
Softw Syst Model (2015) 14:121–148
DOI 10.1007/s10270-012-0295-3

SPECIAL SECTION PAPER

Improving the SAT modulo ODE approach to hybrid systems
analysis by combining different enclosure methods

Andreas Eggers · Nacim Ramdani · Nedialko S. Nedialkov ·
Martin Fränzle

Received: 22 March 2012 / Revised: 29 September 2012 / Accepted: 24 October 2012 / Published online: 16 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Aiming at automatic verification and analy-
sis techniques for hybrid discrete-continuous systems, we
present a novel combination of enclosure methods for ordi-
nary differential equations (ODEs) with the iSAT solver
for large Boolean combinations of arithmetic constraints.
Improving on our previous work, the contribution of this
paper lies in combining iSAT with VNODE-LP, as a
state-of-the-art interval solver for ODEs, and with bracketing
systems, which exploit monotonicity properties allowing to
find enclosures for problems that VNODE-LP alone cannot
enclose tightly. We apply the combined iSAT-ODE solver
to the analysis of a variety of non-linear hybrid systems by
solving predicative encodings of reachability properties and
of an inductive stability argument, and evaluate the impact of
the different enclosure methods, decision heuristics and their
combination. Our experiments include classic benchmarks

A preliminary version of this paper appeared in [6]. This work has
been supported by the German Research Council DFG within SFB/TR
14 “http://www.avacs.org”, by the French National Research Agency
under contract ANR 2011 INS 006 04 “http://projects.laas.fr/
ANR-MAGIC-SPS”, and by the Natural Sciences and Engineering
Research Council of Canada.

A. Eggers (B) · M. Fränzle
Department of Computing Science, Carl von Ossietzky Universität,
26111 Oldenburg, Germany
e-mail: andreas.eggers@informatik.uni-oldenburg.de

M. Fränzle
e-mail: fraenzle@informatik.uni-oldenburg.de

N. Ramdani
Université d’Orléans, PRISME, 63 av. de Lattre de Tassigny,
18020 Bourges, France
e-mail: nacim.ramdani@univ-orleans.fr

N. S. Nedialkov
McMaster University, Hamilton, ON, Canada
e-mail: nedialk@mcmaster.ca

from the literature, as well as a newly-designed conveyor
belt system that combines hybrid behavior of parallel com-
ponents, a slip-stick friction model with non-linear dynamics
and flow invariants and several dimensions of parameteriza-
tion. In the paper, we also present and evaluate an extension
of VNODE-LP tailored to its use as a deduction mechanism
within iSAT-ODE, to allow fast re-evaluations of enclosures
over arbitrary subranges of the analyzed time span.

Keywords Analysis of hybrid discrete-continuous
systems · Satisfiability modulo theories · Enclosure methods
for ODEs · Bracketing systems

1 Introduction

Model-based design is an industrially accepted approach to
system development, exploiting abstract models of the device
under design for early detection and correction of design
errors, as well as for optimization of non-functional prop-
erties. Depending on the application domain, the models
underlying model-based design and analysis come in various
flavors. In traditional hardware and software design, they are
discrete entities like (syntactically sugared) automata. When
timely reaction to stimuli is an issue, like in communication
protocols, they take the form of timed automata or annotated
UML statecharts. For performance analysis of, e.g., client-
server architectures, queueing models or Markov processes
may be adequate. Embedded systems may call for modeling
and analysis of their joint dynamics with the environment,
leading to hybrid system models.

Hybrid systems seamlessly integrate traditional models
for discrete behavior of computational devices with clas-
sical models for dynamical systems based on differential
and algebraic equations, thus being able to represent the

123

http://www.avacs.org
http://projects.laas.fr/ANR-MAGIC-SPS
http://projects.laas.fr/ANR-MAGIC-SPS

122 A. Eggers et al.

feedback dynamics of embedded computers in a physical,
chemical, or biological environment. With their mathemat-
ically precise semantics, hybrid systems form an appropri-
ate formal model for the design and analysis of embedded
control systems, where typical analysis goals are safety (can
the system ever leave the set of safe states) and progress
(is it guaranteed to converge to desired operational states)
properties. As hybrid systems tend to be open systems, fea-
turing uncontrolled inputs from the environment (e.g., user
intervention) or uncontrollable disturbances due to noise or
fluctuations of environmental or system-internal parameters,
analysis of individual system trajectories by simulation or
related computational methods is insufficient. Instead, an
infinite set of possible system behaviors arising from the (in
general) uncountably infinite set of possible environmental
stimuli, entering through the open inputs, has to be analyzed.
This calls for automatic verification techniques characteriz-
ing and exhaustively analyzing the set of all possible system
behaviors or, if an exact characterization of the set of pos-
sible behaviors is impossible, characterizing and analyzing
a superset of the possible system behaviors. The latter is
called overapproximation and, in case all trajectories in the
overapproximated behavior set satisfy the desired safety and
progress properties, leads to certificates of system correct-
ness that apply not only to the approximate model, but to the
precise model as well.

A primary reason for adopting overapproximation is that
a precise model, or a practical engineering model at hand,
incorporates elements that no verification tool can handle in
combination. This is often the case for hybrid system models
due to their rich vocabulary. Analysis of such models can
only commence after a chain of approximation steps, some of
which can be achieved automatically, others—the majority
in practice—requiring manual reformulation of the model
under inspection. Each of these approximations may cause
a loss of precision in the model, e.g., when capturing non-
linear behavior by a linear model, making the analysis less
likely to succeed with a positive certificate as outcome. At
the same time, as these approximations often have to be done
manually, they require extremely skilled staff, are tedious and
have to be repeated when the original model changes. We
are therefore convinced that it is highly desirable to develop
tools that can handle as rich dynamics as possible and hence
allow model checking of hybrid systems in a direct way.
In this article, we do not present a comprehensive tool that
achieves this goal, but we show that our improvement of
satisfiability (SAT) modulo ODE solving is a promising step
into this direction, though still of academic nature in the size
of problems solvable.

The underlying idea of hybrid system analysis by sat-
isfiability modulo ODE solving is to offer a constraint
language, plus the corresponding solvers, featuring as its
atomic constraints exactly the equations and inequalities

arising in hybrid-system models, especially algebraic con-
straints between variables and non-linear ODEs. With such
an expressive constraint language, predicative encoding of
hybrid system dynamics becomes straightforward, rendering
intricate encodings and approximations superfluous.

Starting from a predicative encoding of a hybrid system,
the task of a solver is to prove the absence of or search for
a satisfying valuation of the variables, which encode snap-
shots of the system’s state at points in time, connected by the
transition relation that encodes the behavior of the system. In
the case of bounded model checking (BMC), satisfying val-
uations represent trajectories of the modeled system, start-
ing from an initial state, performing a bounded number of
transitions (jumps and flows) and finally leading to a target
state satisfying a property of interest. The basic principle of
SAT modulo ODE solving is to handle directly ODEs as part
of a constraint system by evaluating their consistency under
the current partial assignment the solver is investigating, and
learning implied facts for future search.

ODE enclosures as propagation mechanisms have been
applied previously in Constraint Programming [9] for con-
junctive Constraint Satisfaction Problems as well as by Ishii
et al. [11] in a traditional Satisfiability Modulo Theories
(SMT) scheme. In contrast to such an integration (i.e., a
SAT solver selecting which theory atoms shall be satisfied,
interleaved with theory solvers evaluating this conjunction
of atoms), the iSAT [8] algorithm performs a search by split-
ting intervals and hence indirectly ruling out those atoms that
become inconsistent under this valuation and thus deducing
that other arithmetic constraints must be satisfied for satisfac-
tion of the entire formula. These constraints then participate
in the search by means of interval constraint propagation
(ICP): as they have to be satisfied, interval valuations for
their variables can be narrowed by pruning off subintervals
that cannot contain a solution. Such ICP deductions are well
known for algebraic constraints and narrow the search space
very effectively.

Reasoning about ODEs can be directly integrated into this
framework [5] using methods for safe interval enclosures
of solutions of ODEs. These methods compute an interval
cover for the states reachable from an interval box of ini-
tial states. Since their effectiveness in narrowing the overall
search space of the constraint solver depends on the tightness
of the enclosures provided by these methods, we have recon-
sidered the tools used for generating such enclosures, now
incorporating the ODE solver VNODE-LP [17] and combin-
ing it with a second layer of reasoning about ODEs, which is
only applicable under certain side-conditions, but may yield
tighter enclosures. This additional layer generates bracket-
ing systems [20] that reduce the problem of computing the
image of a set of initial states to one of computing bound-
ing trajectories. The core idea is to introduce an upper- and
a lower-bound variable for each of the original dimensions

123

Improving SAT modulo ODE for hybrid systems 123

of the ODE system. If the signs of the partial derivatives of
the ODEs meet certain criteria, a new ODE system of twice
the original dimensionality is derived for these bracketing
variables. Similarly, the interval boundaries of the starting
point (prebox) for the enclosure problem are inserted into
the corresponding boundary variables, replacing the origi-
nal prebox with a point-valued one. The resulting bracketing
system is then handed to VNODE-LP, hoping for the point-
valued prebox to yield a tighter enclosure than VNODE-LP
would produce on the original enclosure problem. Section 4
describes this approach in more detail.

Contributions and structure of this paper We describe the
resulting iSAT-ODE algorithm and evaluate the tool on a
number of different hybrid systems, comparing our results
with the ones published by Ishii et al. for the hydlogic
tool [11], which is the technologically most similar approach,
and also aiming at the analysis of nonlinear hybrid systems
without explicit computation of the set of reachable states.

The exposition starts with an overview of the iSAT algo-
rithm and its interplay with ODE constraints in Sect. 2. There-
after, Sect. 3 describes the VNODE-LP solver and details an
accelerated evaluation of enclosures by extracting and stor-
ing the Taylor coefficients computed by VNODE-LP. We use
these to enclose trajectories at time points and over interval
subranges of the covered time span to improve the deduction
mechanism compared with our previous work in [6].

Section 4 explains the bracketing systems approach, and
Sect. 5 describes the combination of these enclosure methods
and the newly introduced handling of flow invariants, which
is another contribution of this article. We have added han-
dling of axis-aligned flow invariants to the deduction mecha-
nism to detect when enclosures leave a box-shaped region of
the state space, and hence no longer contain any trajectories
of the modeled hybrid system, whose mode invariants must
never be violated by any admissible run. These flow invariant
constraints thus allow us to express directly mode invariants
of hybrid systems within a predicative encoding.

Section 6 discusses deducing trajectory directions, which
are helpful in the refutation of trajectories that have no time-
progress—a property needed in the context of some of our
benchmarks.

Finally, in Sect. 7, we evaluate iSAT-ODE on a variety
of nonlinear hybrid systems and different analysis goals. We
compare the impact of different enclosure methods and inter-
val splitting heuristics on deep unwindings of BMC prob-
lems, as traditionally covered by SMT methods, as well as
on a novel temporal induction scheme able to prove a form
of stability of hybrid systems.

We also introduce a newly designed case study of a con-
veyor belt system as a benchmark, which allows a high degree
of parametrization and includes a hybrid slip-stick friction
model with non-linear dynamics and flow invariants for par-

allel components. We show for this example that by introduc-
ing an auxiliary dimension to the ODE system and comput-
ing one derivative, a non-linear flow invariant can easily be
turned into an axis-aligned flow invariant, that can be handled
by iSAT-ODE.

Using hybrid system benchmarks from [11], we also per-
form a comparison with the hydlogic tool from [11],
which Ishii et al. have already compared in that paper against
other approaches for the analysis of nonlinear hybrid sys-
tems.

Our conclusions are presented in Sect. 8.

2 The iSAT Algorithm for SAT modulo ODE

In this section, we overview briefly the basic iSAT algorithm
(for details cf. [8]) and focus on aspects relevant for the inter-
action with the ODE enclosure mechanisms that we present
in the sections that follow.

Problem statement Let � be a quantifier-free Boolean com-
bination of arithmetic constraints over real-, integer- and
Boolean-valued variables with bounded domains, simple
bounds, ODE constraints over real variables and flow invari-
ants with the following properties:

– arithmetic constraints over variables x , y, and z are of the
form x ∼ ◦(y, z) or x ∼ ◦(y), where ∼ is a relational
operator from {<,≤,=,≥,>}, and ◦ is a total unary or
binary operator from {+,−, ·, sin, cos, powN, exp, min,

max};
– simple bounds are of the form x ∼ c with ∼ as above a

relational operator, x a variable and c a constant;
– ODE constraints are time invariant and given by ẋi =

dxi/dt = f (x1, . . . , xn) with all occurring variables xi

themselves again being defined by ODE constraints and
f being a function composed of {+, −, ·, /, powN, exp,
ln, √ , sin, cos}; and

– flow invariant constraints are of the form x(time) ≤ c or
x(time) ≥ c with x being an ODE-defined variable and
c being a constant.

The ODE constraints and flow invariants must occur only
under an even number of negations in the formula, allowing,
e.g., an implication like m1 → ((ẋ = sin(y)) ∧ (ẏ = −x)),
but forbidding, e.g., (ẋ = sin(y)) → m1 to avoid subtleties
in the semantics of the formula.

Additionally,� and the variables therein have the structure

� = decl[0] ∧ · · · ∧ decl[k]
∧ init[0]
∧ trans[0, 1] ∧ · · · ∧ trans[(k − 1), k]
∧ target[k]

123

124 A. Eggers et al.

Fig. 1 Example of an iSAT-ODE input (before being automatically rewritten into the solver’s internal format by its frontend). The right graph
shows a candidate solution that has been found by the solver, illustrating a satisfying valuation of a one-step unwinding of this constraint system

arising from the k-fold unwinding of the transition system,
where decl[i] is the i th instantiation of the system variables’
domain bounds, init[0] is the predicative encoding of the
initial state applied to the 0th variable instance, i.e., to the
beginning of the trace, trans[i, i + 1] is the application of
the transition predicate to the i th and (i + 1)th instances of
the variables, e.g., instantiating a′ = a+1 to a[3] = a[2]+1,
and target[k] is the application of the target predicate to the
last variable instance. ODE constraints and flow invariants
occur only within the transition relation since they constrain
the continuous flow behavior of the system.

Example To illustrate this input, Fig. 1 shows an encoding of
a model from [9]. This problem can be stated as follows: find
two points A and B on a circle with radius 1 around (1, 0)

and from the box [−1, 1]×[−1, 1], such that a trajectory of a
harmonic oscillator around (0, 0) with fixed temporal length
(here, we choose 1), starting in A ends in a point X , forming
an equilateral triangle A, B, X .

Satisfiability As usual, a valuation σ , which maps each vari-
able to a point from its domain, satisfies � iff the constraints
satisfied under σ satisfy the Boolean structure of �. Satis-
fiability is straightforward for simple bounds and arithmetic
constraints, but requires some explanation in the case of ODE
constraints.

As noted above, ODEs-describing the evolution of vari-
ables over continuous time-occur only in the transition rela-
tion, which constrains the pre-post relation between any two
successive instances of variables in a trace. Semantically, a
trace is a sequence of snapshots of a real-time trajectory of a
hybrid system. Hence, ODE constraints describe the behav-
ior of the system between two such snapshots, i.e., describe
trajectories emerging from the pre-valuation, following the
dynamics described by the ODE, and finally reaching the
post-valuation. A valuation σ thus satisfies a definitionally
closed system of ODE constraints (each occurring variable
itself being defined by one of the component ODE con-
straints), iff there exists a solution trajectory starting with the
pre-valuation and ending with the post-valuation after a dura-

tion equal to the temporal length of the flow, as provided by
the value of a special variable delta_time. Flow invari-
ants can be used to further constrain the set of admissible
solutions: a valuation σ satisfies the conjunction of a defini-
tionally closed system of ODE constraints and flow invariants
over the same variables, iff there exists a solution trajectory
(as above), which consists only of points that satisfy the flow
invariant constraints, i.e., lie within the (potentially partially
open) box described by the flow invariants.

More formally, with Q the set of rational numbers, for
given
x = (x1, . . . , xn)T, a set of flow invariants over
x :

{xi (time) ∼ c | i ∈ {1, . . . , n},∼∈ {≤,≥}, c ∈ Q}, (1)

interpreted as the conjunction of its elements, describes either
the empty set ∅ or an interval box

I = ([l1, u1], . . . , [ln, un])T
,

with li ≤ ui and li , ui ∈ Q∪{−∞,+∞} for all i ∈ {1 . . . n}
(slightly abusing notation in case one of the bounds is left
open to −∞ or +∞). With ODE constraints defining
x :

̇x = (
f1(
x), . . . , fn(
x)

)T =
f (
x), (2)

for two BMC unwinding depths i and i + 1, the instan-
tiations of
x are given by
x [i] and
x[i + 1] and their
valuations σ(
x[i]) and σ(
x[i + 1])1 together with τ :=
σ(delta_time[i]) satisfy (1) and (2), iff there exists a
solution function
y : [0, τ] → dom(
x) such that
y(0) =
σ(
x[i]),
̇y(t) =
f (
y(t)) for all t ∈ [0, τ], and
y(τ) =
σ(
x[i + 1]), while
v(t) ∈ I for all t ∈ [0, τ], thus satis-
fying also all of the constraints from (1).

Flow invariants We have implemented support for axis-
aligned flow invariants as introduced above, which allow
restricting solution trajectories to partially open boxes. In
practice, the iSAT algorithm requires all variables to have
closed domains. While we do not enforce these domain

1 For simplicity, the valuation of a vector shall be the vector of its
valuations.

123

Improving SAT modulo ODE for hybrid systems 125

bounds on the continuous evolution, it will most likely always
make sense to translate them directly to flow invariants,
thereby also restricting the trajectories to closed boxes.

Solving The task of the solver is to find a valuation satisfying
the formula or proving its unsatisfiability. Starting from an
input formula like the one depicted in Fig. 1, a preprocess-
ing step (see [8] for more details) introduces auxiliary vari-
ables to split complex arithmetic expressions into the format
described above and to simplify the Boolean structure into a
conjunction of clauses, which are themselves disjunctions of
arithmetic atoms, simple bounds, and trigger variables repre-
senting ODE constraints and flow invariants. ODE and flow
invariant constraints are stored separately and are activated
whenever their respective trigger variable becomes true.

Instead of point-valued valuations, the iSAT algorithm
interprets the constraints over intervals. Initially, each vari-
able receives its whole domain as an interval valuation. Akin
to DPLL-based SAT solving [3,4], the three main ingredients
of the solver are deduction, decision, and conflict resolution.
However, constraints cannot only be satisfied or unsatisfied
for all valuations from the interval box, but also contain a
mixture of points satisfying or violating a constraint. For
example, consider constraint C : x = 2 · y under the interval
valuation x ∈ [0, 10], y ∈ [3, 6]. No point with x ∈ [0, 6) or
y ∈ (5, 6] satisfies C , while x ∈ [6, 10], y ∈ [3, 5] contains
points (x, y) like (6, 3) satisfying and points like (6.1, 3)

violating C .
Clauses (disjunctions of constraints) that contain only one

constraint that is potentially satisfiable under the current valu-
ation are called unit and give rise to unit propagation. The last
satisfiable constraint in a clause else containing only violated
constraints must be propagated to retain a chance for satisfia-
bility of the conjunction of all clauses. If the above constraint
C were for example such a last remaining atom of a clause,
then interval constraint propagation would allow to prune
away those ranges above identified as not containing any
solutions, yielding a new valuation x ∈ [6, 10], y ∈ [3, 5],
and thus a reduced search space.

When no more propagations are possible, or all newly
deduced bounds have negligible progress with respect to the
old ones, a decision is performed by selecting heuristically a
variable and splitting its interval, i.e., introducing a new upper
or lower bound at its midpoint. This bound may give rise to
new deductions. If all of a clause’s constraints are violated
under the current valuation, e.g., due to a prior propagation
step, a conflict is encountered, which is resolved by analyz-
ing the reasons that caused it and generating a conflict clause
that is a disjunction of the negated reasons. This clause is
added to the formula and forces at least one of the offend-
ing bounds to be chosen differently in the future, effectively
removing this part of the search space for the remainder of the
search.

Termination. If the solver encounters a conflict from which
it cannot recover, because no undoing of decisions would
resolve it, it has successfully proven unsatisfiability. Due to
the safe overapproximations used in all propagations (e.g.,
outward rounding for arithmetic evaluations) and always
pruning non-solutions only, this unsatisfiability result is safe.
The solver terminates with unknown, if it encounters a box
whose maximum width is below a small, user-defined thresh-
old, and for which deduction cannot show inconsistency. This
small box is a candidate solution box, which merits practical
attention when encountered as a potential counter example to
the safety of an engineered system. As the reported candidate
solution boxes are very small, interval Newton methods may
be able to verify that they contain an actual solution. While
our algorithm currently does not contain such a check, Ishii
et al. [11] have implemented it.

Deduction for ODE constraints Having interval valuations
for the variable instances occurring in ODEs again requires
lifting their original point-valued interpretation to intervals.
For arithmetic constraints, we prune away only parts not con-
taining any solutions. The very same idea applied to ODEs
means that we may prune away all those points from the
post-valuation that are not (forward) reachable, when start-
ing a trajectory from any point in the pre-valuation and stay-
ing on it for any duration contained in the interval valuation
of the respective delta_time variable. Analogously, we
can safely prune away those parts of the pre-valuation for
which no trajectory can reach any point in the post-valuation
with any of the possible durations (backward propagation).
In addition, time points t from delta_time can be pruned
when no trajectory starting from the pre-valuation reaches
any point from the post-valuation at t (cf. Fig. 2). Flow invari-
ants represent additional constraints: only those trajectories
that never leave the box I spanned by the active flow invari-
ant constraints can be solutions of the constraint problem.
This allows further pruning of the pre- and post-valuations
by removing points that cannot be reached without leaving
I. Additionally, it permits lowering the upper bound of the
delta_time valuation, by detecting when all trajectories
have left I.

The essential ingredient in the deduction for ODE con-
straints is thus a method to safely enclose over a tempo-
ral interval all trajectories emerging from the pre-valuation,
which is an interval box. While our original integration of
such an ODE enclosure mechanism into the iSAT algo-
rithm [5] was confined to embedding a relatively weak own
implementation of a Taylor-series-based safe integrator, we
base our current approach on VNODE-LP [17].

Learning and caching ODE deductions are performed in
strict alternation with the other deduction mechanisms. After
completing Boolean and interval constraint propagation as

123

126 A. Eggers et al.

Fig. 2 An ODE deduction which allows to propagate tighter bounds for delta_time[i]

described above, iSAT’s ODE solving layer uses the cur-
rent valuation of the trigger variables for each instance of
the transition system to select the active ODE constraints
and flow invariants. This signature of activated ODEs, flow
invariants, and the current interval valuation for the occurring
variables together suffices to generate an enclosure. In con-
trast to normal deductions, whose results are stored only tem-
porarily until they may be undone later by a backjump when
recovering from a conflict, the results of ODE deductions are
stored in clauses. This technique, similar to conflict clause
learning, ensures that the same deduction does not have to
be repeated since its results have been added persistently
to the formula. Similarly to constraints replication [23], we
add copies of the learned clauses for all isomorphic variable
instances arising from the k-fold unwinding of the transition
relation.

Before performing an ODE deduction, the algorithm
checks whether the same query has been encountered before
and rejects all duplicate queries. In our previous implemen-
tation (as used in [6]), the core of this check was based on
projecting the current valuation to its individual dimensions
and comparing the resulting intervals with the stored ones
from previously answered queries. Thus, the algorithm col-
lected per dimension those boxes that fully covered the inter-
val to finally intersect these sets of boxes to generate a set of
all previous valuations that have been computed for a super-
set of the current valuation. If one of these retrieved valu-
ations was sufficiently close to the current query, the cur-
rent request could be discarded since a clause has already
been learned for it. We detected by profiling that this check
could become the dominant part of the CPU time spent in
the ODE solver (in the order of 90 %), when large numbers
of valuations were stored, and attributed this to the fact that,
by investigating each dimension individually, large amounts
of boxes had to be considered only before being finally
discarded.

Our new implementation of this coverage check is there-
fore based on a tree structure, which takes all dimensions
into account at the same time. Given two distinct boxes B1

and B2, we pick a point P that lies inside B1 and outside

B2. This point P is thereafter associated with an inner node
of the tree and used to decide for each newly added box B
whether it falls into the same child tree of the node as B1

(if P is covered by B) or B2 otherwise. Leaves can con-
tain multiple boxes, thus reducing the depth of the tree. If
a leaf contains more than a predefined number of boxes, it
is split again by introducing of a new inner node in order to
reduce search time. While we have experimented with bal-
ancing the tree and different numbers of boxes under each
leaf node, we have found that using an unbalanced tree and
only two boxes per leaf node to yield good runtime results
for the amount of stored boxes in our examples. We provide
some experimental evaluation of the caching performance in
Sect. 7.

A second level of caching holds a limited number of inter-
mediate results, which can be reused when enclosures for a
subbox of the original box are requested, since interval arith-
metic’s monotonicity property w.r.t. set inclusion guarantees
then that they are still valid (yet coarse) enclosures for the
current valuation. Using a stored solver run, whenever the
currently examined valuation is only slightly smaller than
the original box, partially avoids re-computations. Since the
bounds deduced by the ODE solver are subsequently used in
interval propagations, it is very likely to encounter this kind
of slightly changed query, providing this caching layer with
a significant role in avoiding wasted computations.

Soundness The correctness of the core algorithm has been
detailed in [8]. Since our extension to deductions for ODE
constraints is restricted to the pruning of non-solutions and
storing all reasons involved in these deductions explicitly in
the learned clauses, the same arguments hold here, too. An
essential ingredient to soundness is the use of validated com-
putations, i.e., outward rounding for interval computations,
interval evaluation of remainder terms to capture truncation
errors for the numerical enclosure method detailed in the
following section, and detection of overflows during these
computations. Technically, many of these issues are dele-
gated to libraries, in our case the MPFR [7] and filib++ [13]
libraries.

123

Improving SAT modulo ODE for hybrid systems 127

3 Overview of VNODE-LP

In this section, we present an overview of VNODE-LP, Vali-
dated Numerical ODE through Literate Programming. More
details can be found in [17,18].

Consider the initial-value problem (IVP)

̇x(t) =
f (t,
x),
x(t0) =
x0, t ∈ R,
x ∈ Rn, (3)

where
f : R × Rn is sufficiently smooth (as a consequence,
the code list of
f should not contain, e.g., branches, abs, or
min).

Denote the set of n-dimensional interval vectors by IRn .
Given
x0 ∈ IRn and tend �= t0(tend ∈ R), VNODE-LP tries
to compute an
xend ∈ IRn at tend that contains the solution
to (3) at tend for all
x0 ∈
x0.

This solver proceeds in a one-step manner from t0 to tend,
where it computes bounds at (adaptively) selected points
t j ∈ (t0, tend]. To explain an integration step, denote by

x(t j ; t0,
x0) the solution to (3) with an initial condition
x0 at
t0 and denote by
x j an enclosure of this solution at t j . That is,

x(t j ; t0,
x0) ∈
x j for all
x0 ∈
x0.

On a step from t j , VNODE-LP first tries to compute a
stepsize h j = t j+1 − t j and a priori bounds
̃x j that contain
the solutions originating from x j , that is,

x(t; t j ,
x j) ∈
̃x j for all t ∈ [tj, tj+1] and all
xj ∈
xj.

If this stepsize becomes too small (see [18] for details), the
integration stops at t j . This usually happens if the computed
bounds become too wide.

Then it finds tight bounds
x j+1 at t j+1 such that
x(t j+1; t0,

x0) ∈
x j+1 for all
x0 ∈
x0. For an illustration of a priori and
tight bounds, see Fig. 3.

To compute these bounds, we use interval arithmetic, Tay-
lor series expansion of the solution to (3) at each integration

Fig. 3 A priori and tight bounds

point, and various interval techniques; for more details, see
[16,17].

VNODE-LP is based on interval Taylor series and the
Hermite–Obreschkoff [16] methods. It is a fixed-order,
variable-stepsize solver. The stepsize is varied such that an
estimate of the local excess per unit step is below a user-
specified tolerance. The default order of the series expansion
is set to 20, and it can be changed by the user.

In general, VNODE-LP is suitable for computing bounds
on the solution of an IVP ODE with point initial conditions or
interval initial conditions with a sufficiently small width. If
the initial condition set is not small enough and/or long time
integration is desired, the COSY package of Berz and Makino
[1] can produce tighter bounds than VNODE-LP. Alterna-
tively, one can subdivide the initial interval vector (box) y0
into smaller boxes, perform integrations with them as initial
conditions, and build an enclosure of the solution at tend.

For the results reported in [6], on each integration step
from t j to t j+1, iSAT-ODE used the a priori bounds and also
computed bounds over selected subintervals of [t j , t j+1], so
it could use tighter than the a priori bounds over such subin-
tervals. This was done by calling VNODE-LP to perform an
integration step from t j to tend ⊂ [t j , t j+1]. Although simple,
this scheme is expensive as it leads to repeated integrations,
whereas we could use the stored Taylor coefficients at t j to
compute such bounds at tend.

In the present work, we have built a facility to compute
such tight bounds on the solution over any point in [t j , t j+1]
or subinterval of [t j , t j+1]. For this purpose, we extract the
computed Taylor coefficients after each step and store them
along with all representations of the enclosure, which allows
us to later evaluate the Taylor series expansion of the solution
(along with its variational equation and remainder enclosure)
with stepsize tend − t .

This approach has three advantages: (1) it does not inval-
idate the solver’s state, i.e., it can be done between solving
steps; (2) since all solution representations are stored, the
evaluation will not suffer from the additional wrapping effect
incurred when reinitializing the solver from an axis-aligned
box; and (3) the computational cost is significantly lower,
since the saved cost for computing the a priori enclosure and
the Hermite–Obreschkoff corrector step will be far higher
than the additional cost of storing the coefficients and per-
forming one scaling operation per coefficient.

When employed within iSAT-ODE, the overall acceler-
ation depends on several additional factors, foremost the
number of refinements required, which also varies with the
traversal of the search space (itself being influenced by
the computed enclosures). On the two-tank example, we
have therefore encountered significant speedups for most
instances (even of more than one order of magnitude for
some), as well as slightly negative effects for few instances
(see Sect. 7).

123

128 A. Eggers et al.

4 Using bracketing systems as enclosures

When the starting point of the IVP (3) is a wide interval vec-
tor, the enclosures returned by VNODE-LP may diverge after
a few computation steps. One way to address this shortcom-
ing, while deriving guaranteed results, is to use the bracketing
approach introduced in [20,21], which relies on the classical
Müller’s existence theorem [12,15].

Given the IVP (3), the bracketing method analyzes the
signs of the partial derivatives ∂ fi/∂xl , evaluated over the
enclosure for all t ∈ [t j , t j+1].

(i) Over each time interval [t j , t j+1], where these signs
remain constant, the method builds two dynamical sys-
tems that enclose the original uncertain dynamical system
and thus bound the flow pipe between a minimal solu-
tion, i.e., a flow that is always smaller than the solution
flow pipe, and a maximal solution that is always larger.
Since this bracketing system involves no more uncer-
tainty, VNODE-LP can be efficiently used for the guaran-
teed computation of the minimal and maximal solutions,
which start as points instead of intervals. Hence, the solu-
tion enclosure of the actual IVP is enclosed between a
minimal and a maximal solution, obtained as the solu-
tion of a new system of coupled ODEs.

(ii) Over each time interval [t j , t j+1], where the sign of
at least one partial derivative changes, we merely use
VNODE-LP on the original IVP.

In our implementation of the bracketing system generation,
the signs of the partial derivatives need not be analyzed over
the enclosure set for all t ∈ [t j , t j+1], but are only analyzed

over
x j , the tight enclosure at t j . Once the bracketing systems
are built, and the solution set computed over the whole time
interval, these signs are then checked a posteriori: if they
remain constant for all t ∈ [t j , t j+1], then it is proven that the
bracketing systems are valid [20]; if not, then the bracketing
systems are not valid over the whole time interval. In this case
the solution is enclosed using VNODE-LP on the original
IVP with interval initial conditions.

Furthermore, our implementation of the bracketing
approach is new. Indeed, the bracketing systems are built
automatically on the fly inside iSAT-ODE. This is done
through the FADBAD++ [24] automatic differentiation pack-
age, whereas previously they were built manually or using
external symbolic algebra.

Figure 4 compares enclosures obtained using our imple-
mentation of the bracketing approach and the direct appli-
cation of VNODE-LP. In the left graph, the dense enclosure
(gray background) can be considered to represent the actual
set of trajectories emerging from the prebox. VNODE-LP
computes these enclosures at certain points of time, whose
separation is determined by automatic stepsize control. Also
shown are the a priori enclosures computed by VNODE-LP
that together yield a very rough enclosure of the trajecto-
ries over the entire time span. The tight enclosures at time
points for the upper bracketing variable, denoted by × and
the tight enclosures for the lower bracketing variable (+),
while initially having exactly the same distance as the pre-
box’s width, leave the shown range after just three integration
steps. When considering the convex hull of the a priori enclo-
sures for the upper and lower bracketing variable, we receive
an enclosure over the entire time span which is far coarser
than the enclosure obtained directly. In the right graph, the

Fig. 4 Comparison of direct and bracketing enclosure. Left x dimen-
sion of a harmonic oscillator ẋ = y, ẏ = −x, x(0), y(0) ∈ [1, 2].
Right x dimension of ẋ = −p4x − (p1x)/(1+ p2 y)+ p3 y +0.1), ẏ =
p4x − p3 y, all ṗi = 0, for x(0) ∈ [1, 1.2], y(0) ∈ [0.8, 1], p1 ∈

[0.8, 1], p2 ∈ [1.0, 1.2]l, p3 ∈ [0.3, 0.5], and p4 ∈ [0.20, 0.25].
Dense enclosures have been obtained by direct application of VNODE-
LP with small fixed stepsize

123

Improving SAT modulo ODE for hybrid systems 129

same symbols are used for the bracketing enclosure and for
the direct application of VNODE-LP. Here, the direct enclo-
sure, including the dense one obtained by very small steps,
diverges quickly, while the upper and lower bracketing vari-
ables yield an enclosure over a far longer time frame that
could probably be continued for many more steps.

Clearly, both methods should be combined, as their actual
performances depend on the analyzed ODE. The perfor-
mance of the bracketing approach, that is, how tight the
computed enclosures are, when used with a given system,
may be known a priori. For monotone dynamical systems,
those whose flows preserve a suitable partial ordering on
states, hence on initial conditions, the computed bracketing
systems are feasible instantiations of the dynamical system
under study, and hence exhibit the same convergence and
stability properties as the original system [21]. If the lat-
ter is convergent and stable, then so should the bracketing
systems be. However, when the dynamical system is not a
monotone one, the bracketing systems usually suffer from
a hidden wrapping effect that provokes the derived enclo-
sures to blow up. In spite of that, both experimental and
theoretical evaluation show that, when the original system
exhibits very strong convergence properties, the latter prop-
erty can overrule the wrapping effect, making the bracketing
approach effective [20]. Finally, the bracketing approach per-
forms badly when the system exhibits stable orbits or oscil-
latory behavior. Nevertheless, we expect our implementation
of bracketing systems within iSAT to simplify the thorough
practical assessment of its actual performance in the future.

The new evaluation scheme using stored Taylor coeffi-
cients applies to the bracketing system enclosures as well,
i.e., our solver can recompute the bracketing enclosure for
arbitrary subranges of each step [t j , t j+1] without reinitial-
izing the solver.

5 Combination and flow invariant handling

Whereas we previously [6] first computed the direct and
the bracketing enclosures independently of each other up
to the temporal horizon (given by the upper bound of the
delta_time valuation) and only subsequently intersected
the resulting enclosures, we have now changed our imple-
mentation to interleave these two computations. The major
benefit is that the enclosure generation can be stopped after
detecting that one of the enclosures has an empty intersec-
tion with the box admissible by the active flow invariant con-
straints. Additionally, in the future, this interleaving may also
allow to generate hybrid evaluation schemes of the bracket-
ing system as described in [20], overcoming the restriction
to constant signs in the Jacobian over the entire duration of
the enclosure, as detailed in the previous section.

Since step sizes of each enclosure are calculated inde-
pendently, direct and bracketing enclosures are not gener-
ated in strict alternation, but instead, we always perform the
next enclosure step using the method whose current temporal
upper bound is behind—as long as both enclosure methods
are still capable of producing enclosures, i.e., they have not
yet failed.

After each computation step, we check whether the gen-
erated enclosure
x j at the nearly point-valued time t j lies
outside I. If
x j ∩ I = ∅, the time t j can be safely assumed to
be a sufficiently large new horizon up to which all trajectories
need to be enclosed.

When an enclosure
x[T] for a time span T = [ta, tb] has
been generated by both methods (or only by the remaining
one if the other has reached a point from which it cannot be
continued), we intersect the valid enclosures and refine this
enclosure
x[T] to detect a potential earlier point of time when
all trajectories have left I, thus generating a tighter pruning of
the delta_time valuation. If
x[T] ⊆ I, all trajectories lie
inside the flow invariant for the entire duration T , and hence
no refinement is necessary. Similarly, if
x[T] ∩ I = ∅, no
refinement is required since all trajectories have been safely
enclosed outside the flow invariant set. If, however,
x[T] has
a non-empty intersection with both I and its complement, i.e.,
contains points inside and outside of I, we have to investigate
whether potentially all trajectories have already left I. Since
the evaluation relies on interval computations, the enclosure
may contain a considerable amount of overapproximation
that can be reduced by evaluating over subranges of T .

Figure 5 illustrates the algorithm for avoiding unnecessar-
ily thin refinements by combining a classical linear overap-
proximation with the tight enclosures that can be generated
using the interpolant described in Sect. 3. The goal is to avoid
the computational cost of computing refined enclosures for
subranges, for which we can already exclude by a simple
check that at least one trajectory is still inside I. We first
compute
x(ta), i.e., an enclosure at the beginning of T that
is the tightest possible enclosure that can be obtained using
the stored Taylor coefficients of the interpolant. Additionally,
we compute an interval evaluation of the right-hand side of
the ODE system (2) over
x[T] ∩ I which yields an overap-
proximation of all possible slopes for trajectories starting in

x(ta) at ta before (if ever) they reach the border of I. For
each dimension i ∈ {1, . . . , n}, we then check whether the
interval (
x[T])i covers the upper and/or lower bound of Ii —
the flow invariant interval in this dimension. If, e.g.. only its
lower bound is covered, we pick max(
x(ta)i) as the starting
point of a witness trajectory with the lowest possible slope
min(fi (
x[T] ∩ I)). Even this worst-case trajectory can leave
I no earlier than

tleave, i = ta + inf(Ii) − max(
x(ta))

min(fi (
x[T] ∩ I))
= ta + distance

slope
.

123

130 A. Eggers et al.

Fig. 5 Combination of the linear overapproximation with tight enclo-
sures computed using the continuous interpolant

Analogously, we can compute tleave, i if (
x[T])i covers
only the upper bound of Ii by picking the lower bound
min(
x(ta)) as a starting point and using the maximum slope.
If both bounds are covered, we compute an optimal starting
point from the relation between largest and smallest slope
and pick the starting point from
x(ta) that is closest to this
point, thereby maximizing the value tleave,i . If (
x[T])i ⊆ Ii ,
the flow invariant is not violated in this dimension, and hence
tleave,i can be safely set to T ’s upper bound tb.

By computing the minimum of all these time points tleave,i,
we identify a time point tc = mini∈{1,...,n}(tleave,i) before
which at least one witness trajectory starting in
x(ta) stays
inside the flow invariant. Therefore, we do not need to refine
the enclosure for [ta, tc]. If tc ≥ tb, the entire range of T has
been covered. If tc < tb, the trajectories may still leave the
flow invariant in the remaining time between tc and tb. We
therefore select a lookahead point τ ∈ [tc, tb] and evaluate

x(τ). If
x(τ) ∩ I = ∅, a refinement for the upper bound of
delta_time has been found, since the enclosure of all tra-
jectories has been shown to lie outside the flow invariant at τ .
If this check fails, we try to continue the linear overapprox-
imation that has already established that not all trajectories
leave I over [ta, tc]. By computing a new starting enclosure

x(tc), we iterate the method.

If the iteration progresses slower than a predefined mini-
mum temporal resolution, which is set dynamically by the
solver, we replace the enclosure
x[T] with two interval
enclosures and recursively refine these down to the given

resolution—again also trying to avoid fully recursive refine-
ment by applying this linear overapproximation and its com-
bined check for either having one trajectory inside I or having
found all trajectories outside I.

6 Deducing trajectory directions

In the case study shown in the following section, we
encounter the problem of showing that a trajectory cannot
stay at the point of its origin when at least an infinitesimal
amount of time (delta_time > 0) has been spent. The
enclosure schemes presented so far—powerful as they are—
are unable to prove this. One reason for this, illustrated in
Fig. 6, is that even for point-valued initial conditions x0, the
very first enclosure for an interval t ∈ (0, t1] must also con-
tain the enclosure x0 itself since the solution trajectory is a
continuous function.

By using the already computed enclosures and the obvi-
ous fact that the ODE’s right-hand side evaluated over these
enclosures yields an overapproximation of the slopes that the
trajectory can take, we extend iSAT-ODE to learn the direc-
tion of a trajectory at its “beginning”. For each component of
the ODE system, a direction deduction starts by performing
an interval evaluation of the ODE’s right-hand side over the
first enclosure step. If this result yields a strictly positive inter-
val, we know that the trajectory will move in positive direc-
tion in this dimension. Analogously, if the interval evaluation
over the first enclosure is negative, we know that for the dura-
tion of that enclosure step, the trajectory will evolve in nega-
tive direction. In both cases, we store the end of this enclosure
step as tp and continue with the next stored enclosure box. As
long as the sign information does not change, the direction
of the trajectory cannot change either, and hence we increase
tp to the end of this enclosure box, thereby storing in tp the

Fig. 6 Motivation for direction deduction: no matter how strong the
very first enclosure box is refined, it still contains the starting point
of the trajectory and hence the enclosure cannot be used to rule out
that the post-value x ′ stays the same as the pre-value x even for
delta_time > 0

123

Improving SAT modulo ODE for hybrid systems 131

Fig. 7 Structure and dynamics
of the two-tank hybrid system
(from [25])

Fig. 8 Simulated trajectories
for the two tanks system, inner
and outer bounds of the don’t
care mode, and regions A–E
used in the different verification
conditions

duration of the prefix for which the direction is constant.
When reaching the end of the enclosure or when encounter-
ing a sign change (including zero in the evaluation result), tp

is no longer changed and the iteration is stopped. If a prefix
length tp > 0 has been achieved, the solver can safely deduce
delta_time ∈ (0, tp] ⇒ x ′ > x , i.e., that the post-value
is strictly greater than the pre-value for this prefix. Analo-
gously, we can deduce delta_time ∈ (0, tp] ⇒ x ′ < x ,
if the evaluation yields only values strictly less than zero.

7 Experiments

7.1 Two-tank system

To evaluate the integrated tool and the influence of the dif-
ferent enclosure methods, we apply our solver to the two-
tank model from [25], which has been frequently used as a
case study for verification tools cf., e.g., [10,22]. This system
comprises two tanks connected by a tube. The first tank has
an inflow of constantly k1 = 0.75 volume units, and its base
is k3 = 0.5 length units above the base of the second tank.
The connecting tube is characterized by a constant factor

k2 = 1, which also characterizes the outflow of the system
as k4 = 1.

Figure 7 illustrates this setting and formalizes the dynamic
behavior of the liquid’s height x1 and x2 in the two tanks. The
system’s behavior switches between two dynamics, when x2

reaches the outlet from tank 1 and therefore exerts a counter
pressure against the incoming flow. Note that the model is
implicitly bounded to the case that x2 ≤ x1 + k3, since it
does not provide the dynamics for the inverse direction. To
understand better the dynamics of this system and the proof
obligations we encoded, Fig. 8 depicts simulated trajectories.

Similar to the introductory example in Fig. 1, we encode
this model predicatively using the above description directly
as ODE constraints.2

Bounded reachability To validate the model, we first check
bounded reachability properties. As can be assumed from
Fig. 8, there should not be any trajectory leading from region
D = [0.70, 0.80] × [0.45, 0.50] to E = [0.60, 0.80] ×

2 Models and raw results from [6]: http://www.avacs.org/fileadmin/
Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz. Updated
models and raw results: http://www.avacs.org/fileadmin/Benchmarks/
Open/iSAT_ODE_SoSyM_2012_models.tar.gz.

123

http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SoSyM_2012_models.tar.gz
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SoSyM_2012_models.tar.gz

132 A. Eggers et al.

[0.60, 0.65]. This property has been verified by Henzinger
et al. using HyperTech [10].

We restrict the global time ≤100 and each step duration
delta_time≤10. To avoid unnecessary non-determinism
in the model, all steps are explicitly enforced in the transition
relation to take the maximum possible duration. They may
be shorter only if they reach the switching surface at x2 = k3,
if the time = 100, or if (x1, x2) reaches E .

In [6], we reported that our solver could prove unsatisfia-
bility of this bounded property for up to 300 unwindings of
the transition system within 3,109.1 s on a 2.4 GHz AMD
Opteron machine, which is also used for the runtime mea-
surements for this benchmark in this article. As can be seen
from the runtime graphs in Fig. 9, for the same model, this
runtime can no longer be achieved by the current version of
our tool, unless flow invariants provide additional pruning.
For the version devoid of flow invariants (graph “w/o flow
invariants, all encl. methods”), the runtime has increased to
17,098 s on the same machine, a 5.5-fold increase. Also,
the previously reported flat development of the cumulative
runtimes is no longer observable.A likely reason for this is
that our previous implementation contained a subtle bug in
the collection of reasons for direction deductions in that it
did not add all active ODE constraints to the reason set

Fig. 9 Cumulative CPU times for checking (un)reachability from
region D to region E for the original variant of the two-tank system with-
out flow invariants and for a new variant which contains flow invariants
for each mode. Comparison of the different solver settings, disabling
one enclosure method at a time, i.e., comparing: all enclosure methods
together, without bracketing, without direct enclosures, and without
direction deduction

and hence generated conflict clauses that sometimes were
too general. Such clauses can potentially prune off too large
parts of the search space (in the worst case including solu-
tions) and may hence accelerate the search in an unjustified
way.

Among the other possible explanations for the slow-down,
we can safely rule out detrimental effects of our additional
deduction mechanisms and optimized data structures. A neg-
ative impact from the caching behavior, which has been mea-
sured to take up only 13.2 s, and also of other changes in the
ODE solver (e.g., the evaluation of stored Taylor coefficients
for refinement) is unlikely, since our profiling indicates that
only 2,326.8 s are spent in total within functions of the ODE
layer, indicating that the majority of the runtime was con-
sumed by the iSAT core, i.e., for splitting, deductions, and
conflict analysis.

We have also extended the benchmark to make use of the
new flow invariant feature by adding flow invariants for the
variable domains and for capturing the mode invariants of
x2(time) ≤ k3 or x2(time) ≥ k3. For this more elaborate
benchmark version, iSAT-ODE is able to prove unsatisfiabil-
ity for 300 unwinding depths within just 255.7 s, a more than
12-fold improvement over the originally reported runtime.

Caching To assess the quality of the new cache implemen-
tation, we have additionally measured the runtime spent in
the ODE caching layer. Over all solver runs shown in Fig. 9,
the highest measured percentage is 2.5 % of the total runtime
spent within the ODE layer (measured for the original version
of the model without flow invariants, and the solver set to not
use direction deduction). In that case, the solver (before run-
ning into the 20,000 s timeout) accumulates 544, 425 calls
to the ODE solver, of which over 95 % have been detected
to be cached. We therefore conclude that the cache imple-
mentation has been adequately prevented from becoming a
dominant runtime factor even for large numbers of accesses.

Unbounded trajectory containment Although the formula
structure is a bounded unwinding of the transition system,
inductive arguments may be used to prove unbounded proper-
ties. One can easily see that region A = [0.6, 0.7]×[0.4, 0.6]
contains an equilibrium point. However, the simulation also
shows that there are trajectories leaving this region. We
extend our model to show that trajectories can leave region
A only on a bounded prefix, but thereafter stay in A forever.

First, we guess a τ > 0 (supported by looking at some
simulated trajectories). With

Ml := {all trajectories of length ≥ l},
from showing that

∀
x ∈ M2τ : [0, 2τ] → R2 :
(
x(0) ∈ A ⇒ ∀t ∈ [τ, 2τ] :
x(t) ∈ A) (4)

123

Improving SAT modulo ODE for hybrid systems 133

follows by inductive application of (4), as facilitated by time
invariance,

⇒ ∀
x ∈ M∞ : [0,∞) → R2 :
(
x(0) ∈ A ⇒ ∀t ∈ [τ,∞) :
x(t) ∈ A)

Intuitively, we show that all trajectories of length 2τ stay
in A for delta_time ∈ [τ, 2τ] (ignoring their behavior
for [0, τ)). All unbounded trajectories must have these tra-
jectories of length 2τ as prefix. At τ , they are thus (again)
in A. Due to time invariance, we can consider (x1, x2)(τ)

as a new starting point. Since it lies in A, we have already
proven that for [τ + τ, τ + 2τ], the trajectory will lie in A
again. For the time in between, we already know that it is in
A. By repeating this process ad infinitum, we know that the
trajectory can never leave A again.

Note that this proof is related to the idea of region sta-
bility [19] and can be thought of as a stabilization proof for
an unknown (and maybe hard to characterize) sub-region
Ainv ⊆ A into which all trajectories from A stabilize, and
which is an invariant region for the system.

Table 1 summarizes runtimes for this proof using iSAT
and the different enclosure methods. It also compares the
current implementation with the older one reported in [6].
Our model encodes the above proof scheme in the following
way: if a trajectory exists that is shorter than 2τ or that reaches
a point outside A in time ∈ [τ, 2τ], this trajectory satisfies
the model. The proof is successful when the solver finds an
unwinding depth k of the transition system upon which the
model becomes unsatisfiable. Here, an unwinding depth of 3
suffices to prove the desired property. Without the direction
deduction presented in Sect. 6, the solver fails to prove unsat-
isfiability, because it always finds counter examples that stay
on the switching surface, spending there only tiny amounts of
time. These trajectories satisfy the target condition of having
time ≤ 2τ and do not allow proving (4). Direction deduction
hence enables proving the property.

The runtimes show that the approach without the direct
enclosure (using only bracketing enclosures and direction
deductions) outperforms both, the restriction to the direct
usage of VNODE-LP with direction deduction and the com-
bination of all enclosure methods together on this benchmark
in nearly all cases. The table also shows that the changes we
made to our implementation have significantly accelerated
the solver in nearly all cases for this benchmark instance,
with slowdowns only occurring for unwinding depth one.
Note that also for this and the following instances, the results
reported for the old implementation from [6] may have
been influenced by the incomplete set of reasons generated
for direction deductions. We assume that those too-general
deductions have caused at most an undue acceleration, since
they prune off parts of the search space for which they should
not have been valid. Ta

bl
e

1
C

om
pa

ri
so

n
of

th
e

ol
d

[6
]

an
d

th
e

ne
w

im
pl

em
en

ta
tio

ns
on

th
e

tw
o-

ta
nk

sy
st

em
fo

r
ch

ec
ki

ng
un

bo
un

de
d

co
nt

ai
nm

en
ti

n
re

gi
on

A

D
ep

th
A

ll
N

o
br

ac
ke

tin
g

N
o

di
re

ct
N

o
di

re
ct

io
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

1
U

nk
no

w
n,

11
1.

9
U

nk
no

w
n,

14
9.

2
0.

75
U

nk
no

w
n,

42
.0

U
nk

no
w

n,
4.

7
9.

01
U

nk
no

w
n,

61
.5

U
nk

no
w

n,
94

.0
0.

65
U

nk
no

w
n,

11
1.

5
U

nk
no

w
n,

14
6.

7
0.

76

2
U

nk
no

w
n,

46
7.

5
U

nk
no

w
n,

15
7.

9
2.

96
U

nk
no

w
n,

98
1.

0
U

nk
no

w
n,

45
1.

0
2.

18
U

nk
no

w
n,

34
6.

3
U

nk
no

w
n,

10
2.

9
3.

36
U

nk
no

w
n,

34
2.

0
U

nk
no

w
n,

39
.7

8.
61

3
U

N
SA

T
,6

74
.0

U
N

SA
T

,1
47

.8
4.

56
U

N
SA

T
,5

01
1.

6
U

N
SA

T
,1

96
.9

25
.4

5
U

N
SA

T
,4

04
.2

U
N

SA
T

,9
6.

5
4.

19
U

nk
no

w
n,

47
8.

8
U

nk
no

w
n,

12
6.

0
3.

80

4
U

N
SA

T
,8

12
.1

U
N

SA
T

,2
37

.2
3.

42
U

N
SA

T
,1

99
5.

1
U

N
SA

T
,7

06
.4

2.
82

U
N

SA
T

,4
99

.1
U

N
SA

T
,9

2.
4

5.
40

U
nk

no
w

n,
54

7.
5

U
nk

no
w

n,
19

6.
0

2.
79

5
U

N
SA

T
,9

86
.0

U
N

SA
T

,2
70

.3
3.

65
U

N
SA

T
,2

43
1.

7
U

N
SA

T
,2

76
.1

8.
81

U
N

SA
T

,6
01

.1
U

N
SA

T
,1

25
.9

4.
77

U
nk

no
w

n,
68

2.
4

U
nk

no
w

n,
24

3.
7

2.
80

6
U

N
SA

T
,1

12
6.

1
U

N
SA

T
,2

27
.2

4.
96

U
N

SA
T

,3
30

3.
4

U
N

SA
T

,4
66

.7
7.

08
U

N
SA

T
,7

05
.0

U
N

SA
T

,2
27

.3
3.

10
U

nk
no

w
n,

83
4.

2
U

nk
no

w
n,

19
1.

7
4.

35

7
U

N
SA

T
,1

27
7.

2
U

N
SA

T
,2

54
.8

5.
01

U
N

SA
T

,2
48

6.
8

U
N

SA
T

,2
24

.7
11

.0
7

U
N

SA
T

,8
03

.6
U

N
SA

T
,1

43
.2

5.
61

U
nk

no
w

n,
98

2.
5

U
nk

no
w

n,
32

8.
6

2.
99

8
U

N
SA

T
,1

45
1.

4
U

N
SA

T
,2

79
.4

5.
20

U
N

SA
T

,5
27

3.
3

U
N

SA
T

,4
06

.5
12

.9
7

U
N

SA
T

,8
90

.8
U

N
SA

T
,1

59
.6

5.
58

U
nk

no
w

n,
11

15
.7

U
nk

no
w

n,
43

4.
1

2.
57

9
U

N
SA

T
,1

58
4.

6
U

N
SA

T
,3

28
.2

4.
83

U
N

SA
T

,4
90

5.
2

U
N

SA
T

,4
44

.0
11

.0
5

U
N

SA
T

,9
66

.5
U

N
SA

T
,1

51
.5

6.
38

U
nk

no
w

n,
12

35
.8

U
nk

no
w

n,
12

03
.0

1.
03

10
U

N
SA

T
,1

70
6.

6
U

N
SA

T
,3

12
.2

5.
47

U
N

SA
T

,6
39

6.
1

U
N

SA
T

,4
30

.7
14

.8
5

U
N

SA
T

,1
05

3.
2

U
N

SA
T

,1
52

.2
6.

92
U

nk
no

w
n,

13
56

.0
U

nk
no

w
n,

80
7.

6
1.

68

C
ol

um
n

al
l

sh
ow

s
re

su
lts

an
d

C
PU

tim
es

(s
)

w
he

n
us

in
g

al
le

nc
lo

su
re

m
et

ho
ds

co
m

bi
ne

d.
In

th
e

su
bs

eq
ue

nt
co

lu
m

ns
,o

ne
of

th
e

m
et

ho
ds

is
di

sa
bl

ed
.I

n
th

e
o/

n
co

lu
m

ns
,t

he
ol

d
ru

nt
im

e
is

sh
ow

n
in

m
ul

tip
le

s
of

th
e

ne
w

ru
nt

im
e

123

134 A. Eggers et al.

Introducing artificial non-determinism and hysteresis Try-
ing a direct inductive proof for the region B = [0.4, 0.8] ×
[0.4, 0.7] (i.e., showing that B cannot be left with one step
of the transition system) fails with our tool since B’s corner
at (0.4, 0.4) cannot be represented exactly by floating-point
numbers. To compensate, B is overapproximated to capture
rounding errors and thus includes points that lie slightly
outside B. Using the same proof scheme as above can be
expected to work, as the simulated trajectories point inwards
from the border of B. Yet, applying this proof scheme,
the solver finds trajectories that can chatter indefinitely at
P = (0.5, 0.5), since ẋ2 = 0 in P . This chattering is a valid
behavior, though irrelevant for the actually intended proof of
B’s invariance.

We therefore identify intersections of the switching sur-
face with ẋ2 = 0 (i.e., solutions to the constraint system
k2

√
x1 − k4

√
x2 = 0 ∧ x2 = k3) and, finding only this one

in P , add a don’t-care mode around it—depicted in Fig. 8
as dci = [0.49, 0.51] × [0.49, 0.51]. Since this region lies
well inside B, we allow any trajectory that reaches it to jump
immediately or after an arbitrary positive amount of time to
the outer border of the don’t-care mode, illustrated by dco,
which is ε = 0.0625 away from dci . We also forbid any tra-
jectory to enter dci . This modification trades in accuracy by
introducing non-determinism for the benefit of an artificial
hysteresis: trajectories which could formerly stutter in P can
now jump to any point on the border of dco, but must then
move along the system’s dynamics again, consuming time.

With this modification, we can prove that B is left for less
than τ = 0.0625 using unwinding depths k ≥ 5. The results
are shown in Table 2. For this instance of the model, the new
implementation is not only faster for all unwinding depths,
when the result is at least as strong as the result obtained
from the old implementation, but is also capable of producing
successful proofs, i.e., unsatisfiability results, more often. A
potential reason could be that the evaluation of the stored
Taylor coefficients using all internal solution representations
computed by VNODE-LP can in some cases generate tighter
enclosures than the old evaluation scheme, since it does not
introduce an additional wrapping of the starting set, which
was formerly unavoidable during the re-initialization of the
solver.

Evaluation on an unstable instance We also applied this proof
scheme to the region C = [0.3, 0.4] × [0.6, 0.7] again with
unwinding depths 1–10. As expected, none of the resulting
formulae was proven unsatisfiable. Runtimes were again con-
sistently faster with the new implementation, ranging from
1.6 s for unwinding depth 1 without bracketing system usage
to 492.9 s observed for depth 9, using all methods in com-
bination. Speedups were between 1.22 for depth 9 with all
methods and 13.12 for depth 5 with disabled direct VNODE-
LP usage. Detailed results are shown in Table 3. Ta

bl
e

2
C

om
pa

ri
so

n
of

re
su

lts
an

d
C

PU
tim

es
(s

)
fo

r
ch

ec
ki

ng
un

bo
un

de
d

co
nt

ai
nm

en
ti

n
B

D
ep

th
A

ll
N

o
br

ac
ke

tin
g

N
o

di
re

ct
N

o
di

re
ct

io
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

1
U

nk
no

w
n,

17
.7

U
nk

no
w

n,
2.

6
6.

82
U

nk
no

w
n,

9.
4

U
nk

no
w

n,
1.

2
8.

09
U

nk
no

w
n,

12
.9

U
nk

no
w

n,
1.

6
7.

91
U

nk
no

w
n,

15
.4

U
nk

no
w

n,
2.

6
5.

96

2
U

nk
no

w
n,

16
3.

9
U

nk
no

w
n,

10
.2

16
.0

2
U

nk
no

w
n,

57
.9

U
nk

no
w

n,
5.

2
11

.0
8

U
nk

no
w

n,
81

.9
U

nk
no

w
n,

6.
9

11
.8

2
U

nk
no

w
n,

15
7.

4
U

nk
no

w
n,

8.
7

18
.1

4

3
U

nk
no

w
n,

19
8.

9
U

nk
no

w
n,

16
.2

12
.2

4
U

nk
no

w
n,

71
.8

U
nk

no
w

n,
8.

9
8.

03
U

nk
no

w
n,

12
6.

9
U

nk
no

w
n,

10
.8

11
.7

8
U

nk
no

w
n,

20
2.

3
U

nk
no

w
n,

12
.6

16
.0

2

4
U

nk
no

w
n,

66
6.

6
U

nk
no

w
n,

18
.0

37
.0

7
U

nk
no

w
n,

19
3.

6
U

nk
no

w
n,

8.
4

22
.9

4
U

nk
no

w
n,

14
6.

7
U

nk
no

w
n,

12
.2

11
.9

9
U

nk
no

w
n,

20
6.

9
U

nk
no

w
n,

14
.4

14
.4

1

5
U

N
SA

T
,2

33
4.

2
U

N
SA

T
,1

06
.6

21
.9

0
U

N
SA

T
,3

27
0.

2
U

N
SA

T
,6

2.
6

52
.2

0
U

nk
no

w
n,

18
3.

4
U

N
SA

T
,6

7.
7

(2
.7

1)
U

nk
no

w
n,

28
3.

6
U

nk
no

w
n,

15
.8

17
.9

6

6
U

N
SA

T
,4

61
5.

6
U

N
SA

T
,2

65
.5

17
.3

8
U

N
SA

T
,1

44
1.

2
U

N
SA

T
,5

9.
2

24
.3

6
U

nk
no

w
n,

18
2.

2
U

N
SA

T
,1

46
.3

(1
.2

5)
U

nk
no

w
n,

12
2.

0
U

nk
no

w
n,

18
.1

6.
75

7
U

N
SA

T
,2

96
7.

1
U

N
SA

T
,1

71
.6

17
.2

9
U

nk
no

w
n,

19
34

.7
U

N
SA

T
,7

5.
5

(2
5.

61
)

U
nk

no
w

n,
14

4.
1

U
N

SA
T

,1
06

.2
(1

.3
6)

U
nk

no
w

n,
12

3.
9

U
nk

no
w

n,
21

.2
5.

84

8
U

N
SA

T
,2

55
9.

0
U

N
SA

T
,2

23
.7

11
.4

4
U

N
SA

T
,2

95
3.

0
U

N
SA

T
,7

4.
3

39
.7

2
U

nk
no

w
n,

20
1.

6
U

N
SA

T
,3

98
.4

(0
.5

1)
U

nk
no

w
n,

12
3.

6
U

nk
no

w
n,

21
.2

5.
84

9
U

N
SA

T
,2

18
4.

1
U

N
SA

T
,4

59
.4

4.
75

U
N

SA
T

,4
12

1.
2

U
N

SA
T

,1
15

.1
35

.8
0

U
nk

no
w

n,
13

5.
2

U
N

SA
T

,1
81

.6
(0

.7
4)

U
nk

no
w

n,
12

7.
2

U
nk

no
w

n,
21

.2
5.

98

10
U

N
SA

T
,5

54
1.

6
U

N
SA

T
,3

08
.9

17
.9

4
U

N
SA

T
,7

71
7.

3
U

N
SA

T
,1

66
.3

46
.3

9
U

nk
no

w
n,

27
2.

5
U

N
SA

T
,3

33
.1

(0
.8

2)
U

nk
no

w
n,

12
7.

6
U

nk
no

w
n,

21
.8

5.
86

T
he

ol
d

co
lu

m
ns

ag
ai

n
re

fe
r

to
ou

r
ea

rl
ie

r
im

pl
em

en
ta

tio
n

[6
]

123

Improving SAT modulo ODE for hybrid systems 135

Ta
bl

e
3

C
om

pa
ri

so
n

of
re

su
lts

an
d

C
PU

tim
es

(s
)

fo
r

ch
ec

ki
ng

un
bo

un
de

d
co

nt
ai

nm
en

ti
n

re
gi

on
C

(n
ot

co
nt

ai
ni

ng
an

eq
ui

lib
ri

um
po

in
t)

w
ith

ol
d

[6
]

an
d

ne
w

im
pl

em
en

ta
tio

n

D
ep

th
A

ll
N

o
br

ac
ke

tin
g

N
o

di
re

ct
N

o
di

re
ct

io
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

O
ld

N
ew

o/
n

1
U

nk
no

w
n,

55
.3

U
nk

no
w

n,
5.

9
9.

34
U

nk
no

w
n,

20
.2

U
nk

no
w

n,
1.

6
12

.4
2

U
nk

no
w

n,
34

.4
U

nk
no

w
n,

4.
3

7.
93

U
nk

no
w

n,
54

.9
U

nk
no

w
n,

6.
2

8.
79

2
U

nk
no

w
n,

20
3.

3
U

nk
no

w
n,

24
.7

8.
22

U
nk

no
w

n,
83

.4
U

nk
no

w
n,

6.
9

12
.0

9
U

nk
no

w
n,

10
3.

8
U

nk
no

w
n,

17
.4

5.
96

U
nk

no
w

n,
19

8.
3

U
nk

no
w

n,
25

.7
7.

71

3
U

nk
no

w
n,

30
8.

1
U

nk
no

w
n,

35
.1

8.
78

U
nk

no
w

n,
12

1.
1

U
nk

no
w

n,
11

.4
10

.6
2

U
nk

no
w

n,
15

5.
8

U
nk

no
w

n,
24

.3
6.

41
U

nk
no

w
n,

29
1.

8
U

nk
no

w
n,

40
.3

7.
24

4
U

nk
no

w
n,

41
9.

1
U

nk
no

w
n,

56
.1

7.
47

U
nk

no
w

n,
15

1.
0

U
nk

no
w

n,
15

.2
9.

94
U

nk
no

w
n,

19
9.

9
U

nk
no

w
n,

35
.7

5.
60

U
nk

no
w

n,
38

6.
6

U
nk

no
w

n,
54

.3
7.

12

5
U

nk
no

w
n,

49
9.

3
U

nk
no

w
n,

60
.9

8.
20

U
nk

no
w

n,
16

3.
6

U
nk

no
w

n,
71

.2
2.

30
U

nk
no

w
n,

55
1.

7
U

nk
no

w
n,

42
.0

13
.1

2
U

nk
no

w
n,

46
8.

5
U

nk
no

w
n,

10
3.

0
4.

55

6
U

nk
no

w
n,

52
5.

6
U

nk
no

w
n,

73
.0

7.
20

U
nk

no
w

n,
17

7.
8

U
nk

no
w

n,
44

.6
3.

99
U

nk
no

w
n,

53
6.

6
U

nk
no

w
n,

51
.3

10
.4

6
U

nk
no

w
n,

49
2.

9
U

nk
no

w
n,

74
.0

6.
66

7
U

nk
no

w
n,

55
5.

6
U

nk
no

w
n,

10
2.

7
5.

41
U

nk
no

w
n,

19
6.

8
U

nk
no

w
n,

34
.2

5.
75

U
nk

no
w

n,
44

9.
9

U
nk

no
w

n,
10

0.
2

4.
49

U
nk

no
w

n,
52

4.
4

U
nk

no
w

n,
10

6.
6

4.
92

8
U

nk
no

w
n,

57
7.

6
U

nk
no

w
n,

94
.8

6.
10

U
nk

no
w

n,
22

3.
8

U
nk

no
w

n,
49

.1
4.

56
U

nk
no

w
n,

44
8.

9
U

nk
no

w
n,

62
.7

7.
15

U
nk

no
w

n,
54

9.
3

U
nk

no
w

n,
98

.1
5.

60

9
U

nk
no

w
n,

59
9.

6
U

nk
no

w
n,

49
2.

9
1.

22
U

nk
no

w
n,

23
5.

0
U

nk
no

w
n,

69
.6

3.
38

U
nk

no
w

n,
44

7.
4

U
nk

no
w

n,
89

.2
5.

02
U

nk
no

w
n,

57
4.

5
U

nk
no

w
n,

17
6.

5
3.

25

10
U

nk
no

w
n,

61
7.

6
U

nk
no

w
n,

93
.8

6.
59

U
nk

no
w

n,
27

9.
7

U
nk

no
w

n,
52

.1
5.

37
U

nk
no

w
n,

44
8.

7
U

nk
no

w
n,

21
4.

2
2.

10
U

nk
no

w
n,

59
2.

2
U

nk
no

w
n,

15
9.

8
3.

71 Model instances with flow invariants Using the newly intro-
duced feature of flow invariants, we repeated the checks for
containment in region A and B on a modified version of
the model in which the domain bounds and mode invariants
for the x2 ≥ k3 and x2 ≤ k3 modes were added. Table 4
compares the results of the region A containment check
for these two different model instances using our current
implementation, Table 5 shows the same comparison for
the containment check in region B. These results show that
adding flow invariants to a model can influence the solving
times in both directions, yielding roughly as many speedups
as slowdowns between fourfold increases and 4.5-fold reduc-
tions in solving times.

7.2 A conveyor belt system

In order to evaluate iSAT-ODE on a benchmark with a larger
discrete and continuous state space and more complex non-
linear dynamics, we have modeled a fictitious yet realistic
system of a sorting facility in which light packages that are
traveling on a conveyor belt can be pushed by an air blast
from the primary lane on which they arrive to a secondary
lane. Figure 11 shows a schematic drawing of this system.
Objects arrive from the left (x, y) = (0, 0) and move in
positive x-direction with constant velocity vx = 1. Centered
at position x = 5, an air fan can blow air to exert a force
on the objects in its vicinity. The force applied to an object
at position (x, y) is then given by F = Fα · e−((x−5)2+y2),
where Fα is the maximum force the air fan can exert. The
force distribution over the position is shown in Fig. 10 for a
fixed Fα = 1.0 (in the benchmark models, Fα takes unknown
but constant values from different ranges).

The controller of the system evaluates a sensor at
x = 0, the starting position of object_1, and sub-
sequently decides to activate the air flow. To capture
the uncertainties in the involved measurement, the sig-
nal processing latencies, and the actuator reactiveness, we
model the switching to occur at an unknown time point
during [Tearliest_act , Tlatest_act]. Similarly, the controller
deactivates the air fan at an unknown time point during
[Tearliest_deact , Tlatest_deact].

While the objects move with constant velocity vx = 1 in
x-direction due to the mechanical coupling with the grooves
in the conveyor belt, their movement in y-direction obeys a
slip-stick friction model. When in sticking mode, the object’s
y-velocity vy is 0 and does not change. Up to a maximum
static friction force, all externally applied forces are counter-
acted by the friction. However, as soon as the external force
from the air fan overcomes this maximum friction force, the
object starts to slip and the force that counteracts the accel-
eration caused by the air blast force is governed by kinetic
friction which is substantially lower than the static friction.

123

136 A. Eggers et al.

Ta
bl

e
4

C
om

pa
ri

so
n

so
lv

er
re

su
lts

an
d

C
PU

tim
es

(s
)

us
in

g
ou

r
ne

w
im

pl
em

en
ta

tio
n

on
tw

o
va

ri
an

ts
of

th
e

co
nt

ai
nm

en
tc

he
ck

in
re

gi
on

A

D
ep

th
A

ll
N

o
br

ac
ke

tin
g

N
o

di
re

ct
N

o
di

re
ct

io
n

a
b

a/
b

a
b

a/
b

a
b

a/
b

a
b

a/
b

1
U

nk
no

w
n,

14
9.

2
U

nk
no

w
n,

14
8.

2
1.

01
U

nk
no

w
n,

4.
7

U
nk

no
w

n,
4.

7
1.

00
U

nk
no

w
n,

94
.0

U
nk

no
w

n,
94

.4
1.

00
U

nk
no

w
n,

14
6.

7
U

nk
no

w
n,

14
7.

6
0.

99

2
U

nk
no

w
n,

15
7.

9
U

nk
no

w
n,

11
2.

7
1.

40
U

nk
no

w
n,

45
1.

0
U

nk
no

w
n,

13
6.

3
3.

31
U

nk
no

w
n,

10
2.

9
U

nk
no

w
n,

10
0.

3
1.

03
U

nk
no

w
n,

39
.7

U
nk

no
w

n,
69

.7
0.

57

3
U

N
SA

T
,1

47
.8

U
N

SA
T

,1
08

.4
1.

36
U

N
SA

T
,1

96
.9

U
N

SA
T

,2
43

.2
0.

81
U

N
SA

T
,9

6.
5

U
N

SA
T

,6
9.

6
1.

39
U

nk
no

w
n,

12
6.

0
U

nk
no

w
n,

95
.0

1.
33

4
U

N
SA

T
,2

37
.2

U
N

SA
T

,1
07

.7
2.

20
U

N
SA

T
,7

06
.4

U
N

SA
T

,2
39

.5
2.

95
U

N
SA

T
,9

2.
4

U
N

SA
T

,7
9.

2
1.

17
U

nk
no

w
n,

19
6.

0
U

nk
no

w
n,

13
2.

2
1.

48

5
U

N
SA

T
,2

70
.3

U
N

SA
T

,1
26

.7
2.

13
U

N
SA

T
,2

76
.1

U
N

SA
T

,4
48

.2
0.

62
U

N
SA

T
,1

25
.9

U
N

SA
T

,9
2.

2
1.

37
U

nk
no

w
n,

24
3.

7
U

nk
no

w
n,

18
5.

9
1.

31

6
U

N
SA

T
,2

27
.2

U
N

SA
T

,1
42

.9
1.

59
U

N
SA

T
,4

66
.7

U
N

SA
T

,1
18

2.
5

0.
39

U
N

SA
T

,2
27

.3
U

N
SA

T
,1

12
.2

2.
03

U
nk

no
w

n,
19

1.
7

U
nk

no
w

n,
21

7.
1

0.
88

7
U

N
SA

T
,2

54
.8

U
N

SA
T

,1
60

.9
1.

58
U

N
SA

T
,2

24
.7

U
N

SA
T

,5
82

.0
0.

39
U

N
SA

T
,1

43
.2

U
N

SA
T

,1
31

.8
1.

09
U

nk
no

w
n,

32
8.

6
U

nk
no

w
n,

24
0.

6
1.

37

8
U

N
SA

T
,2

79
.4

U
N

SA
T

,1
79

.4
1.

56
U

N
SA

T
,4

06
.5

U
N

SA
T

,6
96

.2
0.

58
U

N
SA

T
,1

59
.6

U
N

SA
T

,1
24

.5
1.

28
U

nk
no

w
n,

43
4.

1
U

nk
no

w
n,

45
0.

2
0.

96

9
U

N
SA

T
,3

28
.2

U
N

SA
T

,1
99

.4
1.

65
U

N
SA

T
,4

44
.0

U
N

SA
T

,1
50

9.
2

0.
29

U
N

SA
T

,1
51

.5
U

N
SA

T
,1

49
.1

1.
02

U
nk

no
w

n,
12

03
.0

U
nk

no
w

n,
26

6.
0

4.
52

10
U

N
SA

T
,3

12
.2

U
N

SA
T

,2
17

.4
1.

44
U

N
SA

T
,4

30
.7

U
N

SA
T

,6
27

.7
0.

69
U

N
SA

T
,1

52
.2

U
N

SA
T

,1
57

.3
0.

97
U

nk
no

w
n,

80
7.

6
U

nk
no

w
n,

53
2.

4
1.

52

C
ol

um
n

a
co

nt
ai

ns
th

e
re

su
lts

fo
r

th
e

or
ig

in
al

m
od

el
w

ith
ou

tfl
ow

in
va

ri
an

ts
,c

ol
um

n
b

th
os

e
fo

r
th

e
m

od
ifi

ed
ve

rs
io

n
w

ith
flo

w
in

va
ri

an
ts

Ta
bl

e
5

C
om

pa
ri

so
n

so
lv

er
re

su
lts

an
d

C
PU

tim
es

(s
)

us
in

g
ou

r
ne

w
im

pl
em

en
ta

tio
n

on
tw

o
va

ri
an

ts
of

th
e

co
nt

ai
nm

en
tc

he
ck

in
re

gi
on

B

D
ep

th
A

ll
N

o
br

ac
ke

tin
g

N
o

di
re

ct
N

o
di

re
ct

io
n

a
b

a/
b

a
b

a/
b

a
b

a/
b

a
b

a/
b

1
U

nk
no

w
n,

2.
6

U
nk

no
w

n,
2.

6
0.

99
U

nk
no

w
n,

1.
2

U
nk

no
w

n,
1.

2
0.

98
U

nk
no

w
n,

1.
6

U
nk

no
w

n,
1.

6
0.

99
U

nk
no

w
n,

2.
6

U
nk

no
w

n,
2.

6
1.

00

2
U

nk
no

w
n,

10
.2

U
nk

no
w

n,
11

.3
0.

91
U

nk
no

w
n,

5.
2

U
nk

no
w

n,
5.

7
0.

92
U

nk
no

w
n,

6.
9

U
nk

no
w

n,
7.

6
0.

91
U

nk
no

w
n,

8.
7

U
nk

no
w

n,
11

.7
0.

74

3
U

nk
no

w
n,

16
.2

U
nk

no
w

n,
23

.3
0.

70
U

nk
no

w
n,

8.
9

U
nk

no
w

n,
10

.2
0.

88
U

nk
no

w
n,

10
.8

U
nk

no
w

n,
14

.1
0.

76
U

nk
no

w
n,

12
.6

U
nk

no
w

n,
15

.2
0.

83

4
U

nk
no

w
n,

18
.0

U
nk

no
w

n,
25

.2
0.

71
U

nk
no

w
n,

8.
4

U
nk

no
w

n,
14

.4
0.

58
U

nk
no

w
n,

12
.2

U
nk

no
w

n,
15

.4
0.

80
U

nk
no

w
n,

14
.4

U
nk

no
w

n,
25

.3
0.

57

5
U

N
SA

T
,1

06
.6

U
N

SA
T

,1
55

.6
0.

69
U

N
SA

T
,6

2.
6

U
N

SA
T

,9
3.

9
0.

67
U

N
SA

T
,6

7.
7

U
N

SA
T

,9
3.

3
0.

73
U

nk
no

w
n,

15
.8

U
nk

no
w

n,
31

.9
0.

50

6
U

N
SA

T
,2

65
.5

U
N

SA
T

,3
99

.8
0.

66
U

N
SA

T
,5

9.
2

U
N

SA
T

,6
1.

8
0.

96
U

N
SA

T
,1

46
.3

U
N

SA
T

,1
62

.7
0.

90
U

nk
no

w
n,

18
.1

U
nk

no
w

n,
37

.2
0.

49

7
U

N
SA

T
,1

71
.6

U
N

SA
T

,4
05

.2
0.

42
U

N
SA

T
,7

5.
5

U
N

SA
T

,7
2.

9
1.

04
U

N
SA

T
,1

06
.2

U
N

SA
T

,1
76

.7
0.

60
U

nk
no

w
n,

21
.2

U
nk

no
w

n,
53

.4
0.

40

8
U

N
SA

T
,2

23
.7

U
N

SA
T

,2
97

.4
0.

75
U

N
SA

T
,7

4.
3

U
N

SA
T

,1
47

.9
0.

50
U

N
SA

T
,3

98
.4

U
N

SA
T

,3
56

.0
1.

12
U

nk
no

w
n,

21
.2

U
nk

no
w

n,
65

.7
0.

32

9
U

N
SA

T
,4

59
.4

U
N

SA
T

,4
47

.7
1.

03
U

N
SA

T
,1

15
.1

U
N

SA
T

,6
9.

9
1.

65
U

N
SA

T
,1

81
.6

U
N

SA
T

,2
57

.9
0.

70
U

nk
no

w
n,

21
.2

U
nk

no
w

n,
55

.4
0.

38

10
U

N
SA

T
,3

08
.9

U
N

SA
T

,9
99

.8
0.

31
U

N
SA

T
,1

66
.3

U
N

SA
T

,2
06

.9
0.

80
U

N
SA

T
,3

33
.1

U
N

SA
T

,3
89

.0
0.

86
U

nk
no

w
n,

21
.8

U
nk

no
w

n,
88

.2
0.

25

C
ol

um
n

a
co

nt
ai

ns
th

e
re

su
lts

fo
r

th
e

or
ig

in
al

m
od

el
w

ith
ou

tfl
ow

in
va

ri
an

ts
,c

ol
um

n
b

th
os

e
fo

r
th

e
m

od
ifi

ed
ve

rs
io

n
w

ith
flo

w
in

va
ri

an
ts

123

Improving SAT modulo ODE for hybrid systems 137

Fig. 10 Air blast force distribution over (x, y) postion

The object goes back to the sticking mode only when its
velocity has decreased to zero again.

Flow invariants As described earlier, flow invariants in our
formalism can only be given by simple upper or lower bounds
on variables that are defined by ODEs. In the above slip-stick
model, however, there is a more complex invariant on the x
and y variables, representing the constraint that the object
sticks as long as the force F = Fα · e−((x−5)2+y2) does not
exceed the maximum static friction force Fs_max = μs ·m ·g,
where μs is the static friction coefficient, m the object’s mass,
and g the gravitational constant. The direct flow invariant for
the modestickingwhen the air blast is active (symbolized
by air_blast_on) is

Fα · e−((x−5)2+y2) − μs · m · g ≤ 0.

In order to formulate this flow invariant in a form compatible
with our restriction, we introduce a new variable

f := Fα · e−((x−5)2+y2) − μs · m · g ≤ 0,

and simply calculate its derivative with respect to the time t ,
i.e.,

ḟ = ∂ f

∂x
·

=1
︷︸︸︷

ẋ + ∂ f

∂y
·

=0
︷︸︸︷

ẏ

= Fα · e−((x−5)2+y2) · (−2) · (x − 5) · ẋ

= Fα · e−((x−5)2+y2) · (−2x + 10).

Fig. 11 Schematic drawing of the conveyor belt system

By adding this expression for ḟ as an additional ODE
to the system and adding as initialization of f = Fα ·
e−((x−5)2+y2)−μs ·m ·g when entering the mode, we can add
f ≤ 0 as flow invariant and thus model the complex condi-
tion by means of a simple upper bound on a newly introduced
variable.

Modeling and encoding Figure 12 shows the complete con-
veyor belt model as a system of parallel hybrid automata with
three components for object_1, object_2, and the con-
troller ctrl. Each object automaton consists of four states
to capture the different dynamics depending on whether the
object is sticking or slipping and whether the air blast is
active or inactive. Jumps occur hence when either the air
blast is activated or deactivated by the controller (at the bot-
tom of the figure) or when an object satisfies the condition
to leave the sticking or slipping regime. Due to a restriction
in iSAT-ODE, the parameters for the objects’ masses m1 and
m2 as well as for the maximum force Fα of the air blast
have to be modeled explicitly as dimensions of the ODE sys-
tem since their exact value is unknown. We therefore also
show these explicit dimensions in the automaton. For the
friction constants μk and μs and the gravitational constant
g, we have assumed known exact values and therefore do
not have to model them by additional dimensions. The ini-
tial values for x, Fα , m1, and m2 are taken from intervals
denoted with [X], [F A], [M1], and [M2] respectively. Addi-
tionally, the controller’s behavior depends on choices for
Tearliest_act , Tlatest_act , Tearliest_deact , and Tlatest_deact . The
instantiation of these intervals allows a significant amount of
parameterization, which we exploit when using this model
as a benchmark.

The nominal behavior of the system is that after reaching
t = 10, object_1 has reached the secondary lane of the
conveyor belt, i.e., satisfies y ≥ 1, while object_2 has
not been pushed off the primary lane, despite its proximity
to the first object. A simulated trajectory that satisfies these
properties can be seen in Fig. 13.
Model checking The goal of model checking is to find tra-
jectories which violate this property, i.e., at least one of the
objects ends up on the wrong lane.

Using simulation, we have identified ten parameter ranges
which we will subsequently analyze by model checking using
iSAT-ODE. Table 6 gives an overview over these parameters

123

138 A. Eggers et al.

Fig. 12 Conveyor belt system modeled by parallel automata

123

Improving SAT modulo ODE for hybrid systems 139

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 1 2 3 4 5 6 7 8 9 10 11 12

y-
po

si
tio

n

x-position

object 1
object 2

Fig. 13 Numerically simulated nominal trajectory for the conveyor
belt system of 10 s length

and also shows aggregated simulation results, which give a
hint at the expected outcome for model checking using each
of the parameter sets.
Benchmark results Figure 14 shows all results obtained from
120 iSAT-ODE solver runs on a 2.6 GHz AMD Opteron
machine (running multiple instances on parallel cores inde-
pendently) with a memory limit of 8 GiB each and 50,000 s
timeout. In the figure, the following abbreviations have been
used: all (all ODE enclosure methods active), no-brsys (all
enclosure methods except the bracketing systems), no-direct
(all except the direct usage of VNODE-LP), no-direction
(all except direction deduction); Heuristics: disc-fst (split
down all discrete variables first), dyn-rel-width (split vari-
able whose current range is largest relative to its domain
width), and default-heur (default heuristic: no sorting, split
round robin).
Observations and evaluation The data obtained from the sim-
ulation runs (see last row of Table 6) suggest that sets 01, 03,
and 03_wider01 are unsafe, i.e., lead to error trajectories,
while sets 02_point to 02_wider06 are safe, i.e., the system
does not have error trajectories for parameter choices from
these ranges. Consistent with this expectation, iSAT-ODE
finds error trajectories in the form of candidate solution boxes
for sets 01 and 03_wider01 and successfully proves unsatis-
fiability for up to the requested limit of 14 unwindings for

sets 02_point to 02_wider05 with a varying number of solver
settings. For the set 02_wider06, the solver is unable to per-
form this proof for BMC depths above 6, indicating that the
widening of the uncertainty of the controller’s phase switch-
ing time points makes the problem significantly harder to
solve. Similarly, the solver runs into memory or time limits
for set03 at depth 7.

The most striking outliers in Fig. 14 are caused by the
disabling of the direct enclosure method. Restricted only to
the bracketing system enclosure and the direction deduction,
iSAT-ODE terminates with candidate solution boxes for early
unwinding depths on all parameter sets from 02_point to 03,
always in contradiction to solver runs in which the direct
method is not disabled. This clearly indicates that for this
benchmark, enclosures obtained from the bracketing system
are insufficient to rule out those boxes that are finally reported
as candidate solution boxes, whereas the direct enclosure is
able to refute these spurious candidate solution boxes.

Equally noticeable is the runtime advantage of the disc-
fst splitting heuristics on this benchmark over the other two
heuristics. Using disc-fst, the solver does not split any real-
valued variable, as long as there is still a Boolean or integer
variable, whose width is above the minimum splitting width.
The minimum splitting width was kept at its default of 0.01
for this benchmark; hence the disc-fst heuristic means that
first all discrete variables are split down to point values (since
their ranges can obviously either have a width of above 1 or
of exactly 0). The effect of this heuristic is that the solver—
earlier than with other heuristics—examines abstract paths of
the system in which for each step only one mode or one jump
can be active. This seems to guard against some unnecessary
search and the costly ODE deductions it causes.

Compatible with the observation that the bracketing sys-
tems alone lead to spurious candidate solution boxes is the
runtime advantage when the bracketing system is disabled.
However, the difference between the all and no-brsys run-

Table 6 Parameter sets used for the instantiation of the conveyor belt benchmark

01 02_point 02_wider01 02_wider02 02_wider03 02_wider04 02_wider05 02_wider06 03 03_wider01

X1 [−0.5, 0.5] [0, 0] [−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.1] [−0.2, 0.2] [−0.2, 0.2] [−0.2, 0.2] [−0.2, 0.2]
M1 [0.08, 0.12] [0.1, 0.1] [0.1, 0.1] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11]
X2 [0.0, 2.5] [1, 1] [1, 1] [1, 1] [1, 1] [1, 3] [1, 3] [1, 3] [1, 3] [1, 3]
M2 [0.08, 0.12] [0.1, 0.1] [0.1, 0.1] [0.1, 0.1] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11] [0.09, 0.11]
FA [0.7, 1.5] [1, 1] [1, 1] [1.2, 1.3] [1.2, 1.3] [1.2, 1.3] [1.2, 1.3] [1.2, 1.3] [1.1, 1.2] [1.0, 1.3]
TA [4.0, 4.99] [4.5, 4.5] [4.5, 4.5] [4.5, 4.5] [4.5, 4.5] [4.5, 4.5] [4.5, 4.5] [4.4, 4.6] [4.3, 4.7] [4.3, 4.7]
TD [5.00, 6.00] [5.5, 5.5] [5.5, 5.5] [5.5, 5.5] [5.5, 5.5] [5.5, 5.5] [5.5, 5.5] [5.4, 5.6] [5.3, 5.7] [5.3, 5.7]
645 0 0 0 0 0 0 0 4 75

Each column shows the intervals used for the system parameters using the same names as in the automaton in Fig. 12, except for TA :=
[tearliest_act , tlatest_act] and TD := [tearliest_deact , tlatest_deact]. The very last row of the table shows how many out of 1,000 simulation runs
using randomly chosen points from the column’s parameter set were violating at least one property, i.e., one of the objects ended up on the wrong
lane. Based on this estimate, parameters chosen from sets 02_point to 02_wider06 are expected not to cause any error trajectories

123

140 A. Eggers et al.

Fig. 14 Runtimes and results for the conveyor belt benchmark. All all
ODE enclosure methods active, no-brsys all enclosure methods except
the bracketing systems, no-direct all except the direct usage of VNODE-
LP, no-direction all except direction deduction, disc-fst split down all

discrete variables first, dyn-rel-width split variable whose current range
is largest relative to its domain width, default-heur default heuristic: no
sorting, split round robin

123

Improving SAT modulo ODE for hybrid systems 141

times is not very large, indicating that the computational
cost of generating the bracketing enclosures is not high in
this example and that they do not significantly influence the
search process either. Without knowing in advance whether
the bracketing system’s enclosures work on a given prob-
lem, this benchmark’s results suggest that even if they do not
contribute enough to the deduction to solve the benchmark
successfully on their own, their computational cost is so low
in such a case that it is a good default choice to have them
activated.

7.3 Comparison with hydlogic

To conclude our evaluation, we compare our tool with the
results published in [11] for thehydlogic tool, which is the
technologically most closely related competitive approach,
being also based on a satisfiability modulo ODE scheme and
having a VNODE-LP core for handling of non-linear ODEs.
In [11], Ishii et al. present several case studies and the results
they obtained for them. Where appropriate, they also com-
pare the results with PHAVer and HSolver. Our comparison
with the hydlogic results therefore also yields an indirect
comparison with these other tools, which we hence do not
repeat.

Based on the description as hybrid automata in [11], we
have remodeled some of these systems in our predicative
encoding for iSAT-ODE. As even small changes in the mod-
eling approach or subtle variations in the encoding can lead to
dramatically different results (especially runtimes), we want
to emphasize that such a comparison can only give a limited
snapshot of the actual relation of the tools.

7.3.1 Car steering problem

The first benchmark from [11] is based on a car steering con-
troller originally investigated by [2]. We depict our version
of the automaton for this system in Fig. 15. The car’s move-
ment is modeled by its position p and its heading γ . Its initial
position and heading are unknown, but bounded by intervals.
When the car reaches one of the borders of the street, its head-
ing is changed continuously and the time measured until the
car reaches the border again (now heading inwards). The
heading is now changed in the opposite direction for half the
time that the car has spent outside of the road boundaries.
The maneuver ends in the unsafe in_canal state when the
position reaches p ≤ 1.5.
Modeling details The cited versions of this automaton have an
additional sink mode straight_ahead which is reached
from correct_left and correct_right when the
counter reaches zero (before the obverse border is reached).
If flows are allowed to take zero time or jumps to imme-
diately follow one another, an instantaneous sequence of
mode changes arises which terminates in an inappropriate

Fig. 15 Car steering system based on [2,11].

mode. Under this semantics, traces may proceed immedi-
ately into correct_left after entering left_border
with p = 1. As the counter remains c = 0 under these
circumstances, the trace races through to and then stays
forever in straight_ahead, although the car has actu-
ally never changed its direction when crossing the border
and will definitely reach p ≤ 1.5. Since neither of [2,11]
detect this race condition in the model they present, we have
changed the model in two ways3: (a) we have collapsed
the straight_ahead mode with go_ahead, such that
this zero-time trace would not be able to hide the eventual
reaching of the in_canal state, and (b) have added a con-
dition that, when entering the modes left_border and
right_border, there must follow a flow, and it must take
strictly more than zero time.

For the simple constant ODE components ṗ = 0, γ̇ =
±ω, and ċ = {−2, 0, 1}, we added the closed-form lin-
ear solutions as redundant encodings, since they are easily
obtained and may help with deduction. This step could be

3 Note that we found this trace when validating our encoding of the
original model with iSAT-ODE and were surprised to find this obvi-
ously unintended trajectory which is compatible with this often assumed
semantics of hybrid systems (e.g., in [14]).

123

142 A. Eggers et al.

-1.5
-1

-0.5
 0

 0 1 2 3 4

pos

 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4

heading

 0
 0.2
 0.4
 0.6
 0.8

 0 1 2 3 4

time

 0

 0.2

 0.4

 0 1 2 3 4

counter

in_canal

correct_right

correct_left

right_border

left_border

go_ahead

 0 1 2 3 4

BMC unwinding depths

Fig. 16 An iSAT-ODE trace for the steering-1 benchmark instance.
Value of variables at the BMC unwinding depths

automated, e.g., as a preprocessing step, but has currently
not been implemented in our tool. The bounds for the initial
values of the car’s heading γ have been overapproximated by
representable interval boundaries. For the angular velocity ω,
we approximate by ω = 0.78539816 the value π/4 that is
given in [2]. From there, we also take the value for the radius
r = 2. In order to reduce unnecessary non-determinism,
we also disallow any flows that end before they satisfy a
guard condition. This stuttering in one mode is otherwise
very costly for the search, since there are infinitely many
points to interrupt a flow that all have to be examined, if the
system is modeled in a naïve way.

Results. In [11], Ishii et al. analyze the following four
scenarios. We summarize their results from their paper and
compare them with the iSAT-ODE results as shown in detail
in Fig. 18.

For the steering-1 scenario, which is using the model as
described above and in Fig. 15, hydlogic finds a trajectory
leading to in_canal in two or three steps and proves its
existence. With iSAT-ODE, we also find a trajectory with all
tried settings for four BMC unwindings. As can be seen from
the trace in Fig. 16, these four steps amount to a sequence of
one flow in go_ahead, a mode switch to left_border,
a flow in that mode, and a final switch to in_canal. Fig-

-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6
-0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

po
si

tio
n

time

approximative simulation
iSAT-ODE

Fig. 17 Car positions for the steering-1 benchmark obtained from
approximative numerical simulation compared with the candidate solu-
tion box from the iSAT-ODE trace

ure 17 shows that this trace is consistent with a numerically
approximated trajectory emerging from the starting values
identified by iSAT-ODE. Our result is weaker only in the
lack of a proof that the identified trace really exists. The run-
time reported in [11] is 5.31s on 2.4 GHz Intel Core 2 Duo
processor. Our runtimes on a newer AMD Opteron 2.6 GHz
processor are spread out, but the best can be considered com-
petitive with this number.

In the steering-2 instance of this benchmark, the canal is
moved to the left by 0.5 units, such that the guard for entering
in_canal becomes p = −2. We also change the invari-
ant of mode left_border to cover this widened range.
The hydlogic result for this safe instance of the system is
reported in [11] as unknown after three steps and 198.30 s of
runtime. With iSAT-ODE, the graph in the upper right corner
of Fig. 18 shows clearly that for the large majority of settings,
we can prove unsatisfiability of the formula up to much larger
numbers of unwindings. The solver runtimes diverge depend-
ing on the chosen heuristics. While the default heuristic leads
to timeouts after depth 17, the other two heuristics allow suc-
cessful refutation up to unwinding depth 30, before running
into the 50,000 s timeout limit. Again, one notable obser-
vation is that disabling the direct method leads to candidate
solution boxes as has been observed already in the conveyor
belt benchmark.

The steering-3 instance is the same as steering-2, except
that the initial range for the position is restricted to p :∈
[−0.9, 0]. This restriction helps hydlogic to prove
unsatisfiability for three steps within 22.16s. The results for
iSAT-ODE are very similar to the steering-2 example. If we
compare the iSAT-ODE runtimes for six unwindings of the
formula with hydlogic’s reported runtime for three steps,
we consider our runtimes to be competitive even when fac-
toring in the newer CPU architecture.

Finally, steering-4 is the same as steering-3, except that the
initial ranges are set to p :∈ [−1, 1] and γ :∈ [−π/4, π/4].
For hydlogic [11], reports a timeout at 1,200 s of runtime
for checking satisfiability for three steps of the system. The
lower right graph in Fig. 18 shows that iSAT-ODE can prove

123

Improving SAT modulo ODE for hybrid systems 143

Fig. 18 Results and runtimes for four instances of the car steering benchmark

unsatisfiability up to unwinding depths of 27 with the disc-
fst and disabled bracketing system based enclosures. Using
these settings, iSAT-ODE can, e.g., prove unsatisfiability for
12 unwinding depths in less than 100 s.

7.3.2 Two-tank system

Structurally the same model as has already been shown in
Sect. 7.1, the version of the two-tank system from [11] uses
different parameters (all ki = 1), additional invariants, and
different initial ranges. The model checking goal is then clas-
sical reachability rather than the stabilization properties we
examined in Sect. 7.1. The property to be checked by BMC
is the reachability of an unsafe mode, which is character-
ized by a circular region in the (x1, x2) state space. For
the sake of clarity, we repeat the automaton from [11] in
Fig. 19 and—since the brevity of this model allows it—also
show the full encoding of it in the iSAT-ODE language,
to give a better practical impression about the encoding
step.

Modeling details. Ishii et al. instantiate the model with
A = [5.25, 5.75]× [0, 0.5]. Due to the

√
x2 term that occurs

in the ODE system, this initial range for x2 is problematic
since it leaves no margin for numerical overapproximation
where x2 grows into the negative range. While there is no
report of problems in [11] for hydlogic with this issue,

we have observed the VNODE-LP layer in iSAT-ODE run-
ning into long sequences of deduction failures caused by the
underlying interval library’s reports of encountered numer-
ical errors. Without deduction, the solver is obviously free
to split down the box in the proximity of x2 = 0, conse-
quently finding spurious traces there, whose refutation would
have required successful generation of ODE enclosures. In
order to be able to compare our results, we have opted for a
modification of the benchmark such that the initial value of
x2 is positively separated from 0 and have therefore chosen
A = [5.25, 5.75] × [0.01, 0.5].

In Fig. 20, we show the complete encoding of the sys-
tem. The first part contains the variable declaration, includ-
ing the ranges for all variables and the special time and
delta_time variables. The next section defines the ini-
tial states of the system: starting at time point 0, with any
value for (x1, x2) ∈ A, being in mode s1 and starting with a
continuous flow instead of a jump. The transition predicate
contains explicitly the semantic knowledge that time pro-
gresses in each step exactly by the amount of the duration
delta_time and that the system cannot be in both modes
at the same time (only the guard condition for entering the
unsafe mode has been modeled by a predicate in line 48
that can be true independently of the current mode, as long as
(x1, x2) is in the unsafe region). Lines 20–27 and 29–36 con-
tain the continuous dynamics and flow invariants for modes

123

144 A. Eggers et al.

Fig. 19 Model of the two-tank system from [11]

s1 and s2, respectively. The nrt symbol stands for the nth
root. Line 37 makes it explicit that flows do not change the
current mode and line 38 requires that flows actually have
positive duration (which is a design choice that is suitable
for this model). Line 40 requests that after a flow either a
jump occurs or the unsafe state is reached—enforcing that
flows are not interrupted without having reached a guard con-
dition. Line 42 encodes the guard condition: if the mode is
changed (line 43), the guard x2 = 1 must hold. The remainder
of the section encodes that there are no two jumps follow-
ing directly after each other (again a design choice for this
model) and that jumps do not take time and do not change the
continuous variables (since the automaton has no actions). In
lines 50–51, the property to be checked is whether the system
can reach the guard condition for entering the mode unsafe
while being in state s1.
Results For the twotanks-1 instance, which is exactly as
shown in Fig. 19 and Fig. 20, hydlogic (again all results
quoted from [11]) reports unsatisfiability for two steps within
33.49 s. The left part of Fig. 21 shows that all iSAT-ODE
instances are capable of proving unsatisfiability for up to 40
unwindings of the formula. The runtimes for checking the
40 unwindings consecutively are spread between 1.25 and
20.5 s. At least the fastest settings can therefore be consid-
ered to be significantly faster than hydlogic even when
taking into account the differences in the CPUs on which the
benchmarking was performed.

In the twotanks-2 instance, the region of unsafety is moved
such that it becomes reachable. The new guard condition for
entering the mode unsafe is (x1 − 4.5)2 + (x2 − 0.75)2 =
0.0625. For this instance, hydlogic finds a trajectory of
two steps length and proves its existence within 36.34 s. As
has been detailed earlier, in our model the target property
is to find a valuation that satisfies the entrance guard for the
unsafemode while ins1. Therefore, the solution trajectory
in our model is reached already within one step (omitting the
final jump to unsafe. The trace consists of just a direct flow
from a state admissible in the initial condition and following

Fig. 20 Two-tank model encoded in the iSAT-ODE input language

the dynamics of s1 to the unsafety region. As can be seen
from the right part of Fig. 21, iSAT-ODE finds this one-step
trajectory within just a few seconds. The shortest runtime
result for the depth 1 unwinding is 3.63 s with the default
heuristic and disabled bracketing, the longest runtime for
depth 1 is 24.56s with the dyn-rel-width heuristic and all
ODE enclosure methods enabled.

Again, the iSAT-ODE result is weaker than the result from
hydlogic since there is no guarantee that the identified
candidate solution box contains a solution.4

4 Note that in this special case where the solution consists of only one
flow, using just the ODE enclosure and showing that all points from its
prebox satisfy the initial condition and all points from the last enclosure
lie within the unsafe region, would yield an equally strong proof.

123

Improving SAT modulo ODE for hybrid systems 145

Fig. 21 Results and runtimes for the instances of the two-tank benchmark as parameterized in [11]

To do a more extensive analysis of solver runtimes, we
forced the solver to check unwinding depths individually
instead of using the consecutive mode results that can be
seen, e.g., in the left part of Fig. 21. The first observation is
that runtimes for larger unwindings spread out significantly.
These instances become harder to solve since the solver needs
to find a trajectory that reaches the unsafe region, but still
has more than the one flow step that is actually required. As
can be seen in line 40 of Fig. 20, our model requires alter-
nating jumps and flows except when the unsafe predicate
(x1 −4.5)2 + (x2 −0.75)2 = 0.0625 is true. Since this is sat-
isfied already by the endpoint of the trajectory after the first
step, the solver needs to find a valuation for the remaining
variable instances (e.g., 9 remaining steps for 10 unwind-
ings) such that this predicate still holds or find an alternating
sequence of jumps and flows to satisfy line 40.

A solution to this is based on exploiting the overap-
proximation that occurs in the interval-based ODE enclo-
sures. Although the constraint in line 38 enforces that flows
have a duration strictly larger than 0, even the tightest
enclosure will still contain the starting points of that flow
(which was the argument needed to motivate the direction
deduction presented in Sect. 6). Those solution traces for
larger unwindings that we investigated further therefore lead
directly to the satisfied unsafe predicate in the first step
and thereafter contained steps of very short duration, e.g.,
delta_time ∈ (0, 0.00011517), which is strictly greater
than zero, but still small enough such that the equality con-
straint for the unsafe predicate was still satisfied due to the
enclosure still containing the original prebox. In a way, these
results could hence be considered spurious and a stronger
form of the direction deduction might have been able to
rule out satisfiability for larger unwindings of the formula
unless there also exist paths that really perform some alter-
nation between the two modes before reaching the unsafe
region.

7.3.3 Bouncing ball on sine-waved surface.

The last example from [11] that we use for our comparison is
the model of a ball that bounces off from a sine-wave surface,
called bouncing3 in that paper.

Modeling details.Like the classical bouncing ball hybrid
automaton, this behavior can be modeled by one mode and
a self-loop that is triggered when the height of the ball
reaches the ground, which in this case is not flat, but satis-
fies the constraint py = sin(px). Ishii et al. use hydlogic
to “simulate” the system for ten steps and “assumed that
the ball bounces at the earliest crossing point between the
ball and the ground”. While this refers probably to an algo-
rithmic assumption to search and use the first intersection
of the ODE enclosure with a guard condition and pruning
after all parts of the enclosure are past the guard, we think
that this can be formulated explicitly inside the automaton.
From our perspective this means that there should be a flow
invariant,

py ≥ sin(px) ⇔ sin(px) − py︸ ︷︷ ︸
=:g

≤ 0

such that the ball cannot reach a point below the sine curve.
Using the same modeling trick that we have detailed earlier,
we add a new flow invariant g ≤ 0 and the ODE ġ = cos(px)·
vx − vy , which is the derivative of the original flow invariant
with respect to time. Additionally, the value of g must be
initialized correctly to g := sin(px) − py (Fig. 22).

Results. For the “simulation” [11], reports thathydlogic
proves unsatisfiability for unwinding depth 10 within 29.15s.
The longest trajectory, that could be found by iSAT-ODE,
was for unwinding depth 15 and took 19,060 s of CPU time,
using the disc-fst heuristic with disabled bracketing systems.
We were able to validate that all intermediate elements of this
candidate solution box contained points on the py = sin(px)

surface.

123

146 A. Eggers et al.

Fig. 22 Our version of the hybrid automaton for the bouncing ball on a sine-waved surface extending the original from [11] by an extra dimension
g that captures the flow invariant

Assuming that in thehydlogic results, again, one “step”
consists of a flow and a jump, we would need to solve unwind-
ing depth 20 to analyze the same 10 steps instance for which
hydlogic could report unsatisfiability. For this unwinding
depth, iSAT-ODE was not able to find a candidate solution or
prove unsatisfiability within 50,000 s. We therefore consider
iSAT-ODE to be clearly slower on this benchmark.

8 Conclusion

After exploring the feasibility of using ODE enclosures to
solve SAT modulo ODE problems in [5], this paper and
its previous version [6] extend and improve the abilities of
the resulting solver by combining enclosure methods. We
have shown that the techniques presented in this paper have
complementary strengths and that our integrated approach is
capable of handling different types of proof obligations for
nonlinear hybrid systems. Our improvements are orthogonal
to the application of interval Newton contractors in [9,11]
and could be extended in the same way to gain the ability to
prove existence of solutions.

In this extended version of [6] we have addressed the for-
merly missing capability of handling flow invariants. Our
approach now allows the direct encoding of axis-aligned
flow invariant constraints and uses them during deductions
to prune off parts of the step duration delta_time for
which all trajectories have at least once left the region admit-
ted by the active flow invariant constraints. A technique
reducing more general invariants, e.g., those defined by non-
linear inequalities, to simple ones at the expense of increased
dimensionality of the ODE system has been demonstrated by
example. A comprehensive analysis of the expressiveness of
this technique is subject to future work. A possible extension
of our tool may be based on using the same interval narrow-
ing functions from the iSAT core also on pruning inconsistent
parts of the ODE solution enclosures.

Finally, we have improved the use of VNODE-LP in our
solver by extracting the Taylor coefficients and internal solu-
tion representations, which allow faster and—depending on
the interval widths—also potentially more accurate evalua-
tions of the enclosure set.

Our experiments have shown that the enhanced ODE eval-
uations and technical improvements of the caching layer,
used to avoid unnecessary re-computations for previously
encountered queries to the ODE evaluations, have led to sig-
nificant performance gains over the results we reported in [6],
especially on larger instances of the previously examined
case study. Furthermore, we have substantially extended our
experimental evaluation by a new case study and by compar-
isons with the hydlogic tool [11] on its own benchmarks.
While these comparisons clearly show that our approach is
competitive with the state of the art, the complexity of the
newly introduced conveyor belt case study shows that SAT
modulo ODE solving has gotten at least a small step closer
to the direct analysis of real-world hybrid systems.

In our future work, we will explore ways to automatically
build bracketing systems when off-diagonal elements of the
Jacobian change signs during the continuous evolution.

Acknowledgments We would like to thank Stefan Ratschan, Christian
Herde, Tino Teige, Jens Oehlerking, and Corina Mitrohin for discus-
sions on the region-stability-related proof scheme utilized for the exper-
iments in this paper and all colleagues from the transregional research
center AVACS, project H1/2 “Constraint-based Verification for Hybrid
Systems” for the joint development of the iSAT core. Additionally, we
are grateful to the reviewers of [6] for their detailed comments. Espe-
cially by insisting on a more thorough experimental evaluation and by
pointing out shortcomings in our presentation, the SoSyM reviewers
have helped tremendously to improve the quality of this paper. Thank
you!

References

1. Berz, M.: COSY INFINITY version 8 reference manual. Tech. Rep.
MSUCL-1088, National Superconducting Cyclotron Laboratory,
Michigan State University, USA (1997)

2. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Stursberg, O.,
Theobald, M.: Verification of hybrid systems based on
counterexample-guided abstraction refinement. In: Gravel, H.,
Hatcliff, J. (eds.) TACAS, Lecture Notes in Computer Science vol
2619, pp. 192–207. Springer, Berlin (2003)

3. Davis, M., Putnam, H.: A computing procedure for quantification
theory. J. ACM 7(3), 201–215 (1960)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem proving. Commun. ACM 5, 394–397 (1962)

5. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct
SAT approach to hybrid systems. In: ATVA, LNCS, vol. 5311, pp.
171–185. Springer, New York (2008)

123

Improving SAT modulo ODE for hybrid systems 147

6. Eggers, A., Ramdani, N., Nedialkov, NS., Fränzle, M.: Improv-
ing SAT modulo ODE for hybrid systems analysis by combining
different enclosure methods. In: Barthe, G., Pardo, A., Schnei-
der, G. (eds.) Proceedings of the Ninth International Conference
on Software Engineering and Formal Methods (SEFM), LNCS,
vol. 7041, pp. 172–187. Springer, Berlin (2011). doi:10.1007/
978-3-642-24690-6-13

7. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann,
P.: MPFR: a multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33(2) (2007). doi:10.
1145/1236463.1236468, MPFR is available at http://www.mpfr.
org/

8. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Effi-
cient solving of large non-linear arithmetic constraint systems with
complex boolean structure. JSAT 1(3–4), 209–236 (2007)

9. Goldsztejn, A., Mullier, O., Eveillard, D., Hosobe, H.: Including
ordinary differential equations based constraints in the standard
CP framework. In: Cohen, D. (ed.) Principles and Practice of Con-
straint Programming—CP 2010, LNCS, vol. 6308, pp. 221–235.
Springer, Berlin (2010)

10. Henzinger, T., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond
HyTech: hybrid systems analysis using interval numerical meth-
ods. In: Lynch, N., Krogh, B. (eds.) Hybrid Systems: Computation
and Control, LNCS, vol. 1790, pp. 130–144. Springer, New York
(2000)

11. Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo
ODE solver for model checking nonlinear hybrid systems. Int. J.
Softw. Tools Technol. Transf. (STTT), 1–13 (2011). doi:10.1007/
s10009-011-0193-y

12. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parame-
ter estimation for continuous-time dynamical models. In: Proceed-
ings 14th IFAC Symposium on System Identification, Newcastle,
pp. 843–848 (2006)

13. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W.,
Krämer, W. Filib++, a fast interval library supporting contain-
ment computations. ACM Trans. Math. Softw. 32(2):299–324
(2006). doi:10.1145/1141885.1141893, FILIB++ is available at
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

14. Lygeros, J., Johansson, K., Simic, S., Zhang, J., Sastry, S.: Dynam-
ical properties of hybrid automata. IEEE Trans. Autom. Control
48(1), 2–17 (2003). doi:10.1109/TAC.2002.806650

15. Müller, M.: Über das Fundamentaltheorem in der Theorie der
gewöhnlichen Differentialgleichungen. Mathematische Zeitschrift
26, 619–645 (1927)

16. Nedialkov, N.S.: Computing rigorous bounds on the solution of
an initial value problem for an ordinary differential equation. PhD
thesis, Department of Computer Science, University of Toronto,
Toronto, M5S 3G4 (1999)

17. Nedialkov, N.S.: VNODE-LP—a validated solver for initial value
problems in ordinary differential equations. Tech. Rep. CAS-06-
06-NN. Department of Computing and Software, McMaster Uni-
versity, Hamilton, L8S 4K1, VNODE-LP is available at http://
www.cas.mcmaster.ca/~nedialk/vnodelp (2006)

18. Nedialkov, N.S.: Implementing a rigorous ODE solver through lit-
erate programming. In: Rauh, A., Auer, E. (eds.) Modeling, Design,
and Simulation of Systems with Uncertainties. Mathematical Engi-
neering, vol. 3, pp. 3–19. Springer, New York (2011). doi:10.1007/
978-3-642-15956-5_1

19. Podelski, A., Wagner, S.: Region stability proofs for hybrid sys-
tems. In: Raskin, J.F., Thiagarajan, P.S. (eds.) FORMATS, LNCS,
vol. 4763, pp. 320–335. Springer, Berlin (2007)

20. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method
for computing an over-approximation for the reachable space of
uncertain nonlinear systems. IEEE Trans. Autom. Control 54(10),
2352–2364 (2009)

21. Ramdani, N., Meslem, N., Candau, Y.: Computing reachable sets
for uncertain nonlinear monotone systems. Nonlinear Anal. Hybrid
Syst. 4(2), 263–278 (2010)

22. Ratschan, S., She, Z.: Safety verification of hybrid systems by
constraint propagation based abstraction refinement. ACM Trans.
Embed. Comput. Syst. 6(1), (2007)

23. Shtrichman, O.: Tuning SAT checkers for bounded model check-
ing. In: Emerson, E., Sistla, A. (eds.) Computer Aided Verification,
LNCS, vol. 1855, pp. 480–494. Springer, Berlin (2000). doi:10.
1007/10722167_36

24. Stauning, O.: Automatic validation of numerical solutions.
PhD thesis, Technical University of Denmark, Lyngby, (1997).
http://www2.imm.dtu.dk/documents/ftp/phdliste/phd36_97.ps,
FADBAD++ is available at http://www.fadbad.com

25. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Com-
paring timed and hybrid automata as approximations of continu-
ous systems. In: Antsakalis, P., Kohn, W., Nerode, A., Sastry, S.
(eds.) Hybrid Systems IV, LNCS, vol. 1273, pp. 361–377. Springer,
Berlin (1997). doi:10.1007/bfb0031569

Author Biographies

Andreas Eggers obtained his
BSc degree (2005) in Computer
Science and his M.Sc. degree
(2006) in Embedded Systems
and Microrobotics from the Carl
von Ossietzky University in Old-
enburg, Germany. Since 2007, he
has been working in the AVACS
Collaborative Research Center
on constraint-based analysis of
hybrid systems. His research
focus is the combination of satis-
fiability checking with enclosure
methods for Ordinary Differen-
tial Equations.

Nacim Ramdani received the
Engineer degree from Ecole
Centrale de Paris, France, in
1990, the Ph.D. degree from the
University of Paris-Est Créteil,
France, in 1994 and the Habili-
tation in 2005. Since September
2010, he has been a full Profes-
sor at the Université of Orléans
(IUT de Bourges) and member of
the Laboratoire PRISME. From
1996 to 2010, he was Maître de
Conférences with the University
of Paris-Est Créteil. He was affil-
iated with the Robotics Depart-

ment of LIRMM CNRS Montpellier during 2005–2010 and also on
secondment with INRIA during 2007–2009. His current research inter-
ests include modeling and analysis of cyber-physical and hybrid sys-
tems in presence of uncertainty, and set membership estimation, with
applications to robotics and human-robot interaction.

123

http://dx.doi.org/10.1007/978-3-642-24690-6-13
http://dx.doi.org/10.1007/978-3-642-24690-6-13
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://www.mpfr.org/
http://www.mpfr.org/
http://dx.doi.org/10.1007/s10009-011-0193-y
http://dx.doi.org/10.1007/s10009-011-0193-y
http://dx.doi.org/10.1145/1141885.1141893
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
http://dx.doi.org/10.1109/TAC.2002.806650
http://www.cas.mcmaster.ca/~nedialk/vnodelp
http://www.cas.mcmaster.ca/~nedialk/vnodelp
http://dx.doi.org/10.1007/978-3-642-15956-5_1
http://dx.doi.org/10.1007/978-3-642-15956-5_1
http://dx.doi.org/10.1007/10722167_36
http://dx.doi.org/10.1007/10722167_36
http://www2.imm.dtu.dk/documents/ftp/phdliste/phd36_97.ps
http://www.fadbad.com
http://dx.doi.org/10.1007/bfb0031569

148 A. Eggers et al.

Nedialko S. Nedialkov was
born and raised in Bulgaria. He
received M.Sc. (1995) and Ph.D.
(1999) degrees in Computer Sci-
ence at the University of Toronto,
and has been with the Depart-
ment of Computing and Software
at McMaster University since
1999. His research is in the gen-
eral area of scientific computing
and mathematical software with
emphasis on interval numerical
methods for differential equa-
tions and numerical methods for
differential-algebraic equations.

He is the author of the VNODE and VNODE-LP packages for comput-
ing rigorous bounds on solutions in initial-value problems for ordinary
differential equations, and the DAETS package for solving high-index
differential algebraic equations.

Martin Fränzle is Professor
for Hybrid Discrete-Continuous
Systems at the University of Old-
enburg since 2004, where he
also is member of the board
of the Interdisciplinary Research
Center for Safety Critical Sys-
tems and of the research division
Transportation of the affiliated
research institute OFFIS. He fur-
thermore is member of the board
as well as head of research area
hybrid systems of the Transre-
gional Research Center SFB/TR
14 AVACS. His research focuses

on effective methods for representing the dynamics and analysing the
safety and stability of hybrid-state systems, with a special focus on
systems in the transportation domain.

123

	Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure methods
	Abstract
	1 Introduction
	2 The iSAT Algorithm for SAT modulo ODE
	3 Overview of VNODE-LP
	4 Using bracketing systems as enclosures
	5 Combination and flow invariant handling
	6 Deducing trajectory directions
	7 Experiments
	7.1 Two-tank system
	7.2 A conveyor belt system
	7.3 Comparison with hydlogic
	7.3.1 Car steering problem
	7.3.2 Two-tank system
	7.3.3 Bouncing ball on sine-waved surface.

	8 Conclusion
	Acknowledgments
	References

