
Softw Syst Model (2014) 13:1495–1527
DOI 10.1007/s10270-012-0305-5

REGULAR PAPER

Mapping feature models onto domain models: ensuring
consistency of configured domain models

Thomas Buchmann · Bernhard Westfechtel

Received: 27 June 2011 / Revised: 14 September 2012 / Accepted: 13 November 2012 / Published online: 19 December 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract We present an approach to model-driven soft-
ware product line engineering which is based on feature
models and domain models. A feature model describes both
common and varying properties of the instances of a soft-
ware product line. The domain model is composed of a
structural model (package and class diagrams) and a behav-
ioral model (story diagrams). Features are mapped onto the
domain model by annotating elements of the domain model
with features. An element of a domain model is specific to
the features included in its feature annotation. An instance
of the product line is defined by a set of selected features (a
feature configuration). A configuration of the domain model
is built by excluding all elements whose feature set is not
included in the feature configuration. To ensure consistency
of the configured domain model, we define constraints on
the annotations of inter-dependent domain model elements.
These constraints guarantee that a model element may be
selected only when the model elements are also included on
which it depends. Violations of dependency constraints may
be removed automatically with the help of an error repair tool
which propagates features to dependent model elements.

Keywords Model-driven software product line
engineering · Feature models · Domain models ·
Feature mappings · Dependency constraints

Communicated by Prof. Alfonso Pierantonio.

T. Buchmann (B) · B. Westfechtel
Applied Computer Science I, University of Bayreuth,
95440 Bayreuth, Germany
e-mail: thomas.buchmann@uni-bayreuth.de

1 Introduction

Model-driven software product line engineering [40] aims
at increasing the productivity of software engineers in two
ways. First, software product line engineering [14,44,52]
deals with the systematic development of products belong-
ing to a common system family. Rather than developing each
instance of a product line from scratch, reusable software
artifacts are created such that each product may be com-
posed from a library of components. Second, model-driven
software engineering [23,51] puts strong emphasis on the
development of high-level models rather than on the source
code. Ideally, software engineers operate only on the level
of executable models such that there is no need to inspect
or edit the actual source code (if any). By combining both
disciplines, productivity may be improved by both reuse and
code generation.

This paper contributes to the discipline of model-driven
software product line engineering by presenting an integrated
environment which is based on feature models and exe-
cutable domain models. A feature model [36] is used to define
the capabilities and the variation points of a product line.
A domain model is developed for the product line which cov-
ers all product variants. The domain model defines both struc-
ture and behavior. The structural model consists of package
and class diagrams. The behavioral model is composed of a
set of story diagrams (resembling UML interaction overview
diagrams) implementing the operations of classes defined in
class diagrams. Feature model and domain model are con-
nected by feature annotations, which map domain model
elements to the sets of product variants in which they occur.
An instance of the product line is defined by a feature con-
figuration, which is composed of all features selected for the
product variant to be built. Using the feature configuration,
a variant of the domain model is configured by assembling

123

1496 T. Buchmann, B. Westfechtel

all domain elements whose feature sets are included in the
feature configuration.

The core contribution of our work consists in the con-
sistent mapping of the feature model to the domain model.
Our goal is to ensure the consistency of configured domain
models with respect to the underlying metamodel. To this
end, we define dependency constraints on the mappings of
feature models to domain models. These constraints demand
that a depending model element may be included only into a
configuration of the domain model when the model elements
on which it depends are selected, as well. Mapping con-
straints are defined as conditions on the feature annotations of
inter-dependent model elements. Constraint violations may
be removed by an error repair tool which propagates features
to dependent elements. In addition, tool support also cov-
ers other kinds of errors such as, e.g., the use of undeclared
features in feature annotations.

In this paper, the concept of dependency constraints is
applied to domain models composed of package, class, and
story diagrams. The constraints are defined in terms of the
underlying metamodels. However, the concept as such is gen-
eral and not specific to the metamodels covered in our current
tool support. For a new metamodel, the notion of dependency
has to be defined with respect to this metamodel, resulting in
a set of metamodel-specific constraints.

Software product lines can either be constructed around
a common core or a set of superimposed variants is filtered
and unused artefacts are removed during product derivation.

While the first one is called positive variability, the latter is
referred to as negative variability. Table 3 compares different
approaches based on these concepts. Our approach is based
on negative variability, as the domain model created with
Fujaba contains all variants. A specific product is created by
removing all unused model artefacts from the domain model.

The rest of this paper is structured as follows: Sect. 2 pro-
vides an overview of our approach; Sect. 3 develops the the-
ory underlying the consistent mapping of the feature model
onto the domain model; Sect. 4 describes the tools which
we implemented; Sect. 5 introduces a case study which was
used to apply and evaluate our approach; Sect. 6 discusses
achievements and limitations; Sect. 7 compares related work;
and Sect. 8 concludes the paper.

2 Overview

2.1 Tool chain

For model-driven software product line engineering, we
implemented an environment called MODPL which is visu-
alized in Fig. 1. As far as possible, we tried to reuse exist-
ing and widespread tools. For feature modeling, we used the
FeaturePlugin developed by Czarnecki and Antkiewicz
[1]. FeaturePlugin is a stand-alone tool which supports
cardinality-based feature modeling [17]. The tool provides
a tree editor for creating a feature model and an interactive

Package Diagram Tool

Fujaba

FeaturePlugin

Feature Model

Feature
Configuration

Application Modeler

Feature Model
Editor

Feature Model
Configurator

Feature Annotation
Editor

Package Diagrams

Fujaba Editor

Package Diagram
Editor

Story Diagrams

Class Diagrams

Domain Model
Configurator

Fujaba
Compiler

Executable
Java Code

MODPLFeature-
Plugin

Domain
Modeler

Executable
Domain Model

Configured Domain
Model

Fig. 1 The MODPL environment for model-driven engineering of software product lines

123

Mapping feature models onto domain models 1497

configurator for deriving a consistent feature configuration
from the model.

For domain modeling, we selected Fujaba [61], which sup-
ports class diagrams for structural modeling and story dia-
grams for behavioral modeling. Fujaba was chosen because
the domain model is executable: from the domain model,
the Fujaba compiler generates fully functional Java code. In
contrast to most other tools, Fujaba does not merely generate
implementation frames for method bodies. Rather, complete
executable Java code is generated from a story diagram (see
Sect. 2.2.2) acting as a behavioral model of a method defined
in a class diagram. A yearly workshop series (Fujaba Days)
has been established which provides a platform for present-
ing and discussing tool developments in and applications of
Fujaba. The reader is referred to [47] for an overview of
the Fujaba tool suite being developed at multiple sites. The
web page http://www.fujaba.de gives detailed information
on Fujaba, including a comprehensive list of publications.

Apart from these tools, the overall MODPL environment
includes further tools implemented by us (orange rectangles
in the diagram). Since Fujaba, like other common UML tools,
does not provide adequate support for modeling-in-the-large,
we developed a package diagram editor [8,12] which is based
on the UML2 package concept. The main focus of the cur-
rent paper (red ellipsis in the figure) lies on MODPLFeature-
Plugin [5,6], which provides the bridge connecting feature
models to domain models.

The tool chain is used as follows: in domain engineer-
ing, the domain modeler creates a feature model describing
common and varying properties of instances of the product
line with the help of FeaturePlugin. Furthermore, he uses
the package diagram editor and the Fujaba editor to create
a domain model as a superimposition of all product vari-
ants. Domain model elements are connected to features by
means of the feature annotation editor. In application engi-
neering, the application modeler creates a feature configura-
tion, which includes all features of the product variant to be
constructed. Subsequently, he uses the domain model con-
figurator to configure the domain model by dismissing all
domain model elements which do not belong to the speci-
fied product variant. Finally, the Fujaba compiler converts
the configured domain model into executable Java code.

2.2 Models

2.2.1 Feature model

A feature model consists of one or more feature dia-
grams, which are organized hierarchically. From the original
approach presented in [36], several variants have emerged,
including cardinality-based feature modeling [17], imple-
mented in an Eclipse plug-in called FeaturePlugin [1].

Fig. 2 A simple example of a feature model created with FeaturePlugin

Figure 2 shows a feature diagram created with Feature-
Plugin. Features are organized into a tree. A Product Line

constitutes the root feature, which is decomposed into sub-
features opt. F1 and mand. F1. These features are optional
(unfilled icon) and mandatory (filled icon), respectively: if
the parent feature is selected, an optional/mandatory subfea-
ture may/must be selected, as well. opt. F1 is decomposed
into optional subfeatures opt. Child1 and opt. Child2. Further-
more, there is a feature group grouping two subfeatures opt.

SubF1 and opt. SubF2. An unfilled fork denotes an exclusive-
or selection, i.e., exactly one of the child features (unfilled
squares) has to be selected. Feature mandat. F1 is refined
into an optional child feature opt. Child3 and a mandatory
child feature mandat. Child4. Furthermore, there is a feature
group with inclusive-or semantics (filled fork), i.e., at least
one feature of the group must be selected. Since SubF5 is
mandatory, it is always selected when its parent feature is
selected. SubF3 and SubF4 are optional and may or may not
be selected.

The feature diagram defines constraints on feature selec-
tions: a child feature may be selected only if its parent has
been selected, exactly one feature of an exclusive-or group
has to be selected, etc. Further, “context sensitive” constraints
may be expressed such as “feature f1 excludes/requires f2”.
By means of these constraints, feature interactions may be
specified.

In cardinality-based feature modeling, cardinalities may
be specified for feature groups (represented by forks); this
(meta-)feature is not shown in the feature diagram of Fig. 2.
The cardinality of a feature group defines the minimum and
the maximum number of elements that may be selected in

123

http://www.fujaba.de

1498 T. Buchmann, B. Westfechtel

Fig. 3 A sample configuration created with FeaturePlugin

a feature configuration.1 In addition, cardinality-based fea-
ture modeling allows to specify cardinalities for individual
features. In this case, a feature may be instantiated multiple
times in a feature configuration.

In our approach, we allow for cardinalities attached to
(inclusive-or) feature groups, but we do not make use of fea-
ture instantiations. Thus, a feature configuration consists of
a subset of all features which are defined in a feature model.
Configuring a feature model is reduced to a selection process
and does not comprise feature instantiations. A configura-
tion is called consistent if it satisfies the constraints defined
in the feature model. The tool FeaturePlugin supports the
construction of consistent configurations, as will be shown
below.

In Fig. 3, a consistent feature configuration is dis-
played which is based upon the features defined in the
feature model. Selected features are depicted by hooked
squares (opt. Child2). Optional features which have not
been selected are shown as empty squares (opt. Child1).
In exclusive-or groups, excluded features are displayed as
crossed squares (opt. SubF1). The selection of a subfea-
ture implies the selection of its parent feature (if any) in
order to maintain consistency. In Fig. 2, opt. F1 was selected
automatically because opt. Child2 is part of the current
configuration. Furthermore, if a feature in an exclusive-or
group is selected, all competing features in the same group
are excluded automatically. In the sample configuration, opt.

SubF1 and opt. SubF2 are excluded and selected, respec-
tively.

1 Cardinalities may be specified only for inclusive-or groups. An
exclusive-or group always has the cardinality [1:1].

2.2.2 Domain model

The domain model consists of models of different levels of
granularity. Package diagrams are used on a coarse-grained
level to model the basic structure of the software system.
Packages are refined into class diagrams. Finally, methods of
(passive) classes are specified by story diagrams. We assume
the reader to be familiar with UML2 package and class dia-
grams [43]; story diagrams are described below.

A story diagram [22] realizes exactly one method of some
class, and it may use classes, attributes and methods from
multiple class diagrams. Story diagrams are close to inter-
action overview diagrams in UML2. However, they were
designed with a different purpose, namely, to provide an
executable behavior rather than a description of interactions
among objects. Within story diagrams, activities and transi-
tions are used to model the control flow. Fujaba supports two
different kinds of activities: (1) statement activities, allow-
ing the modeler to use source code fragments that are merged
1:1 with the generated code and (2) story activities. A story
activity contains a story pattern and describes a graph trans-
formation rule where both the left and the right hand side
of the rule are shown in one diagram. Additionally, collab-
oration calls can be used on objects and constraints can be
specified that are evaluated at runtime. A graph transforma-
tion rule is only applied in case the constraints are satisfied.
On the level of control structures, story diagrams support
sequences, branches, and loops. Furthermore, a story activ-
ity can be marked as a “for each” activity: While an ordinary
story activity is executed only once (on one match of the story
pattern), a “for each” activity is carried out on each match of
the pattern.

Figure 4 shows a simple example of a story diagram con-
taining some of the constructs mentioned above. It represents
the implementation of method process of class B. The first
activity checks whether the attribute processed has a given
value. If the attribute assertion fails, the method ends. Oth-
erwise, the next activity is processed. This activity checks if
no object of the type X is associated with the current object.
If this condition holds, an object of the type Y is created and
associated with the this object. Finally, the attribute processed

is modified and the stop activity is reached.
Story diagrams constitute the added value of Fujaba com-

pared to other UML CASE tools since they allow for the
generation of fully executable source code. Their expres-
sive power comes from the story patterns, which describe
complex operations with a graphical and intuitive notation.
Some more advanced examples of story diagrams will fol-
low in Sect. 4, where we employ story diagrams internally
for model-driven development of the MODPLFeaturePlu-
gin tool. For a formal definition of the syntax and seman-
tics of story diagrams, the reader is referred to [61]. In
this paper, we will be concerned only with the abstract

123

Mapping feature models onto domain models 1499

Fig. 4 A simple example of a story diagram

syntax of story diagrams, which will be introduced later
(in Sect. 3).

3 Mapping features to models

This section deals with the mapping of elements contained in
the feature model to domain model elements. This mapping
defines for each model element in which product variants it
will be visible. To this end, each model element may be dec-
orated with a feature annotation—a set of features from the
feature model. From a feature configuration, which defines
the set of features of the product variant to be built, and the
annotated domain model a configured domain model is con-
structed. The configured model is composed of all domain
model elements whose feature set is included in the feature
set of the configuration. If a domain element is annotated with
some feature f which is not part of the feature configuration,
it is specific to an excluded feature. As a consequence, it is
not inserted into the configured domain model.

The configured domain model has to be consistent, i.e.,
it needs to be a valid instance of the underlying meta-
model. Unfortunately, inadequate feature annotations may
easily result in inconsistent configured domain models. For
example, an association might be selected whose ends were
excluded from the configured domain model. To ensure con-
sistency of the configured domain model, constraints on the

Fig. 5 UML profile to map features to a domain model element

feature annotations of inter-dependent model elements have
to be enforced. In our example, the feature set of the associ-
ation must include the feature sets of the association ends. In
this way, it is guaranteed that an association is selected only
with its association ends.

In this section, we will formally define the mapping of
features to model elements as well as the consistency rules
to be applied to this mapping. To this end, the UML profile
mechanism is used to extend the domain model with feature
annotations. Furthermore, the consistency rules are defined
with the help of OCL constraints. In this way, the defini-
tions are kept independent of tool-specific peculiarities. Fur-
thermore, we separate the formal definition of the mapping
and the consistency rules clearly from their implementation,
which will be described in Sect. 4.

3.1 Mapping definition

In order to map features to domain model elements, we
defined a profile. This profile consists of a stereotype called
VariableElement which contains a set of strings denoting fea-
tures from the feature model (Fig. 5). The stereotype extends
the metaclass Element.

In the following, the term feature annotation is used when
the stereotype VariableElement is assigned to a model element
in order to establish a mapping between this element and cor-
responding features in the feature model. A model element
which has no annotation is treated in the same way as a model
element being annotated with an empty feature set.

Formally, feature annotations may be defined by a function
mapping domain elements to sets of features.

Definition 1 (Feature annotation function) Let F and DM
denote a set of features (from the feature model) and a domain
model (consisting of a set of model elements), respectively.
A feature annotation function is a function

fa : DM → 2F (1)

The function fa assigns to each model element e ∈ DM a
(potentially empty) set of features fa(e) ⊆ F.2 fa(e) is called
the feature annotation of e.

From the feature annotation function, a feature annotation
relation Ra ⊆ DM × F may be derived as follows:

(e, f) ∈ Ra ⇔ f ∈ fa(e). (2)

2 2F denotes the powerset of F .

123

1500 T. Buchmann, B. Westfechtel

The feature annotation relation is an m : n relation, i.e., a
given domain model element may be decorated with multiple
features, and a given feature may be used to decorate multiple
domain model elements.

A model element annotated with a set of features f1, . . . , fn

is specific to all of these features. The model element is
included into a domain configuration (a configuration of the
domain model) if and only if the underlying feature con-
figuration includes all of the features f1, . . . , fn . Thus, the
feature annotation of some model element controls its visi-
bility. This behavior is formalized by a domain configuration
function.

Definition 2 (Domain configuration function) Let F and
DM denote a set of features (from the feature model) and
a domain model, respectively. A domain configuration func-
tion for DM is a function

fdc : 2F → 2DM (3)

For some feature configuration C ⊆ F , the value of fdc—the
domain configuration DC for C—is defined as follows:

fdc(C) = {e ∈ DM| fa(e) ⊆ C} (4)

Note that elements e with fa(e) = ∅ are globally visible,
i.e., they are contained in each domain configuration.

3.2 Mapping constraints

Mapping constraints are conditions which refer the mapping
of the feature model onto the domain model (formalized by
the feature annotation function). Table 1 lists the most impor-
tant constraints violations which are taken care of by the
MODPLFeaturePlugin. The first column denotes different
types of inconsistencies, the second column describes the
respective actions for handling inconsistencies.

Feature not declared This inconsistency is avoided by
offering only features from the feature model when a
model element is going to be annotated.
Feature not used If there is no model element which has
been annotated with a given feature f , this may indi-
cate that f has not been implemented yet. In this case, a
warning is displayed.

Table 1 Handling of inconsistencies

Inconsistency Action

Feature not declared Avoidance

Feature not used Warning

Feature annotation not satisfiable Error

Dependency violation Repair

Feature annotation not satisfiable A feature annotation
is not satisfiable if it contains mutually exclusive features
fi and f j from the feature model. As a consequence, the
annotation is flagged with an error.
Dependency violation A model element e1 is said to
depend on a model element e2 when the latter must be
present whenever the former is part of a domain configu-
ration. A dependency violation occurs when e1 is visible
in some configuration but e2 is excluded. Inconsistencies
of this type are handled by repair actions.

In the following, we will focus on the most interesting of
these inconsistencies, namely dependency violations. Sup-
posing that the annotated domain model is syntactically cor-
rect, all errors in a configured domain model result from the
removal of annotated elements (this is quite similar to the
deletion of model elements). In order to avoid syntactical
errors resulting from removing annotated elements, we have
to make sure that depending model elements are annotated
in a “sufficiently restrictive way”. This leads to the follow-
ing rule:

If model element e1 depends on another model element
e2, e1 may be visible only when e2 is visible, as well.

This rule is formalized as follows:

Definition 3 (Dependency constraint) Let DM be a domain
model with elements e1, e2 such that e1 depends on e2. Fur-
thermore, let DC ⊆ DM denote some domain configuration.
For each DC, the following condition must hold:

e1 ∈ DC ⇒ e2 ∈ DC. (5)

We may rephrase this constraint by referring to the sets of
domain configurations including e1 and e2, respectively. Let
us denote these sets by DC1 and DC2, respectively. Using
these sets, Condition 5 is rewritten as follows:

DC1 ⊆ DC2. (6)

These definitions are expensive to check: for each domain
configuration including e1, it has to be tested whether e2 is
included, as well. Therefore, we rephrase the dependency
constraint in terms of feature annotations:

fa(e1) ⊇ fa(e2). (7)

Please note that the set inclusion is performed in different
directions in Conditions 6 and 7, respectively. The more fea-
tures are assigned to some model element e, the smaller is
the set of domain configurations in which e occurs.

The dependency constraint has to hold for all config-
ured domain models. Therefore, the rule above has to be
“instantiated” for the respective metamodels. In the following
sections, we specify consistency rules written in OCL [42]

123

Mapping feature models onto domain models 1501

defining dependency constraints for UML class diagrams and
Fujaba’s story diagrams. In the OCL rules, the generic notion
of dependency is instantiated in a metamodel-specific way.
For example, a component depends on its container, and an
applied occurrence depends on the corresponding declara-
tion.

Since OCL has been designed for readers who are not
familiar with mathematical notation, OCL constraints tend to
be verbose. Nevertheless, we decided to use OCL because it
is also used for consistency constraints within the UML spec-
ification [43]. Furthermore, OCL has been applied frequently
in tools for model-driven software engineering. Altogether,
it is a widely adopted specification language for constraints.

3.3 Dependency constraints for class diagrams

In this section we present constraints for annotating elements
of UML class diagrams. We do not strive for completeness;
rather, we have selected a representative set of rules. Before
presenting the OCL constraints, we start with a motivating
example. Please note that the rules specified in this section
differ from “regular” consistency constraints for class dia-
grams in terms that they take into account our stereotype
which is used for feature annotations. Furthermore, the con-
straints presented here are transformed into automatic repair
actions. While other tools which use OCL for validation pur-
poses are able to only detect errors, our approach automati-
cally repairs these errors without any user interaction.

Example 1 (Class diagram constraints) Figure 6 shows a
simple class diagram where class B is annotated with the fea-
ture unselectedFeature. When deriving a configuration which
does not contain unselectedFeature, the following syntactical
errors arise:

• Source or target of generalizations are missing.
• Both associations have only one member end.

Fig. 6 Simple class diagram with a tagged class

• The classes X and Y both have a role end of a nonexisting
type.

• The implementation of print_K_from_A() leads to compi-
lation errors, since class C is no longer derived indirectly
from class A, and therefore cannot access the property k.

• Within the method implementation of print_I_from_B(), an
access to property i contained in class B is not possible,
since B does not exist.

Figure 7 shows a cutout of the UML Superstructure as
far as it is relevant for the OCL constraints to be presented
below. Element constitutes the root of the class hierarchy.

Constraint 1 (Owned elements) For the constraint
VisibilityOfOwningElement defined in Fig. 8, we first introduce
a function which returns the feature identifiers of an element.
The function featureIDs() will be reused in all definitions to
be presented below. Starting from the current element, all
attached stereotypes are retrieved. From these, the stereo-
type named VariableElement is selected, whose set-valued id

attribute is read.3 The function returns the empty set if no
stereotype named VariableElement is attached to the current
element.

The constraint VisibilityOfOwningElement requires that the
feature set of the current element includes the feature set of
its owning element. In this way, it is guaranteed that if an
owned element is visible, its container is visible, as well. If
the current element does not have an owner, the constraint is
always true because the feature set of the current element is
compared against the empty set.

In the UML specification, the composition defined on
Element is refined for certain subclasses, e.g., for Class.
Table 2 shows a few examples of subclasses of Element and
their dependent elements.

Constraint 2 (Typed elements) If a typed element is visible,
its type must be visible, as well. Therefore, it is required that
the feature set of the type is included by the feature set of the
typed element (Fig. 9). This rule ensures that the types used,
e.g., as property types or parameter types of operations are
“sufficiently visible”.

Constraint 3 (Generalizations) A generalization is a direc-
ted relationship from a specific to a general classifier which
is owned by the specific classifier. Thus, Constraint 1 ensures
that the generalization is visible only when its source (the spe-
cific classifier) is visible. In addition, the current constraint
(Fig. 10) guarantees that the visibility of the generalization
is also constrained by the visibility of the target (the general
classifier). To this end, the feature set of the generalization
must contain the feature set of the general classifier.

3 In OCL, nested navigations result in bags rather than in sets. The pre-
defined function asSet() is used to convert a bag into a set, removing
potential duplicates (not occurring here).

123

1502 T. Buchmann, B. Westfechtel

Fig. 7 Cutout showing relevant parts of the UML Superstructure

Fig. 8 Owned elements

Table 2 Types of owned elements

Class Owned elements (type)

Association Contained rules (Constraint), outgoing imports
(ElementImport or PackageImport), generalizations
to super-associations (Generalization), non-navigable
or n-ary roles (Property)

Class Nested classes (Class), contained rules (Constraint),
outgoing imports (ElementImport or
PackageImport), generalizations to superclasses
(Generalization), defined operations (Operation),
defined attributes (Property)

123

Mapping feature models onto domain models 1503

Fig. 9 Typed elements

Fig. 10 Generalizations

Fig. 11 Association ends

Constraint 4 (Association ends) Each association requires
at least two association ends. The constraint of Fig. 11 ensures
that all association ends are visible when an association
is selected. To this end, the set of features annotating the
association must contain the union of the feature sets of all
association ends. Please note that this constraint could be
relaxed for n-ary associations by requiring only that at least
two association ends are visible when the association is
selected. However, in Fujaba only binary associations are
supported. Therefore, the relaxed constraint—which is more
difficult to handle, e.g., in repair actions—would not make a
difference for Fujaba class diagrams.

3.4 Dependency constraints for story diagrams

The following constraints are required for Fujaba’s story
diagrams. We will focus on constraints referring to story pat-
terns. Further constraints are defined on the control flow level,
e.g., a control flow may be visible only if its ends are visible.

Figure 12 shows a simplified cutout of the Fujaba meta-
model. Please note that Fujaba is based on the UML, but still
has its own extensions for behavioral modeling. The behav-
ior of each operation can be specified by exactly one story
diagram. Each story diagram consists of a set of activities
of different kinds, e.g., statement activities or story patterns.
A story pattern is composed of instance specifications. Both
objects and links are instances of classifiers. Each link con-
nects a source to a target object. An attribute expression is
owned by an object of some story pattern. It consists of a left-

hand side (an attribute of the referenced object), an operator
(either a relational operator or the assignment operator), and
a right-hand side specifying an attribute value. The attribute
expression is connected to the property which is instantiated
on its left-hand side.

Constraint 1 applies to owned elements in behavioral mod-
els, as well. For example, a story pattern is visible only when
its enclosing story diagram is visible, and an object is visible
only when its enclosing story pattern is visible.

In the following, we will define a few constraints on ele-
ments of story patterns in order to illustrate that the same
kind of reasoning as for class diagrams may be applied to
story diagrams.

Constraint 5 (Instances) If an instance specification is visi-
ble, its corresponding classifier must be visible, as well. Thus,
the feature set of the instance specification must include the
feature set of its classifier (Fig. 13).

Constraint 6 (Attributes) Analogously, if an attribute expre-
ssion is visible, the property from which its target attribute
is instantiated must be visible, as well (Fig. 14).

Constraint 7 (Links) If a link is visible, both its source and
its target have to be visible, as well (Fig. 15). Otherwise, the
configuration process may produce dangling links.

Constraint 8 (Visibility of attributes) Within story dia-
grams, attributes declared in the class diagram can be used.
Inheritance ensures that attributes from superclasses can be
used in respective method implementations of subclasses.
Thus, syntax errors can occur if the inheritance hierarchy is
broken due to filtering.

The constraint which excludes this type of error is shown at
the bottom of Fig. 16. The context of the constraint is the class
AttributeExpression and refers to the target of the attribute
expression. First, the owning class of the target attribute is
determined by navigating the property and the class associ-
ation ends. Second, the object class—the class used in the
declaration of the object in the story diagram—is retrieved by
navigating from the attribute expression to its corresponding
object and from this object to its class.4 Third, all interme-
diate parent classes between the object class and the owning
class are retrieved.

These definitions are used in the condition following the
keyword in. The condition is an implication with the premise
that the owning class differs from the object class. In the first
operand of the conjunction in the conclusion, it is required
that the feature set of the attribute expression includes the fea-
ture sets of all intermediate parents. Likewise, it is required
that this condition also holds for all generalizations emanat-
ing from these classes or immediately from the object class

4 Here, oclAsType() narrows the type from Classifier to Class.

123

1504 T. Buchmann, B. Westfechtel

Fig. 12 Cutout showing relevant parts of the Fujaba meta model

Fig. 13 Instances

and ending at either an intermediate parent or the owning
class. Altogether, this constraint guarantees that the paths
from the object class to the owning class are not filtered away
when the attribute expression is visible.

In the upper part of Fig. 16, the required auxiliary func-
tion is defined in the context of Classifier. In the definition,
the function allParents() from the UML 2.3 standard is used
which returns the transitive closure over the generalizations
starting from a given classifier. From the full transitive clo-

Fig. 14 Attributes

Fig. 15 Links

123

Mapping feature models onto domain models 1505

Fig. 16 Visibility of attributes

sure, those classes are selected which are located below the
parent classifier.

Constraint 8 is considerably more complex than the other
constraints defined above. All other constraints are derived
from a single association in the underlying metamodel. In
contrast, Constraint 8 is derived from a context-sensitive
rule dealing with inheritance of properties: when an attribute
expression is connected to a property, the property must be
defined in the declared class of the object owning the attribute
expression or in a (transitive) superclass of the object class.

3.5 Repair actions

Checking the dependency constraints presented in the pre-
vious sections is helpful since violations indicate that con-
figured domain models may be inconsistent. In addition, the
dependency constraints may be used proactively for auto-
matic repair actions: if a dependency constraint is violated,
the feature set of the dependent element is extended until it
includes all features of the master element. This repair action
is called feature propagation. Below, feature propagation is

defined in a generic way, following the approach at the end
of Sect. 3.2.

Definition 4 (Feature propagation) Let DM be a domain
model with elements e1, e2 such that e1 depends on e2. Fur-
thermore, let fa(e1) and fa(e2) denote their respective feature
annotations (feature sets). Finally, the feature difference set
Δ f is calculated as follows:

Δ f = fa(e2)\ fa(e1) (8)

If Δ f 	= ∅, feature propagation extends the feature set of e1

as follows:

fa(e1) := fa(e1) ∪ Δ f . (9)

Definition 4 refers to a single pair of model elements.
Feature propagation on the whole domain model involves a
fixed point iteration: feature sets are gradually extended until
all dependency constraints are satisfied.

The following procedures propagate features to dependent
elements until all dependency constraints are satisfied:

Feature propagation was implemented along the lines of
Algorithm 15 (see Sect. 4.1.3 for further details). Let us
briefly discuss partial correctness, termination, and efficiency
of this algorithm.

Partial correctness The outermost loop in propagate()
calls propagate(e) on each element of the domain

5 The edge direction coincides with the direction of feature propagation.

123

1506 T. Buchmann, B. Westfechtel

model. Recursive calls to propagate(e1) are performed
as long as dependency constraints are violated. If the
algorithm terminates, the domain model does not con-
tain dependency violations any more.
Termination A recursive call propagate(e1) is per-
formed only if Δ f 	= ∅, i.e., a proper extension of the
feature annotation of e1 precedes the recursive call. Since
the base feature set F is finite, the feature annotation of
some element e1 may be extended only a bounded num-
ber of times. Therefore, the algorithm terminates.
Efficiency The parameterized procedure propagate(e2 :
Element) is called in the outermost loop |V | times. For
each element e1, the number of recursive calls on e1 is
bounded by |F | since each recursive call is guarded by
a proper extension of fa(e1). Altogether, the number of
calls is bounded by |V |(1 + |F |).

Example 2 (Class diagram propagations) Figure 17 shows
the application of the repair actions to the sample diagram
given in Fig. 6 (Example 1). By applying Rule 1 (i.e., the
propagation rule derived from Constraint 1), all owned ele-
ments of class B are also decorated with the stereotype Vari-

ableElement and the respective tagged value. This includes
the generalization to class A, the property i, and the navi-
gable member ends x and y of both associations. Applying
Rule 3, the visibility of the generalization from class C to
class B is constrained. The visibilities of the opposite ends
of both associations are constrained according to Rule 2.
Finally, Rule 4 is used to constrain the visibilities of both
associations.

If the resulting annotated domain model is configured
without selecting unselectedFeature, class C would have no
outgoing generalization in the configured model. Further
repair actions are offered on configured models to deal with
broken inheritance hierarchies: In an automatic mode, the
filtered class (B) is replaced by its superclass (A) while in an
interactive mode, the user can decide if the inheritance to the
superclass should be introduced or not.

Example 3 (Story diagram propagations) The top of Fig. 18
displays an unannotated story diagram for the method
print_k_from_A() provided by class C. We assume that feature
propagation has already been applied to the class diagram,
resulting in the final state shown in Fig. 17. At the bottom,
the result of applying feature propagation rules to the story
diagram is displayed. According to Rule 5, object b is anno-
tated because its class B has been annotated. For the same
reason, both links are annotated, as well. Please note that the
link between x and b has to be annotated also for another
reason: According to Rule 7, a link is annotated if its ends
have been annotated. The attribute expression with left-hand
side i receives an annotation from its property declared in the
class diagram (Rule 6). Finally, the attribute expression with

left-hand side k is annotated because of a broken inheritance
hierarchy (Rule 8).

4 Tool support

In the previous section, we have dealt with the mapping of
feature models onto domain models at a conceptual level. The
current section describes the support tools which we devel-
oped based on these concepts. As already illustrated in Fig. 1,
our core contribution consists of a tool called MODPLFea-
turePlugin [5,6]. This tool is displayed in a more detailed
way in Fig. 19. It consists of two major parts:

• An extension for the Fujaba editor, enabling the user
to annotate domain model elements with features and
automatically applying the consistency rules presented
in Sect. 3. By invoking the automatic propagation of fea-
tures to dependent domain model elements, the user has
full design time control of the effects of assigning fea-
tures to model elements.

• A set of configuration mechanisms: (1) a graphical visu-
alization of the chosen product configuration directly in
the domain model editor, (2) the generation of a config-
ured model, and (3) the direct generation of configured
and executable source code.

4.1 MODPL feature editor

4.1.1 Implementation of feature annotations

In the previous section, we defined a UML profile for anno-
tating domain model elements with features (Fig. 5). Unfor-
tunately, it was not possible to implement the mapping of the
feature model onto the domain model in this way. The Fujaba
metamodel supports UML stereotypes, but unfortunately no
tagged values can be associated to them. Therefore, we used
annotations (structured comments) to realize the mapping
between features and domain model elements. This is illus-
trated in Fig. 20, which shows the class diagram obtained
from feature propagation in Example 2 (Fig. 17).

4.1.2 Handling inconsistencies

Following the structure of Table 1, inconsistencies are han-
dled in our tool as follows:

Feature not declared The tool allows to annotate model
elements with declared features only. To this end, a fea-
ture model is loaded. As soon as the user invokes the
dialog to annotate a model element, he can only choose

123

Mapping feature models onto domain models 1507

F
ig

.
17

A
pp

lic
at

io
n

of
th

e
pr

op
ag

at
io

n
ru

le
s

123

1508 T. Buchmann, B. Westfechtel

Fig. 18 Application of the consistency rules for story diagrams

features from the already loaded feature model (Fig. 21).
Thus, inconsistencies resulting from misspelled feature
ids are avoided.
Feature not used Features that are not assigned to a
domain model element indicate a potentially incomplete
domain model. Thus, our tool checks if each feature con-
tained in the feature model is assigned to at least one
domain model element. If this is not the case, a warning
is issued and the corresponding feature is marked in the
feature model.

Feature annotation not satisfiable If mutually exclusive
features are assigned to the same domain model element,
it will not be contained in any configured domain model.
To this end, the corresponding domain model element
and the assigned feature annotations are highlighted to
indicate the problem to the user. The user has to solve
this conflict manually by removing one of the mutually
exclusive feature annotations.
Dependency violation Certain model elements depend on
each other. In the previous section we presented a set of
constraints which have to hold for valid annotated domain
models. Feature annotations performed by the user are
automatically propagated to dependent model elements
in order to avoid syntactical errors. These propagations
are performed either on demand (through a command in
the model editor) or automatically (during configuration
of the model or generation of configured source code).
The annotations which have been added automatically are
maintained separately from annotations assigned man-
ually by the user, i.e., the set of annotations is parti-
tioned into two disjoint subsets. By default, automati-
cally added annotations are hidden at the user interface.
However, they may be displayed at any time upon the
user’s request. Additionally, automatically added anno-
tations may also be removed in case the user annotations
need to be changed. The feature annotations added by
automatic feature propagation are displayed with a grey
background, whereas manual annotations are presented
with a white background color (Fig. 20).

4.1.3 Implementation of feature propagation

The tool MODPLFeatureEditor was developed in a model-
driven way. The consistency rules, which are specified
in Sect. 3 formally using OCL, were implemented using
story diagrams. In our implementation, we chose to provide
repair actions, i.e., propagation mechanisms that enforce the
existence of feature annotations on depending model ele-
ments. These propagation mechanisms are implemented with
Fujaba’s story diagrams, which operate directly on Fujaba’s
abstract syntax graph to enforce a propagation of feature tags
to dependent model elements. The result of the propagation
mechanism is a model that conforms to the constraints of
Sect. 3.

A separate validation of the model has not been imple-
mented, because from the user’s point of view a syntacti-
cally correct model is required. A validation points the user
to errors in the model only, while the automatic repair actions
propagate feature tags to the corresponding model element,
which has to be done manually by the user otherwise.

Feature propagation is performed automatically when the
domain model is configured or configured source code is

123

Mapping feature models onto domain models 1509

Fig. 19 Overview: tool functionality

Fig. 20 Applying consistency rules

generated. Alternatively, the user may invoke feature propa-
gation in the model editor.

Please notice that validation could have been performed
directly on the basis of the OCL constraints of Sect. 3 (by inte-
grating an OCL validation framework with Fujaba). How-
ever, OCL is a functional language, and the evaluation of
OCL expressions does not have side effects. Repair actions
do change the state of the mapping (between feature model
and domain model) and thus cannot be implemented with a
validation framework. Instead, we transformed the OCL con-
straints into repair actions in a systematic, yet manual way.

Below, we present two examples of story diagrams for
implementing feature propagation. Please note that the story

diagrams show the implementations of the repair actions
which are used internally in the tool. Users working with our
tool do not require any knowledge about repair actions or
about the Fujaba meta-model. As the repair actions provided
by our tool implementation refer to the Fujaba meta-model,
they can be reused for any domain model created with Fujaba.

Example 4 (Propagation from a class) Figure 22 shows a
story diagram defining a method that propagates feature tags
assigned to a class to dependent elements.6 All methods used

6 Please note that this figure shows the actual implementation of the
method based upon Fujaba’s metamodel. This metamodel uses slightly
different names for metaclasses.

123

1510 T. Buchmann, B. Westfechtel

Fig. 21 Annotating model elements

to propagate feature tags to dependent model elements belong
to the class TagPropagator which is part of our Fujaba plug-
in named MODPLFeaturePlugin. An instance of this class
is created for each project opened in the Fujaba IDE and
holds references to all feature tags which have been added
automatically by invoking the repair actions. These refer-
ences are used for highlighting automatically added tags (see
Fig. 20).

The story patterns depicted by rounded rectangles with
a double frame represent “for each” activities, which are
terminated when all instances of the patterns have been
exhausted (outgoing end transition). For example, the first
pattern iterates over all attributes that belong to the corre-
sponding class and propagates the feature tags associated
with the class to them. Propagation is performed by a method
call, which is represented by an arrow labeled with a number
(determining the order in the case of multiple calls) and the
text of the call. In the pattern, the method propagate(Element

source, Element target) is called which propagates feature tags
from source to target in order to satisfy Constraint 1. Anal-
ogously, feature propagation is performed to other types of
owned elements: methods (II), association ends (III), and
outgoing generalizations (VI).

Pattern (IV) propagates features from a class to declara-
tions in class diagrams in which it is used as a type (Con-
straint 2). (V) performs feature propagation to incoming

generalizations (Constraint 3). (VII) handles instances of the
class used in story diagrams (Constraint 5). (VIII) is con-
cerned with the file which is used to store the generated
source code of the class. Finally, in (IX) the method prop-

agateAlongInheritanceHierarchy() is called in order to satisfy
Constraint 8 (visibility of attributes; see next example).

Example 5 (Propagation to attributes) The method prop-

agateAlongInheritanceHierarchy() ensures that attributes of
superclasses being used in story patterns are visible (Con-
straint 8). To this end, features are propagated along the paths
of classes and generalizations from the superclass owning
the attribute to the subclass used in the declaration of the
object owning the attribute expression in a story pattern. As
a result of this propagation, the connecting paths are not fil-
tered away in configurations of domain models in which the
attribute expression is selected.

The corresponding story diagram is shown in Fig. 23.
In some patterns, path expressions are used which define
derived associations. Navigation is performed on associa-
tion ends; navigations are composed with the dot notation. *

denotes a transitive closure. In the case of a “for each” activ-
ity, an outgoing transition labeled with each time is used to
enter the body of a loop. The body ends when the “for each”
activity is reached again.

123

Mapping feature models onto domain models 1511

Fig. 22 Method implementation that propagates feature tags associated with classes to respective dependent elements

123

1512 T. Buchmann, B. Westfechtel

Fig. 23 Method implementation that propagates feature tags according to Constraint 8

Parameter owningClass determines the start of propaga-
tion. In Pattern (1), an attribute expression attrExprPair is
searched which is an instance of some attribute attr of the
owning class. Furthermore, the attribute expression must be
part of an object umlObject whose declared class objectClass

differs from the owning class.7

For each matched attribute expression, features are propa-
gated from all classes and generalizations being located on a
path from the object class to the owning class. Pattern (2) han-

7 Fujaba’s graph matching algorithm internally uses injective matches.
As a consequence, the Fujaba runtime environment ensures that “own-
ingClass” and “objectClass” are different instances of the metaclass
UMLClass. Therefore, the UMLObject “umlObject” is not an instance
of “owningClass”. In this case, the object class must be a subclass of
the owning class.

dles intermediate classes. For each intermediateClass which
is a transitive parent of objectClass and a transitive child of
owningClass, the features of intermediateClass are propagated
to attrExprPair.8 Pattern (3) works analogously for interme-
diate generalizations.

4.2 MODPL configurator

In order to start the configuration process, a corresponding
feature configuration is required. FeaturePlugin allows to

8 The association ends revSubclass and superclass used in the imple-
mented metamodel correspond to the association ends generalization
and general from the UML2 standard, as depicted in Figs. 7 and 12.

123

Mapping feature models onto domain models 1513

Fig. 24 Visualizing a configuration

easily create feature configurations by selecting and dese-
lecting distinct features from the feature model.

4.2.1 Visualization

To provide an overview of the selected configuration, MOD-
PLFeaturePlugin is able to visualize it directly in the Fujaba
model editor. To this end, all model elements which are
not contained in the current configuration are displayed
in light grey color, whereas the contained model elements
are displayed in their regular colors. Figure 24 shows a
visualization of a configuration which does not comprise the
feature sampleFeature.

4.2.2 Generating a configured model

Using model transformations, a tagged domain model can be
transformed into a configured model based upon a specific
feature configuration. To this end, a configuration created
with FeaturePlugin is used to determine the model elements
which are part of the target model. Afterwards the new model
is built in memory and stored to a file for (possible) further
editing. After editing is completed, the ordinary Fujaba com-
piler may be employed to generate Java code for the product
instance to be built.

Changing the configured model is part of application engi-
neering. Depending on the respective engineering process,
the changes may or may not be propagated back to the feature
model and domain model, which are developed in domain
engineering. Permitting deviations from configured models
provides for more flexibility. On the other hand, the domain
model and the feature model may erode gradually if more

and more development effort has to be invested in applica-
tion engineering.

4.2.3 Generating executable code

Besides visualizing a configuration or generating a config-
ured model, our tool also enables the user to generate config-
ured and executable code directly. To this end, a preprocessor
for the Fujaba model compiler was developed. Similar to a
compiler preprocessor for textual languages, this preproces-
sor removes model elements which are not part of the chosen
configuration. The Fujaba code generator is based upon the
chain-of-responsibility pattern [24]. Thus, a chain of code
writers exists and each token of the abstract syntax graph is
passed to the first element of the chain during the code gen-
eration process. In case the current code writer is responsible
for generating code for the token, the respective code frag-
ment is generated, otherwise the token is passed to the next
element of the chain. This design allowed an easy integration
of our preprocessor: it is the first item in the chain. The pre-
processor checks for each token whether it is visible in the
current configuration. In this case, the token is passed to the
next element in the chain in order to start the regular code
generation process. Otherwise an empty string is returned
and the chain ends.

Thus, direct generation of executable code again involves
the use of the Fujaba compiler, which now is preceded by
a preprocessor being part of our tool MODPLFeaturePlu-
gin. In the case of direct generation, there is no need for the
explicit creation of a configured domain model. Direct gen-
eration may be employed in a stringent top-down process, in
which application engineering is reduced to a pure configu-
ration process. Furthermore, direct generation may also be

123

1514 T. Buchmann, B. Westfechtel

employed as a final step after a series of changes to configured
domain models has been performed and these changes have
been propagated back to the feature model and the domain
model. In this way, it is guaranteed that the generated code
conforms to the annotated domain model and the feature con-
figuration of the respective product instance.

5 Case study

We applied the described approach successfully to a non-
trivial project located in the domain of software configura-
tion management. The project serves as a complex case study
and was developed over several years. For a comprehensive
description, please refer to the PhD thesis [20] or the corre-
sponding journal article [11]. Further information is given in
conference and workshop papers [7,9,10].

5.1 Domain

Software configuration management (SCM) is the discipline
of controlling the evolution of large and complex software
systems. A wide variety of SCM tools and systems has been
implemented, ranging from small tools such as RCS [48]
over medium-sized systems such as CVS [49] or Subversion
[15] to large-scale industrial systems such as Adele [21] and
ClearCase [54].

The current state of practice when developing SCM sys-
tems is characterized as follows:

1. SCM systems are large. For example, even the code base
of the GNU CVS project comprises 300,000 lines of code.
CVS is still a rather small tool compared to a commercial
system for large enterprises such as ClearCase.

2. SCM systems are similar. For example, almost all com-
mercial and open source systems are based on version
graphs, which are used to manage the evolution of soft-
ware objects.

3. The underlying models are defined only implicitly by
the program code, i.e., the model is hard-wired into the
respective system.

4. SCM systems are hard to adapt to modified require-
ments. For example, although Subversion provides simi-
lar functionality as CVS (at least from a bird’s eye view),
the developers of Subversion decided to start over from
scratch.

Since all of the aforementioned systems share some com-
mon properties, common building blocks in a software prod-
uct line could allow the configuration of these systems. The
development of this product line is by far a non-trivial task.
More information about the feature model and the domain
model of our SCM product line can be found in [11].

5.2 Approach

These observations have motivated us to launch a project
dedicated to the development of a modular and model-
driven product line for SCM systems (MOD2-SCM) [9,20].
A product line reduces the effort of developing an SCM
system by configuring an SCM system from a set of
reusable components. Model-driven software engineering
makes the underlying models explicit, which eases commu-
nication, reasoning, and change. Furthermore, the develop-
ment effort is reduced by replacing the implementation of
programs with the development of models at a higher level
of abstraction.

To analyze the domain, we used the FORM method [37],
which proposes to organize the feature model into a hier-
archy of abstraction layers (capability layer, operating envi-
ronment layer, domain technology layer, and implementation
technique layer). The current feature model comprises 147
different features distributed over these layers.

Based upon the results of the domain analysis, an exe-
cutable and configurable domain model was developed with
the help of Fujaba. The domain model realizes a significant
subset of the features specified in the feature model (102 fea-
tures). Currently, the domain model comprises 136 classes
distributed over 36 different packages. The product line con-
tains in its current state different variants of product models
(e.g., file system items, use case diagrams, EMF models),
version models (e.g., set, sequence, tree), and delta storage
mechanisms (e.g., forward deltas, backward deltas, mixed
deltas). Furthermore, different persistence and locking mech-
anisms have been implemented.

Figure 25 illustrates the MOD2-SCM approach by pre-
senting (simplified) cutouts of the feature model and the
domain model. The left-hand side displays the feature
model and a typical feature configuration for a CVS-like
SCM system. For the history, the feature Branches has
been selected, versions are stored with mixed (forward and
backward) deltas, synchronization is optimistic, and ver-
sion identifiers are maintained locally for each versioned
item.

On the right-hand side, cutouts of the domain model are
shown, which covers all features of the product line in a sin-
gle model. On the top, the architecture of the domain model
is represented by a package diagram. Product model, his-
tory, and storage are realized by respective packages, which
are connected to the feature model by feature annotations.
Below the package diagrams, a few class diagrams are dis-
played, focusing on the package for directed deltas and its
imported interfaces. The abstract class DeltaStorage is refined
into three subclasses, corresponding to the subfeatures of
DirectedDeltas in the feature model. Methods of classes are
realized by story diagrams, which, however, are not repre-
sented in the figure.

123

Mapping feature models onto domain models 1515

Fig. 25 Cutouts of feature model and domain model in MOD2-SCM

5.3 Experiences

The case study demonstrates that our approach to model-
driven software product line engineering is feasible. From
a single domain model, different variants of version con-
trol systems may be configured, supporting different product
and version models as well as different mechanisms for stor-
age and synchronization. The feature model is used for both
planning and documentation of the product line. The map-
ping of features to elements of the domain model provides

for traceability by recording which elements contribute to the
realization of a certain feature. Furthermore, the mapping is
used to configure the domain model based on a configuration
of the feature model.

Figure 25 illustrates the application of our approach to
the case study in the SCM domain. Please notice that the
domain model is a thoroughly planned and designed artifact
and not just an accidental superimposition of variants. By the
mapping from the feature model to the domain model, it is
documented clearly which elements realize which features.

123

1516 T. Buchmann, B. Westfechtel

For example, the package History realizes the correspond-
ing feature in the feature model, and its subpackages realize
respective subfeatures. Similarly, the package DirectedDeltas

is used to realize the feature of the same name. Within the
package, subclasses of the abstract class DeltaStorage realize
different variants of directed deltas. Altogether, the domain
model is based on a carefully designed model architecture.

The domain model for a product line has to cover all prod-
uct variants in a single model. Thus, developing a domain
model is an inherently complex task. In particular, the mod-
eler needs to be assisted in establishing a consistent mapping
of features to domain model elements. Our tool MODPLFea-
turePlugin assists the user in various ways in defining the
mapping (avoidance of errors, validations resulting in error
messages and warnings, as well as repair actions). In par-
ticular, the repair actions may be used to propagate features
automatically to dependent elements.

For example, in Fig. 25 the package DirectedDeltas has
been decorated with the corresponding feature from the fea-
ture model, while most of its contained classes have not been
decorated at all. Without feature propagation, these classes
would be universally visible. Automatic feature propagation
ensures that all owned elements of the package are also deco-
rated with the feature DirectedDeltas. In this way, the effort to
be invested by the modeler may be reduced significantly. Fur-
thermore, accidental mistakes in the potentially error-prone
process of annotating model elements with features may be
detected and removed.

However, sophisticated tool support alone does not guar-
antee the success of model-driven product line engineering.
In general, software product line engineering requires careful
planning and design. In particular, potential feature interac-
tions have to be considered thoroughly. This requires a model
architecture which is composed of loosely coupled compo-
nents. If the feature model declares features to be orthogonal
(i.e., they may be selected independently), the model archi-
tecture has to ensure that the realizations of such features
are not coupled inadvertently. The package diagram editor
[12] which was developed by us and which is part of our tool
chain supports the user during this tedious task.

For example, the MOD2-SCM architecture has been
designed such that the product model, the version model,
and the storage model may be combined in an orthogonal
way. The model architecture in Fig. 25 is designed such that
there are no mutual dependencies among the packages real-
izing these features. In particular, the version model does not
depend on the storage model and vice versa. To make this
work, the methods for adding a version to the version graph
and for storing this version (potentially using deltas) have
been decoupled.

By means of conscious design of the domain model and
automatic feature propagation, the number of annotated ele-
ments has been kept very small. Altogether, only 54 domain

model elements had to be annotated manually by the user
(19 packages, 6 classes, 7 methods, and 22 elements of story
diagrams).9 50 out of 54 domain elements carry only a single
feature, 4 elements required the assignment of two features.
Thus, the domain model does not suffer from the well-known
“conditional compilation” syndrome which has often been
observed on the source code level (the source code is clut-
tered with preprocessor options to such a degree that it is
hardly readable any more).

It should be noted that considerable work had to be
invested into the design of the feature model and the domain
model to make the overall approach feasible. In particular,
feature interactions had to be minimized. For example, in an
early version of the domain model the delta storage package
had a dependency on the history package: when storing a new
version as a delta, the version graph was accessed to retrieve
the predecessor version. Instead of adding a constraint to the
feature model, the domain model was refactored in order to
remove the unwanted feature interaction. Thus, the perceived
simplicity of the solution results from a careful design rather
than from the simplicity of the problem to be solved (which
in fact is not simple at all).

Please notice that minimization of feature interactions
does not mean that these interactions have been eliminated
completely. In [20], feature interactions are analyzed in
detail: 15 essential interactions are identified which have
been written as implications (“requires” constraints).

Our model-driven approach to software product line engi-
neering has proved successful inasmuch as all methods
defined in class diagrams were realized as Fujaba story dia-
grams rather than hand-coded in Java. However, the story dia-
grams still contain statement activities, which are fragments
of Java code. Thus, the behavioral model depends on the
target language for code generation; a platform-independent
behavioral modeling language would be greatly appreciated.

We analyzed the story diagrams both qualitatively and
quantitatively; the results are presented in [13]. Essentially,
this analysis showed that the expressive power of story pat-
terns was not exploited to the degree we expected (i.e., story
patterns were rather small on the average). This may be due
to the modular development approach, in which concerns
are separated clearly among different classes such that each
class is responsible only for a small part of the overall domain
model. Furthermore, our analysis revealed limitations con-
cerning the expressiveness of control structures. On the pos-
itive side, story diagrams provide a graphical and executable
description of the behavior of a method, which is probably

9 In the actual implementation, mandatory features are not used for
annotations. This reduces the number of annotations, but has a negative
impact on traceability. Even with mandatory features, the number of
annotations would be small compared to the size of the domain model.

123

Mapping feature models onto domain models 1517

easier to understand (for readers being fluent in Fujaba) than
textual program code.

6 Discussion

In the following, we discuss achievements and limitations of
the approach presented in the previous sections. In the course
of our discussion, we identify several issues some of which
are addressed by our current work on a next generation of tool
support for model-driven software product line engineering.

6.1 Feature models

In our work, we decided to rely upon cardinality-based fea-
ture modeling [17], which we consider one of the most
expressive approaches to feature modeling. In MODPL-
FeaturePlugin, we use cardinality-based feature modeling in
a slightly restricted way: cardinalities may be defined for
inclusive-or groups, but not for individual features. Further-
more, feature attributes are not taken into account. Due to
these restrictions, configuring a feature model constitutes
a selection process: From all available features, a certain
subset is selected which satisfies the constraints of the fea-
ture model. The domain model is configured by filtering all
domain model elements which are annotated with features
not being part of the feature configuration.

If the restrictions mentioned above are removed, configur-
ing a feature model may no longer be formalized as a selec-
tion process. Rather, an instantiation process is required: a
feature configuration is a tree of feature instances, where
features with cardinalities may be instantiated as often as
constrained by their cardinalities. Furthermore, the feature
configuration contains attribute values. This means that infor-
mation is added during the feature configuration step. In con-
trast, MODPLFeaturePlugin maps the feature model onto the
domain model without being able to take such information
into account, i.e., the mapping is defined before the instanti-
ation of the feature model.

6.2 Domain models

Our approach to mapping feature models onto domain mod-
els is general inasmuch as it may be applied to arbitrary
domain metamodels. In Table 1, several types of inconsis-
tencies of the mapping were introduced which are handled
by our tool MODPLFeaturePlugin in different ways. Most
of these inconsistencies are generic, i.e., they are completely
independent of the underlying domain metamodel (feature
not declared, feature not used, feature annotation not satisfi-
able). Only dependency violations need metamodel-specific
rules (Sect. 3.3). In this paper, we have defined dependency
constraints for class and story diagrams. However, the con-

cept of dependency constraints as such is general and not
specific to the metamodels covered in our current tool sup-
port. For a new metamodel, the notion of dependency has to
be defined with respect to this metamodel, resulting in a set
of metamodel-specific constraints.

Currently, all dependency constraints have to be defined
(and implemented) manually. Some dependency constraints
could be derived automatically from the metamodel (e.g., a
component depends on its container). However, other con-
straints are less evident and have to be defined manually
(consider, e.g., Constraint 8, which deals with the visibility
of attributes in story patterns).

6.3 Feature annotations

In MODPLFeaturePlugin, domain model elements may be
annotated with feature sets. As explained in Sect. 4.1.1, a
feature may be added to a feature set by selecting a feature
from the feature model (Fig. 21). Thus, domain model ele-
ments may be annotated with features in a comfortable way
with little effort.

Our tool distinguishes between manual and automatic
annotations, which are managed separately (Fig. 20). In our
case study, only a small fraction of domain model elements
had to be annotated manually. In addition, almost all of these
annotations consist of a single feature.

Altogether, feature annotations keep manageable as long
as only a small fraction of domain model elements need
to be annotated manually and these annotations are simple.
The MODPL feature editor makes management of annota-
tions easier by convenient commands for annotating model
elements and automatic feature propagation. Our experi-
ences from the MOD2-SCM project indicate that the overall
approach is feasible if the domain model is designed carefully
for variability.

6.4 Feature interactions

Ideally, features defined in the feature model are orthogonal,
i.e., they may be selected independently. For example, in
MOD2-SCM the history model is orthogonal to the storage
model. However, in many applications of software product
line engineering features interact. Thus, tools for software
product line engineering need to support feature interaction.

In the feature model, feature interaction may be expressed
by the feature tree as well as by context-sensitive con-
straints extending the feature tree. Here, MODPL “inher-
its” the functionality of FeaturePlugin, which implements
cardinality-based feature modeling. In the domain model,
feature interaction may be expressed by feature annotations.
So far, MODPLFeaturePlugin supports feature sets, which
means that a model element is visible only when all features
from its feature set are selected.

123

1518 T. Buchmann, B. Westfechtel

Thus, with respect to feature annotations MODPLFeature-
Plugin provides a simple approach which is easy to operate.
By and large, this approach proved powerful enough to rep-
resent feature interactions in the MOD2-SCM project. In a
few cases, however, it was necessary to express that a domain
model element is included only when a certain feature is not
selected. Negative annotations were simulated by extend-
ing the feature model with a negative feature. They could be
handled easily without simulation by distinguishing between
positive and negative feature sets and applying dependency
constraints and propagation rules to both of them. This exten-
sion would retain the simplicity of feature annotations.

In a more general solution, the visibility of a domain model
element would be determined via a boolean expression. In
this way, more complex feature interactions may be repre-
sented in the annotations of domain model elements, sup-
plementing global feature interactions defined in the feature
model. While we are currently implementing this extension,
we are also aware of the fact that complex feature interactions
may render software product line engineering infeasible. In
fact, minimizing feature interactions was one of the major
drivers behind the MOD2-SCM project.

The approach presented in this paper can also be applied
to problems requiring arbitrary complex feature interactions
(by using constraints and annotations). It is obvious that a
thorough analysis and the avoidance of unnecessary com-
plexity yield a better result. Otherwise the user is faced with
the “conditional compilation syndrome”.

6.5 Consistency control

6.5.1 Consistency

The main contribution of this paper consists in tool sup-
port for ensuring consistency of configured domain models.
Here, our main focus lies on dependency constraints: when
a domain model element is included in a configured domain
model, all elements on which it depends are included, as well.
Thus, each domain model element will have its required con-
text in the configured domain model.

The dependency constraints specified in Sect. 3.2 con-
tribute to the syntactic consistency of configured domain
models. More precisely, we are referring to the abstract syn-
tax of domain models (the dependency constraints are based
on the underlying metamodel). Furthermore, we may distin-
guish between context-free and context-sensitive syntax.

Context-free syntax refers to the composition of the span-
ning containment tree. Context-free correctness is ensured
partially by Constraint 1: if a component is visible, its con-
tainer has to be visible, as well. In addition, dependency con-
straints in the opposite direction may be defined: if a container
is included into a configured domain model, all mandatory
components have to be included, too. For example, a depen-

dency constraint of this type ensures that a story diagram has
a (mandatory and unique) start node in each configuration of
the domain model.

The notion of context-sensitive syntax subsumes all con-
straints which relate model elements at different locations
of the containment tree. Among others, context-sensitive
constraints deal with relationships between declarations and
applications. For example, an association end (application)
references a class (declaration). Constraints 2–8 all belong
to this category.

The degree to which consistency of configured domain
models is ensured depends on the dependency constraints
which are defined on the underlying metamodel. If the overall
domain model is consistent, all configured domain models
are consistent with respect to those constraints which are
addressed by feature propagation. Thus, a 100 % consistent
domain model does not imply that all configured domain
models are 100 % consistent, as well.

Not all constraints may be sensibly written as depen-
dency constraints. For example, a story diagram must form
a connected graph, where all activity and decision nodes are
located on a directed path from the start node to an end node.
In a configured domain model, this constraint may be vio-
lated if one or more control flows are not visible under the
respective feature configuration. Connectivity in each con-
figured domain model could be enforced by the following
dependency constraint: if the story diagram is visible, each
of its control flows has to be visible, as well. However, this
is a sufficient condition which severely restricts variability.

6.5.2 Repair actions

Feature propagation enforces the satisfaction of dependency
constraints. In MODPLFeaturePlugin, this is achieved by
adding features to the dependent model elements. However,
this type of repair action does not constitute the only way
to satisfy dependency constraints. Instead of restricting the
visibility of a dependent element, the visibility of a master
element may be extended by removing features from the mas-
ter element which are not present at the dependent element.
In our current work, we are extending repair actions such
that they may operate in both ways. Which repair actions are
applied, may be configured by the user.

6.6 Variability

Two complementary approaches to supporting variability
have been proposed in the literature:

• In the case of filtering, the domain model is a union of
all product variants [16,29,31]. A configuration of the
domain model is created by removing all elements which
are not visible under the respective feature configuration.

123

Mapping feature models onto domain models 1519

• In the case of composition (model weaving), the domain
model comprises the intersection of all product variants
[3,55]. The domain model is configured by adding all
model fragments which are selected in the respective fea-
ture configuration.

Composition is applied, e.g., in aspect-oriented approa-
ches, which have become popular due to the separation of
concerns. On the other hand, the domain model is just a
collection of fragments, which are composed only at con-
figuration time. Thus, problems concerning the interaction
of model fragments may become apparent only late in devel-
opment.

Our own approach is based on filtering. Thus, the modeler
views and edits the complete model, which is stripped from
invisible fragments at configuration time. If used in an undis-
ciplined way, filtering may suffer from the conditional com-
pilation syndrome observed in programming (the source code
is cluttered with preprocessor directives to such an extent that
it is neither readable nor maintainable). Thus, the modeler has
to tame variability such that the overall domain model is kept
manageable.

In the current paper, we have addressed modeling-time
configuration of the domain model. In addition to modeling-
time configuration, we also studied run-time configuration in
the MOD2-SCM project. To this end, we built a tool which
may configure an SCM server at run time. In this case, the
domain model is not filtered at all; it is merely annotated
to support traceability with respect to the feature model.
Under these prerequisites, there is no way around design-
ing a domain model which simultaneously covers all product
variants.

Since we use only one domain model which comprises all
variants of the software product line, a “natural” limitation
of the variability is given by consistency constraints of the
underlying UML metamodel. For example, a class needs to
have exactly one name, an association end needs to be typed
with exactly one target class, and it needs to have exactly
one multiplicity. If more flexibility is required, the domain
model is no longer consistent with the underlying metamodel.
Editing inconsistent domain models would require radically
different tool support [53].

6.7 Process

The MODPL environment illustrated in Fig. 1 provides a
set of tools which may be orchestrated in different ways,
resulting in different processes.

As commonplace in software product line engineering,
we distinguish between the disciplines domain engineering
and application engineering. In domain engineering, the fea-
ture model and the configurable domain model are developed.
Ideally, application engineering is reduced to a configuration

Fig. 26 Model dependencies

process. In this case, source code may be generated directly
from the feature configuration and the configurable domain
model (shown at the bottom of Fig. 19). Otherwise, the con-
figured domain model still needs to be edited (dashed line in
Fig. 1), and code is generated from the configured domain
model.

In a phase-oriented process, models are created in an
order which is induced by their dependencies (Fig. 26). In an
incremental process, models may be developed in an inter-
twined manner. MODPL allows for intertwined development
of feature model and configurable domain model (1), but
incremental change propagation has not been realized for
the other cases (2–4).

Evolution of the feature model is handled as follows:
adding a feature does not affect existing feature annotations
in the domain model. Similarly, renaming a feature has no
effect since immutable unique identifiers are used in fea-
ture annotations rather than mutable names. Finally, deleting
a feature makes feature annotations including this feature
invalid; these annotations may be repaired automatically by
removing all nonexisting features.

7 Related work

Expressing variability in software product line engineering
can be performed basically in two different ways: (1) nega-
tive variability and (2) positive variability. While approaches
using negative variability are mainly based on filtering a set of
all superimposed variants (e.g., similar to preprocessor direc-
tives in programming languages), the latter approach com-
poses software artifacts based on selected features around a
common kernel. In the following subsections we will discuss
various approaches from both categories and compare them
to our work presented in this article. In particular, we will
provide a short overview about each approach and compare
it the one presented in this paper in terms of methodology
(positive / negative variability), domain model type, error
detection and automatic error correction. Table 3 provides
an overview about the different approaches. Each approach
is discussed in detail in the following subsections.

7.1 MATA

MATA [55] describes a compositional approach to model-
driven engineering of software product lines based on UML
aspect models and graph transformations. In [55], the authors

123

1520 T. Buchmann, B. Westfechtel

Table 3 Comparison of the
approaches discussed in this
section

a Only for context-free errors
b Only errors which do not
address the well-formedness of
the configured domain model
c As long as a grammar for it is
provided
d Context-free error correction is
provided
e As long as a VML-language
for it is provided

PL approach Domain model Error detection Error correction

MATA Positive var. UML Yes No

FeatureHouse Positive var. Arbitrary text-based Yes Yesa

fmp2rsm Negative var. UML Yes Yes

FeatureMapper Negative var. Ecore-based Yesb No

Pure::variants Negative var. Text files and EA models Yes No

PLiBS Negative var. UML Yes No

PLUS Negative var. UML No No

CIDE Negative var. Arbitrary languagesc Yes Yesd

VML* Neg. + pos. var. Arbitrary languagese yes yes

DSL approaches Positive var. Arbitrary Yes No

MODPLFeaturePlugin Negative var. UML + Fujaba Yes Yes

focus on UML class diagrams, sequence diagrams and state
diagrams. In contrast to other aspect oriented modeling
approaches, MATA does not make use of explicit join points.
Rather, any model element can be a join point and com-
position is treated as a special case of model transforma-
tion. While we use graph transformations both externally for
behavioral modeling and internally for repair actions, MATA
uses graph transformations only internally for composing the
resulting model based upon a specific feature configuration.

The graph transformation rules are specified using AGG
[46], which also serves as transformation engine to execute
the model compositions defined with MATA. MATA employs
critical pair analysis to automatically detect structural incon-
sistencies between different aspect models. Initially, critical
pair analysis was invented for term rewriting systems but it
has been adapted to graph rules [19]. MATA uses critical pair
analysis to detect overlaps (interactions) between aspects.
Interactions can be classified into conflict and dependency.

In contrast to our approach or to PLUS [25], MATA sep-
arates kernel and variant features into different diagrams.
In particular, the kernel is represented by a UML model,
whereas the variants are stored in separate MATA mod-
els [35]. Critical pair analysis for inconsistency detection is
required since each variant feature is modeled independently
from other variant features. In case conflicts are detected,
they are fed back to the user. In contrast to our approach, error
correction is the user’s task and can be performed by either
modifying the ordering of the different models to ensure a
consistent composition or by updating the feature depen-
dency diagram to resolve inconsistencies.

7.2 FeatureHouse

FeatureHouse is a framework and tool chain to support
language-independent and automated software composition
[3]. The composition technique used by FeatureHouse is
based on feature structure trees (FSTs). The approach pre-

sented in [3] and [2] is a general approach which can be
applied to compose software using superimposition as com-
position technique and does not only address source code
artifacts (which can eventually be written in different pro-
gramming languages), but also non-code artifacts like mod-
els, documentation or even build files. Or in other words, it
can be applied to any textual representation of a software
artifact, as long as a corresponding grammar for the specific
artifact is provided. FeatureHouse offers a framework and
tool chain which can be extended by attribute grammars to
automate the integration of additional languages.

FSTs are a general model of the structure of software arti-
facts. Any kind of artifact can be represented with a hierarchi-
cal structure using FSTs. In fact, an FST is a stripped-down
abstract syntax tree (AST) since only information specifying
the modular structure of an artifact is contained [3].

Superimposition is based on the FSTs and is realized by
merging the nodes of different FSTs. Nodes are identified by
their names, types and relative positions, respectively. The
merging process starts from the root node and descends recur-
sively. Depending on the artifact language and node type, dif-
ferent rules for composition are used to reflect the different
content of the nodes which is not represented as a subtree but
as plain text.

In [2], the approach has been applied to UML models as
well. The authors used an attribute grammar for UML models
serialized in an XMI file. In contrast to our approach, the tool
does not operate on the AST of UML, but on the AST of the
XMI file instead which is an important difference because
the tool can only detect context-free errors in the AST of
an XMI file. Furthermore, our approach contains automatic
repair actions operating on the abstract syntax tree of UML
to ensure not only the correctness of the context-free but
also the context-sensitive syntax of the resulting configured
UML model. Like our tool, FeatureHouse assumes that a
valid feature configuration is used when the final product is
created.

123

Mapping feature models onto domain models 1521

7.3 fmp2rsm

fmp2rsm10 integrates FeaturePlugin with the IBM Rational
Software Modeler. The integration assumes that cardinali-
ties and attributes are not used, reducing configuration of the
feature model and the domain model to a selection process.
The approach is based upon negative variability. Presence
conditions determine the visibilities of model elements [16].
Explicit presence conditions are assigned by the user, while
implicit presence conditions are maintained by the tool.

Implicit presence conditions supplement the explicitly
assigned conditions. A model element is visible only when
both its explicit and its implicit condition hold. Implicit pres-
ence conditions are pre-defined and depend on the underlying
metamodel. In [16], implicit presence conditions are given
for class diagrams and activity diagrams. These conditions
are based on the generic rule that a model element is visi-
ble only when its required context elements are visible, as
well. Thus, the dependencies between model elements are
considered when configuring the domain model.

This approach differs from our work in various ways.
First, fmp2srm and MODPLFeaturePlugin deal with differ-
ent kinds of behavioral models (activity diagrams and story
diagrams, respectively). Second, MODPLFeaturePlugin may
generate fully executable code, which is not possible with
fmp2rsm. Third, we use propagation rules rather than implicit
presence conditions to ensure the consistency of the target
model. While implicit presence conditions are wired into the
tool and are hidden at the user interface, MODPLFeaturePlu-
gin allows to expose automatically assigned features at the
user interface, as shown in Fig. 20. In this way, the user may
recognize erroneous annotations more easily than by inspect-
ing the result of the configuration process (configured model
or configured source code).

In [18], a general approach is described which allows
to verify the correctness of configured domain models with
respect to well-formedness constraints. This approach, which
was implemented in fmp2rsm, as well, may be applied to
any model which has a MOF based metamodel. Constraints
regarding the well-formedness of models conforming to a
MOF based metamodel are defined in OCL. For each con-
straint, it is checked whether the constraint is satisfied for
each configuration of the domain model which may be con-
structed for some given feature model. This check is per-
formed by abstract interpretation with the help of a SAT
solver for boolean expressions. When a constraint is violated,
the tool reports an object and a sample feature configuration
in which the constraint does not hold.

The proposed approach is very general, and the constraints
to be checked may be taken directly from the definition of the
metamodel. In contrast, in our approach we had to derive the

10 http://gsd.uwaterloo.ca/fmp2rsm.

OCL constraints from the metamodel and convert them into
repair actions. However, in contrast to our work, the approach
presented in [18] supports only error detection and no error
correction.

7.4 Feature Mapper

The tool FeatureMapper11 [29,31,33] was developed to
bridge the gap between feature models and Ecore-based
domain models for model-driven product lines based on neg-
ative variability. These models comprise Eclipse UML212-
based models, domain-specific languages created with EMF
[45] as well as textual languages, which have been described
using EMFText [30].

The mapping of features to domain models is stored in
an Ecore-based mapping model. Mappings may be created
manually by selecting features from the feature model and
elements from the domain model, respectively. Furthermore,
the mapping is performed automatically in a recording mode,
in which each created model element is decorated with a pre-
selected feature expression.

FeatureMapper supports different kinds of visualization
mechanisms to provide the user with analysis capabilities of
the created mappings [29]. FeatureMapper allows to assign
different colors for different features. Furthermore, different
filtering views are provided which highlight elements being
visible in a specific variant.

A feature configuration is defined by deleting unselected
features from the underlying feature model. A configured
model is derived from the domain model by deleting all
model elements which are not visible in the respective feature
configuration.

In [28], Heidenreich discusses different possibilities for
checking well-formedness of SPLs. Most of the constraints
listed in the paper are implemented in FeatureMapper. How-
ever, FeatureMapper does not provide a mechanism to ensure
the well-formedness of configured domain models as a result
of the generality of the approach. In [28], the author discusses
this issue and states that the consistency of configured domain
models can be checked if a complete set of constraints for the
respective domain meta-model would be provided. In con-
trast to FeatureMapper, MODPLFeaturePlugin is restricted
to UML and offers sophisticated mechanisms for ensuring
the consistency of configurations of domain models, most
notably feature propagation to dependent model elements.
However, this requires the definition of metamodel-specific
propagation rules. FeatureMapper does not provide a mech-
anism which provides user support for this purpose. Thus, it
is easily possible to create syntactically inconsistent models,
e.g., for the model presented in Example 1.

11 http://www.featuremapper.org.
12 http://www.eclipse.org/modeling/mdt/?project=uml2.

123

http://gsd.uwaterloo.ca/fmp2rsm
http://www.featuremapper.org
http://www.eclipse.org/modeling/mdt/?project=uml2

1522 T. Buchmann, B. Westfechtel

7.5 pure::variants

pure::variants13 is a tool which is commercially available in
different versions and is heavily used in industrial projects.
All versions share the same feature metamodel. For defining
constraints for features or feature expressions, pure::variants
offers a proprietary Prolog based rule language called pvPro-
log. Product derivation is performed based on negative vari-
ability.

The Professional & Enterprise version supports software
product line engineering for file based systems, primarily
focusing on source code. Additionally, requirement docu-
ments or user documentation can be managed. Multi-variant
files and directories are defined by decorating the contents of
files and directories with feature expressions.

The Enterprise Architect version offers a connection to
Sparx Enterprise Architect14, a tool supporting the creation
of UML and SysML models. To connect elements of the fea-
ture model with domain model elements, a new constraint
in Enterprise Architect must be created. Using this new con-
straint, simple mappings between single features and model
elements can be established. A domain model may be con-
figured by selecting the desired features using pure::variants
and executing a model transformation.

Primarily, pure::variants addresses software product line
engineering for file-based systems. Model-driven software
product line engineering is supported by versions providing
an integration with specific modeling tools. In these versions,
the consistency of mappings from feature models to domain
models is addressed only to a limited extent. In particular,
dependencies among elements of the domain model are not
considered, and repair actions (for automatic feature prop-
agation) are not supported. Source code generation (from
class models) is provided in the Enterprise Architect version.
In contrast to MODPLFeaturePlugin, direct code generation
from the multi-variant domain model is not supported.

7.6 PLiBS

PLiBS [59] is an Eclipse-based tool, which is based on the
approach presented by Ziadi and Jezequel [58]. It allows
for modeling and deriving behavior aspects using UML2
sequence diagrams extended by variability mechanisms in
software product lines.

Product derivation is based upon negative variability and is
realized by a two-step process. In the first step, all elements
which are not part of the current configuration are filtered
from the sequence diagrams. The second step uses UML
state machine synthesis from sequence diagrams [56].

13 http://www.pure-systems.com.
14 http://www.sparxsystems.eu/.

In contrast to our approach, the PLiBS process does not
use a dedicated feature model to capture variability and from
which valid configurations are derived. Instead, different
stereotypes and tagged values are used to model variability
directly within the UML model. For each feature a dedicated
stereotype is created. The corresponding UML profile that is
used is described in [57]. As a consequence, the constraints
specified in [57] are used to express dependencies between
features rather than defining constraints for ensuring syntac-
tical correctness of the resulting configured model.

The approach presented in [58] and [59] does not provide
mechanisms for repair actions which ensure context-free
or context-sensitive syntactical correctness of the config-
ured model. Furthermore, it does not support PL constraints
checking [59].

7.7 PLUS

Gomaa presents in [25] an approach called PLUS to design
software product lines with UML. Gomaa defines a profile
containing various stereotypes to support expressing variabil-
ity directly in UML. This approach is based upon negative
variability and is similar to the one suggested by Ziadi and
Jezequel [58] in terms of mixing up feature modeling and
domain modeling.

This approach has several drawbacks, e.g., abstract classes
are always treated as variation points. In case a hierarchical
composition of variation points is required, this may result
in a combinatorial explosion of subclasses. Since there is
no dedicated feature model, feature interaction is addressed
employing feature impact analysis. Dependencies among
features can be detected using object interaction modeling.
Another drawback of this approach is the huge amount of dif-
ferent stereotypes which have to be applied to corresponding
domain model elements.

Gomaa does not address automatic repair actions to
resolve violations of the abstract syntax of UML resulting
from filtering elements based upon a current feature con-
figuration. Tool support for this approach is provided by
PLUSEE—the Product Line UML Based Software Engineer-
ing Environment [26].

7.8 CIDE

In [38,39], Kästner et al. present CIDE - a tool which allows
to map feature model elements to source code fragments. Any
language is supported, as long as a corresponding grammar
is provided. They present a way to ensure the context-free
correctness of the configured source code which is produced
with the help of a preprocessor. This is quite similar to the
generation of configured source code presented in this paper
since we also implemented a preprocessor for the Fujaba
compiler. The authors achieve context-free correctness of

123

http://www.pure-systems.com
http://www.sparxsystems.eu/

Mapping feature models onto domain models 1523

the configured source code through propagating the user set
feature annotations to source code elements in the abstract
syntax tree (AST). When a specific product configuration is
derived, the AST is transformed into a configured one. All
nodes that contain feature annotations with unselected fea-
tures are removed [39].

A reference implementation for Java realizes two sim-
ple rules which are sufficient to guarantee the context-free
correctness of the transformed AST. First, the user only may
annotate nodes which are declared optional in the Java syntax
specification [27]. For example, the name of a class cannot
be removed in contrast to attributes or methods. Second, all
children of an AST node have to be removed if the node is
removed. For example, if an operation is removed, its para-
meters and its body are removed automatically. In contrast
to our approach, only context-free correctness is considered.
Context-sensitive rules such as specified in Sect. 3.2 are not
taken into account.

7.9 VML*

In [60], Zschaler et al. present VML*. VML* is a family
of languages for variability management in software product
lines. It addresses the ability to express explicitly the rela-
tionship between feature models and other artifacts of the
product line.

The VML* family of languages consists of: (1) a common
metamodel for VML* languages which includes also varia-
tion points which can be customized for describing specific
VML* languages; (2) a DSL allowing to specify the choices
for each variation point made by a specific language and (3)
an infrastructure which is based on generators.

The approach is very generic, since it supports any lan-
guage, as long as a corresponding VML language exists for
it. On the other hand, since the VML languages have to be
defined first, they can take into account custom semantics
of the target modeling language [32]. In [60], two VML
languages for UML models are presented: VML4Arch and
VML4RE. While the first is used to relate feature models and
UML 2.0 architectural models, the latter is used for relating
feature models and use case and activity models.

VML* supports positive and negative variability as well
as any combination thereof, since every action is a small
transformation of the core model. This has also several draw-
backs, as mixing negative and positive variability mappings
in the same specification may cause problems during product
derivation as the order in which model transformations are
executed is important. VML* allows the modeler to specify
the order in which transformations are executed. Since the
approach is very generic, providing automatic repair actions
for arbitrary languages is a challenging task. So far VML*
provides no support for it.

VML* is a very general and powerful approach which
is on the other hand hard to use for SPL developers. First,
a VML language for the desired modeling language has to
be created. No support for diagrams in visual languages is
provided. Furthermore, the mappings and the combination of
the different possibilities to express variability result in very
complex operators the SPL developer has to deal with.

In its current state, VML* does not produce diagram files
for visual modeling languages. While our approach supports
the detection of broken feature mappings, VML* provides
no dedicated support for model evolution.

7.10 DSL-based approaches

In [50] Völter and Groher present an approach to support
software product line engineering based on domain-specific
languages and model-driven development. They propose the
usage of staged SPLs or in other words meta-product lines.

The problem space (which is equivalent to our multi-
variant domain model) is formally described by defining a
meta model containing entities of the domain. Then, a DSL
and corresponding editors based on this meta model are cre-
ated. In the solution domain (which comprises a component-
based architecture), a combination of manually written code
and models are used to represent the components. Model-
to-model transformations are used to instantiate, wire and
deploy those library components based upon the problem
domain model [50].

The authors present a meta product line for home automa-
tion systems. They address vendors developing systems for
building architects. Using the meta product line, systems for
the architects can be built enabling them to build smart homes
for home owners. Weaving the domain meta model and adapt-
ing the DSL editors is required to support a configurable meta
model and a DSL. A changing DSL also requires the adap-
tion of the transformations from the problem domain model
to the solution domain models. Configurable transformations
are supported by using aspect weaving on the transformation
level.

The approach presented in [50] uses lots of different tech-
niques to realize this goal: both positive and negative variabil-
ity is used, resulting in construction DSLs and configuration
DSLs which are used on different stages of the development
process. Furthermore, library components and target code
variability are used. Runtime variability and aspect oriented
programming on code level are also employed. As a conse-
quence the variability has to be bound on different levels as
well: during model-to-model transformations (e.g., when the
problem domain model is mapped on the solution domain
model), in model-to-text transformations (when the aspect
oriented is generated) and during compile time, when the
aspect oriented source code is compiled into the final appli-
cation.

123

1524 T. Buchmann, B. Westfechtel

Arboleda et al. [4] present a similar approach, which is
also based on domain-specific metamodels and variability
models. Variability can also be bound at several stages of
the configuration process, including model-to-text transfor-
mations based on openArchitectureWare (oAW). In contrast
to Völter and Groher, Arboleda et al. use decision models to
capture relationships between groups of variants and model
transformations.

The approaches described above differ from our approach
presented here in various ways. The most significant dif-
ference is the usage of staged SPLs in [50]. Furthermore,
both positive and negative variability approaches are used.
Different DSLs are needed on different stages of the devel-
opment process, while our approach uses UML or Fujaba
only. In contrast to our approach, automatic repair actions by
feature propagation is not supported.

8 Conclusion

In this paper, we presented an approach that integrates model-
driven software engineering and software product line engi-
neering. Our approach is based on negative variability, i.e.
a multi-variant domain model is annotated with feature sets.
Products may be derived by configuring the feature model
and applying the configuration to the annotated domain
model. As a result, all elements which are annotated with
unselected features are filtered from the resulting config-
ured domain model. The filtering can easily result in syn-
tactically wrong target models. To avoid this, we presented
various constraints that help to ensure the consistency of the
resulting configured model. We also developed a tool (MOD-
PLFeaturePlugin) incorporating the consistency constraints
and applying them to Fujaba’s executable domain models.
Furthermore, we successfully applied the tool to a product
line for software configuration management.

Based on the concepts presented in this paper, we have
recently launched the development of a next generation envi-
ronment for model-driven software product line engineering.
In particular, we are addressing the following issues:

Other domain metamodels Tool support for consistent
mapping of feature models to domain models is gener-
alized to work with instances of arbitrary Ecore models.
In particular, we are addressing various kinds of UML2
diagrams, based on the Ecore model for UML2. With
respect to behavioral modeling, story diagrams—which
are specific to Fujaba—are replaced with state diagrams,
activity diagrams, or text written in Alf (Action Language
for Foundational UML [41]).
Rules for repair actions For each metamodel, a specific
set of mapping constraints and repair actions needs to be
defined. We are developing a rule-based language which

allows to define custom constraints and repair actions in
a declarative way.
Feature expressions In the approach described in this
paper, domain model elements are annotated with fea-
ture sets. This approach is generalized by allowing the
modeler to specify boolean feature expressions.
Propagation strategies In the approach described in
this paper, feature annotations are always propagated to
dependent model elements. In the new approach we are
currently working on, propagation in the opposite direc-
tion is also supported.
Multiple stages The approach presented in this paper
does not support multiple configuration stages (e.g., as
required here [34] for example) explicitly (it can be sim-
ulated however). In our current approach we plan to add
support for a multi-stage process.
Case studies Furthermore, we are looking for other com-
plex case studies to further evaluate our approach.

Resources The update site for a Fujaba distribution
including our plug-ins can be found on http://btn1x4.inf.
uni-bayreuth.de/modpl/update. A screencast demonstrating
the use is located here: http://btn1x4.inf.uni-bayreuth.de/
modpl/screencast/MODPL-Screencast.htm.

Acknowledgments The valuable comments of the anonymous
reviewers are gratefully acknowledged.

References

1. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling
plug-in for Eclipse. In: Proceedings of the 2004 OOPSLA Work-
shop on Eclipse Technology eXchange (eclipse’04), pp. 67–72.
ACM Press, New York, NY (2004)

2. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model superimposi-
tion in software product lines. In: Paige, R.F. (ed.) Proceedings of
the International Conference on Model Transformation (ICMT),
vol. 5563 Lecture Notes in Computer Science, pp. 4–19. Springer,
Berlin, July (2009)

3. Apel, S., Kästner C., Lengauer, C.: FeatureHouse: Language-
independent, automated software composition. In: Proceedings of
the ACM/IEEE International Conference on Software Engineering
(ICSE), pp. 221–231. IEEE, May 2009

4. Arboleda, H., Casallas, R., Royer, J.-C.: Dealing with fine-grained
configurations in model-driven SPLs. In: Proceedings of the 13th
International Software Product Line Conference (SPLC), Software
Engineering Institute, pp. 1–10. Pittsburgh, PA, USA (2009)

5. Buchmann, T., Dotor, A.: Constraints for a fine-grained mapping
of feature models and executable domain models. In: Mezini,
M., Beuche, D., Moreira, A. (eds.) 1st International Work-
shop on Model-Driven Product Line Engineering (MDPLE’09),
pp. 9–17. CTIT Workshop Proceedings, CTIT, Twente, The Nether-
lands, June 2009

6. Buchmann, T., Dotor, A.: Mapping features to domain models in
fujaba. In: van Gorp, P. (ed.) Proceedings of the 7th International
Fujaba Days, pp. 20–24. Eindhoven, The Netherlands, November
2009

7. Buchmann, T., Dotor, A.: Towards a model-driven product line for
SCM systems. In: Proceedings of the 13th International Software

123

http://btn1x4.inf.uni-bayreuth.de/modpl/update
http://btn1x4.inf.uni-bayreuth.de/modpl/update
http://btn1x4.inf.uni-bayreuth.de/modpl/screencast/MODPL-Screencast.htm
http://btn1x4.inf.uni-bayreuth.de/modpl/screencast/MODPL-Screencast.htm

Mapping feature models onto domain models 1525

Product Line Conference (SPLC 2009), vol. 2, pp. 174–181. Soft-
ware Engineering Institute, San Francisco, CA, USA, August 2009

8. Buchmann, T., Dotor, A., Klinke, M.: Supporting modeling in the
large in fujaba. In: van Gorp, P. (ed.) Proceedings of the 7th Inter-
national Fujaba Days, pp. 59–63. Eindhoven, The Netherlands,
November 2009

9. Buchmann, T., Dotor, A., Westfechtel, B.: MOD2-SCM: Experi-
ences with co-evolving models when designing a modular SCM
system. In: Deridder, D., Gray, J., Pierantonio, A., Schobbens,
P.-Y. (eds.) 1st International Workshop on Model Co-Evolution
and Consistency Management (MCCM08), pp. 50–65. Toulouse,
France (2008)

10. Buchmann, T., Dotor, A., Westfechtel, B.: Model-driven develop-
ment of software configuration management systems–a case study
in model-driven engineering. In: Proceedings of the 4th Interna-
tional Conference on Software and Data Technologies (ICSOFT
2009), vol. 1, pp. 309–316. INSTICC Press, Sofia, Bulgaria, July
2009

11. Buchmann, T., Dotor, A., Westfechtel, B.: MOD2-SCM: A model-
driven product line for software configuration management sys-
tems. Information and Software Technology (2012) (http://dx.doi.
org/10.1016/j.infsof.2012.07.010)

12. Buchmann, T., Dotor, A., Westfechtel, B.: Model-driven software
engineering: Concepts and tools for modeling-in-the-large with
package diagrams. Comput. Sci. Res. Dev. 1–21 (2012) (online
first)

13. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The added
value of programmed graph transformations–A case study from
software configuration management. In: Schürr, A., Varro, D.,
Varro, G. (eds.) Applications of Graph Transformations with Indus-
trial Relevance (AGTIVE 2011), Budapest, Hungary, 2012. Pre-
sented at AGTIVE 2011, currently under review for publication in
the post-proceedings

14. Clements, P., Northrop, L.: Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, MA (2001)

15. Collins-Sussman, B., Fitzpatrick, B.W., Michael Pilato, C.: Version
Control with Subversion. O’Reilly, Sebastopol, CA (2004)

16. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A
template approach based on superimposed variants. In: Glück,
R., Lowry, M.R. (eds.) 4th International Conference on Genera-
tive Programming and Component Engineering (GPCE 2005), vol.
3676 of Lecture Notes in Computer Science, pp. 422–437. Tallin,
Estonia, September 2005, Springer, Berlin

17. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing
cardinality-based feature models and their specialization. Softw.
Process. Improv. Pract. 10(1), 7–29 (2005)

18. Czarnecki, K., Pietroszek, K.: Verifying feature-based model tem-
plates against well-formedness ocl constraints. In: Jarzabek, S.,
Schmidt, D.C., Veldhuizen, T.L. (eds.) Proceedings of ACM SIG-
SOFT/SIGPLAN International Conference on Generative Pro-
gramming and Component Engineering (GPCE’06), pp. 211–220.
ACM Press, Portland, OR, October 2006

19. de Micheaux, N.L., Rambaud, C.: Confluence for graph transfor-
mations. Theor. Comput. Sci. 154(2), 329–348 (1996)

20. Dotor, A.: Entwurf und Modellierung einer Produktlinie
von Software-Konfigurations-Management-Systemen. PhD thesis,
University of Bayreuth, Bayreuth, Germany, p. 459 (2011)

21. Estublier, J., Casallas, R.: The Adele configuration manager. In:
Tichy, W.F. (eds.): Configuration Management, vol. 2, pp. 99–134.
Trends in Software. Wiley and Sons, Chichester, UK (1994)

22. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A
new graph rewrite language based on the Unified Modeling Lan-
guage and Java. In: Engels, G., Rozenberg, G. (eds.) TAGT ‘98–
6th International Workshop on Theory and Application of Graph
Transformation, vol. 1764. Lecture Notes in Computer Science,

pp. 296–309. Paderborn, Germany, November 1998, Springer,
Berlin

23. Frankel, D.S.: Model Driven Architecture: Applying MDA to
Enterprise Computing. Wiley, Indianapolis, IN (2003)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns–
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Upper Saddle River, NJ (1994)

25. Gomaa, H.: Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures. Addison-
Wesley, Boston, MA (2004)

26. Gomaa, H., Shin, M.E.: Tool Support for Software Variability
Management and Product Derivation in Software Product Lines.
In: Nord, R.L. (ed.) Workshop on Software Variability Manage-
ment for Product Derivation, Software Product Line Conference
(SPLC), pp. 73–84. Boston, August 2004

27. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language
Specification., 3rd edn. Addison-Wesley Longman, Amsterdam
(2005)

28. Heidenreich, F.: Towards systematic ensuring well-formedness of
software product lines. In: Proceedings of the 1st Workshop on
Feature-Oriented Software Development, pp. 69–74. ACM, Den-
ver, CO., USA, October 2009

29. Heidenreich, F., Şavga, I., Wende, C.: On controlled visualisations
in software product line engineering. In: Thiel, S., Pohl, K. (eds.)
Proceedings of the 2nd International Workshop on Visualisation in
Software Product Line Engineering (ViSPLE 2008), pp. 335–341.
Limerick, Ireland (2008)

30. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.:
Derivation and Refinement of Textual Syntax for Models. In: Paige,
R.F., Hartman, A., Rensink, A. (eds.) Proceedings of the 5th Euro-
pean Conference on Model Driven Architecture–Foundations and
Applications (ECMDA-FA 2009), Lecture Notes in Computer Sci-
ence, vol. 5562, pp. 114–129. Twente, The Netherlands, 2009,
Springer, Berlin

31. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Map-
ping features to models. In: Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), pp.
943–944. ACM Press, Leipzig, Germany, May 2008

32. Heidenreich, F., Sánchez, P., Santos, J.P., Zschaler, S., Alférez,
M., Araújo, J., Fuentes, L., Kulesza, U., Moreira, A., Rashid, A.:
Relating feature models to other models of a software product line–
A comparative study of FeatureMapper and VML*. Trans. Aspect-
Oriented Softw. Dev. 7, 69–114 (2010)

33. Heidenreich, F., Wende, C.: Bridging the gap between features
and models. In: Proceedings of the Second Workshop on Aspect-
Oriented Product Line Engineering (AOPLE’07), pp. 38–42.
Salzburg, Austria, October 2007

34. Jarke, M., Klamma, R., Pohl, K., Sikora, E.: Requirements engi-
neering in complex domains. In: Engels, G., Lewerentz, C.,
Schäfer, A., Schürr, W., Westfechtel, B. (eds.) Graph Transforma-
tions and Model-Driven Engineering–Essays Dedicated to Man-
fred Nagl on the Occasion of His 65th Birthday, vol. 5765, pp. 602–
620. Lecture Notes in Computer Science, Springer, Berlin (2010)

35. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model
composition in product lines and feature interaction detection using
critical pair analysis. In: Engels, G., Opdyke, B., Schmidt, D.C.,
Weil, F. (eds.) Proceedings of the 10th International Conference on
Model Driven Engineering Languages and Systems (MoDELS),
vol. 4735 of Lecture Notes in Computer Science, pp. 151–165,
Nashville, USA, 2007, Springer, Berlin

36. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.A., Spencer
Peterson, A.: Feature-oriented domain analysis (FODA) feasibil-
ity study. Technical Report CMU/SEI-90-TR-21, Carnegie-Mellon
University, Software Engineering Institute (1990)

123

http://dx.doi.org/10.1016/j.infsof.2012.07.010
http://dx.doi.org/10.1016/j.infsof.2012.07.010

1526 T. Buchmann, B. Westfechtel

37. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: A feature-
oriented reuse method with domain-specific reference architec-
tures. Ann. Softw. Eng. 5, 143–168 (1998)

38. Kästner, C., Apel, S., Saake, G.: Virtuelle Trennung von Belangen
(Präprozessor 2.0). In: Software Engineering 2010—Fachtagung
des GI-Fachbereichs Softwaretechnik, number P-159 in Lecture
Notes in Informatics, pp. 165–176. Paderborn, Germany, February
2010, Gesellschaft für Informatik (GI)

39. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.S.:
Guaranteeing syntactic correctness for all product line variants:
A language-independent approach. In: Oriol, M., Meyer, B. (eds.)
Proceedings of the 47th International Conference: Objects, Com-
ponents, Models and Patterns (TOOLS EUROPE 2009), vol. 33,
Lecture Notes in Business Information Processing, pp. 175–194.
Springer, Zurich, Switzerland (2009)

40. Mezini, M., Beuche, D., Moreira, A.: (eds.) 1st International Work-
shop on Model-Driven Product Line Engineering (MDPLE’09),
CTIT Workshop Proceedings. CTIT, Twente, The Netherlands,
June 2009

41. OMG: Action Language for Foundational UML (Alf), Beta 1 Spec-
ification. OMG, Needham, MA, ptc/10-10-05 edition, October
2010

42. OMG: Object Constraint Language, Version 2.2. OMG, Needham,
MA, formal/2010-02-02 edition, February 2010

43. OMG: OMG Unified Modeling Language (OMG UML), Super-
structure, Version 2.3. OMG, Needham, MA, formal/2010-05-05
edition, May 2010

44. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line
Engineering: Foundations Principles and Techniques. Springer,
Berlin (2005)

45. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF
Eclipse Modeling Framework. The Eclipse Series, 2nd edn.
Addison-Wesley, Boston, MA (2009)

46. Taentzer, G.: AGG: A graph transformation environment for mod-
eling and validation of software. In: Pfaltz, J., Nagl, M., Böhlen,
B. (eds.) Applications of Graph Transformations with Industrial
Relevance, vol. 3062, pp. 446–453. Springer, Berlin (2004)

47. The Fujaba Developer Teams from Paderborn, Kassel, Darmstadt,
Siegen and Bayreuth. The Fujaba Tool Suite 2005: An Overview
About the Development Efforts in Paderborn, Kassel, Darmstadt,
Siegen and Bayreuth. In: Giese, H., Zündorf, A. (eds.) Proceedings
of the 3rd International Fujaba Days, pp. 1–13, September 2005

48. Tichy, W.F.: RCS–A system for version control. Softw. Pract. Exp.
15(7), 637–654 (1985)

49. Vesperman, J.: Essential CVS. O’Reilly, Sebastopol, CA (2006)
50. Völter, M., Groher, I.: Product line implementation using aspect-

oriented and model-driven software development. In: Proceed-
ings of the 11th International Conference on Software Product
Lines (SPLC), pp. 233–242. IEEE Computer Society, Kyoto, Japan,
September 2007

51. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-
Driven Software Development: Technology Engineering Manage-
ment. Wiley and Sons, Chichester, UK (2006)

52. Weiss, D.M., Lai, C.T.R.: Software Product Line Engineering:
A Family-Based Software Development Process. Addison-Wesley,
Boston, MA (1999)

53. Westfechtel, B., Conradi, R.: Multi-variant modeling–Concepts,
issues and challenges. In: Mezini, M., Beuche, D., Moreira, A.:
(eds.) 1st International Workshop on Model-Driven Product Line
Engineering (MDPLE’09), CTIT Workshop Proceedings, pp. 57–
67. CTIT, Twente, The Netherlands, June 2009

54. White, B.A.: Software Configuration Management Strategies and
Rational ClearCase. Object Technology Series. Addison-Wesley,
Reading, MA (2003)

55. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Arajo, J.:
MATA: A unified approach for composing UML aspect models
based on graph transformation. In: Katz, S., Ossher, H., France, R.,
Jzquel, J.-M. (eds.) Transactions on Aspect-Oriented Software
Development VI, vol. 5560, Lecture Notes in Computer Science,
pp. 191–237. Springer, Berlin (2009)

56. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Revisiting statechart synthe-
sis with an algebraic approach. In: Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE), pp. 242–251.
IEEE Computer Society, Edinburgh, UK, May 2004

57. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Towards a UML profile
for software product lines. In: van der Linden, F. (ed.) Software
Product-Family Engineering, Lecture Notes in Computer Science,
vol. 3014, pp. 129–139. Springer, Berlin (2004)

58. Ziadi, T., Jézéquel, J.-M.: Software product line engineering with
the UML: Deriving products. In: Käköla, T., Duenas, C. (eds.)
Software Product Lines, pp. 557–588. Springer, Berlin (2006)

59. Ziadi, T., Jézéquel, J.-M.: PLiBS: An Eclipse-based tool for soft-
ware product line behavior engineering. In: Proceedings of the 3rd
Workshop on Managing Variability for Software Product Lines,
(SPLC, : Software Engineering Institute. Kyoto, Japan (2007)

60. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A.,
Fuentes, L., Moreira, A., Araújo, J., Kulesza, U.: VML*—A family
of languages for variability management in software product lines.
In: van den M., Gaevic, B.D., Gray, J. (eds.) Software Language
Engineering, vol. 5969 of Lecture Notes in Computer Science, pp.
82–102. Springer, Berlin (2010)

61. Zündorf, A.: Rigorous object oriented software development. Tech-
nical report, University of Paderborn (2001) (habilitation thesis)

Author Biographies

Thomas Buchmann received
his diploma degree in mathemat-
ics in 2002 from the University
of Bayreuth. For the following
three years he was employed as
manager of the software engi-
neering department at a medium-
sized company. Since 2005 he
works as a research assistant at
the software engineering chair.
In 2010 he received his doc-
toral degree from the University
of Bayreuth. His research inter-
ests include graph transforma-
tions, model-driven engineering,

software product line engineering, software configuration management
and software architecture.

123

Mapping feature models onto domain models 1527

Bernhard Westfechtel received
his diploma degree from Univer-
sity of Erlangen-Nuremberg in
1983 and his doctoral as well
as his habilitation degree (all in
computer science) from RWTH
Aachen University in 1991 and
1999, respectively. Since 2004,
he has been a full professor
of computer science (in soft-
ware engineering) at University
of Bayreuth. His research inter-
ests include graph transforma-
tions, model-driven engineering,
software product line engineer-

ing, software configuration management, software process modeling,
software architecture, and reengineering.

123

	Mapping feature models onto domain models: ensuring consistency of configured domain models
	Abstract
	1 Introduction
	2 Overview
	2.1 Tool chain
	2.2 Models
	2.2.1 Feature model
	2.2.2 Domain model

	3 Mapping features to models
	3.1 Mapping definition
	3.2 Mapping constraints
	3.3 Dependency constraints for class diagrams
	3.4 Dependency constraints for story diagrams
	3.5 Repair actions

	4 Tool support
	4.1 MODPL feature editor
	4.1.1 Implementation of feature annotations
	4.1.2 Handling inconsistencies
	4.1.3 Implementation of feature propagation

	4.2 MODPL configurator
	4.2.1 Visualization
	4.2.2 Generating a configured model
	4.2.3 Generating executable code

	5 Case study
	5.1 Domain
	5.2 Approach
	5.3 Experiences

	6 Discussion
	6.1 Feature models
	6.2 Domain models
	6.3 Feature annotations
	6.4 Feature interactions
	6.5 Consistency control
	6.5.1 Consistency
	6.5.2 Repair actions

	6.6 Variability
	6.7 Process

	7 Related work
	7.1 MATA
	7.2 FeatureHouse
	7.3 fmp2rsm
	7.4 Feature Mapper
	7.5 pure::variants
	7.6 PLiBS
	7.7 PLUS
	7.8 CIDE
	7.9 VML*
	7.10 DSL-based approaches

	8 Conclusion
	Acknowledgments
	References

