
Softw Syst Model (2015) 14:321–337
DOI 10.1007/s10270-012-0300-x

SPECIAL SECTION PAPER

Kompren: modeling and generating model slicers

Arnaud Blouin · Benoît Combemale · Benoit Baudry ·
Olivier Beaudoux

Received: 27 March 2012 / Revised: 16 October 2012 / Accepted: 25 October 2012 / Published online: 21 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Among model comprehension tools, model
slicers are tools that extract a subset of model elements, for
a specific purpose. Model slicers provide a mechanism to
isolate and focus on parts of the model, thereby improv-
ing the overall analysis process. However, existing slicers
are dedicated to a specific modeling language. This is an
issue when we observe that new domain specific modeling
languages, for which we want slicing abilities, are created
almost on a daily basis. This paper proposes the Kompren
language to model and generate model slicers for any DSL
(e.g. modeling for software development or for civil engineer-
ing) and for different purposes (e.g. monitoring and model
comprehension). We detail the semantics of the Kompren
language and of the model slicer generator. This provides a

Communicated by T. Clark and J. Whittle.

This work is partially supported by the EU FP7-ICT-2009.1.4 Project
N◦256980, NESSoS: Network of excellence on engineering secure
future internet software services and systems.

A. Blouin (B)
INSA Rennes, IRISA/INRIA, Triskell Team,
Rennes, France
e-mail: arnaud.blouin@irisa.fr

B. Combemale
University of Rennes1, IRISA/INRIA, Triskell Team,
Rennes, France
e-mail: bcombemale@irisa.fr

B. Baudry
INRIA Rennes, IRISA/INRIA, Triskell Team,
Rennes, France
e-mail: bbaudry@inria.fr

O. Beaudoux
TRAME-ESEO, Angers, France
e-mail: olivier.beaudoux@eseo.fr

set of expected properties about the slices that are extracted
by the different forms of the slicer. Then we illustrate
these different forms of slicers on case studies from various
domains.

Keywords Model slicing · Domain specific language

1 Introduction

1.1 Context

Program slicing [44] is a “technique for focusing on cer-
tain aspects of a program’s behavior and removing all other
parts of code not concerned with this behavior [23]”. The
two major slicing methods are currently static and dynamic
slicing. Static slicing is an operation that takes as input slic-
ing criteria, i.e. variables and their position in the program
to slice. This operation produces as output a slice composed
of the statements that may have effects on the slicing crite-
ria. The static slicing operation does not execute or interpret
the program so that the output slice may not be minimal.
For instance, control flows such as if(foo) then ...
else ... endif are not evaluated to state which condi-
tional branch, then or else, must be sliced; the whole if state-
ment is sliced. Dynamic slicing remedies this drawback by
evaluating the programs’ statements. The interested reader
can refer to [11,13,35,39,45] for more details on program
slicing.

Model slicing is a model comprehension technique
inspired by program slicing. The process of model slicing
involves extracting a subset of model elements which repre-
sent a model slice. The model slice may vary depending on
the intended purpose. For example, when seeking to under-
stand a large class diagram, it may help to extract the sub-part

123

322 A. Blouin et al.

of the diagram that includes only the dependencies of a par-
ticular class. For other comprehension purposes one might
want the footprint of model operations [17], or extracting
information from several interdependent models [23].

Program slicing transposed to models can be divided
into static and dynamic slicing as well. Static model slic-
ing consists in slicing models according to structural crite-
ria. For instance, slicers relying on the Meta-Object Facility1

(MOF) metametamodel will slice the structure of models
(classes, properties, etc.). Dynamic model slicing considers
the behavioral semantics of the input metamodel and requires
the execution of the sliced model. For example, slicing an
automaton with respect to a specific event as a slicing crite-
rion, consists in extracting a sub-automaton, which reacts to
the selected event. In this paper we focus on static slicing of
models.

There has been previous work on the definition of model
slicers. But all the existing model slicers are dedicated to
extracting one form of slice from models that conform to
a specific metamodel. In times when new domain specific
modeling languages (DSMLs) appear regularly to improve
productivity, this becomes an issue: on the one hand, it is
not convenient to develop slicers from scratch for each new
DSML; on the other hand, these DSMLs will provide full
expected benefits for productivity only if they are supported
by the same analysis and comprehension tools as general pur-
pose languages. Thus it is necessary to develop a generative
approach that will automatically build model slicers for new
metamodels.

1.2 Contributions

In this paper we propose Kompren,2 a DSML to model model
slicers for a particular domain (captured in a metamodel).
The knowledge gained from practical experience and cur-
rent model slicers, lead to the design choices of the Kompren
language. The primary objective of Kompren is the selec-
tion of classes and properties in an input metamodel. Kom-
pren promotes the definition of slicers that slice all necessary
elements to make the slice a valid instance of the input meta-
model. Kompren also facilitates the relaxation of the confor-
mance required by the input metamodel. Kompren offers a
set of language features to generate model slicers that can
still be parameterized to process the model slice for a spe-
cific purpose. The different characteristics of Kompren tackle
two goals for our generative approach: automatically build-
ing model slicers for any DSML; have model slicers that can
extract different forms of slices, depending on the purpose
of the slice.

1 http://www.omg.org/mof/
2 http://people.irisa.fr/Arnaud.Blouin/software_kompren.html

The contributions of this paper are the following:

1. a language to model model slicers for any metamodel;
2. an illustration of the language expressiveness over three

uses cases on model operation analysis, model compre-
hension, and model monitoring at runtime;

3. a systematic classification of properties one can expect
from the model slicers generated by Kompren;

4. an exhaustive classification of the related work on model
slicing;

5. a complete set of tools to define and execute model slicers,
including editors and a new version of the compiler fea-
turing evaluated performance improvements.

This paper extends our work published at MODELS 2011
[7] with the last three contributions 3, 4, and 5.

1.3 Paper outline

In Sect. 2 we introduce several motivating scenarios that illus-
trate the various forms of model slices that must be generated
when analyzing models in various languages. Section 3
introduces the overview of building model slicers with the
Kompren language. Section 4 presents the Kompren lan-
guage: its metamodel, compiler, and concrete syntax. Section
5 describes the Kompren tools provided to users and different
benchmarks to analyze the scalability of the implementation.
Section 6 demonstrates the expressiveness of Kompren on the
three illustrative cases introduced in Sect. 2. Section 7 dis-
cusses the related work on model slicing. Section 8 concludes
this work and proposes a research agenda on model slicing.

2 Heterogeneous use cases of model slicing

The classical use of model slicing consists in extracting sub-
models from models by keeping conformance rules. How-
ever, as shown in the motivating use cases below model
comprehension also requires extracting models which do not
satisfy conformance. Still, this extraction can rely on model
slicing mechanism.

Use case 1: model operation analysis Given a model oper-
ation on a large metamodel M M1, developers demand the
effective metamodel M M2 used by the operation such that
M M2 ⊂ M M1. For instance, when defining a state machine
flattening operation over the UML metamodel, only the UML
class diagram and the UML state machine elements are
used. This model operation must be analyzed to select the
M M1 elements it uses and to get the effective metamodel
M M2 [31].

In terms of program slicing this is similar to the tech-
nique used in bytecode shrinking. For example, Proguard3

3 http://proguard.sourceforge.net/

123

http://www.omg.org/mof/
http://people.irisa.fr/Arnaud.Blouin/software_kompren.html
http://proguard.sourceforge.net/

Kompren: modeling and generating model slicers 323

analyzes Java bytecode to eliminate all classes that are not
used.

Use case 2: semantic zooming on models Several pro-
gram slicing methods have been used to assist in program
comprehension (e.g. [6,29]). Similarly, understanding and
manipulating large models require visualization techniques
to provide meaningful navigation capabilities [38]. Semantic
zooming is a human–computer interaction (HCI) technique
that can be applied for this purpose. In contrast to physical
zooming that alters the size of objects, semantic zooming
changes the type and meaning of information displayed by
objects [15]. For instance, as shown in Fig. 1a, semantically
zooming on class inheritance extracts super-classes of a given
class. We can notice that semantic zooming does not require
the output slices to conform to their metamodel; the output
slices are not saved as new models, but used by HCI features
to perform semantic zooming.

The model slicing applications are not limited to the com-
puter science domain. For example, recent work proposed a
model-driven approach in civil engineering for the interop-
erability and comprehension of building models [36]. This
application of MDE is particularly challenging for all MDE
tools since the entire model includes more than 5 M of model
elements. In this context, model slicing is particularly rel-
evant to understand and analyze the model from different
perspectives. Stakeholders may need tools to improve their
comprehension of the different concerns of the building being
designed. In such a context, model slicers can extract infor-
mation from the whole building model to display different
concerns. For example, Fig. 1b shows the mechanical model
of a building. Mechanical model stakeholders are eager to
focus on the details of a given location or mechanism of the
building.

Use case 3: model monitoring at runtime Monitoring models
at runtime is an important feature to control their evolution.
For example, state-based model stakeholders may want to
monitor the current state. Thus dedicated tools need to extract
only information relevant to the current state. Such informa-
tion must be incrementally extracted to improve performance
on large models. This use of model slicing is similar to slic-
ing techniques extract the value of variables of a running
program for debugging [39].

3 Overview

Figure 2 provides an overview of the proposed approach to
model model slicers. The core contribution of this paper is
a modeling language dedicated to the construction of model
slicers. The language is called Kompren. All the concepts
and relations of Kompren are captured in a model slicer
metamodel (MSMM at the top of Fig. 2). A model slicer

Fig. 1 Examples of semantic zooms. a Viewing super-classes of the
UML class Class, b complex mechanical model of a building, extracted
from [36]

model (MSM) expressed with Kompren refers to a set of
classes and relations from the input metamodel expressed
using an object-oriented meta-language (e.g., Ecore, in our
case). Instances of the referenced classes and relations will
be selected for slicing in the input model. Thus MSMM
points to Ecore to enable MSM to use Ecore elements from
an input metamodel. Because Ecore describes the structure
of metamodels, the Kompren model slicers are syntactic.
MSMM also points to Kermeta [26], an action language
used to specify the behavior of a slicer. Kompren’s com-
piler processes an MSM defined for an input metamodel
and automatically generates an actual model slicer function
(MSF).

123

324 A. Blouin et al.

Fig. 2 Overview for modeling model slicers with Kompren

In this context, a slicing criterion is a set of model elements
that provide the entry point for extracting a model slice. Using
Kompren, the MSM specifies the type of the slicing criteria
among the classes of the input metamodel. Then, Kompren
generates the set of corresponding parameters for the MSF,
letting the domain expert specify a slicing criterion to execute
the MSF.

This global approach is a two-level generation process:
Kompren’s compiler generates an MSF, which in turn gen-
erates model slices. From a methodological perspective, we
also distinguish two roles for Kompren users:

– Domain expert The domain expert knows the domain
captured in the input metamodel and knows its concepts
and relationships. This person is thus in charge of lever-
aging this domain to model one or several model slicers
relevant for this domain. The domain expert selects the
elements in the input metamodel that will be processed
by the model slicer through the MSF.

– Domain users create models in the domain. These
users, through their modeling activities, can create large
instances of the input metamodel. At some point these
users need to extract slices thanks to the MSF. These
users parameterize the model slicer according to their
need and according to the values in the input model.

4 Model-driven specification of slicers

4.1 Kompren features for model slicer generation

A model slicer is specified by a model slicer model (MSM)
and implemented by a model slicing function (MSF) gener-
ated from the MSM (cf. Fig. 3).

An MSM enables the specification of classes and prop-
erties whose instances must be selected from a given input
model. Input models can be either structural or behavioral.
In both cases, the slicing operation consists in visiting the

Fig. 3 Relationships between model slicer, MSM, and MSF according
to the analytical and synthetical representations proposed in [27]

Fig. 4 Kompren’s features

model for a particular purpose according to the structure of
their metamodel and the classes and properties specified in
the MSM. Such a processing is performed by a model slic-
ing function (MSF) generated from an MSM, and results in
a slice.

Below, we detail the features offered by Kompren to (i)
ease the modeling of MSMs, and to (ii) specify an evaluation
mode of an MSF. We also discuss the different properties
one can expect on slices generated by the MSF (cf. Fig. 4).
We use an example to illustrate theses features: the class dia-
gram input metamodel (Fig. 5a) and the input model shown in
Fig. 5b.

Kompren proposes the following constructs to assist the
definition of an MSM (left part of Fig. 4):

– Add a transient opposite property in the input meta-
model to ease the slicing. For example, Fig. 6b is a
slice of Fig. 5b that selects A and its subclasses. To
ease the slicing of the input model, the MSM requires
the opposite of the superTypes property in the input
metamodel.

123

Kompren: modeling and generating model slicers 325

(a) (b)

Fig. 5 Class model example. a Input class metamodel, b input class model

(a) (b) (c) (d) (e)

Fig. 6 Slices of the class model given in Fig. 5b. a Strict mode, b opposite, c constraint, d radius, e database slice

– Add constraints to filter the sliced elements with
respect to the input metamodel. For example, Fig. 6c
is a slice of Fig. 5b composed of the class A and of its
composite references only. Similarly, Fig. 6d is a slice of
Fig. 5b that selects B and its direct supertypes.

4.1.1 Slicing mode

The MSF can be generated from one MSM with one of the
following slicing mode:

– Batch the MSF slices the input model once, when called
by the domain user (cf. use cases 1 and 2);

– Active the MSF automatically updates the slice each time
the input model changes (cf. use case 3).

4.1.2 Slicing output formats

According to the specified MSF and the selected options, the
model slicers will generate model slices, which have different
properties. In the following we list the properties one can
expect from a model slice (right part of Fig. 4, feature model
below ‘Output metamodel’).

First, the MSF can provide a resulting slice as a new model
satisfying all the structural constraints imposed by the input
metamodel. In such a case the slice is a valid instance of the

input metamodel, and we call the corresponding model slicer
an endogenous model slicer. For example, Fig. 6a is a slice of
Fig. 5b that includes only A and F, as well as the mandatory
classes D and E to satisfy the conformance with the input
metamodel.

It is also possible to use Kompren to generate model slicers
that relax the conformity constraint on slices in exchange of
additional features for model slicer modeling.

Model slicers providing a slice conforming to a different
metamodel than the input metamodel are called exogenous
model slicer. We distinguish two categories of exogenous
model slicers:

– Exogenous model slicers that generate a slice conform-
ing to a metamodel inferred by analyzing the MSM and
adapting the input metamodel (cf. 2© in Fig. 4).

– Add a persistent opposite property in the output
metamodel For example, Fig. 6b could be saved with
the opposites of the superTypes property used
to ease the slicing (e.g. to facilitate its navigation
according to this property in a later processing). In
such a case, the input metamodel must be enriched
with the opposite properties to save the resulting slice
(cf. Fig. 7a).

– Add constraints to filter the sliced elements remov-
ing elements required to conforms to the input
metamodel For example, Fig. 7b shows a constrained

123

326 A. Blouin et al.

(a) (b)

Fig. 7 Inferred output metamodels. a Metamodel 5a augmented with the opposite lowerTypes, b Metamodel 5a Constrained by removing the
relations 1..1 type

version of the metamodel of Fig. 5a where the two
relations type (cardinality [1]) were removed.

– Exogenous model slicers that generate slice conforming
to a metamodel explicitly imported by the domain expert
in its MSM definition (cf. 3© in Fig. 4). For example, Fig.
6e is an RDBMS4-based slice extracted from Fig. 5b by
selecting the class B and its direct classes (A).

In addition to Model to Model (M2M) model slicers, Kom-
pren also supports the generation of MSF that produce tex-
ual slices. We call these slicers Model to Text (M2T) slicers.
These can be used to print information about the sliced model
elements or to notify external tools about the slice.

All the previous expected features were considered in the
design of the Kompren language. We present respectively in
the remainder of this section the abstract syntax, concrete
syntax, and semantics embedded into the compiler of the
Kompren language.

4.2 Kompren abstract syntax

The metamodel shown in Fig. 8 describes the abstract syn-
tax of Kompren. An instance of this metamodel is a model
slicer model (MSM). The main package is slicer. In this pack-
age, a Slicer is mainly composed of SlicedElements. These
sliced elements are the classes (SlicedClass) and the proper-
ties (SlicedProperty) of interest in the model slicing function
(MSF). All sliced elements belong to the input metamodel
identified in the slicer by its URI5 (uriMetamodel). Optional
SlicedElements (i.e. isOption is true) are options of the gen-
erated MSF. This lets the domain user choose whether an
element must be considered during the slicing.

4 Relational database management system.
5 Uniform resource identifier.

A SlicedClass refers to a class (EClass) in the input meta-
model (domain). All instances of a referenced class in a given
input model are selected by the MSF. Then ctx (contained in
SlicedClass) serves as a temporary variable to successively
manipulate each instance (i.e. an iterator). The type of this
iterator (type in VarDecl) must correspond to the sliced class.
This constraint can be formalized using (object constraint
language6 (OCL) as follows:

Similarly, a SlicedProperty refers to a property (EStruc-
turalFeature) in the input metamodel (domain). All instances
of a referenced property in an input model are selected by the
MSF. The src and tgt iterators allow the manipulation of the
property’s source and target. The type of the src and tgt iter-
ators is respectively the source and the target class of the
property:

In addition, a sliced property may specify an Opposite-
Creation to define that an opposite must be created on the
targeted domain. The name of this new opposite is given by
the attribute name. By default, such opposites are used as
helpers for exploring the input metamodel and are not serial-
ized in the output slice. But developers may want to serialize
some of the opposites; in such a case, the attribute transient
of a given OppositeCreation must be set to false and an out-
put metamodel, augmented with the selected opposites, will
be inferred.

We assume in this paper an input metamodel defined
with an existing object-oriented metamodeling language.

6 http://www.omg.org/spec/OCL/

123

http://www.omg.org/spec/OCL/

Kompren: modeling and generating model slicers 327

Fig. 8 Model slicer metamodel

In our experiments we use the Ecore metamodeling lan-
guage provided by the eclipse modeling framework7 whose
required elements are imported in the package ecore. In
Ecore, a class and a property are identified by respectively
the classes EClass and EStructuralFeature. Another object-
oriented metamodeling language could be easily considered
in Kompren.

Moreover, the iterators on sliced elements (instances of the
specified SlicedClass and SlicedProperty) allow the domain
expert to express the expected behavior for each selected
instance. The effect of the MSF on each selected instance is
described as an expression using an action language. In our
experiments, we use the action language of Kermeta [26]
whose required elements are imported in the package ker-
meta. Another action language could be easily considered in
Kompren.

By default, the model slicer can be exogenous or endoge-
nous depending on the behavior defined by the develop-
ers. The expressions onStart and onEnd are used to add
a particular behavior in the MSF. These expressions are
respectively applied before and after the visit of the input
model (e.g. to import the required output metamodel and
save the resulting slice respectively). Expressions defined to

7 http://www.eclipse.org/modeling/

bring executability to slicers may require classes provided
by third party libraries, attributes, or operations needed to
the slicing process. Thus the domain expert can specify a
helper that will contain this information. The attribute strict
(in Slicer) defines whether the slicer must be endogenous
(cf. Sect. 4.1.2). By setting the attribute strict to true, the
model slicer bypasses the filters expressed into the MSM to
ensure slices conform to the input metamodel.

The radius and the constraints can be used to filter the
sliced elements in the input model. The radius sets in the
MSM the focusedClasses for which the MSF should be lim-
ited to a selection within a given radius. Starting at 0, a value
is incremented on each visited class instance focused by the
radius. The slicing process stops when no elements can be
sliced anymore or when this value is greater than the radius
given as parameter. Figure 9 shows an example of the radius
process where the focused class is Class and the slicing crite-
rion c1. Each dashed ellipse shows the sliced instances for a
specific radius value: c1, c2, c3, and re f are sliced when the
radius equals 1; re f, re f2, and c1 to c4 are sliced when the
radius equals 2. The radius is defined by the domain expert for
a sliced class, and its value must be specified by the domain
user as a parameter of the MSF. The focused classes must be
included in the sliced classes that can be formalized using
OCL as follows:

123

http://www.eclipse.org/modeling/

328 A. Blouin et al.

Fig. 9 Example of the radius process

The constraints allow the domain expert to define a con-
dition that must be respected to trigger the slicing of the
element targeted by the condition.

The inputClasses precise the type of the slicing criteria
that the MSF will take as input to start the slicing.

Finally, the attribute active permits to specify whether the
MSF must be executed as a batch or as an active process.
By default, the generated MSF is a batch process executed
a single time on the input model. By setting the attribute
active to true the generated MSF is executed a first time, and
then observes modifications applied on the input model to
incrementally update the slice.

4.3 Concrete syntax

A textual concrete syntax has been defined for Kompren
allowing the domain expert to define a model slicer model
(MSM). As an example, the following listing shows the active
and non-strict MSM ClassModelSlicer (cf. line 1), for the
metamodel in Fig. 5a (cf. line 2). The classes of the instances
used to launch the model slicing function (MSF) are declared
on line 3.

Thereafter, line 6 specifies a sliced class while lines 7 to
9 specify the sliced properties. An expression defined for the
sliced class Class is described on line 6 where cl refers
to the context of the sliced class. An optional property is
illustrated on line 7 with the keyword option. An oppo-
site to a property is defined with the keyword opposite
as shown on line 8 where lowerTypes is the name of the
opposite.

Line 4 illustrates how to declare a radius based on Class
to limit the selection in the input model by the MSF. The
definition of a constraint consists in specifying a Kermeta
boolean expression as shown on line 5. Lines 10 to 11

illustrate the definition of the preprocessing, the postprocess-
ing, and the helper of the slicer.

4.4 Semantics

As defined in Fig. 2, model slicer models (MSM) are com-
piled into model slicer functions (MSF). This compilation
produces Kermeta programs composed of three parts. The
first part augments the input metamodel with required infor-
mation. This information is the opposites added to the input
metamodel and methods required by the visitor to explore the
input model. These methods are generated for the metamodel
elements selected in MSMs. If the slicer is defined as strict,
these methods are also generated for elements not selected
in MSMs but required to assure the semantic properties.

The second part performs a static analysis of the MSM to
infer whether a new metamodel is required as output meta-
model (usually to relax some cardinalities).

Finally, the compiler generates the MSF. The preprocess-
ing (onStart) and the postprocessing (onEnd) methods and
the Kermeta code corresponding to the helper are created.
From the input classes, the radius and the constraints defined
in MSMs are generated as parameters of the slicer func-
tion. For instance, the following Kermeta code illustrates
such generation where: launch is the operation that starts the
slicing; inputClass:Class[0..*] defines the Class instances
used to launch the slicing (the slicing criteria); radius:Integer
specifies the slicing radius; composition:Boolean is a con-
straint that restricts the slicing of references to composite
references.

Once generated, the MSF can be executed by calling
the launch operation with its required parameters. The pre-
processing is first executed. Then begins the exploration of
the input model using the input instances (i.e. the slicing
criteria) given as parameters. Each of these instances is vis-
ited. Visiting an instance or a property consists in execut-
ing the associated behavior, i.e. the corresponding Kermeta
expression defined by the domain expert. Each selected prop-
erty of the current visited class instance are then explored (if
they satisfy the constraints defined in MSMs) to recursively
explore their target class instance. In case of a strict slicer,

123

Kompren: modeling and generating model slicers 329

Fig. 10 Kompren editor in the eclipse environment

the MSF also slices the required model elements to conform
to the input metamodel, and automatically add all the sliced
instances into a new model.

Because Kermeta does not support observability of Ecore
models, active slicers are based on the ActiveKermeta toolkit
[5]. ActiveKermeta adds observability to Ecore models
through the operations c.added{e | ...}, c.removed{e | ...},
and c.updated{p, e | ...}. These operations register a function
respectively invoked when the element e is added to collec-
tion c, removed from collection c, or when the element p is
replaced by the element e into c.

5 Tooling

5.1 Domain expert

We provide domain experts with a comprehensive set of pro-
totyping tools to develop model slicers.8 These tools are com-
posed of two editors and of a compiler running on the top of
Eclipse9 and Scala10.

5.1.1 The Kompren editors

Two editors are provided for editing MSMs. The first one is a
customized Ecore reflexive editor that edits MSMs through a
tree-based presentation. The second editor is a textual editor
based on our proposed concrete textual syntax (see Fig. 10
for a screenshot of this editor). This editor provides auto-
completion, serializes as Ecore models, and compiles MSMs
in MSFs.

5.1.2 The Kompren compiler

The MSM to MSF compiler has been developed using Ker-
meta 2 running on the top of Scala (Kermeta 2 programs are
compiled into Scala, then into Java byte-code). We performed

8 http://people.irisa.fr/Arnaud.Blouin/software_kompren.html
9 http://www.eclipse.org/
10 http://www.scala-lang.org/

benchmarks on several use cases we developed to study the
compilation time. These uses cases have different levels of
complexity as described in Table 1. This table describes the
characteristics of the use cases: Sc and Sp respectively define
the number of classes and properties of the input metamodel;
Ssc and Ssp respectively define the number of the sliced
classes and properties; Pk enumerates the Kompren’s fea-
tures used; Tc gives the average compilation time (in sec-
ond) for 100 executions of the use cases. The experiments
described in this section have been performed on Linux using
a laptop with a Core2Duo at 3.06 GHz and 4 Gb of RAM,
Scala 2.9.0, and Java 7.

For the simplest use case Tc equals 0.189 s. For the
most complex one Tc equals 2.026 s. Because finding the
mandatory elements to slice requires extra computations,
the strict property complexifies the MSFs generation. Large
input metamodels increase the computations as well.

5.2 Domain user

Once defined by domain experts, MSF can be used by domain
users. As the compiler, MSFs are Kermeta 2 programs run-
ning on the top of Scala. MSFs take as inputs the slicing
criteria, the options, the constraints, and the radius value as
defined in the MSMs. MSFs produce as output either a sliced
model when the model slicer is strict, nor results as defined
by domain experts.

MSFs can be integrated into applications. For instance,
our tool that visualizes metamodels uses an MSF using the
Kermeta metamodel as input metamodel.

In our current prototype, the slicing process is based on
the visitor design pattern using a deep-first search algorithm.
Following Tables 1, 2 gives the slicing execution time Te

(second) for the state-machine slicing example presented in
Table 1. The benchmarks have been performed using input
models of different sizes: Sm refers to the number of ele-
ments that the models contain. The goal of this experiment
is to demonstrate that Kompren can slice large models in a
reasonable time. For the sizes from 100 to 105, 100 mod-
els (more precisely 100 connected state-machines) were ran-
domly generated. Te is the average execution time for slicing
these models. Because of technical limits, only a single model
was randomly generated for the size 106. In this case, Te is
the average execution time for slicing this model 100 times.
The goal of this strict slicer is to slice the whole input model
using as input the initial state. For the smallest size, 100,
Te is 0.023. For the larger size, 106, Te is 9775.51. Because
of the model loading and saving operations, the progression
of the execution time over the different sizes is not linear.
The materials used for these benchmarks are available on the
Kompren website.11

11 http://people.irisa.fr/Arnaud.Blouin/software_kompren.html

123

http://people.irisa.fr/Arnaud.Blouin/software_kompren.html
http://www.eclipse.org/
http://www.scala-lang.org/
http://people.irisa.fr/Arnaud.Blouin/software_kompren.html

330 A. Blouin et al.

Table 1 Several MSM
compilation benchmarks Use cases Sc Sp Ssc Ssp Pk Tc

Super-classes 1 1 1 1 Not strict 0.189

State-machine 8 7 7 3 Strict 0.209

Semantic zooming
ecore

20 51 9 10 Opposite, not strict, radius 0.371

Kermeta operation
analysis

73 95 1 29 Not strict 0.503

UML class diagram
extraction

246 769 16 21 Strict 2.026

Table 2 Several execution
benchmarks of the state
machine slicer

Sm Te

100 0.023

103 0.031

104 0.141

105 0.425

106 9775.51

5.3 Threats to validity

The benchmarks performed on non-strict Kompren model
slicers strongly depend on the Kermeta expressions, defined
by the developers, used in the slicer. Optimizations may
be applied on our current prototyping implementation to
improve these benchmarks.

The slicing execution time Te strongly depends on the
parameters of the model slicers. For instance, the definition of
an opposite in a model slicer will increase the execution time
by 2 at least: before the slicing operation, the opposite must
be integrated into the input model; this operation requires the
whole exploration of the input model.

6 Validation

In this section, we apply our model slicing approach to three
heterogeneous case studies illustrating the main usages that
can be done using our approach.

6.1 Model operation analysis

Extracting static metamodel footprint for a model operation
defined over a metamodel M M1 (in our case the Kermeta
metamodel) consists in extracting the elements of M M1

used by the operation [17]. In this section, we use Kom-
pren to model the footprint generator proposed by Jeanneret
et al. [17] and the metamodel pruner proposed by Sen et
al. [31]. This use case illustrates the ability of Kompren
to: ease the slicer definition process; combine several Kom-
pren model slicers to perform a task not related to model
slicing.

This model operation analysis is performed through two
model slicers: a first slicer analyzes the model operation to
extract the metamodel footprint, i.e. the list of M M1 elements
used by the operation; a second slicer uses this footprint to
extract the effective metamodel from M M1.

The first slicer extracts the list of M M1 elements used
by the operation. Because such a slice does not conform to
M M1, the slicer is not strict. The model operation is imple-
mented in Kermeta. Thus it is an instance of the Kermeta
metamodel M Mop and the slicer explores classes and prop-
erties of M Mop (lines 6–16). The result of the slicing func-
tion will be the list of classes used in the operation (line
5). This list is defined in the helper (line 18). By default
all the classes that can come from either M M1 or M Mop

are explored. Because only the classes from M M1 must be
stored, a helper is defined to select them (lines 19–25).

The second slicer, modeled as follows, uses the footprint
computed by the first one. This slicer is defined as strict (line
1) to create an output model that is an endogenous slice of the
input metamodel M M1 (specified line 2). This slicer slices
all the classes (line 4) linked to the input classes by inher-
itance or properties (lines 10–12). All properties and oper-
ations of the class sliced are included (lines 5–9). Because

123

Kompren: modeling and generating model slicers 331

ClassDefinition is linked to Package by a 1..1 reference, this
relation and its target class must be sliced to extract a strict
slice. Since we model in strict mode, the packages contain-
ing sliced elements are sliced even if Package is not modeled
as a slicedClass. This mode also includes 1..n attributes of
classes ClassDefinition, Property, and Operation.

These Kompren model slicers are smaller than the Jean-
neret’s and Sen’s model slicers: around 70 Kompren LoC
compared to 1200 Kermeta LoC for both the static meta-
model footprinting and the metamodel pruner. The number
of generated Scala LoC when compiling a Kompren model
into an executable slicer (a Scala program) is another rele-
vant metric. This use case generated around 6700 of Scala
LoC.12 Because Kompren is a DSL dedicated to the defini-
tion of model slicers, Kompren hides some technical details
such as the Visitor pattern. By opposition, Kermeta and Scala
are General Purpose Languages (GPLs) that require the
explicit definition of such technical details. This difference
can explain the gap in terms of LoC differences between the
slicers.

6.2 Bringing semantic zooming to model visualization

Model slicing can be used to bring semantic zooming to
model visualization. In this case, the slicer defines which
classes and relations of the visualized model must be dis-
played in the user interface (UI). For example, the following
code defines a slicer that slices Kermeta models. Because
the goal of this slicer is to notify the UI about sliced ele-
ments, it is not defined as strict. It takes as input instances
of ClassDefinition (line 3) selected by users using the UI. As
shown in Fig. 11, the UI displays classes, inheritances, and
properties. At the beginning of the slicing all these model
elements are hidden (line 23). Then when model elements
are sliced, the UI is notified that these elements must be
shown (lines 7, 9, and 17). At the end of the slicing, the
UI is updated to perform the graphical changes (line 24).
Some properties must be explored to access the instances to
slice (lines 14–22). All these properties to slice are defined
as optional. Thus for each feature of the model visual-

12 This number can certainly be reduced by optimizing the compiler.

Fig. 11 Class diagram visualizer providing semantic zooming features

izer (e.g. showing the inheritance tree of a selected class),
developers can define which properties must be explored.

The UI shown in Fig. 11 provides a spinner that permits to
define the radius effect of the slicing (defined line 4). The UI
also provides a check-box called “With card 0”. This check-
box permits to set whether properties which lower cardinality
equals 0 must be sliced or not (line 5). The graphical repre-
sentation of the model and the widgets of the UI are defined
separately from the slicer.

6.3 Monitoring state-machines at runtime

Our model slicing approach can also be used to slice models
at runtime, i.e. the slicing process is no more a batch process
but is sustained at runtime to re-evaluate model elements that
change. In such a context, a slice can be used to observe how
a specific sliced part of a larger model evolves.

Figure 12a describes a basic state-machine metamodel.
The root class StateMachine specifies all the states and tran-
sitions defined within the state-machine. A Transition links
a source state and a target state; conversely, a State is linked
to other states throughout incoming and outgoing transitions.
The relation currentState defines the current state during the
execution of the state-machine.

Figure 12b shows a state-machine composed of four states
s0 to s3 and four transitions t1 to t4. Slicing such a model at

123

332 A. Blouin et al.

(a)

(b)

Fig. 12 A state-machine example. a A State-Machine Metamodel,
b a state-machine model

runtime consists in capturing the evolution of a model slice
while the state-machine is running, i.e. slicing changes of the
current state.

The following Kompren code slices the current state of a
state-machine and displays its name on changes. The slicer
first displays the name of the initial state. Whenever the
currentState relation cs is updated the anonymous function
given by the updated method is invoked. In this method
prev and next are the previous and the new states contained
in cs respectively. Running the CurrentStateSlicer with the
sequence of transitions t1 → t2 → t3 → t2 → t4 results in
displaying s0 → s1 → s2 → s1 → s2 → s3.

As this example illustrates, Kompren active slicers are
based on Active Kermeta that makes the four collections
provided by Kermeta (set, oset, seq, and bag) observable
[5]. Relation currentState is implemented using an Active
Kermeta set having its cardinality restricted to [1..1]. Using
collections for relations with cardinality [0..1] or [1..1] is
mandatory for observing their content. Two others methods,
added and removed, are provided by Active Kermeta col-
lections to respectively observe additions and removals into
collections.

7 Related work

We classified in Table 3 the main related work using the
slicer’s properties proposed in Fig. 4 (slicing mode, slicing

process, and slicer) supplemented with four others proper-
ties: Slice. States whether the output slices can be structurally
modified compared with the input models; Komprenable.
Defines whether the slicing method can be done using Kom-
pren; Metamodel. The supported input metamodel; Usage.
The context of use of the slicing method.

To our best knowledge, Zhao [47] was the first to use
program slicing concepts at a higher level than code. He uses
a syntactic, batch, and endogenous slicing algorithm to slice
software architectures. Following this work, Kim et al. [20]
bring semantic slicing to software architecture.

Slicing state-based models has been widely tackled in the
literature [3,8,14,21,22,25,41,43]. Koren et al. [21] intro-
duce a batch and endogenous slicing method that uses depen-
dency graphs (data and control dependencies) derived from
the state-based models to slice. This method does not evalu-
ate transitions’ condition and is thus syntactic. This method
provides a post-process step that merges states to reduce the
size of the slices.

Androutsopoulos et al. [3] propose different finite state-
based model slicing algorithms. Their basic slicer removes a
set of transitions to ignore and useless states. This algorithm
can be performed using our approach by defining parame-
ters that state the slicer not to slice transitions having given
names. Their other algorithms extend the first one by remov-
ing untriggerable transitions and merging states having iden-
tical semantics. Our approach does not permit to define such
slicers.

Acher et al. [1,2] propose a batch feature model slicer.
The slicing process is both semantic and syntactic: the cross-
cutting constraints are statically analyzed to define features
that must be or cannot be sliced. The output slices still con-
form to their metamodel but may structurally differ; the
feature model and its cross-cutting constraints are first trans-
formed into predicates for analysis. These predicates are then
transformed in a sliced feature model.

Hubaux et al. [16] slice feature diagrams to design three
different views of an input diagram. The sliced diagrams
do not keep the same structure as the input diagram. This
approach does not consider cross-cutting constraints and is
thus syntactic.

Kelsen et al. [19] propose an approach for decomposing
models into sub-models to tame the complexity of large mod-
els. This approach shares similarities with ours since they are
both not dedicated to a unique DSML and they can extract
sub-models of interest that still conform to the input meta-
model. However, their approach does not permit developers
to specify the slicing process, i.e. to select which elements of
the input models must be sliced, and is restricted to the strict
model slicing usage.

Jeanneret et al. [17] introduce a method to statically or
dynamically extract model footprints. As discussed in Sect.
6.1 the static footprinting can be done using Kompren. But

123

Kompren: modeling and generating model slicers 333

Ta
bl

e
3

M
od

el
sl

ic
in

g
re

la
te

d
w

or
k

cl
as

si
fic

at
io

n

A
pp

ro
ac

he
s

Sl
ic

in
g

m
od

e
Sl

ic
in

g
pr

oc
es

s
Sl

ic
er

Sl
ic

e
K

om
pr

en
ab

le
M

et
am

od
el

U
sa

ge

Pr
op

er
tie

s
B

at
ch

A
ct

iv
e

Sy
nt

ac
tic

Se
m

an
tic

M
2T

E
nd

og
en

ou
s

E
xo

ge
no

us
St

ru
ct

.M
od

.

Fe
at

ur
e

m
od

el
sl

ic
in

g
[1

,2
]

�
×

�
�

×
�

×
�

×
Fe

at
ur

e
m

od
el

Se
pa

ra
tio

n
of

co
nc

er
ns

M
od

el
pr

oj
ec

tio
n

[3
]

�
×

�
�

×
×

×
�

×
St

at
e-

ba
se

d
m

od
el

co
rr

ec
tn

es
s/

ef
fic

ie
nc

y
U

M
L

Sl
ic

er
[4

]
�

×
�

×
×

�
×

×
�

U
M

L
m

et
am

od
el

M
od

ul
ar

iz
at

io
n

U
M

L
st

at
ec

ha
rt

[8
]

�
×

�
�

×
�

×
×

×
U

M
L

st
at

ec
ha

rt
R

ea
ct

iv
e

sy
st

em
s

Sa
fe

sl
ic

er
[1

0]
�

×
�

×
×

�
×

×
�

Sy
sM

L
Sa

fe
ty

Fe
at

ur
e

m
od

el
sl

ic
in

g
[1

6]
�

×
�

×
×

�
×

�
�

Fe
at

ur
e

m
od

el
V

is
ua

liz
at

io
n

M
et

am
od

el
fo

ot
pr

in
t[

17
]

�
×

�
�

×
×

�
×

�
×

E
co

re
-b

as
ed

N
A

/A
(g

en
er

ic
)

C
on

te
xt

-f
re

e
U

M
L

sl
ic

in
g

[1
8]

N
/A

N
/A

�
×

×
N

/A
×

×
N

/A
U

M
L

cl
as

s
di

ag
ra

m
Su

b-
m

od
el

s
ex

tr
ac

tio
n

Su
b-

m
od

el
la

tti
ce

[1
9]

�
×

�
N

/A
×

�
×

×
N

/A
E

co
re

-b
as

ed
C

om
pr

eh
en

si
on

So
ft

w
ar

e
ar

ch
ite

ct
ur

e
[2

0]

�
×

�
�

×
�

×
×

×
N

/A
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

E
FS

M
sl

ic
in

g
[2

1]
�

×
�

×
×

�
×

�
�

St
at

e-
ba

se
d

m
od

el
Si

ze
re

du
ct

io
n

D
SU

A
M

[2
3]

�
×

�
�

×
�

×
×

×
U

M
L

Se
pa

ra
tio

n
of

co
nc

er
ns

U
M

L
sl

ic
in

g
[2

4]
�

×
�

�
×

�
×

�
×

U
M

L
C

om
pr

eh
en

si
on

U
M

L
ac

tiv
ity

di
ag

ra
m

[3
0]

�
×

�
�

×
�

×
×

×
U

M
L

ac
tiv

ity
di

ag
ra

m
Te

st
ca

se
ge

ne
ra

tio
n

M
et

am
od

el
pr

un
in

g
[3

1]
�

×
�

×
×

�
×

×
�

E
co

re
-b

as
ed

St
at

ic
an

al
ys

is

U
M

L
/O

C
L

sl
ic

in
g

[3
2–

34
]

�
×

�
�

×
�

×
×

×
U

M
L

/O
C

L
V

er
ifi

ca
tio

n

M
od

el
tr

an
sf

or
-

m
at

io
n

[4
0]

�
×

�
�

×
N

/A
×

×
×

V
ia

tr
a2

tr
an

sf
or

m
at

io
n

Pr
og

ra
m

sl
ic

in
g

U
M

L
st

at
ec

ha
rt

[4
3]

�
×

�
�

×
×

�
N

/A
×

U
M

L
st

at
ec

ha
rt

M
od

el
ch

ec
ki

ng

B
eh

av
io

r
tr

ee
sl

ic
in

g
[4

6]
�

×
�

�
×

�
×

N
/A

×
B

eh
av

io
r

tr
ee

M
od

el
ch

ec
ki

ng

So
ft

w
ar

e
ar

ch
ite

ct
ur

e
[4

7]
�

×
�

×
×

�
×

×
�

N
/A

So
ft

w
ar

e
ar

ch
ite

ct
ur

e

123

334 A. Blouin et al.

the dynamic footprinting refers to dynamic slicing concepts
that Kompren does not support yet.

Similarly, Ujhelyi et al. [40] develop a dynamic slicer for
model transformations. The goal of this slicer is two-fold:
providing transformation slices depending on the slicing cri-
terion; providing model slices (model footprints) composed
the model elements used by the transformation. Backtraces
of the execution of the transformation are used to slice the
statements used during the execution. Thus this approach
is both syntactic and semantic. No information is provided
regarding the conformance of the output slices toward their
metamodel.

Sen et al. [31] present an approach for pruning metamod-
els. The proposed pruner takes as input slicing criteria, i.e.
classes, operations, etc. of the metamodel to slice. The pruner
produces as output slices that satisfy all the structural con-
straints imposed by the input metamodel. Such a pruner is
thus a slicing operation strictly endogenous, syntactically
based and is a batch process.

As state-based models, UML is widely tackled in the
literature [4,8,18,23,24,32–34,43]. Shaikh et al. [32–34]
use model slicing for verification purpose. The goal of this
approach is to check whether an input UML model sup-
plemented with OCL constraints has legal instances. OCL
constraints are thus analyzed and interpreted to identify
which model elements are constrained.

Closely to Sen’s work, Bae et al. [4] develop a tool, UML-
Slicer, to slice to UML metamodel. As Kompren this tool
slices using the structure of the model. But because UML-
Slicer does not provide radius and constraint features, it is
less expressive than Kompren.

Wang et al. [43] introduce a method to reduce the state
space during the model checking of UML statecharts. The
proposed slicing process is semantically based and exoge-
nous: the output slices are not UML statechart models but
extended hierarchical automata (EHA) used by the model
checker.

Lano et al. [24] present slicing techniques dedicated to
UML models. Using these techniques the output slices may
structurally differ from the input model without modifying
their semantics.

Lallchandani et al. [23] propose a slicing technique for
UML architectural models. Even if the proposed approach is
limited to UML architectural models, it uses slicing for dif-
ferent purposes such as regression testing and understanding
large architectures.

Samuel et al. [30] describe a UML activity diagram slic-
ing technique dedicated to the generation of test cases. The
input diagram is first converted into a flow dependency graph
to be then sliced and be used for the test case generation
process.

Yatapanage et al. introduce a slicing technique to reduce
behavior tree models prior to verification. This batch process

uses the semantics of the input model to perform the slicing
and produces endogenous output slices.

Fal et al. [10] propose a batch model slicer dedicated to the
slicing of Systems Modeling Language13 (SysML) models
related to safety requirements. The most important step in
this approach is the pre-process step that maps a requirements
model to a SysML model. Once the mapping established
the slicing process operates on the structure of the joined
models. Requirements are used as input of the slicer and
their related SysML elements that conform to the SysML
metamodel.

Clark [9] introduces a model slicing theory that can be
used to implement the slicing function as model transfor-
mations. This theory is based both on the syntactic and the
semantics of the targeted language.

Obeo Designer14 offers the possibility to easily design
graphical viewpoints on large models. The representation of
a slice can be seen as a viewpoint. However, the tool is lim-
ited to visualization and does not address manipulation or
serialization of the slices.

8 Conclusion and future work

8.1 Contributions

Many recent work inspired by program slicing [44] have pro-
posed operations that extract sub parts of models for differ-
ent purposes [17,19,24,32]. These operations are extremely
helpful to assist comprehension when building large mod-
els. With the growing adoption of domain-specific modeling,
these model comprehension abilities should be available for
any domain-specific modeling language. However, all exist-
ing model slicing approaches are dedicated to one modeling
language and one form of slice.

In this work we analyze needs for model slicing to pre-
cisely identify expected features for domain-specific model
slicers. The major contribution of this paper is the Kompren
language to model model slicers for domain-specific meta-
models. We develop a two-level generative approach on the
basis of Kompren: Kompren’s compiler processes Kompren
models to automatically generate a model slicer function;
this function can in turn automatically extract model slices
from domain-specific models.

This paper presents the details of Kompren’s features,
abstract and concrete syntax and tools. We propose an
exhaustive state-of-art on model slicing. We also demonstrate
Kompren’s expressiveness through three different cases that
aim at slicing three different forms of slices in three differ-
ent domains. In particular we model the slicers defined by

13 http://www.sysml.org/
14 http://obeo.fr/pages/obeo-designer

123

http://www.sysml.org/
http://obeo.fr/pages/obeo-designer

Kompren: modeling and generating model slicers 335

Jeanneret et al. [17] and by Sen et al. [31] and show that
the Kompren models (a.k.a. model slicer models) are much
smaller and easier to understand and evolve than the original
slicers.

8.2 Research agenda

As an immediate future work, we expect to provide empirical
evidence of the Kompren usability elaborating a qualitative
evaluation. This will require a study with users to evaluate
the qualitative benefits of Kompren w.r.t the construction of
slicers with general purpose languages.

Then our perspectives are twofold. First, we aim at sup-
porting the definition of generic model slicer models. Cur-
rently, the definition of MSMs relies on a specific input meta-
model. For instance, one can define a MSM based on the
Ecore metamodel to slice class models. However, slicing the
class model in a UML class diagram, requires defining a new
MSM. But Ecore and UML Class diagram share the con-
cept of class model and relations. MSM definitions could
thus be more generic by taking as input not a metamodel
(Ecore, UML) but a concept (class model), i.e., a model
type [37].

Second, Kompren slicers are currently static since they
are based on the structure defined by the input metamodel. A
next step of our work will go toward dynamic model slicing.
“While static slicing computes slices with respect to any exe-
cution, dynamic slicing computes slices with respect to a
particular execution” [35]. But while all programs are exe-
cutable, all models are not. Thus, it must be identified: the
different kinds of models that can be dynamically sliced; the
additional information to use for specifying dynamic model
slicers (action languages, etc.); the different applications of
dynamic model slicing (executable model debugging, etc.).
Then, other forms of dynamic slicing could be studied, such
as conditioned [28], quasi-static [42], and simultaneous slic-
ing [12], that compute slices with respect to a particular set
of executions.

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Slicing feature mod-
els. In: 26th IEEE/ACM International Conference On Automated
Software Engineering (ASE’11). IEEE/ACM (2011)

2. Acher, M., Collet, P., Lahire, P., France, R.: Separation of Con-
cerns in Feature Modeling: Support and Applications. In: Aspect-
Oriented Software Development (AOSD’12). ACM Press, New
York (2012)

3. Androutsopoulos, K., Binkley, D., Clark, D., Gold, N., Harman,
M., Lano, K., Li, Z.: Model projection: Simplifying models in
response to restricting the environment. In: International Confer-
ence on, Software Engineering (ICSE’11) (2011)

4. Bae, J.H., Chae, H.S.: UMLSlicer: a tool for modularizing the UML
metamodel using slicing. In: 8th IEEE International Conference on
Computer and Information Technology (CIT), pp. 772–777 (2008)

5. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.M.: Active
operations on collections. In: MoDELS’10: Proceedings of the
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 91–105 (2010)

6. Binkley, D., Raszewski, L.R., Smith, C., Harman, M.: An empirical
study of amorphous slicing as a program comprehension support
tool. In: Proceedings of the 8th International Workshop on Program
Comprehension, pp. 161–170. IEEE Computer Society (2000)

7. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Model-
ing model slicers. In: ACM/IEEE 14th International Conference
on Model Driven Engineering Languages and Systems (MOD-
ELS’11), vol. 6981, pp. 62–76. Springer, Berlin/Heidelberg (2011)

8. Chunyu, M., Jianmin, Z.: Dynamic slicing of statechart specifica-
tions for reactive systems. In: Intelligent Computation Technology
and Automation (ICICTA), vol. 1, pp. 110–116 (2011)

9. Clark, T.: A general model-based slicing framework. In: Proceed-
ings of the Workshop on Composition and Evolution of Model
Transformations (2011)

10. Falessi, D., Nejati, S., Sabetzadeh, M., Briand, L., Messina,
A.: SafeSlice: a model slicing and design safety inspection tool
for SysML. In: SIGSOFT/FSE’11 19th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13rd European Software Engineering Conference
(ESEC-13). ACM (2011)

11. Gallagher, K., Binkley, D.: Program slicing. In: Proceedings of
Frontiers of Software Maintenance(2008)

12. Robert, H.: Automatic extraction of executable program subsets
by simultaneous dynamic program slicing. Autom. Softw. Eng. 2,
33–53 (1995)

13. Mark, H., Robert, H.: An overview of program slicing. Softw. Focus
2(3), 85–92 (2001)

14. Heimdahl, M.P.E., Thompson, J.M., Whalen, M.W.: On the effec-
tiveness of slicing hierarchical state machines: a case study.
In: Proceedings of the 24th Euromicro Conference, vol. 1,
pp. 435–444 (1998)

15. Ivan, H., Guy, M., Scott, M.M.: Graph visualization and navigation
in information visualization: a survey. IEEE Trans. Visual. Comput.
Graph. 6, 24–43 (2000)

16. Arnaud, H., Heymans, P., Schobbens, P.-Y., Abbasi, E.K., Derid-
der, D.: Supporting multiple perspectives in feature-based config-
uration. Softw. Syst, Model (2012)

17. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model
operations. In: International Conference on, Software Engineering
(ICSE’11) (2011)

18. Kagdi, H., Maletic, J.I., Sutton, A.: Context-free slicing of UML
class models. In: Proceedings of the IEEE International Conference
on Software, Maintenance, pp. 635–638 (2005)

19. Kelsen, P., Ma, Q., Glodt, C.: Models within models: taming model
complexity using the sub-model lattice. In: Proceedings of Interna-
tional Conference on Fundamental Approaches to Software Engi-
neering, FASE’11, pp. 171–185 (2011)

20. Taeho, K., Yeong-Tae, S., Lawrence, C., Dung, T.H.: Software
architecture analysis: a dynamic slicing approach. ACIS Int. J.
Comput. Informat. Sci. 1, 91–103 (2000)

21. Korel, B., Singh, I., Tahat, L., Vaysburg, B.: Slicing of state-based
models. In: Proceedings of the IEEE International Conference on
Software, Maintenance (ICSM’03) (2003)

22. Sébastien, L., Gallois, J.-P.: Slicing communicating automata spec-
ifications: polynomial algorithms for model reduction. Formal
Aspects Comput. 20, 563–595 (2008)

23. Lallchandani, J.T., Mall, R.: A dynamic slicing technique for
UML architectural models. IEEE Trans. Softw. Eng. 2, 21–57
(2011)

123

336 A. Blouin et al.

24. Lano, K., Kolahdouz-Rahimi, S.: Slicing of UML models using
model transformations. In: International Conference on Model
Driven Engineering Languages and Systems (MODELS’10),
pp. 228–242 (2010)

25. Luangsodsai, A., Fox, C.: Concurrent statechart slicing. In: Sec-
ond Conference on Computer Science and Electronic Engineering
Conference (CEEC), pp. 1–7 (2010)

26. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executabil-
ity into object-oriented meta-languages. In: Proceedings of
MODELS/UML’2005, pp. 264–278 (2005)

27. Muller, P.-A., Fondement, F., Baudry, B., Combemale, B.: Mod-
eling modeling modeling. In: Software and Systems Modeling,
pp. 1–13 (2010)

28. JimQ, N., Andre, E., Voytek, K.W.: Automated support for legacy
code understanding. Commun. ACM 37(5), 50–57 (1994)

29. Rilling, J., Klemola, T.: Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics. In: Pro-
ceedings of the 11th IEEE International Workshop on Program
Comprehension, pp. 115–124. IEEE Computer Society (2003)

30. Philip, S., Rajib, M.: Slicing-based test case generation from UML
activity diagrams. SIGSOFT Softw. Eng. Notes 34, 1–14 (2009)

31. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model Prun-
ing. In: 12th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’09) (2009)

32. Shaikh, A., Clarisó, R., Wiil, U.K., Memon, N.: Verification-driven
slicing of UML/OCL models. In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering,
pp. 185–194. ACM (2010)

33. Shaikh, A., Wiil, U.K., Memon, N.: UOST: UML/OCL aggressive
slicing technique for efficient verification of models. In: System
Analysis and Modeling: About Models–6th International, Work-
shop SAM’10, pp. 173–192 (2010)

34. Shaikh, A., Wiil, U.K., Memon, N. Evaluation of tools and slicing
techniques for efficient verification of UML/OCL class diagrams.
Adv. Softw. Eng. 70, 18 (2011)

35. Silva, J.: A vocabulary of program-slicing based techniques. ACM
Comput. Surv. 42, 976–991 (2011)

36. Steel, J., Drogemuller, R., Toth, B.: Model interoperability in build-
ing information modelling. Softw. Syst. Model. 11, 1–11 (2010)

37. Jim, S., Jean-Marc, J.: On model typing. J. Softw. Syst. Model.
(SoSyM) 6(4), 401–414 (2007)

38. Margaret-Anne, D.S., David, F.F., HausiA, M.: Cognitive design
elements to support the construction of a mental model during
software exploration. J. Syst. Softw. 44(3), 171–185 (1999)

39. Frank, T.: A survey of program slicing techniques. J. Programm.
Lang. 3, 121–189 (1995)

40. Ujhelyi, Z., Horváth, Á., Varró, D.: Towards dynamic backward
slicing of model transformations. In: 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pp.
404–407. IEEE Computer Society (2011)

41. Van Langenhove, S., Hoogewijs, A.: SVtL: system verification
through logic tool support for verifying sliced hierarchical
statecharts. In: Proceedings of the 18th International Confer-
ence on Recent Trends in Algebraic Development, Techniques,
pp. 142–155 (2007)

42. Venkatesh, G.A.: The semantic approach to program slicing.
In: Proceedings of the ACM SIGPLAN 1991 Conference on Pro-
gramming Language Design and Implementation, pp. 107–119.
ACM (1991)

43. Wang, J., Dong, W., Qi, Z.: Slicing hierarchical automata for
model checking UML statecharts. In: Formal Methods and Soft-
ware Engineering, 4th International Conference on Formal Engi-
neering Methods, ICFEM 2002, pp. 435–446 (2002)

44. Weiser, M.: Program slicing. In: Proceedings of the 5th Interna-
tional Conference on Software Engineering, pp. 439–449. IEEE
Press (1981)

45. Baowen, X., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey
of program slicing. SIGSOFT Softw. Eng. Notes 30, 1–36 (2005)

46. Yatapanage, N., Winter, K., Zafar, S.: Slicing behavior tree models
for verification. In: IFIP Advances in Information and Communi-
cation Technology, pp. 125–139 (2010)

47. Zhao, J.: Applying slicing technique to software architectures.
In: Fourth IEEE International Conference on Engineering of Com-
plex Computer Systems, ICECCS’98, pp. 87–98 (1998)

Author Biographies

Arnaud Blouin is associate pro-
fessor at INSA Rennes, France.
He received his PhD in Computer
Science from the University of
Angers, France, in 2009. After
a post-doc at Inria Rennes in
the Triskell Team, he joined the
INSA and Triskell in 2011. His
research interests include model-
driven engineering, interactive
system engineering, software
testing, and software comprehen-
sion.

Benoît Combemale received
his PhD in computer science
from the University of Toulouse,
France in 2008. He first worked
at Inria before joining the Uni-
versity of Rennes 1 in 2009.
He is now associate professor of
Computer Science at the Uni-
versity of Rennes 1, specializ-
ing in software engineering, and
a member of both the IRISA
and Inria Labs. His research
interests include model-driven
engineering (MDE), software
language engineering (SLE) and

Validation & Verification (V&V). He also teaches object-oriented pro-
gramming and modeling, MDE and V&V in different universities
and engineering schools. He is a member of the IEEE and the IEEE
Computer Society.

Benoit Baudry is a research sci-
entist at INRIA. He received a
PhD degree in Computer Science
from the University of Rennes,
France, in 2003. He first worked
at CEA (French center for atomic
energy) before joining INRIA in
2004. In 2008 he was a visiting
researcher in Colorado State Uni-
versity for one year. His research
interests include software testing
and verification, model-driven
engineering, and requirements
analysis. He leads the INRIA
TRISKELL team, which inves-

tigates model-driven engineering and software product lines from
requirements to runtime. He is on the steering committee of the IEEE

123

Kompren: modeling and generating model slicers 337

International Conference on Software Testing, Verification and Valida-
tion (ICST) and on the editorial board of the Journal for Software and
Systems Modeling (SoSyM).

Olivier Beaudoux is asso-
ciate professor at ESEO Angers,
France. He received his PhD in
Computer Science from the Uni-
versity of Paris Orsay, France,
in 2004. He is now member
of the TRAME team at ESEO.
His research focuses on model-
driven engineering of highly
graphical interactive systems.

123

	Kompren: modeling and generating model slicers
	Abstract
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Paper outline

	2 Heterogeneous use cases of model slicing
	3 Overview
	4 Model-driven specification of slicers
	4.1 Kompren features for model slicer generation
	4.1.1 Slicing mode
	4.1.2 Slicing output formats

	4.2 Kompren abstract syntax
	4.3 Concrete syntax
	4.4 Semantics

	5 Tooling
	5.1 Domain expert
	5.1.1 The Kompren editors
	5.1.2 The Kompren compiler

	5.2 Domain user
	5.3 Threats to validity

	6 Validation
	6.1 Model operation analysis
	6.2 Bringing semantic zooming to model visualization
	6.3 Monitoring state-machines at runtime

	7 Related work
	8 Conclusion and future work
	8.1 Contributions
	8.2 Research agenda

	References

