.g.
the Resource interface of EMF). Moreover, a persistence
solution that integrates transparently must not require any
pre or post-processing on the (meta)models to load or store
them, e.g. requiring source code generation for the persisted
(meta)models [10,11].

In this paper, we present Morsa, a model repository
aimed at achieving scalability and transparent tool integra-
tion. The problem of scalability is tackled using load on
demand and incremental save mechanisms supported by
an object cache which is configurable with different poli-
cies. We discuss how these policies fit for common model
traversals such as depth-first order and breadth-first order.
The design of Morsa’s data model is heavily inspired on
the document-based NoSQL database paradigm (although
it could be deployed over any kind of database). The NoSQL
database paradigms are gaining popularity because of their
approach to define highly-scalable databases with simple

data architectures. The document-based paradigm consists
of maps of key-value pairs (see Sect. 2.3), which provide
a more natural persistence for models than object-relational
mappings; for instance, a many-to-many relationship could
be represented as a key-value pair instead of using inter-
mediate tables as object-relational mappings do. We have
dealt with the problem of transparent tool integration by
implementing the EMF interface and by designing our load
and store algorithms so that no pre or post-processing is
required.

We contribute a prototype implementation for EMF [12]
that uses a MongoDB [13] NoSQL backend and integrates
transparently with client tools such as model transformation
languages. A set of benchmarks has been executed to evaluate
Morsa, demonstrating that it is capable of fully loading large
models with a limited amount of memory. Moreover, it also
exhibits better performance for EMF than the XMI file-based
persistence and CDO [10].

A paper introducing a preliminary version of Morsa [14]
was presented in the MODELS 2011 Conference. The cur-
rent paper shows a change in the design of the repository and
a more detailed description of its capabilities, including full
and incremental model store, update and delete. The evalu-
ation has also been extended with benchmarks that test the
performance of these capabilities. Moreover, the background
and related work of the former paper have also been enriched.
For the sake of readability, the changes done from the pre-
vious version to the current one are explained separately in
Sect. 11.1. Finally, a few recommendations for selecting per-
sistence solutions are given.

The rest of the paper is structured as follows: Sect. 2
presents the concept of model persistence and some termi-
nology about MDE and the NoSQL movement that ease the
understanding of our proposal; Sect. 3 introduces the running
example; Sect. 4 shows the architectural and data design of
our repository; Sects. 5, 6 and 7 explain how Morsa stores,
loads, updates and deletes models, respectively; Sect. 8 dis-
cusses the integration and implementation of Morsa; Sects. 9
and 10 comment the related work and the evaluation and
finally, Sects. 11 and 12 shows the knowledge gained with
our previous and current experience on model persistence
and our conclusions and further work.

2 Background

This section defines some basic concepts related to the persis-
tence of models for a better understanding of the approach
presented in this paper. The concept of model persistence
is introduced after a brief discussion of the representation of
(meta)models as object graphs. Moreover, the NoSQL move-
ment is introduced as an alternative to relational databases
and object-relational mappings for model persistence.
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2.1 Metamodeling

In MDE, the four-level metamodeling architecture [15] is
normally used to explain the relationships between models,
metamodels and meta-metamodels. A model represents some
aspect of a particular domain and is described by a metamodel
which establishes its structure.

A metamodel is a model that describes the concepts and
relationships of a certain domain. A metamodel is commonly
defined by means of an object-oriented conceptual model
expressed in a metamodeling language such as Ecore [9]
or MOF [16]. A metamodeling language is described by a
model called the meta-metamodel. Metamodeling languages
provide four main constructs to express metamodels: classes
(normally referred as metaclasses) for representing domain
concepts, attributes for representing properties of a domain
concept, association relationships between pairs of classes
for representing connections between domain concepts and
generalizations between child metaclasses and their parent
metaclasses for representing specialization between domain
concepts. We will use the term structural feature to refer to
both attributes and relationships.

Figure 1 shows a metamodel that represents a simple
object-oriented programming language with concepts such
as module, class, feature, field, method and parameter, which
are represented by metaclasses. A special OOModel meta-
class has been introduced to aggregate all modules. All
these metaclasses have a name attribute, shown only in the
OOModel metaclass for the sake of readability. The example
shows also several association relationships among the meta-
classes (modules, classes, returnType, features, type)
and a generalization between Feature, Method and Field.
Figure 2 shows a model that represents an object-oriented
program consisting of two modules, two classes, one method,
one field and two method parameters.

An instance-of (or conformance) relationship is given
between a model and its metamodel as well as between
a metamodel and its meta-metamodel. The elements of a
(meta)model are instances of (conform to) the metaclass of its
(meta)metamodel. For example, object modelOne of Fig. 2
is an instance of metaclass OOModel of Fig. 1, which is in
turn an instance of the element from the metamodeling lan-
guage that represents metaclasses (e.g. EClass in the Ecore
meta-metamodel). A (meta)model can be represented as a
directed labelled graph whose nodes are instances of meta-
classes and whose arcs are determined by association rela-
tionships, being the labels on those arcs their association
kinds (for models) or the name the associations (for meta-
models).

Two kinds of association relationships can be established
between metamodel metaclasses (and therefore between
model elements): containment and reference. A reference
relationship is a reference from a source metaclass (or

Fig. 1 Metamodel for a simple object-oriented programming language

Fig. 2 Example model representing an instance of a simple object-
oriented programming language

model element) to a target metaclass (or model element).
For instance, the relationship returnType between meta-
classes Method and Class shown in Fig. 1 is a reference;
this relationship is also shown between instances classOne
and methodOne in Fig. 2. A containment relationship is a
kind of part-of relationship (or aggregation) from a container
element (i.e. a metaclass or model element) to a contained
element. Such relationship has three properties:

– Exclusive ownership: the contained element cannot be
part of more than one container element.

– Dependency: the lifetime of a contained element is the
same as the one of its container element.
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– Transitivity: if an element A is contained by an element
B and B is also contained by another element C, then A
is contained by C.

For instance, the relationship between metaclasses Mod-
ule and Class in Fig. 1 is a containment; this relationship is
also shown between instances moduleTwo and classOne in
Fig. 2. Although containment relationships are not compul-
sory in all metamodeling languages, we assume their exis-
tence because it is the way EMF is designed and also because
they can be semantically emulated by regular relationships.

The approach presented in this paper to persist models is
based on the fact that models are object graphs, so some ter-
minology defined for graphs which will be used throughout
this paper is introduced below. Given an object (i.e. a model
element):

– an ancestor is an object that transitively contains it;
– a descendant is an object transitively contained by it;
– a child is an object that is directly contained by it;
– a parent is an object that directly contains it;
– a sibling is an object that shares the same parent with it;
– its breadth is its position inside the list that contains it;
– its depth is the number of ancestors that contain it.

Moreover, a subgraph (i.e. model partition) is a graph
whose nodes and arcs are a subset of a given graph, and a
root object is an object that has no ancestors. We illustrate
the meaning of these concepts using the model on Fig. 2,
which shows the containment relationships between model
elements. In this figure, we can observe the following:

i. modelOne is the root object, so its depth is 0.
ii. methodOne’s ancestors are classOne, moduleTwo

and modelOne, so its depth is 3.
iii. classTwo is a sibling of classOne and its breadth is 2.
iv. classOne’s parent (container) is moduleTwo.
v. classOne’s children are methodOne and fieldOne.

vi. classOne’s descendants are methodOne, fieldOne,
parameterOne and parameterTwo. A subgraph could
be formed by these objects.

2.2 Model persistence

Different approaches are used to permanently store models
and metamodels. The three main persistence solutions are (i)
XML serialization based on the XMI format, (ii) relational
databases through object-relational mappings such as Teneo
[17] and (iii) at a higher abstraction, model repositories such
as CDO [10].

Model persistence is a service normally provided by mod-
eling frameworks (e.g. EMF). These modeling frameworks

usually define persistence interfaces that allow client appli-
cations to access persisted models, e.g. the EMF Resource
interface. These interfaces provide methods for the four basic
operations involved in moving models between memory and
persistence:

– Load: a model or a model partition is transferred from a
persistence solution to the client’s memory. It involves
rebuilding a persisted object (sub)graph into a set of
model elements. If the whole object graph is rebuilt, the
model is fully loaded; otherwise, if only a subgraph (i.e.
model partition) is rebuilt, the model is partially loaded.

– Store: a model or a model partition is transferred from the
client’s memory to a persistence solution. It involves rep-
resenting an in-memory model in the format used by the
persistence solution (e.g. relational tuples). If the whole
object graph is stored at once, the model is fully stored;
otherwise, if only a subgraph is stored, the model is incre-
mentally stored.

– Update: a model or a model partition that is already per-
sisted is modified in the client’s memory and then trans-
ferred to the persistence solution. It involves modifying
the already persisted objects to reflect the changes done
by the client application. An update is usually done in
an automatic fashion when a modified model or model
partition is stored.

– Delete: a model or model partition is removed from
the repository. Deletion may be performed automatically
when a model or model partition is updated and some
model elements have been removed from it.

These operations are needed when client applications
access models and traverse them for different purposes. For
example: a model-to-model transformation may look for a
particular object that satisfies a given condition and then tra-
verse all its descendants in order to generate a new target
model element; a model-to-code transformation may simply
traverse a whole model, processing each object once or twice,
etc. Both transformations require loading a model, traversing
it and, in the case of a model-to-model transformation, build
model elements in memory. Because the loaded models may
be very large, persistence support for partial load may be cru-
cial for achieving scalability at the client. Incremental store is
also very important because it can provide the client methods
to discard already generated objects, freeing memory.

A persistence solution provides transparent integration
when client applications may access it using the persistence
interface defined by the corresponding modeling framework
without any form of pre or post-processing, such as changing
the models or metamodels to add persistence data or generat-
ing persistence-specific source code for the metamodels. For
example, the XMI file-based persistence solution for EMF
does not require generating metamodel-specific Java classes
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because it may use dynamic objects, which can be generically
built at runtime. On the other hand, EMFStore [11] requires
the modification of a metamodel to persist its instances.

2.3 The NoSQL movement

As mentioned in the introduction, we propose a model repos-
itory whose data model is heavily inspired on the document-
based NoSQL databases. Two decades ago, new database
applications that would require managing complex objects
(e.g. geographic information or multimedia systems) evi-
denced the limitations of the relational model for the repre-
sentation and processing of that sort of data. Then, new kinds
of database management systems (DBMS) were defined,
such as object-oriented and object-relational database sys-
tems [18].

More recently, database applications for domains such as
searching text on the web or processing data streams have
again exposed that relational DBMSs are not adequate for
the new user requirements and hardware characteristics (dis-
tribution, scalability, etc.) [19]. The number of applications
for which the “one size fits all” approach of the commercial
SQL solutions does not apply is increasing. This approach is
too general to achieve certain degrees of scalability and per-
formance and leads to an excessive deployment complexity
from a design and architectural point of view [19].

The NoSQL [20] term is used to refer to different new
database paradigms which are an alternative to the predom-
inant relational DBMSs. Web applications such as social
networks (e.g. Facebook), text searching (e.g. Google) and
e-commerce (e.g. Amazon), which manage very large and
complex data, are some examples of scenarios where differ-
ent NoSQL databases have been successfully used. The main
difference between NoSQL databases and relational data-
bases is the set of properties they provide; while relational
databases provide all the ACID (Atomicity, Consistency, Iso-
lation and Durability) properties, NoSQL databases provide a
subset of the CAP properties: Consistency (whenever a writer
updates, all readers see the updated values), Availability (the
system operates continuously even when parts of it crash) and
Partition tolerance (the system copes with dynamic addition
and removal of nodes).

The main flavours of NoSQL are the key-value stores,
the document databases and the column-oriented ones. Key-
value stores have a single map/dictionary that allows clients
to put and request values per key. Key-value stores such as
Dynamo [21] favor high scalability over consistency and omit
rich querying and analytics features. Document databases
such as MongoDB [13] and CouchDB [22] encapsulate key-
value pairs in composite structures named documents, pro-
viding more complex and meaningful data than key-value
stores without any document schema, thus eliminating the
need of schema migration efforts. Finally, column-oriented

databases such as Bigtable [23] store and process data by
column instead of rows in a similar way as the analytics and
business inteligence solutions.

The application of NoSQL databases to MDE provides a
natural mapping between models and their persisted counter-
parts: as explained above, models can be seen as graphs, and
some kinds of NoSQL databases such as the document-based
ones are well-suited for representing graphs; on the other
hand, the mapping from graphs to tables and rows used by
relational databases and object-relational mappings is cum-
bersome, less natural and less readable. Moreover, there are
some features of the NoSQL databases that may be be ben-
eficial to the persistence of models:

i. Scalable: as explained before, many MDE applications
involve large models. Applications that involve large
amounts of data representing object models scale better
in NoSQL than in relational databases [20].

ii. Schemaless: having no schemas means having no restric-
tions to co-evolve metamodels and models. Relational
repositories usually create database schemas for each
stored metamodel, making their evolution more difficult
and the conformance of existent models to the newer ver-
sions of their metamodels [10].

iii. Accessible: many NoSQL databases offer their data as
JSON objects [24] through APIs that can be accessed via
HTTP or REST calls. This provides additional opportu-
nities to access models from web browsers, web services,
etc. The integration of MDE and web-based technologies
could lead to the storage of models in the Cloud [25].

3 Running example

A running example is used to illustrate the design of our
approach. It is based on the reverse engineering case study
of the Grabats 2009 contest [26]. This case study consisted
in executing a particular query on five very large test mod-
els representing Java source code. The JDTAST metamodel
that defines these models is composed of three packages:
the Core package includes metaclasses that represent logical
units such as projects, packages or types; the DOM package
includes metaclasses for representing abstract syntax trees
for Java source code, e.g. compilation units, methods, pack-
ages and type declarations, literals and annotations; finally,
the PrimitiveTypes package includes metaclasses that rep-
resent Java primitive types such as String or Integer.

The query proposed in the case study consists in obtain-
ing every class that declares a static public method whose
returning type is that same class. Figure 3 shows the subset
of the JDTAST metamodel involved in this query. The infor-
mation about Java modifiers and returning types is specified
in the DOM package. However, there is no explicit reference
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Fig. 3 Grabats 2009 contest JDTAST metamodel simplification

Fig. 4 Architecture of the Morsa repository

from a method’s returning type (Type object) to the decla-
ration of that type (TypeDeclaration object); the matching
between both objects must be done by their name. The query
basically consists in the following steps for each TypeDec-
laration object of the model:

1. Get the fullyQualifiedName of the Name object refer-
enced by its name relationship.

2. Find at least one MethodDeclaration object referenced
by its bodyDeclarations relationship that:

– has a Type object referenced by the returnType rela-
tionship and

– that Type object has a Name object referenced by
the name relationship and

– that Name object has a fullyQualifiedName attribute
that matches the fullyQualifiedName obtained in
step 1.

Of course, this query could be implemented in efficient ways
that do not involve iteratively checking every TypeDeclara-
tion object. We have chosen this running example for three
reasons: (i) the test models are very large and capable of
overloading the memory of a client application, which is one
of the issues that we address; (ii) these models have been
extracted from the source code of real applications and (iii)
the test query is a realistic example of the kind of access done
by client applications such as model transformations.

4 Design

In this paper, we present Morsa, a model repository for man-
aging large models. As commented in Sect. 1, Morsa has two
main design goals: transparent integration and scalability.
The goal of transparent integration requires an architectural
design that allows client applications to use the repository
without doing any specific modifications on the modeling
artifacts or the source code, such as editing the (meta)models
or using specific programming interfaces. The architectural
design of our solution is described in Sect. 4.1.

The goal of scalability requires a data design that is loosely
coupled enough to support the load and store of model parti-
tions or single objects from a large model in an efficient way
for the client. The data design of our solution is described in
Sect. 4.2. Moreover, the architectural design is also involved
in the goal of scalability since its components support the
data design.

4.1 Architectural design

The architecture of Morsa consists of a client side and a server
side, as shown in Fig. 4. The client side is hosted on the client
machine, i.e. the one that runs the client application and the
server side is hosted on a remote machine, e.g. a dedicated
server (although it may be the same machine).

The client side of Morsa supports integration through a
driver (MorsaDriver) that implements the modeling frame-
work persistence interface, allowing client applications to
manipulate models in a standard way. Since Morsa is aimed
at manipulating large models, a load on demand mechanism
has been designed to provide clients with efficient partial
load of large models, achieving scalability [7]. This mech-
anism relies on an object cache (ObjectCache) that holds
loaded model elements to reduce database queries and man-
age memory usage; it is managed by a configurable cache
replacement policy (CachePolicy) that decides whether the
cache is full or not and which objects must be unloaded
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from the client memory if needed. The client side com-
municates with the server side using a backend adapter
(MorsaBackend) that abstracts it from the actual database.
An encoder (MorsaEncoder) is used to create and manipu-
late repository objects and backend queries.

On the server side of Morsa, a database backend provides
the actual storage of models. Thanks to the MorsaBackend
component, which is an adapter, any kind of database can
be used for persisting models. Moreover, the data design of
Morsa has been devised having in mind a NoSQL document
database, so the mapping between the client side and the
server side for such databases is natural and almost direct.
Mappings between Morsa and other databases can be applied,
but their implementation could be less direct and hence less
efficient.

4.2 Data design

On the client side of Morsa, a data model has been designed
to represent the objects stored in the repository in a way that
provides independence from the actual database backend.

As explained in Sect. 2.1, a model can be seen as a graph
whose nodes are the model elements and whose arcs are the
relationships among them. A model is represented in Morsa
as a collection of MorsaObjects connected through Mor-
saReferences. Such a collection is called MorsaCollec-
tion and has an identifier (e.g. the URL of the (meta)model
in EMF); MorsaCollections can also represent model parti-
tions (i.e. a subgraphs). Since a metamodel can also be seen
as a model that conforms to a meta-metamodel, the repre-
sentation of both models and metamodels is homogeneous.
Figure 5 shows an example of the representation of a model
in the Morsa repository. On the left side, an instance of the
JDTAST metamodel (see Fig. 3) is shown; on the right side, a
set of MorsaObjects represents both the model and the part
of the metamodel referenced by the model elements. Solid
arrows represent relationships between elements and dashed
arrows represent instanceOf relationships between objects
and their metaclasses.

Each MorsaObject represents a model element and is
composed of a set of key-value pairs that encode the struc-
tural features of that element. The key is the name of the
structural feature and the value may be a primitive value if
the feature is an attribute or a MorsaReference if the feature
is a relationship; multi-valued attributes (e.g. collections in
Ecore) are represented as collections of values (e.g. arrays
in MongoDB). A MorsaObject also contains a descriptor of
metadata used for identification, querying and optimization.
This descriptor is also encoded as a set of key-value pairs.
For a given MorsaObject representing a model element, its
descriptor specifies the following features:

Fig. 5 Example of repository persistency for the running example

i. MorsaID: repository-unique, backend-dependent identi-
fication (e.g. a UUID).

ii. Metatype: MorsaReference to the MorsaObject repre-
senting the metaclass from which the model element has
been instantiated.

iii. Container: MorsaReference to the MorsaObject rep-
resenting the model element that contains this one (see
Sect. 2.1).

iv. Ancestors: a list of MorsaReferences to the MorsaOb-
jects that represent the ancestors of the model element
(see Sect. 2.1).

v. Breadth: the position of the model element inside its con-
taining relationship.

vi. Depth: the number of ancestors of the model element.

The MorsaID is a key feature because it allows the Object-
Cache to uniquely identify loaded objects in the client
side. The Metatype feature allows the client side to infer
the objects’ structural features. Breadth, Depth, Ancestors
and Container features represent the structure of the object
graph and are used for partial loading as explained later in
Sect. 6.1.2.

A MorsaReference is composed of, at least, the MorsaID
of the referenced element and the identifier of the MorsaCol-
lection that holds it, i.e. its containing model; depending on
the implementation of MorsaBackend being used, it may
contain additional information.

Figure 6 shows the internal structure of the MorsaOb-
jects that represent the elements t2 and TypeDeclaration
of the model and metamodel, respectively, shown in Fig. 5.
The MorsaID, Container, Ancestors and Metatype values for
this example have been simplified to the name of the object
for the sake of readibility. Note that the Breadth feature of
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Fig. 6 Internal structure of two MorsaObjects

t2 has a value of two because t2 is located on the second
position of the typeDeclarations relationship of the c1 Com-
pilationUnit; also note that its Metatype feature references
the MorsaObject that corresponds to the TypeDeclaration
metaclass.

A special MorsaCollection called the index collection
holds the index object, which is a singleton MorsaObject
whose keys are the identifiers of the (meta) models stored
in the repository (e.g. URIs for EMF) and whose values are
MorsaReferences to the root objects of those (meta)models.
For each metamodel package, a MorsaCollection is cre-
ated. The index object is used by the MorsaDriver to access
(meta)models. Figure 7 shows how the index object refer-
ences the root objects of the three packages (Core, DOM
and PrimitiveTypes) defined in the metamodel of Fig. 3.
Note that the index object points to the jm1 model element,
which is the root of the javaModel1 model, described in
Fig. 5.

MorsaObjects provide the client side a way to transfer
model elements from/to a Morsa repository that is backend-
independent. Figure 8 illustrates the components of the client
side architecture that interact to load a model element; for the
sake of readability, some components and operations such
as the ObjectCache and its related mechanisms have been
omitted. The following steps are executed:

i. The client application requests a model element.
ii. The MorsaDriver (which is accessed transparently by

the client application since it implements the modeling
framework persistence interface) passes the request to the
MorsaBackend.

iii. The MorsaBackend encodes the request using the Mor-
saEncoder and sends it to the database.

iv. The object returned by the database is decoded by the
MorsaEncoder into a MorsaObject by request of the
MorsaBackend, who returns it to the MorsaDriver.

v. The MorsaDriver transforms the MorsaObject into an
object that conforms to the modeling framework (e.g.
EObject for EMF), which is returned to the client appli-
cation.

The interaction for storing a model element is very sim-
ilar. The actual processes of storing and loading model ele-
ments are more complex and will be explained in Sects. 5
and 6, respectively. The following sections describe the algo-
rithms for the store, load and update operations on models
and model partitions, as defined in Sect. 2.2. These algo-
rithms are explained in terms of the presented data model,
so transfer of objects from/to the database is obviated for the
sake of simplicity and the persistence backend is seen as a
set of MorsaObjects rather than a database.

5 Model storage

When a model is created in client memory from scratch, for
example, by means of a model transformation, it has to be
stored in the repository to become persistent. Model store
is the operation of storing a model in the repository for the
first time or fully replacing a model that is already persistent.
Storing a model may be seen as a simple task; basically, the
MorsaDriver transforms the elements of the input model into
MorsaObjects and saves them into the persistence backend.
If the input model is too large to store it in one single operation
due to network latency or to be kept it in the client’s memory,
it may be stored in several steps. We call the simplest sce-
nario full store; the other scenario is called incremental store.
Metamodels are stored prior to its conforming models using
full store if they are not already persisted in the repository.

5.1 Full store

The full store algorithm is executed when a model is stored for
the first time or when it is fully replaced. This algorithm uses
a fixed-size queue, namely pending object queue, to optimize
the access to the database backend. When an input model is
traversed to generate the persistent model, the created Mor-
saObjects are temporally stored in the pending object queue
rather than sent to the database backend, hence the queue acts
as a buffer. By sending a batch of stores instead of many indi-
vidual ones, the communication between the client side and
the server side is optimized, avoiding overheads. After being
sent to the persistence backend, the MorsaObjects are dis-
carded from the client memory.

The first step of the algorithm is to create the new Mor-
saCollection that will represent the stored model in the
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Fig. 7 Collections contained
by the repository for the
JDTAST metamodel packages
and three sample models

Fig. 8 Simplification of the
interaction between client side
components for loading a model
element

repository. Then, the algorithm traverses the whole model
in a depth-first order, executing the following steps for each
model element:

1. A MorsaObject is created, storing all the feature values
of the model element:

(a) Attributes are encoded by the MorsaEncoder as
primitive type values.

(b) Relationships are encoded by the MorsaEncoder as
MorsaReferences.

(c) References to model elements that have not been
already stored imply the creation of new MorsaIDs
that will be assigned to those model elements at the
time they are stored.

(d) The descriptor of the model element (see Sect. 4.2)
is calculated and encoded. If the model element does
not have any corresponding MorsaID, a new one is
created and assigned to it.

2. The newly created MorsaObject is added to the pending
object queue. If the queue is full or if the last model
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element has been traversed, all its MorsaObjects are sent
to the persistence backend in its own representation.

5.2 Incremental store

When a model is stored for the first time or when it is fully
replaced but is too big to be kept in the client’s memory
or to be stored in a single operation, the incremental store
algorithm is used. A scenario for incremental store could be
one where a client extracts objects from an external resource
in a streaming fashion and stores them in several steps, i.e.
every step stores a model partition. The incremental store
algorithm consists in executing the already described full
store algorithm for every model partition that has to be stored,
but with two differences: (i) only one MorsaCollection is
created for all the model partitions (since they all belong
to the same model) and (ii) every time a model partition is
saved, all the objects that represent it are unloaded. To unload
an object is to remove it from memory, making room for the
objects that represent the next model partition. The process of
unloading will be explained in Sect. 6. Morsa keeps track of
the already processed objects using a save cache that maps
them to their MorsaIDs. When the last model partition is
stored, this map is deleted.

Since relationships between objects can be stored in the
repository prior to the referenced objects, the incremental
store scenario may lead to dangling references if the process
is stopped before completion. To solve this, Morsa provides a
special operation that eliminates all references to objects that
have not been actually stored in the repository. There are two
possible scenarios, depending on the connection between the
driver and the repository: on one hand, if the driver has been
connected to the repository over all the incremental store
process and it still is, it calculates the difference between
the save cache (i.e. the model elements that have a MorsaID
assigned to them) and the model elements that have been
actually stored in the repository and then removes or updates
all the stored MorsaReferences that reference them; on
the other hand, the calculation is done traversing the whole
persisted model. Since such updates of the repository are
very expensive, they are natively executed at the database
where possible (e.g. using JavaScript server-side functions
in MongoDB).

6 Model loading

This section is dedicated to the load operation on models, as
described in Sect. 2.2. First, the two diferent scenarios that
we have identified for model loading will be described; then,
the load on demand algorithm will be explained and finally
the cache management and replacement policies that run on
the client side will be described.

6.1 Loading scenarios

Since our approach is intended to manipulate large models,
two scenarios have been considered: full load and load on
demand. These scenarios are explained in detail below. The
load on demand scenario has been tackled using an object
cache managed by a cache replacement policy. Metamodels
are always fully loaded and kept in memory for efficiency
reasons: they are relatively small compared to models and it
is worth loading them once instead of accessing the persis-
tence backend every time a metaclass is needed. Each object
is identified in the persistence backend by its MorsaID fea-
ture. A mapping between loaded objects and their MorsaIDs
is held by the object cache (ObjectCache) to know which
objects have been loaded, preventing the driver to load them
again. The selection and configuration of each scenario is
done by the client application by parameterization of the
MorsaDriver; this implies gathering as most information as
possible about the access pattern that is going to be per-
formed.

6.1.1 Full load

Consider a small or medium-sized model that can be kept in
memory by a client application. If the whole model is going
to be traversed, it would be a good idea to load it once, hence
saving communication time with the persistence backend. We
call this scenario full load and this is the way EMF works
when loading XMI files. We aim at supporting full load with
the least memory and time overhead possible. The Morsa full
load algorithm works simply by fetching all the MorsaOb-
jects of a model following its containment relationships. A
new model element is created in the client memory for every
MorsaObject, filling its features with the values stored in
that MorsaObject.

6.1.2 Load on demand

Consider a model that is too large to be kept in memory by
a client application; consider also a model that can be kept
in memory but only a part of it is going to be traversed. An
efficient solution for loading models in both cases would be
to load only the necessary objects as they are needed, and then
unload the ones that eventually become unnecessary to save
client memory. This scenario is called load on demand. We
define two load on demand strategies: single load on demand
and partial load on demand.

A single load on demand algorithm fetches objects from
the database one by one. This behavior is preferred when the
objects that need to be accessed are not closely related (i.e,
they are not directly referenced by relationships) and memory
efficiency is more important than network performance, that
is, when the round-trip time of fetching objects from the
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persistence backend is not relevant. The resulting cache will
be populated only with the traversed objects.

On the other hand, a partial load on demand algorithm
fetches an object subgraph from the persistence backend
starting from a given root object. The structure of the sub-
graph to be fetched is customizable: given a requested root
object, its subgraph contains all its descendants within a cer-
tain depth and breadth values. For example, consider that
in the model shown in Fig. 9 a objects jm1 and jp1 have
already been loaded and pf1 is requested with a maximum
subgraph depth of four and maximum subgraph breadth of
two. Because the Depth feature value of pf1 is two, the max-
imum depth will be six. Objects pf1, ic1, ic2, c1, c2, t1, t2,
t4, t5, m1, m2, f1 and m4 will be included in the subgraph,
but t3, f2 and t6 will not, because their Breadth feature value
is three (greater than two). Note that m3 has a depth of 6 and
a breadth of one, but since its parent t3 is not included in the
subgraph, it does not get loaded either. This behavior is pre-
ferred when all the objects that are related to an object will
be traversed soon and memory efficiency is less important
than network performance, that is, when the round-trip time
of fetching objects from the persistence backend is critical.
The resulting cache will be populated with the objects that
have been traversed and those expected to be traversed in the
near future, as shown in Fig. 9c. For the sake of readability,
the MorsaIDs shown in this figure are the names of the cor-
responding objects. This is a simple form of prefetching that
tries to take advantage of spatial locality.

6.2 Load on demand algorithm

The load on demand algorithm is triggered whenever a model
element that is not in the client’s memory (i.e. in the Object-
Cache) is requested; this can be done by explicit request
from the client application or by implicit request when a
relationship is traversed and the referenced element is not in
the client’s memory. Our load on demand algorithm work as
follows:

1. A model element is requested.
2. The MorsaDriver requests the fetching of the corre-

sponding MorsaObject to the MorsaBackend.
3. A new model element is created, filling its attributes with

the values stored in the MorsaObject and its relation-
ships with proxies that allow the load on demand of the
referenced model elements. These proxies are special
objects that have the same structure as model elements,
but hold no feature values. Instead, they hold a URI con-
taining a MorsaReference that allows their resolution
by the repository. When a proxy is resolved, it becomes a
model element with all its feature values filled. In EMF,
the idea of proxies is used to represent cross-resource
references.

Fig. 9 Partial load on demand in the running example: a model b object
cache before partial load c object cache after partial load

4. The new model element and its proxies are stored in
the ObjectCache, mapping them to their corresponding
MorsaIDs.

(a) If single load on demand is used, go to step 5.
(b) If partial load on demand is used, a request is

sent to the MorsaBackend to get all the objects
of the defined subgraph. The MorsaBackend uses
the Ancestors feature to calculate which objects are
descendants of the requested one and then to filter
the results using their Depth and Breadth attributes.
Each one of these objects is then loaded executing
the steps 1 to 3 of this algorithm.

5. If the cache becomes overloaded, some objects of the
cache are unloaded as explained in the next section.

6. The new model element is returned to the client applica-
tion, which can use it as a regular element.
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6.3 Cache management

The object cache holds the objects that have been loaded from
the repository for three purposes: (i) memory management,
(ii) object identification and (iii) prevent loading objects that
have been already loaded. The object cache is parameterized
by a size limit and a replacement policy; both parameters are
set by the client application, which passes them to the Morsa
driver.

The size limit is the amount of objects that can be held by
the cache; however, this limit is soft because some modeling
frameworks such as EMF require model elements to have
their relationships filled, that is, their values must be fetched
in the form of proxies or actual model elements. For example,
consider again the model in Fig. 9a: elements jm1 and jp1
have already been loaded and are stored in the cache, which
has a maxium size of seven objects, as shown in Fig. 9b. The
partial load on demand of pf1 is requested with a subgraph
depth of two and a subgraph breadth of two, meaning that
pf1, ic1, ic2, c1 and c2 will be loaded and stored in the
cache. However, since the modeling framework requires the
direct relationships of every object to be fully filled, when
c1 and c2 are loaded, their children t1..t6 must be fetched as
proxies and stored in the cache, causing it to be overloaded
to a size of 13 model elements as shown in Fig. 9c.

Whenever the cache becomes overloaded, the exceeding
model elements must be unloaded. A cache replacement pol-
icy algorithm selects the elements to be unloaded from the
client memory. Unloading an element implies downgrading
it to a proxy, i.e. unsetting all its features. A proxy requires
less memory than an actual model element, and it can be dis-
carded by the underlying language if it is not referenced by
any other object.

When a modified model element is unloaded, all its
changes must be persisted in some way to prevent losing
them. Storing the element in the MorsaCollection that cor-
responds to its model would not be appropriate, since the
unloading mechanism is not triggered by the client, who
sees the model as it is entirely in-memory and may want
to persist changes only at a certain moment. Because of
this, modified elements are stored as MorsaObjects in a
special MorsaCollection called the sketch collection; this
collection is also persistent in the repository. Whenever, a
model element is requested, the sketch collection must be
examined in the first place to check if that element has been
modified and unloaded previously. The presence of modified
model elements in the sketch collection partly invalidates the
representation of the graph structure of the model built by
the Ancestors feature values, since modified ancestors and
descendants are not updated in the persistence backend. A
partial load on demand of a subgraph that contains modified
ancestors or descendants would ignore objects that are con-
tained in the subgraphs of the modified ones. Elements are

removed from the sketch collection when they are loaded into
memory or when the model is explicitly stored by the client.
The definition of a modified model element is explained in
Sect. 7.

6.4 Cache replacement policies

A cache replacement policy is encapsulated in a CacheP-
olicy object. We have considered four cache replacement
policies:

i. A FIFO (First In-First Out) policy would unload the old-
est objects of the cache. This policy is useful when a
model is traversed in depth-first order, but only if the
cache can hold the average depth of the model. On the
contrary, it would cause objects to be unloaded after being
traversed and then loaded again when requested for tra-
versal.

ii. A LIFO (Last In-First Out) policy would unload the most
recent objects of the cache. This policy is useful when
a model is traversed in breadth-first order, but only if
the cache can hold the average breadth of the model.
Both the LIFO and the FIFO policies calculate the size of
the subgraph directly contained by the object that caused
the cache overload and unload that many objects. In the
example of Fig. 9, a LIFO policy would unload the objects
t1...t6, while a FIFO policy would unload jm1, jp1, pf1,
ic1, ic2, and c1.

iii. A LRU (Least Recently Used) policy would unload the
least used objects of the cache. The LIFO, FIFO and LRU
policies are well-known in the area of operating systems.
A LRU policy would be equivalent to a FIFO one for
depth-first and breadth-first traversals.

iv. A LPF (Largest Partition First) policy would unload all
the elements that conform the largest model partition con-
tained by the cache. This is a conservative solution that
is useful when a model is traversed in no specific order.
It does not consider if the selected elements are going to
be traversed, so it may lead to multiple loads of the same
objects. This policy unloads at least an amount of objects
proportional to the maximum size of the cache.

The choice of which cache replacement policy is used is
currently made by the end user. However, it could be automat-
ically made by the MorsaDriver by analysis of (meta)models
and access patterns (i.e. prefetching).

7 Model updating and deleting

When a model is loaded (fully or partially), modified and then
stored back, an update operation takes place. As mentioned
in Sect. 2.2, an update is a store operation where the stored
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elements have been modified. Therefore, the update algo-
rithm is an extension of the one described in Sect. 5.1 for
the full store: model elements are traversed in the same way,
but modified and deleted objects must be treated differently.
Another scenario that involves model update is when a model
is generated in several steps: as each step is finished, the gen-
erated subgraph is no longer necessary and hence, it can be
unloaded from the client’s memory; some of the unloaded
objects may be loaded back and modified to perform further
steps.

We consider that a model element is modified if any of its
feature values has changed or if it has been moved from one
parent to another. We classify modified elements in three cat-
egories: modified elements are model elements whose feature
values have changed, modified parents are model elements
whose containment relationships have changed and modi-
fied children are model elements that have been moved from
one parent to another. Note that while a modified parent is a
special kind of modified element, a modified child may not
have any of its feature values changed. Modified elements are
updated to the repository. Modified parents must update also
the Breadth feature values of their children because a new
child has been added or removed. Finally, modified children
must update their Container and Ancestors feature values
because they are now in a different part of the object graph,
and also update the Ancestors feature values of their descen-
dants to faithfully reflect the new structure of the object graph.
Modified elements, ancestors and children all retain their
original MorsaIDs.

A model element is deleted when it is not contained by
any other model element, and it is not identified as a root of
the model by the modeling framework (i.e. in EMF, roots ele-
ments are the ones directly contained by a Resource object).
A deleted object is also a modified child, but since it is not
going to be persisted anymore there is no need to update its
descendants. Because containment relationships are exclu-
sive, when an element is deleted its children become deleted
and so on, deleting the whole subgraph formed by the descen-
dants of the deleted element. While other behaviors may be
performed (e.g. moving the descendants of the deleted ele-
ment to their nearest ancestor), we have decided to implement
the semantics defined on Ecore [9] and MOF [16], which are
the most widely used metamodeling languages.

Figure 10 shows en example of update; modifications done
on the source model (left side) are (1) TypeDeclaration t2
is moved from CompilationUnit c1 to CompilationUnit c2
and (2) ICompilationUnit ic1 is deleted. Therefore, t2 is a
modified child, because it has been moved from one parent
to another; c2 and pf1 are modified parents, because a child
has been removed and added, respectively; t1 and c1 will
also be deleted since they no longer have any parent and
they are not root objects. The result of the update can be
seen in Fig. 10 (right side): the Ancestors feature value of

Fig. 10 Modifications and deletions over the running example

MethodDeclaration m2 has changed, replacing ic1 and c1
with ic2 and c2, and the Breadth feature values of ic2, c2,
t2, t3 and t4 have also changed to faithfully represent the
new object graph structure.

Deleting an entire model in Morsa is very simple: the
MorsaDriver requests the MorsaBackend for the removal
of the MorsaCollection that holds the model. Depending on
the underlying database backend, this could be implemented
as a table drop (relational), collection drop (NoSQL), etc.
Dangling references from other models to deleted objects
could be eliminated using the special operation commented
in Sect. 5.2. When some model elements are deleted rather
than the entire model, a model update is performed instead.

8 Integration and implementation

Morsa is intended to be integrated with modeling frameworks
and their applications. Our current prototype is integrated
with EMF [9]. A transparent way of achieving integration
is to design the MorsaDriver as an implementation of the
persistence interface of the modeling framework (Resource
in EMF). Persisting a model in Morsa is done without any
preprocessing, since there is no need of generating model-
specific classes, modifying metamodels or registering them
into the persistence solution, as opposed to other approaches
[10,11,27]. Metamodels are seamlessly persisted if they are
not already in the database. Additional information for per-
sistence configuration can optionally be passed to the driver;
Morsa uses the standard parameters of the EMF load and
save methods to pass this configuration information.

Morsa supports both dynamic and generated EMF. A
dynamic model element is generated at runtime using EMF
dynamic objects (DynamicEObjectImpl instances), which
use reflection to generically instantiate metaclasses. On the
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other hand, a generated model element is an instance of
a metamodel-specific class that has been explicitly gener-
ated through an EMF generator model. Dynamic objects
are preferred for tool integration since they do not require
code generation. Other approaches [10] support only gener-
ated model objects reimplementing part of the EMF frame-
work tobreak handle persistency. Morsa uses a subclass from
DynamicEObjectImpl called MorsaEObject that handles
proxy resolution automatically: if a feature of a proxy is
accessed by a client (see Sect. 6.1.2), the proxy itself requests
its own resolution to the MorsaDriver.

We have developed a prototype that exhibits all the fea-
tures described previously: EMF integration, full load, single
and partial load on demand, cache replacement policies, full
and incremental store, update and deletion. Its integration
with EMF includes all the methods defined in the Resource
interface.

Since the data design is heavily inspired on the docu-
ment database paradigm as explained in Sect. 4.2; we wanted
to have our prototype implemented for such a database,
although the architecture of Morsa can be implemented for
other database paradigms such as the relational or other
NoSQL approaches. The choice for the database engine
was between CouchDB [22] and MongoDB [13], since they
are the most relevant document-based NoSQL databases.
On one hand, CouchDB consists of a flat address space
of JSON [24] documents that can be selected and aggre-
gated using JavaScript in a Map/Reduce [28] manner to
build views which also get indexed. It supports multiple
concurrent versions of the same document, detecting con-
flicts among them. On the other hand, MongoDB allows
grouping documents in collections and provides multi-key
indexing and sophisticated querying using a dedicated lan-
guage or JavaScript Map/Reduce functions. MongoDB stores
BSON [29] documents, which are different from the ones
of CouchDB as they can include nested documents, provid-
ing a more objectual data schema. A MongoDB database
can also be automatically sharded to distributed database
servers. We have chosen MongoDB as the database engine
for our prototype mainly because of its dynamic queries
(as opposed to the static views of CouchDB), its server-
side JavaScript programming and its lightweight BSON sup-
port for communicating objects. BSON provides fast and
bandwith-efficient object transfer between the client and the
database.

Being our data model very close to the one of Mon-
goDB, most of the concepts supporting Morsa can be directly
mapped to MongoDB: MorsaObjects are mapped to Mon-
goDB DBObjects (i.e. BSON objects), MorsaCollections
are mapped to DBCollections (i.e collections of documents)
and MorsaIDs are represented as ObjectIds. This allows for
an easy and natural implementation that performs efficiently
as shown in Sect. 10.

9 Related work

Model persistence is not a novel research field. As the inter-
est in MDE grows, many approaches have been proposed
to solve this problem. The standard EMF solution is to
persist models in XMI resources. Although there are other
approaches such as using binary indexed files [30], model
repositories are the most appropriate persistence solutions
for MDE. A repository is a persistence solution remotely
accessible by users and tools. Repositories usually rely on
databases and provide additional features such as transac-
tions and versioning. There are many EMF model reposito-
ries available today, being the most mature ones CDO [10],
ModelBus [27] and EMFStore [11].

The ModelBus repository is a web service application
that manages an embedded Subversion [31] engine which
implements the actual repository; however, Subversion is not
designed to be integrated in client applications that access
parts of persisted elements, i.e. it does not support load on
demand. There have been attempts to make model access
scalable in ModelBus [32]; however, the official release does
not implement them. EMFStore implements a different archi-
tecture but shares the same philosophy as Subversion: models
are fully loaded and stored by human clients using a GUI.
This solution does not scale, and it is best suited for design
environments.

Currently, Connected Data Objects (CDO) is the only
model repository that is capable of managing large models
using load on demand; it is also the most widely used. CDO
provides a rough version control system and EMF integra-
tion through its EMF Resource implementation, CDORe-
source; however, its integration is not transparent. First
of all, although its documentation states that it can handle
dynamic model objects, we could not make it work with them.
Moreover, CDO requires metamodels to be pre-processed to
persist their instances. One kind of pre-processing is to gen-
erate the Java model classes of a metamodel. This allows
CDO to work with legacy objects. The other kind is to gener-
ate CDO-aware model classes from a generator model. This
allows CDO to work with native objects. The main differ-
ence between legacy and native objects is that legacy objects
cannot be demand-loaded or unloaded, having a huge impact
on performance as will be shown in the next section. Native
objects are unloaded from a CDO client when its memory
becomes full using a soft reference approach, i.e. an object is
removed by the garbage collector when no other object refers
to it with a reference that is not soft.

MongoEMF [33] is a MongoDB-based model reposi-
tory for EMF. It provides simple queries and transparent
integration with the modeling framework. However, it only
manages scalability on the client through model partition-
ing using cross-resource references, an EMF mechanism
designed to provide simple load on demand through proxies.
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Table 1 Test models

Name XMI size (MB) Java classes Model elements Result size

Set0 8.8 14 70,447 1

Set1 27 40 1,98,466 2

Set2 283 1,605 20,82,841 41

Set3 598 5,796 48,52,855 155

Set4 646 5,984 49,61,779 164

Our approach can easily simulate cross-resource references
using references between elements in different MorsaCol-
lections.

Some graph-based formalisms have been proposed to rep-
resent models and metamodels in a uniform way, such as
[34–36] and [37]. The fist work is used for representing data
models in the World Wide Web, while the other three imple-
ment multi-level modeling: [35] represents models as graphs
in a mathematical fashion that has been also applied to model
querying [38], while [36] and [37] use clabjects [39] for
equally representing classes and objects.

A first approach on client scalability and transparent inte-
gration was presented in [40]. This repository also used load
on demand to deal with the problem of client scalability and
EMF integration to deal with transparent integration. Its data
design resembled the preliminary version of Morsa [14], but
its implementation on a relational database (MySQL), and its
focus on version control delivered poor performance. How-
ever, it served as an inspiration for Morsa and made us put
into consideration the possibility of using a NoSQL database
backend.

There are other domains where large and complex data
needs to be accessed; for example, many solutions have been
proposed for managing large and complex ontologies, such
as creating higher-level descriptions [41] which are similar to
database views. Client scalability has been also tackled in the
field of object-relational mappings, proposing prefetching
mechanisms that load subgraphs that will be used by the client
application [42,43]. Object caching has also been a subject
of study in the field of object databases, with mathematical
approaches to optimizing cache coherence, replacement and
invalidation [44,45]. Our approach could benefit from this
research to improve caching and prefetching with adaptive
mechanisms.

10 Evaluation

As stated in the previous section, CDO is the most widely
used model repository, so the evaluation consisted in exe-
cuting a set of benchmarks with three different persistence
solutions (Morsa, CDO and the standard EMF XMI parser)
and comparing their performance results. The same set of
test models has been used in all the benchmarks.

10.1 Test models

We have considered the models proposed in the Grabats
2009 contest [26]. They conform to the JDTAST metamodel
explained in Sect. 3. There are five models, from Set0 to
Set4, each one containing its predecessor. Table 1 shows the
size of the XMI file corresponding to each model, the number
of Java classes represented, the number of model elements
contained and the size of the number of objects that satisfy
the test query.

10.2 Test benchmarks

We have built a different benchmark for each of the four
basic operations defined in Sect. 2.2: store, load, update and
delete. In addition to those, a benchmark for the Grabats 2009
contest query has also been implemented:

i. The model store benchmark consists in storing the set of
test models into each of the solutions. Full store is exe-
cuted over every solution and incremental store is exe-
cuted over Morsa, being the only solution that supports
it. Each test model is loaded from its XMI file in the first
place and then stored in each solution.

ii. The model load benchmark consists in loading the set of
test models from each solution. Full load is executed over
every solution, and load on demand is executed over CDO
and Morsa. Both kinds of load consist in traversing the
whole models in a depth-first order and in a breadth-first
order.

iii. The model update benchmark consists in executing the
Grabats 2009 test query described in Sect. 3 for each test
model and then switching the container objects of the first
and the last results, deleting the middle result and finally
updating the model on each solution. If only one object
is returned by the query, it is deleted; if only two objects
are obtained by the query, their containers are switched
and no object is deleted.

iv. The model delete benchmark consists in deleting the test
models from each solution. Since the deletion of a XMI
model does not imply any XMI processing but just a file
deletion, it has not been considered.

v. The model query benchmark consists in executing the
Grabats 2009 test query described in Section 3 for each
test model. Since XMI does not support load on demand,
the whole models must be loaded prior to query them.
In CDO and Morsa, a simple method that fetches all
the TypeDeclaration objects is executed and then the
results are traversed to check whether they are eligible or
not.

123



234 J. E. Pagán et al.

Table 2 Performance results of the model store benchmark

Solution Mode Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time

XMI – 38 0.507 102 1.319 812 10.522 2,043 17.098 2,075 13.260

CDO Legacy 100 21.397 254 60.621 2,430 571.577 – – – –

CDO Native 91 20.815 202 55.167 2,239 596.507 – – – –

Morsa Full 584 10.121 602 35.670 2,739 617.223 4,234 2,225.906 5,831 2,225.906

Morsa Inc 47 24.300 129 73.843 985 1,119.038 2,280 2,820.556 2,292 2,988.422

Morsa Inc by update 140 19.140 278 49.314 1,856 529.565 2,890 1,650.324 2,900 1,805.952

10.3 Results

Each benchmark has been executed using the EMF XMI load-
ing facility, a CDO repository in legacy and native mode and
a Morsa repository using single and partial load on demand.
Both repositories have been configured to achieve best speed
or least memory footprint, depending on the test; their con-
figuration parameters have been fine-tuned based on their
documentation and our empirical experience. All tests have
been executed under a Intel Core i7 2600 PC at 3.70 GHz
with 8 GB of physical RAM running 64-bit Windows 7
Professional Sp1 and JVM 1.6.0. CDO 4.0 is configured
using DBStore over a dedicated MySQL 5.0.51b database.
Morsa has been deployed over a MongoDB 1.8.2 database.
Memory is measured in MegaBytes and time is measured in
seconds.

10.3.1 Model store

Table 2 shows the results of the model store benchmark. The
incremental store scenario has been tested with incremen-
tal store as described in Sect. 5.2 (Inc mode) and also as
described in Sect. 7 (Inc by update), i.e. taking the source
model, partitioning it and storing each partition separately,
updating the root of the model in each step. We were not
able to either incrementally store the test models on CDO
or fully store the Set3 and Set4 models because even with
the maximum available memory for both the server and the
client, a timeout exception was always thrown.

XMI is obviously the fastest solution and the one consum-
ing the least memory by far, because it does not involve either
network communication or object marshalling. In addition,
the test models have been loaded from the XMI files to store
them for CDO and Morsa, which implies a memory overhead
that has been reduced as much as possible using incremental
save in Morsa. In a full store scenario, CDO performs better
in memory but worse in time (except for Set2). However,
using incremental store, Morsa consumes much fewer mem-
ory which is comparable to that used by XMI (but aprox. 100
times slower), and Morsa is faster than CDO and uses less

memory for the Set2 model when using incremental store
by update.

10.3.2 Model load

Table 3 shows the results of the model load benchmark.
Again, XMI is the fastest. For the best speed test case, a
full load has been executed over CDO and Morsa, show-
ing that our repository is aprox. 40 % faster. For the least
memory test case, depth-first and breadth-first order have
been considered because of their relevance on memory
consumption. Morsa uses less memory than CDO (aprox.
2.5 times less) in all cases and in most of them is even
faster. Moreover, Morsa also requires less memory than
XMI, although it is much slower. The difference in per-
formance between single load on demand and partial load
on demand is due to the fact that a very simple prefetch-
ing algorithm is used for partial load on demand, hence
not optimizing the subgraph that is loaded from the reposi-
tory. The cache configuration for single and partial load on
demand is 900 objects size cache for Set0 and Set1 and
9,000 for Set2, Set3 and Set4 with FIFO and LIFO cache
replacement policies for depth-first and breadth-first order,
respectively.

10.3.3 Model update

Table 4 shows the results of the model update benchmark.
These results reflect only the update process, leaving the load
and query apart. For the best speed test case, CDO is always
slower than XMI (except for the Set1 test model). On the
other hand, CDO uses far less memory than XMI for the least
memory test case. Morsa is faster and uses less memory than
CDO and XMI in all cases except Set0 and Set1, where
CDO uses less memory, and Set2, where XMI is faster. These
results show that the update of the Ancestors, Depth and
Breadth attributes, which support partial load on demand and
querying, is not very expensive.
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Table 3 Performance results of the model load benchmark

Order Opt Solution Mode Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time

– – XMI – 40 1.074 154 1.899 1060 15.259 1998 75.665 2245 122.210

– Speed CDO Legacy 151 12.343 370 31.955 2610 401.234 – – – –

– Speed CDO Native 60 9.256 307 23.759 2044 242.545 – – – –

– Speed Morsa Full 82 5.932 713 13.722 1913 165.144 2835 611.584 3256 488.683

– Mem CDO Legacy 87 16.127 267 38.633 2403 426.501 – – – –

Depth Mem CDO Native 47 11.984 173 32.910 420 325.206 – – – –

Depth Mem Morsa Single 27 7.962 54 19.402 173 166.163 352 364.261 387 387.519

Depth Mem Morsa Partial 23 16.023 131 39.864 262 246.402 776 733.254 793 777.505

Breadth Mem CDO Native 50 15.273 170 31.566 412 381.257 – – – –

Breadth Mem Morsa Single 32 14.241 122 35.464 275 250.677 1415 729.431 1489 877.938

Breadth Mem Morsa Partial 35 28.895 121 77.840 381 917.196 1420 2540.299 793 2936.594

Table 4 Performance results of the model update benchmark

Opt Solution Mode Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time

– XMI – 38 246 199 497 955 2.680 161 5.838 2.562 6.304

Speed CDO Native 23 327 19 358 174 7.816 – – – –

Speed Morsa Single 25 185 44 247 224 6.116 685 4.539 702 4.671

Mem CDO Native 4 344 6 297 62 11.326 – – – –

Mem Morsa Single 9 189 13 382 17 7.207 41 6.973 44 8.549

10.3.4 Model delete

Table 5 shows the results of the model delete bench-
mark. Since the current Morsa prototype uses MongoDB,
the deletion of a model consists in dropping a MongoDB
collection, which is a very fast operation that demands
almost no memory from the client application. On the other
side, a model deletion in CDO implies finding and delet-
ing all model elements, which is a very heavy and slow
process.

10.3.5 Model query

Table 6 shows the results of the model query benchmark.
CDO and Morsa use less time and memory than XMI, mainly
because XMI requires the full model to be loaded into mem-
ory prior to its traversal, while CDO and Morsa can fetch
all the instances of a given metaclass at once and then tra-
verse only those objects. Morsa is slower than CDO for the
smaller test models, but when they grow, it becomes faster.
For the least memory test case, Morsa always uses less mem-
ory than CDO; even more, its memory consumption is nearly

the same for all test models, requiring only 38MB for a model
with almost 5 million objects and 6000 classes.

10.3.6 Overall assessment

The execution of the test benchmarks has shown that Morsa
is indeed faster and uses less memory than CDO for all the
basic operations and the Grabats 2009 contest query as the
size of the input model grows. Moreover, CDO cannot han-
dle the store of the two largest models. Compared to XMI,
Morsa is usually faster and uses less memory when only
a model partition is needed, e.g. the update and query test
cases. On the other hand, Morsa is slower than XMI when a
full model must be traversed. However, when client memory
is an issue, the growth of the memory needed by Morsa as the
models become larger is less dramatic than the one of XMI.
Finally, it must be noted that the traversal algorithm has a
remarkable impact on the performance of Morsa, so choosing
the cache replacement policy that best matches it and con-
figuring the Morsa driver properly is important to achieve
the best performance. Note that both Morsa and CDO are
client-server persistence solutions, so there is a communica-
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Table 5 Performance results of the model delete benchmark

Solution Mode Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time

Morsa – 4 90 4 72 4 161 4 202 4 206

CDO Native 103 24.289 289 64.480 2284 686.554 – – – –

Table 6 Performance results of the model query benchmark

Opt Solution Mode Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time

– XMI – 51 1.098 172 1.914 1,221 16.008 2,004 77.083 2,256 126.548

Speed CDO Native 18 335 19 558 91 8.466 – – – –

Speed Morsa Single 16 660 21 851 208 6.916 807 17.467 1,002 19.514

Mem CDO Native 10 340 13 596 26 20.123 – – – –

Mem Morsa Single 6 873 6 1.139 12 9.607 38 19.923 38 25.387

tion overhead between the client application and the reposi-
tory that is not present in XMI, which is a local solution. We
have chosen these asymmetrical conditions instead of storing
the XMI files on a remote server to show that even though
there is a communication overhead, Morsa and CDO still
can perform better than XMI in some cases. Finally, CDO
provides features that are not yet supported by Morsa, such
as version management and fault tolerance. These features
are outside the scope of this paper, but its is worth noting
them because their implementation may have had an impact
on the results of the benchmarks; however, to minimize such
impact, CDO was configured for read-only access (that is,
without versioning) were applicable and a single repository
was setup.

11 Lessons learned

As commented in the Introduction, this paper extends the
work presented at the MODELS 2011 conference [14]. The
process of extending our previous work and also the whole
design and development of Morsa has taught us several
lessons on how a model repository should be conceived and
implemented to achieve both good performance and indepen-
dency from the database backend, as well as more knowledge
on the area of model persistence, especially the different
requirements of a model persistence solution, how current
solutions address them and how these solutions could they
be classified depending on what they are focused on. In this
section, the lessons learned by designing and implementing
our model repository and choosing a model persistence solu-
tion will be explained.

11.1 Repository design and implementation

During the development of Morsa, we have identified some
issues related to the implementation of the repository that
have been addressed in the version described in this paper.
First, we identified several elements in which performance
could be improved. Secondly, we devised a new design in
which independency from the database backend is achieved.

In order to achieve independency from the database back-
end, our new architectural design includes several new
components such as the MorsaBackend and the Mor-
saEncoder, described in Sect. 4.1. Also for this purpose,
the MorsaObject, MorsaReference and MorsaCollection
concepts have been added to the data design; these concepts
decouple the implementation of the database from Mon-
goDB’s DBObject, making it possible to develop prototypes
of Morsa for other database backends.

After testing the previous Morsa prototype, we found out
that its performance could be improved in terms of database
querying, model updating and proxy resolution. Regarding
to to database querying, the previous repository design was
composed of a collection for each different metaclass; this
was initially conceived to provide faster queries for all the
elements of the same type; however, when elements from
different metaclasses were requested simultaneously (e.g. in
partial load on demand) or when a query involved checking
relationships between different metaclasses was requested
(in an SQL join fashion), one query had to be performed over
the MongoDB database for each metaclass, since it does not
support multi-collection querying. To solve this, we changed
the data design of the repository from one collection per meta-
class to one collection per model, as explained in Sect. 4.2,
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this boosted the performance of the partial load on demand
by lowering its communication overhead, and also provided
us ways to design a rich querying interface that is now under
development.

Regarding to model updating, we found that the update of
the metadata related to the graph representation of a model
was quite expensive, as it required accessing many elements
only for updating. We solved this in our current prototype
by using JavaScript scripts that are executed directly on
the MongoDB database, hence saving much communication
time and client application memory. However, this improve-
ment is optional because it requires server-side scripting sup-
port on the database backend. Finally, proxy resolution has
been improved using MorsaEObjects (see Sect. 8), which
resolve themselves automatically when any of its features are
accessed in a faster way than regular DynamicEObjects.

11.2 Choice of a model persistence solution

The development and evaluation of Morsa has been an enrich-
ing experience that has helped us to identify the different
needs that each persistence solution covers best. First of all,
we have identified three kinds of persistence solutions: user-
oriented, application-oriented and basic.

A user-oriented persistence solution is one that is intented
to be used by humans. Such a solution provides graphical user
interfaces, versioning and fine-grained concurrency between
clients, even with change notification. It is not focused on
managing large models or providing scalability on the client
side, but on giving the users support for teamwork and model
visualization. CDO and others such as ModelBus and EMF-
Store fall into this category. On the other side, an application-
oriented persistence solution is focused on the integration of
scalable persistence solutions with tools and applications that
manipulate models (e.g. model transformations). Rather than
user interfaces, they provide rich application interfaces that
support clean parameterization of model access. Morsa falls
into this category. Finally, a basic persistence solution just
serializes models without any special concerns on scalabil-
ity, usability, versioning or concurrency. XMI falls into this
category. A basic solution is usually the easiest to manage.

In our experience, and given the tools currently available,
the choice of what persistence solution to use is rather simple:
if the persisted model is going to be manipulated by human
users in a distributed environment and it is not very large
or complex, a user-oriented one (e.g. CDO) would be the
recommended solution; on the other hand, if a large model is
going to be manipulated by some application with efficiency
constraints for memory and time, an application-oriented one
(e.g. Morsa) is recommended. For the rest of the cases (e.g.
small models with no teamwork or distribution), a basic one
(e.g. XMI) is a good choice.

12 Conclusions and further work

We have presented Morsa, a model repository aimed at
achieving scalability for client applications that access large
models. Morsa uses load on demand and incremental store
mechanisms to allow large models to be persisted and
accessed without overloading the client application’s mem-
ory. We have developed several cache replacement policies
that cover different model access patterns. A document-based
NoSQL database is used as persistence backend, which is
a novel feature since model repositories usually work with
object-relational mappings.

We have implemented a prototype for EMF that exhibits
promising performance results. An evaluation of our proto-
type is shown, executing five benchmarks against large mod-
els and comparing their results with the ones of XMI and the
well-established CDO repository. This comparison demon-
strates that Morsa suits better for partial model access and
model querying than XMI and CDO, and that it handles larger
models than CDO does. Our purpose on the development of
Morsa is to build an application-oriented repository, that is,
one focused on application integration and client scalabil-
ity; on the other hand, our experience using CDO tells us
that it is a user-oriented repository, that is, mainly designed
for teamwork and model manipulation by human users, and
scalability seems not to be one of its design goals, while
versioning and fault tolerance are.

Our future work is to continue optimizing Morsa while
implementing new features. Among others, these features
include a query API, support for query languages such as
OCL and making our load on demand algorithms and cache
replacement policies more adaptative by collecting metadata
information about the structure of the persisted models. Data-
base support for metamodel and model analysis providing
knowledge about the structure of models in terms of average
connection, depth, breadth, etc. that will be used by load on
demand algorithms and cache replacement policies to exe-
cute more efficiently. We are also considering version control
and synchronization in order to favour team development.
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