
Softw Syst Model (2013) 12:5–9
DOI 10.1007/s10270-012-0306-4

EXPERT’S VOICE

Remarks on Egon Börger: “Approaches to model business
processes: a critical analysis of BPMN, workflow patterns
and YAWL, SOSYM 11:305–318”

Wolfgang Reisig

Received: 8 October 2012 / Accepted: 2 November 2012 / Published online: 31 January 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Egon Börger (SOSYM, 11, pp. 305–318, 2012)
challenges the concepts of BPMN, workflow patterns and
YAWL as useful contributions to the modeling of business
processes. I show that he misjudges the role of BPMN, YAWL
and similar techniques in the modeling of business processes.
In particular he mistakes YAWL’s formal basis, i.e. Petri nets.
Börger furthermore suggests evaluation criteria for business
process modeling tools. I argue that his criteria overempha-
size some less important aspects, while ignoring some deci-
sive ones.

Keywords Business process modelling · BPMN ·
YAWL · Petri nets · Evaluation criteria for tools

1 Introduction

Egon Börger [1] disputes the value of two business process
modeling (BPM) languages, BPMN and YAWL, and the ade-
quacy of the present version of workflow patterns.

I concentrate on four of his observations regarding BPMN.
All of them are true at a superficial level of understand-
ing. However, they miss the intent of BPM. For good rea-
sons BPMN is made in a manner that Börger criticizes. Any
“repair” in the way suggested by Börger would destroy the
usability of BPMN.

Börger disputes YAWL and in particular its formal basis,
Petri nets, to be of any value for BPM. By means of a toy
examples I show that Börger makes a number of errors about
Petri nets.

Communicated by Bernhard Rumpe.

W. Reisig
Computer Science Department, Humboldt-Universitaet zu Berlin,
Berlin, Germany
e-mail: reisig@informatik.hu-berlin.de

Börger suggests to evaluate the existing BPM tools. I doubt
the scientific relevance of such an enterprise.

2 Remarks on Sect. 2 “Problems of BPMN 2.0”

Börger deplores “…numerous ambiguities in the descrip-
tions and underspecifications of semantically relevant con-
cepts.” The authors of BPMN certainly have been aware of
those ambiguities and underspecifications. They are justified
by the role of modeling languages in the course of system
modeling: a model is supposed to express intuitive ideas,
thus supporting communication among users, and to prepare
implementation of some, but usually not all, components of
the model. A BPM language with all semantically relevant
concepts entirely formalized could not accomplish this.

BPM fundamentally differs from conventional software
modeling in that not all components are intended to be
implemented. Some describe behavior of institutions, human
beings such as clients, or technical devices.

“A general notion of state is missing and, as a conse-
quence, the specification of relevant data dependent condi-
tions is only poorly supported.” There are good reasons for
this: The progression of a companies’ business processes as
a whole should not be modelled as steps between states. For
example, one may identify a state where a secretary starts
writing a letter and a computer starts performing a transac-
tion. Would it be adequate to model these two activities in
some order (in which one?), or as occurring coincidentally?
(Global) states and totally ordered sequences of event occur-
rences adequately model the behavior of small, centralized,
single-threaded systems. A large, distributed, multi-threaded
system’s behavior is better modelled as a set of activities
that are partially ordered along individual threads. (I give an
example in the “Appendix”).

123

6 W. Reisig

With locality of actions and separate threads of activities
taken seriously, a global view on data is inadequate. Condi-
tions and decisions depending on data from several different
threads should be avoided anyway. Where it is really unavoid-
able, a model should show this very explicitly. Summing up,
the deplored missing states and poorly supported data depen-
dencies are most adequate features of BPMN.

Börger disapproves that “BPMN comes with a plethora of
interdefinable constructs. Instead of defining a core of inde-
pendent constructs in terms of which other constructs can
be defined.” True, by now there are more than 200 graphi-
cal BPMN elements. However, they indicate the success of
BPMN in the software industry as well as the wide vari-
ety of application domains and of aspects (viewpoints) to be
expressed in BPMN models. Companies are less interested
in systematic buildup; they find it more useful to define their
own shorthands and conventions instead. There is nothing
wrong with this. Experience with BPMs furthermore indi-
cates that the suggested “core of independent constructs” may
cover barely more than a few principles. They may include,
for example, to start modeling by separating passive compo-
nents such as locally confined states, control and data, from
active components that update local states and data. Spe-
cializations could then cope with objects, users, etc. Further
experience and trial are needed before such a core of inde-
pendent constructs can be established.

Börger criticizes BPMN because “the standard document
fails to provide a seamless systematic mechanism for refine-
ment from conceptual to executable models, which is neces-
sary to guarantee the reliability of the implementation.” This
criticism is superfluous because people have failed to solve
this problem for decades, for any kind of modeling technique.

Summing up, a BPM is usually not fully formal; global
control of states and data cannot be assumed; variants and
domain specific notations are useful; and the desire for prop-
erty preserving or property enforcing refinement cannot be
fulfilled these days.

Any technique to model business processes must respect
all this. BPMN does so. Ultimately, this is what distin-
guishes a specification language from a programming lan-
guage. Börger’s demands fail to see the purpose of BPMN.

3 Remarks on Sect. 4 “Problems of YAWL”

Petri nets have been chosen as the formal basis for YAWL.
Börger criticizes Petri nets as unsuitable for BPM. This is
the result of numerous misconceptions about Petri nets in
his text. I show this in the most concrete manner by means
of a simple example given in the “Appendix”. Consequently,
Börger’s remarks on YAWL are, to a great extent, inadequate.

As for “the missing coding free support of data types”: The
vending machine’s data types, as given in the “Appendix”,
are simple; the general case is obvious. Given a signature �

(i.e. a finite collection of constant- and function symbols) and
a set of variables, each variable-free term over � can serve
as a token and each term with variables as an arc inscription.
A transition then occurs w.r.t. a valuation of the variables (as
visible at the vending machine’s transition insert).

Börger claims that “[t]he problem with the Petri net model
of computation becomes evident when one has to describe
non-local or truly concurrent or recursive business process
behavior.” I discussed the issue of “non-local behavior” in
the context of BPMN already. “Truly concurrent behavior”
is captured by distributed runs (as defined by Petri [2]), as
exemplified in the “Appendix”. “Recursive behavior” is rare
in the context of BP (and there do exist recursive Petri net
extensions).

Furthermore, Börger claims that “the non-deterministic
execution model of Petri nets hides an implicit 1-core inter-
leaving assumption (‘no 2 transitions fire simultaneously’).”
However, the execution model of distributed runs is not
non-deterministic and employs no interleaving assumption.
The vending machine’s only nondeterminism is due to the
unspecified order of the two occurrences of insert, purposely
enforced by the loop with interleaving control. Without this
loop, the net was deterministic and would thus have exactly
one distributed run.

As for “the so-called ‘open workflow net’ extension
(which uses strong fairness assumptions)”: open workflow
nets are special Petri nets and use the standard progress
assumption.

Börger falsely states that “Petri-net tools usually assume
(for fairness reasons) that loops terminate; this excludes pos-
sible execution paths in real-life BP behavior.” Yet, not a
single one of the more than 80 tools assumes this [4]. Sim-
ulation tools can, of course, hardly cope with the excluded,
i.e. infinite, execution paths. Later, Börger himself contra-
dicts his own complaint about the exclusion of infinite runs
by stating that “fairness is mostly studied as a property of
infinite runs (which, in practice, do not occur […]).”

4 Remarks on Sect. 5 “Evaluation criteria for BPM
systems and a challenge”

To improve BPM, Börger suggests criteria to evaluate exist-
ing BPM tools. He claims that, to this end, a BPM system
has to support specific development and design methods. Fur-
thermore, he suggests to transfer technology from software
engineering to BPM, to “resolve the deplorable status of BPM
standardization in three steps.” I consider neither of those
proposals particularly useful, for the following reasons:

1. The evaluation of existing BPM tools may be of commer-
cial interest. Success or failure of such languages depends
on many aspects, including support of the vendor for his

123

Remarks on Egon Börger 7

clients, etc. However, the scientific value of such an eval-
uation will remain limited. Of scientific interest would
be an evaluation of the methods and principles behind
BPM tools. Such methods and principles are far from
being fully understood today. Few such principles are
agreed upon generally. Models are required that can be
understood by—and are valuable for—the various users.
It is debatable whether a one-serves-all model (Börger’s
“ground model”) would be useful. For example, a com-
panies’ clients, accountants and staff department each
require different information. A joint model would either
be too coarse or too refined for at least one of them.

2. The idea of property preserving refinement has been
ubiquitous for many decades. Such principles are rarely
generally applicable and if they are, remain superficial.
Ontology-based, domain-specific principles, on the other
hand, may turn out really useful.

3. Börger suggests abstraction as a core method. He
requires “a rich enough set of abstract data types […]
without the detour of language-dependent encodings.”
This is a reasonable requirement. The most liberal of
such methods allow the modeler to freely choose any
signature � (i.e. any finite set of constant-and function
symbols) together with an interpretation of those sym-
bols. Together with a set X of variables, the terms con-
structed from � and X can then be interpreted in the
real world. Terms provide the basis to write specifica-
tions. Two modeling techniques follow this most lib-
eral approach: abstract State Machines and high-level
Petri nets. Both, of course, have to pay a price: gener-
ally applicable analysis techniques are rare.

Summing up, the key to improving BPM are not the tools,
but methods and principles. Existing tools such as BPMN,
YAWL and others help to gain experience with hitherto sug-
gested methods and principles. Hence, the challenge is not
to “identify a common kernel of major BPM tools,” but to
crystallize a kernel of BP modeling techniques, independent
of their integration into actual tools.

Appendix: The Example of a Cookie Vending Machine

A small system is represented as a Petri net model that
employs various features that are fundamental for Petri net
models of real-world business processes. This small model
exemplifies a number of Börger’s false assumptions about
Petri nets as stated in [1]. Furthermore, it may be taken as an
exercise for other modeling techniques. For detailed infor-
mation on Petri nets, refer to [3].

Figure 1 shows a Petri net model of a cookie vending
machine together with activities performed by the vending
machine’s customers. The places purse and packet taken
as well as the transitions insert and take specify the cus-
tomer’s behavior. The initial making M0, shown in Fig. 1,
presents two tokens in the customer’s purse, and . The
machine will accept the euro coin in exchange for a cookie
packet , as initially present in the storage. The machine
will reject the fake coin, . The interleaving control with
its black dot token • will guarantee that the two coins are
inserted in either order.

The marking M0 of Fig. 1 enables the transition insert
in the two modes x = and x = : a mode vali-
dates the variable x by a constant. With x = , each
ingoing arc of insert (viz. the arcs (purse, insert) and
(interleaving control, insert)) starts at a place that holds an
item that the arc inscription specifies. M0 enables no other
transitions.

The occurrence of insert in mode x = then yields the
marking M1 with the euro coin moved from purse to
coin slot. The marking M1 enables two transitions: insert
in mode x = and sale. The transition sale has no modes,
as no variables occur in its surrounding arc inscriptions. The
occurrence of sale in M1 yields M2, with the coin moved
from the coin slot to the cash box and, coincidently, the
cookie box moved from the storage to the compart-
ment. Then the transition take moves from the com-
partment to packet-taken, yielding M3. All four markings
M0, . . . , M3 also enable insert in mode x = . The occur-
rence of insert in this mode then moves from purse to

Fig. 1 A cookie vending
machine

123

8 W. Reisig

Fig. 2 A distributed run of the
vending machine

coin-slot, which in turn enables the transition return to move
to coin returned.
The above describes occurrences of the net’s transitions

which can be composed of different runs (behaviors). There
are essentially three versions of behavior definitions around.
They order the transition occurrences in three different ways:
first, a conventional run is totally ordered, e.g.

(1)

The potential of concurrent execution is not represented
in (1).

Secondly, transitions may occur in lock step, such as, e.g.
in

(2)

Thirdly, the most faithful kind of run orders the transition
occurrences partially according to their causal dependencies,
such as in

(3)

Technically, this partial order shows the transition occur-
rences of the distributed run in Fig. 2. A distributed run also
protocols the tokens as they occur in the net’s places.

Figure 2 clearly shows the role of the interleaving con-
trol: its token is first involved in (insert, x =) and then
in (insert, x =). No other transitions are linked by such

a control. If not causally ordered by token flow, they occur
concurrently. For example, return occurs concurrently to
sale as well as to take. In contrast to this purely causal order,
the lockstep execution model (2) still assumes a global time
scale (and hence, execution of non-ordered transitions “at the
same time”).

The non-order of (3) just means causal independence.
This is the essence of two concurrent transition occur-
rences.

The quest of termination of runs is a crucial aspect,
particularly in the case of unbounded many-transition occur-
rences. Faithful models distinguish hot and cold transi-
tions with the requirement that a run terminates without
enabled hot transitions. For example, sale and return are
hot in Fig. 1. In fact, one would consider the machine
broken if it terminated with a coin in its coin slot. How-
ever, a customer may insert no coin or may not take
the bought packet out of the compartment. Hence, the
transitions insert and take may remain enabled forever.
The inscription “c” in Fig. 1 denotes the cold transi-
tions.

References

1. Börger, E.: Approaches to model business processess: a critical
analysis of BPMN, work ow patterns and YAWL. SOSYM 11, 305–
318 (2012)

2. Petri, C.A.: Non-Sequential Processes GMD Report. In: ISF-77-5
(1977)

3. Reisig, W.: Understanding Petri Nets. Springer, Berlin (2013)
4. Universität Hamburg. Petri Net World. Last retrieved on 29

Sept 2012. URL: http://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools/quick.html

123

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

Remarks on Egon Börger 9

Author Biography

Wolfgang Reisig is a full profe-
ssor at the Computer Science
Department of Humboldt-Uni-
versitaet zu Berlin, Germany.
He served as a research assis-
tant and assistant professor at
the University of Bonn and at
RWTH Aachen, a visiting pro-
fessor at Hamburg University, a
project manager at Gesellschaft
fuer Mathematik und Datenver-
arbeitung (GMD), and a pro-
fessor at Technical University
of Munich. Prof. Reisig was a
senior researcher at the Interna-

tional Computer Science Institute (ICSI) in Berkeley, California in
1997, got the “Lady Davis Visiting Professorship” at the Technion,
Haifa (Israel), the Beta Chair of Technical University of Eindhoven,
and twice received an IBM Faculty Award for his contribution to cross-
organizational business processes and the analysis of service models.
Presently, he is the speaker of a PhD school on service-oriented architec-
tures. Prof. Reisig is a member of the European Academy of Sciences,
Academia Europaea. He has published and edited numerous books and
articles on Petri net theory and applications.

123

	Remarks on Egon Börger: ``Approaches to model business processes: a critical analysis of BPMN, workflow patterns and YAWL, SOSYM 11:305--318''
	Abstract
	1 Introduction
	2 Remarks on Sect. 2 ``Problems of BPMN 2.0''
	3 Remarks on Sect. 4 ``Problems of YAWL''
	4 Remarks on Sect. 5 ``Evaluation criteria for BPM systems and a challenge''
	Appendix
	References

