
Softw Syst Model (2014) 13:1189–1221
DOI 10.1007/s10270-012-0293-5

REGULAR PAPER

Does aspect-oriented modeling help improve the readability
of UML state machines?

Shaukat Ali · Tao Yue · Lionel C. Briand

Received: 30 November 2011 / Revised: 16 July 2012 / Accepted: 18 October 2012 / Published online: 16 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Aspect-oriented modeling (AOM) is a relatively
recent and very active field of research, whose application
has, however, been limited in practice. AOM is assumed to
yield several potential benefits such as enhanced modular-
ization, easier evolution, increased reusability, and improved
readability of models, as well as reduced modeling effort.
However, credible, solid empirical evidence of such benefits
is lacking. We evaluate the “readability” of state machines
when modeling crosscutting behavior using AOM and more
specifically AspectSM, a recently published UML pro-
file. This profile extends the UML state machine notation
with mechanisms to define aspects using state machines.
Readability is indirectly measured through defect identifi-
cation and fixing rates in state machines, and the scores
obtained when answering a comprehension questionnaire
about the system behavior. With AspectSM, crosscutting
behavior is modeled using so-called “aspect state machines”.
Their readability is compared with that of system state
machines directly modeling crosscutting and standard behav-
ior together. An initial controlled experiment and a much
larger replication were conducted with trained graduate
students, in two different institutions and countries, to
achieve the above objective. We use two baselines of
comparisons—standard UML state machines without hier-
archical features (flat state machines) and standard state
machines with hierarchical/concurrent features (hierarchical

S. Ali (B) · T. Yue · L. C. Briand
Certus Software V&V Center, Simula Research Laboratory,
P.O. Box 134, 1325 Lysaker, Norway
e-mail: shaukat@simula.no

T. Yue
e-mail: tao@simula.no

L. C. Briand
SnT Centre, University of Luxembourg, Luxembourg, Luxembourg
e-mail: lionel.briand@uni.lu

state machines). The results showed that defect identifica-
tion and fixing rates are significantly better with AspectSM
than with both flat and hierarchical state machines. How-
ever, in terms of comprehension scores and inspection effort,
no significant difference was observed between any of the
approaches. Results of the experiments suggest that one
should use, when possible, aspect state machines along
with hierarchical and/or concurrent features of UML state
machines to model crosscutting behaviors.

Keywords Aspect-oriented modeling ·
UML state machines · Controlled experiment ·
Defect identification and fixing · Comprehension

1 Introduction

Aspect-orientation provides enhanced modularization by
separating out crosscutting concerns as separate entities
called aspects. Aspect-orientation is a very active field [1,2],
which not only has mainly focused on aspect-oriented pro-
gramming (AOP), but also led to significant progress in the
realms of design and modeling, denoted as aspect-oriented
modeling (AOM) [3,4]. Crosscutting concerns, for exam-
ple, related to robustness or security behavior, are mod-
eled as aspect models and are subsequently woven into a
primary/base model capturing nominal functional behav-
ior. AOM is expected to yield benefits such as improved
readability, enhanced modularization, easier evolution, and
increased reusability of models, as well as reduced mod-
eling effort [4]. However, there is very little empirical
evidence of such benefits. Empirical investigations, such as
controlled experiments, are required to support the above
claims about AOM and better understand its limitations. For
example, an initial search on the IEEE, ACM, Science Direct,

123

1190 S. Ali et al.

Wiley Interscience, and Springer digital libraries yielded 517
papers on AOM; however, none of them reported any empir-
ical study to evaluate its benefits. This paper is a first step in
that direction and reports on the first two controlled experi-
ments assessing the benefits of AOM.

In industrial models, such as state machines, one must cap-
ture not only nominal behavior but also robustness behavior,
for example, describing how the system should react to abnor-
mal environmental conditions. Such robustness is considered
very critical in many standards such as in the IEEE Standard
Dictionary of Measures of the Software Aspects of Depend-
ability [5], the ISO’s Software Quality Characteristics stan-
dard [6], and the Software Assurance Standard by NASA
[7]. This is, for example, needed to support the automated
robustness testing of embedded or communication systems
[8] based on models. Focusing on UML state machines, as
it is the most widely used notation in practice for the speci-
fication of control and communication systems [8,9], cross-
cutting (e.g., robustness) behavior can result in cluttered and
redundant UML state machines. As a result, modeling such
crosscutting behavior directly on UML state machines can
be error-prone and is expected to require significant extra
modeling effort.

In a recent paper we reported on AspectSM [10], a UML
profile which was defined to model crosscutting behavior on
UML state machines using extended UML state machines,
to facilitate the use of AOM and limit its associated learning
curve. The focus of AspectSM was on model-based test case
generation for control and communication systems [8,9],
though it can potentially be applied for other purposes. Com-
parable approaches in the literature do not use UML exten-
sion mechanisms to provide complete AOM support: they
make use of specific notations for aspect-related features
that do not follow any standard. With our industrial part-
ners, and generally in most industrial settings, AOM support
should be based on the UML standard to facilitate adoption.
Also, support for modeling robustness behavior as a crosscut-
ting behavior in state invariants and guards is not supported
by any existing AOM approach, though they are important
features in many applications, such as the generation of
automated test oracles and data generation. A detailed com-
parison of the AspectSM profile with other related profiles
can be found in [10]. AspectSM was successfully applied to
model the robustness behavior of video conferencing systems
for the purpose of model-based robustness testing at Cisco
Systems, Norway [10]. Results suggested that on average
98 % of the modeling effort could potentially be saved. Con-
sistent with AOM broader claims, using AspectSM to model
crosscutting behavior on UML state machines as aspects
should reduce cluttering and redundancy in models.

In this paper, we report the first two controlled experi-
ments that were conducted to evaluate the “readability” of
state machine modeling crosscutting behavior using AOM,

in our case AspectSM. We aim to study readability via defect
identification and fixing rates in state machines, as well as
the scores obtained when answering a comprehension ques-
tionnaire about the system behavior. We evaluate AspectSM
models by comparing them with UML state machines model-
ing crosscutting behavior directly. The first controlled exper-
iment, which was smaller in scale than the second, was
conducted with 27 fully trained, graduate students taking a
graduate course in ‘Advanced Software Architecture’ at the
University Institute of Information Technology (UIIT) at the
Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi,
Pakistan. The second experiment, which can be seen as a dif-
ferentiated replication of the first one, was conducted at the
Beijing University of Aeronautics and Astronautics (BUAA)
Beijing, China, with 47 graduate students. Half of the stu-
dents were taking a graduate course titled ‘Software Engi-
neering’, while the remaining half were taking a course titled
‘Software Architecture’. Two case study systems were used
for the controlled experiments. The first one is an Eleva-
tor Control System (ECS) provided in a well-known text-
book [11]— but we had to extend the case study system with
two crosscutting behaviors: emergency stop and emergency
call. The second case study system is a reduced version of
an industrial video conferencing system developed by Cisco
Systems, Norway. The readability of state machines is eval-
uated using three measures. The first measure is based on the
ability of subjects to identify design defects seeded in state
machines by checking their conformance against their speci-
fications given as English text. The second measure is based
on the ability of the subjects to fix the defects seeded in state
machines. The third measure is based on subjects’ scores to
answer a carefully designed comprehension questionnaire.
Based on these three measures, we compare the readability
and also the effort resulting from using AspectSM, against
both standard hierarchical and flat UML state machines. Our
motivation is to assess the impact of hierarchy and/or concur-
rency, which is supposed to address some of the same issues
as AOM in state machines (e.g., redundancy), on the relative
benefits of using AspectSM.

The results of the experiments show that AspectSM helps
significantly increase the identification and fixing of defects.
It also leads to significantly better comprehension scores than
flat state machines but hierarchical state machines look better
in terms of comprehension scores, though these results were
not statistically significant. In terms of the inspection effort,
no significant difference was observed. For the replication,
we observed similar results for defect identification and fix-
ing, but there was no significant difference observed between
any of the three approaches regarding comprehension scores.

The rest of the paper is organized as follows: Sect. 2
describes the necessary background to understand the rest
of the paper, Sect. 3 provides details on planning of the ini-
tial experiment and its replication, and Sect. 4 reports on

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1191

results of the initial experiment and replication, respectively.
Section 5 discusses the possible threats to validity and Sect. 6
compares existing, related experiments in Aspect-oriented
Programming (AOP) to our experiments. Finally, we con-
clude our paper in Sect. 7.

2 Background

In this section, we provide a brief reminder of UML state
machines and an overview of aspect state machines in
AspectSM, the technology being evaluated in our controlled
experiments.

2.1 UML state machines

UML state machines enable modeling the dynamic behav-
ior of a class, subsystem, or system. State machines in gen-
eral are extensively used to model a variety of systems such
as communication [12] and control systems [9]. Due to the
ability of state machines to capture rich and detailed informa-
tion, they have been used for automatic code generation [13]
and the automated generation of test cases [8,14,15]. UML
state machines provide many advanced features such as con-
currency and hierarchy, which aim at supporting large-scale
modeling. Concurrency enables the modeling of concurrent
behavior, whereas state hierarchies capture commonalities
among states. A submachine state in a state machine func-
tions like a simple state, but is referring to another state
machine. A submachine can be reused in more than one
state machine and may refer to other submachines [16]. They
can therefore help reduce the structural complexity of state
machines. State machines developed using the hierarchical
features of UML will be referred to as hierarchical state
machines in this paper and the ones developed without using
submachine states, with only basic features of UML state
machines, will be referred as flat state machines.

2.2 Aspect state machines

This section provides an introduction to the AspectSM
profile, which is used to model aspect state machines.

2.2.1 Introduction

AspectSM is a UML profile described in [10], which sup-
ports the modeling of system robustness behavior, which is
very common type of crosscutting behavior in many types
of systems such as communication and control systems [4].
An example of a robustness behavior for a communication
system is related to how the system should react, in vari-
ous states, in the presence of high packet loss. The system
should be able to recover lost packets and continue to behave

normally in a degraded mode. In the worst case, the sys-
tem should go back to the most recent state and not simply
crash or show inappropriate behavior. In a control system, one
needs to model, for example, how the system should react,
in various states, when a sensor breaks down. AspectSM
allows modeling UML state machine aspects as UML state
machines (aspect state machines). Such an approach, rely-
ing on a standard and using the target notation as the basis
to model the aspects themselves, is expected to make the
practical adoption of aspect modeling easier in industrial
contexts. In our previous work [10], we thoroughly com-
pared AspectSM with the similar existing AOM profiles.
Our findings showed that only AspectSM is exclusively
based on standard UML notation and OCL, thus eliminat-
ing the need of learning additional non-standard notations or
languages, and therefore making it easy to reuse open source
and commercial technology. This is highly important in most
industrial contexts and strongly affects the adoption of mod-
eling technologies. In addition, it is easy to train people
in the industry for standard languages such as UML and
the OCL.

Currently, AspectSM and its weaver have limited sup-
port modeling and weaving interactions [17] that may occur
between different aspects and may lead to conflicts between
aspects during weaving. In [18], four classes of aspect con-
flicts are discussed: conflicts due to crosscutting specifi-
cation, aspect–aspect conflicts, aspect–base conflicts, and
concern–concern conflicts. In our application context, i.e.,
robustness modeling and testing, the most relevant con-
flicts are aspect–aspect conflicts, which are related to incon-
sistent results when weaving aspects in a different order.
Ordering conflict is most relevant in our context since, for
testing purposes, we focus on modeling, weaving, and testing
one or more related aspects at a time. We specify the order-
ing between aspect state machines in a UML state machine
containing all aspect state machines as submachine states,
ordered using state machine control structure features: deci-
sion, join, and fork. Interested readers may consult [10] about
details on modeling the weaving order of aspects. For testing
purposes, which is the focus of AspectSM at the current stage,
one first has to focus on testing one concern at a time and may
eventually at a later stage test several concerns together. For
robustness testing, at this stage of the work, we weave faulty
behavior of the environment (e.g., network) one concern at
a time, as the goal is to test robustness behavior one concern
at a time to facilitate debugging.

Though AspectSM was originally defined to support scal-
able, model-based, robustness testing, including test case
and oracle generation, a fundamental question is whether
it is easier to model crosscutting concerns such as robust-
ness with AOM in general, and AspectSM in particular,
than simply relying on UML state machines to do it all. In
AspectSM, the core functionality of a system is modeled as

123

1192 S. Ali et al.

Fig. 1 Conceptual domain model of the AspectSM profile

one or more standard UML state machines (called base state
machines). Crosscutting behavior of the system (e.g., robust-
ness behavior) is modeled as aspect state machines using the
AspectSM profile. A weaver [10] then automatically weaves
aspect state machines into base state machine to obtain a
complete model that can. for example, be used for testing
purposes. The AspectSM profile specifies stereotypes for all
features of AOM, in which the concepts of Aspect, Join-
point, Pointcut, Advice, and Introduction [4] are the most
important ones. Below, we briefly describe these concepts
along with how are they represented in the profile. Figure 1
shows the metamodel representing and relating these con-
cepts. The complete discussion of the AspectSM profile can
be found in [10]. AspectSM deals with static joinpoints and
thus the corresponding weaver [10] supports static weaving
or, in other words, pure syntax-based weaving. We can see
from Fig. 1 that proper modeling requires the modeler to
master AOM concepts and mentally determine the end result
of weaving, an exercise that cannot be taken for granted and
be a priori considered easier than directly modeling crosscut-
ting concerns in a state machine. Investigating the benefits
of AspectSM, and more generally AOM, is the main purpose
of our experiments.

AspectSM was initially developed to support model-based
robustness testing as it was required by the needs of our
project with Cisco Systems. However, we have not inves-
tigated whether other non-functional crosscutting concerns
such as security and dependability can be successfully mod-
eled using AspectSM, but we plan to do that in the future.
In addition, models developed using AspectSM (or its exten-
sions) may be used for other purposes such as code generation
and other analysis such as performance and safety, which will
also be investigated in the future.

2.2.2 Main concepts in AspectSM

Aspect This concept describes a crosscutting concern, e.g.,
the robustness behavior of a system in the presence of failures
in its environment (e.g., network failures in communication
systems). Using the AspectSM profile, we model each aspect
as a UML 2.0 state machine augmented with stereotypes and
attributes.

Joinpoint A Joinpoint is a model element selected by a
Pointcut (defined next) where an Advice or Introduction
(additional behavior) can be applied [4]. In the context of
UML, all modeling elements in UML can be possibly join-
points. AspectSM supports static joinpoints, which corre-
spond to modeling elements in UML state machines for
example, State, Activity, Constraint, Transition, Behavior,
Trigger, and Event. However, we do not deal with dynamic
joinpoints as for instance supported by aspect-oriented
programming languages such as Aspect C++.

Pointcut A Pointcut selects one or more joinpoints, where
Advice or Introduction can be applied. A Pointcut can have
at most one Before advice, one Around advice and one After
advice. In the AspectSM profile, all pointcuts are expressed
with the Object Constraint Language (OCL) [16] on the UML
2.0 metamodel [16]. We decided to use the OCL to query
joinpoints because the OCL is the standard way to write con-
straints and queries on UML models and can therefore be
used to query jointpoints in UML state machines. Also, sev-
eral OCL evaluators are currently available that can be used
to evaluate OCL expressions such as the IBM OCL evaluator
[19], OCLE 2.0 [20], and EyeOCL [21]. Furthermore, writ-
ing pointcuts as OCL expressions does not require the mod-
eler to learn a notation that is not part of the UML standard.
In the literature, several alternatives are proposed to write
pointcuts [17,22–25], but all of them either rely on languages
(mostly based on wildcard characters to select joinpoints, for
instance, ‘*’ to select all joinpoints) or diagrammatic nota-
tions which are not standard, thus forcing modelers to learn
and apply new notations or languages. Using the OCL, we
can write precise pointcuts to select jointpoints with similar
properties. We do so by selecting modeling elements (joint-
points) based on the properties of UML metaclasses. This
further gives us the flexibility to specify precise pointcuts as
any condition defined based on some or all of the properties
of a UML metaclass, e.g., a pointcut on the Transition meta-
class, selecting a subset of transitions in a base state machine,
which have triggers of type CallEvent and do not have any
guard.

Advice An Advice is one of the crosscutting behaviors of
the Aspect. The Advice is attached to Joinpoint(s) selected

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1193

Table 1 Definition of before, around, and after advice

State machine modeling element Before advice Around advice After advice

State Adding an OCL constraint that will
be evaluated before entry to one
or more states selected by a
pointcut

Replacing one or more states
selected by a pointcut with a new
state

Adding an OCL constraint that will
be evaluated on leaving one or
more states selected by a pointcut

Transition Adding a guard to one or more
transitions selected by a pointcut.
If a guard already exists, the
additional constraint is
conjuncted to the existing guard

Replacing one or more transitions
selected by a pointcut with a new
transition

Adding an effect with one or more
actions to one or more transitions
selected by a pointcut

Trigger Not applicable Replacing one or more triggers on
transitions selected by a pointcut
with new triggers

Not applicable

Effect Adding a new behavior to the effect Replacing one or more effects on
transitions selected by a pointcut
with a new effect

Same as before advice

Guard and state invariant Add an additional constraint
(conjunct) to the guards (or state
invariants) selected by a pointcut

Replacing one or more guards on
transitions (or state invariants)
selected by a pointcut with a new
guard (or a state invariant)

Same as before advice

Do, entry, and exit activities
of a state

Adding a behavior to the activities
selected by a pointcut

Replacing one or more activities in
states selected by a pointcut with
a new activity

Same as before advice

by the Pointcut. An Advice can be of type Before, After,
or Around. A Before advice is applied before Joinpoint(s),
an After advice is applied after Joinpoint(s), whereas an
Around advice replaces Joinpoint(s). For example, introduc-
ing guards on a set of transitions of a state machine is an
example of a Before advice on transitions (Joinpoint). Table 1
summarizes each type of advice for some of the key UML
2.0 state machine modeling elements. Recall that AspectSM
supports static joinpoints and all these advice types are on
the syntax of UML state machines. Examples of advices on
various UML state machines can be found in [10].

Introduction An Introduction is similar to the inter-type dec-
laration concept in AspectJ [26]. Using Introduction in our
context, new modeling elements (e.g., state or transition) can
be introduced into a UML state machine.

2.2.3 Example of applying AspectSM

In this section, we present an example of the application of
AspectSM. An aspect state machine modeling crosscutting
behavior EmergencyStop is shown in Fig. 2. This UML state
machine is stereotyped as �Aspect�, which means that it
is an aspect state machine. The �Aspect� stereotype has
two attributes: name and baseStateMachine, whose values
are shown in the note labeled as ‘1’ in Fig. 2. The name
attribute contains the name of the aspect (EmergencyStop in
this example), whereas the baseStateMachine attribute holds
the name of the base state machine, on which this aspect will
be woven, which is ElevatorControl in this example.

The aspect state machine consists of two states: Select-
edStates and ElevatorStopped. SelectedStates is stereotyped
as �Pointcut�, which means that this state selects a sub-
set of states from the base state machine. There are three
attributes of �Pointcut�, whose values are shown in the
note labeled as ‘2’ in Fig. 2. The name attribute indicates
the name of the pointcut and type denotes the type of the
pointcut, which is Subset in this case. In AspectSM, dif-
ferent types of pointcuts can defined, and a complete list
of other types of pointcuts is presented in [10]. The third
attribute selectionConstraint contains a query in OCL on the
UML state machine metamodel, which selects all states of
the base state machine except ElevatorAtFloor and Idle. All
the model elements stereotyped as �Introduction� (one
state, two transitions) will be newly introduced elements in
the base state machine during weaving. This aspect intro-
duces the ElevatorStopped state in the base state machine
and selects all states of the base state machines except
ElevatorAtFloor and Idle (via SelectedStates) and introduces
transitions from them to ElevatorStopped with trigger Emer-
gencyStopButtonPressed. In addition this aspect introduces
transitions from ElevatorStopped to all the states selected by
SelectedStates with trigger EmergencyStopButtonReleased.

3 Experiments planning

This section discusses the planning of the experiments
according to the definition and reporting template defined
by Wohlin et al. [27].

123

1194 S. Ali et al.

Fig. 2 An aspect state machine for crosscutting behavior EmergencyStop. In the note numbered 2, the not equal operator is shown as != and not
as <> (OCL syntax). This is due to the reason that we used IBM Rational Software Architect (RSA) for modeling and it cannot display <> in a
note

3.1 Goal, research questions and hypotheses

The objective of our experiments is to assess the AspectSM
profile with respect to the readability of resulting UML state
machines. Readability will be looked at from three comple-
mentary points of view: model comprehensibility, the ease of
detecting defects, and the ease of fixing defects for designers
inspecting the models.

Based on the objective of our experiments, we defined the
following four research questions.

• RQ1: Does the use of AspectSM lead to better defect iden-
tification rate when inspecting state machines as com-
pared with hierarchical and flat state machines?

We wish to compare the readability of AspectSM with two
different types of state machines where crosscutting behav-
ior is modeled directly: hierarchical and flat state machines.
None of the expected differences between them can a priori
be certain to be in a specific direction. This therefore leads
to the definition of two-tailed hypotheses.

H1
0: The defect identification rate in aspect state machines

is the same as that for hierarchical state machines.
H2

0: The defect identification rate in aspect state machines
is the same as that for flat state machines.

• RQ2: Does the use of AspectSM lead to better defect
fixing rate when inspecting state machines as compared
to hierarchical and flat state machines?

Similar to the previous question, we wish to compare the
ease of defect fixing when using AspectSM with two differ-
ent types of state machines directly capturing crosscutting
behavior: hierarchical and flat state machines. Again, none of

the expected differences between them can a priori be certain
to be in a specific direction, hence leading to the definition
of the following two-tailed hypotheses.

H3
0: The defect fixing rate in aspect state machines is the

same as that for hierarchical state machines.
H4

0: The defect fixing rate in aspect state machines is the
same as that for flat state machines.

• RQ3: Does the use of AspectSM improve the ease of com-
prehension when compared with hierarchical and flat
state machines?

Similar to the previous research questions, we wish to
compare the comprehensibility of AspectSM with the two
different types of state machines directly capturing cross-
cutting behavior (hierarchical and flat state machines) based
on the scores to answer a comprehension questionnaire. We
defined the following two-tailed null hypotheses accordingly.

H5
0: The comprehensibility of aspect state machines is the

same as that for hierarchical state machines.
H6

0: The comprehensibility of aspect state machines is the
same as that for flat state machines.

• RQ4: Does the use of AspectSM reduce the required
inspection effort for defect identification and answering
the comprehension questionnaire?

While the two previous research questions looked at the
effectiveness of using alternative models, this research ques-
tion is concerned with the effort required to inspect cross-
cutting behavior for defect identification and answering the
comprehension questionnaire. This leads again to the follow-
ing two-tailed null hypotheses:

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1195

H7
0: The effort to identify defects in aspect state machines

is the same as that for hierarchical state machines.
H8

0: The effort to identify defects in aspect state machines
is the same as that for flat state machines.

H9
0: The effort to answer the comprehension questionnaire

for aspect state machines is the same as that for hierar-
chical state machines.

H10
0 : The effort to answer the comprehension questionnaire

for aspect state machines is the same as that for flat
state machines.

3.2 Participants

The first controlled experiment was conducted at the Pir Mehr
Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
The subjects in the experiment were 27 graduate students
taking a graduate course in ‘Advanced Software Architec-
ture’ at the University Institute of Information Technology
(UIIT). The course is offered in the Master of Science pro-
gram. The students in this degree already hold a Bachelor’s
degree in Computer Science or Information Technology and
have already been exposed to the UML notation and exten-
sions in the form of UML profiles. On average, each student
went through five development and two modeling courses.
Eighteen students (out of 25) have used the UML notation
for their final year projects before the experiment was con-
ducted. Twenty students had development experience in IT
companies or as teaching staff in computer science.

The replication of the above experiment was conducted
at the Beijing University of Aeronautics and Astronautics
(BUAA), Beijing, China. The subjects in the replication are
47 graduate students. Half of the students were taking a
graduate course titled ‘Software Engineering’, whereas the
remaining half students were taking a graduate course titled
‘Software Architecture’. Both courses rely on similar teach-
ing materials and methods and we therefore can assume that
all students have a similar education background regard-
ing software engineering. These two courses are offered in
the Master of Computer Software and Theory program. The
students in this degree already hold a Bachelor’s degree in
Computer Science and had all already been exposed to UML.
On average, each student went through two software devel-
opment courses and one modeling course. All of the stu-
dents had at least 1-year experience in development work
in various industry sectors such as maritime and aerospace.
In conclusion, the subjects have roughly the same back-
ground, although the subjects were in different years of their
study. Their seniority was taken into the consideration while
forming experimental groups as we will discuss in Sect. 3.4.

Our motivation in selecting these two groups of subjects
was to find participants with adequate background (e.g.,
UML modeling) that could be trained to use our AOM
approach over a short period of time. Our goal was to

assess AspectSM with fully trained, competent participants
to assess the maximum potential benefits of the approach.
Most practitioners have very little knowledge of AOP and
even less of AOM. Ensuring they have the required back-
ground is also difficult. This is why we relied on a group
of mature and trained graduate students. The subjects were
free to choose to participate or not in the experiments and
were told their choice would have no effect on their course
grades. All students underwent a specific, additional training
for the experiments (Sect. 3.7). For the initial experiment,
two students decided not to participate in the experiment.

3.3 Material

In this section, we provide details on the material we used
for the experiments.

3.3.1 Case study system

For the initial experiment, we only used an Elevator Control
System (ECS), whereas for the replication of the experiment
we used a second system as well: Video Conferencing Sys-
tem (VCS). Differences between the initial experiment and
replication are summarized in Sect. 3.8. Information regard-
ing the complexity of the three resulting state machines is
provided in Table 2, measured using number of states and
transitions for each system. For aspect state machines, we
also provide the number of Pointcuts, which also contribute
to modeling complexity. In Appendix A, we provide partial
models of ECS to illustrate various models specified using
different modeling approaches.

Elevator control system: It controls movements of an
elevator in a building. For our experiments, we extended the
specification of the elevator given in [11] with two additional
crosscutting behaviors so that the AspectSM profile could
be used to model them. These two crosscutting behaviors
are: (1) Emergency call behavior (Call): the behavior of an
elevator, when an emergency call is made, and (2) Emergency
stop behavior (Stop): the behavior of an elevator, when the
emergency stop button is pressed. Note that in Table 2 for
ECS, in the replication, we improved the design of Flat and
Hierarchical such that there are fewer states and transitions
when compared with the design in the initial experiment.

Video conferencing system: It is a core subsystem of a
video conference system called Saturn developed by Cisco
Systems, Norway. The core functionality to be modeled man-
ages the sending and receiving of multimedia streams. Audio
and video signals are sent through separate channels. For the
replication, we used a reduced model of Saturn that is related
to establishing and disconnecting videoconferences. In addi-
tion to the core functionality, we used the following three
crosscutting behaviors:

123

1196 S. Ali et al.

Table 2 Complexity of the state machines modeling the crosscutting behaviors of the case study system

System Experiment Crosscutting behavior Base state machine Flat approach Hierarchical approach Aspect approach

#S #T #S # T #S # T #S # T # P

ECS Experiment Call 12 15 15 27 14 18 16 18 1

Stop 12 15 15 27 12 15 14 17 1

ECS Replication Call 12 15 15 27 17 21 16 18 1

Stop 12 15 13 23 14 17 14 17 1

VCS Replication AQ 5 9 8 17 10 19 8 13 1

DnD 5 9 6 15 8 20 7 13 1

Standby 5 9 5 11 5 14 7 13 1

S states, T transitions, P pointcuts

1. Audio Quality Loss (AQ): An important robustness
behavior of Saturn is to recover from audio quality loss.
Whenever Saturn is in a video conference, it checks audio
quality at regular intervals. If the quality is within thresh-
old it continues the normal operation; otherwise, it tries
to recover audio quality. If it successfully recovered the
audio quality it continues its normal operation; otherwise,
it restarts the VCS.

2. Do Not Disturb (DnD): Whenever the Do Not Disturb
feature is on, Saturn ignores all incoming calls. If Saturn
is already in a call, it will remain in the call, but ignores
any new incoming calls.

3. Standby: The Standby behavior of Saturn becomes active
when it is idle for m minutes. When any activity is per-
formed on Saturn while it is in Standby mode, it becomes
active.

The crosscutting behaviors for both systems can be mod-
eled in three different ways: (1) by applying AspectSM to
derive an aspect state machine (Aspect Approach),
(2) by directly adding states and transitions on the base
state machine (Flat Approach), and (3) by using hierar-
chical/orthogonal states (Hierarchical approach) to avoid
redundant modeling and reduce complexity to the maximum
extent. It is, however, not always possible to use the hier-
archical approach successfully. For instance, separating out
constraints modeling non-functional properties (e.g., video
or audio quality) from state invariants is not possible using
hierarchical state machines without introducing accidental
complexity and redundancy as we demonstrated in [10].

3.3.2 Design defect classification

Given that the correctness and completeness of defect iden-
tification through inspections are part of our evaluation cri-
teria to compare state machines, experiment participants
were asked to identify defects seeded in state machines

by checking their conformance against their corresponding
specifications (Sect. 3.4).

To help systematically inspect state machines for various
types of defects, a classification of different types of design
defects is required. The classification we used in the exper-
iments is given below and was adapted from Binder’s book
[8]. It was provided to the participants of the experiments as
part of the answer sheet (Sect. 3.3.5) to systematically collect
their answers.

Incorrect Transition (IT): A transition that comes from
or leads to a wrong state or has an incorrect guard, trigger,
and/or event.

Missing Transition (MT): According to the specification,
there is a transition missing from the state machine.

Extra Transition (ET): A transition is subsumed by another
transition in a state machine. Such a transition is redundant
in the sense that removing it still keeps the state machine in
conformance to its specification.

Missing State (MS): According to its specification, a state
that should be modeled in a state machine but is missing.

Incorrect State (IS): A state is incorrect if it has an incor-
rect state invariant, do, entry and/or exit activity.

Extra State (ES): A state is subsumed by another state.
This state is considered as an extra state in the sense that
removing it still keeps the state machine in conformance to
its specification.

3.3.3 Seeded defects

It is important to note that in our experiments, we are inter-
ested in studying the readability of crosscutting behaviors
when applied to base behaviors since AspectSM is specifi-
cally designed for that purpose. Moreover, the readability of
base behaviors that are independent of aspects is expected to
be the same with or without AspectSM. For these reasons we
only seeded defects in the crosscutting behaviors. Different
types of defects were selected after we carefully examined
the base and aspect state machines and identified possible

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1197

Table 3 Distribution of seeded defects in state machines

Experiment System Crosscutting behavior Aspect Hierarchical Flat

MT IT MS IS MT IT MS IS MT IT MS IS

Experiment ECS Stop 1 – – – 1 – – – 10 – – –

Call 1 1 – 1 4 2 – 1 11 9 – –

Replication ECS Stop 1 – – – 1 – – – 10 – – –

Call 1 1 – 1 1 1 – 1 10 10 – 1

VCS AQ 1 1 1 – 1 1 1 – 1 4 1 –

DnD – 2 1 1 – 2 1 1 – 8 1 1

Standby 2 1 1 – – – – 2 1 – 1

independent defects. Table 3 shows the distribution of these
defects that were seeded in the compared state machines.
Note that seeded defects in ECS are different for the initial
experiment and its replication since we improved the models
in the latter.

Because aspects model crosscutting behavior, it is expected
that one defect in an aspect often corresponds to several
defects in the corresponding hierarchical state machine. Sim-
ilarly, because hierarchical states factor out common behav-
ior, one defect in a hierarchical state machine often leads to
several defects in its corresponding flat state machine. As
a result, different numbers of defects were seeded in the
three state machines to conceptually correspond to equiv-
alent defects and have semantically equivalent models. To
determine the number of defects in hierarchical and flat state
machines that correspond to one defect in an aspect state
machine, we manually wove the aspect state machine with a
defect in the base state machine. Note that in Table 3, a ’–’
indicates that we did not seed defects from a particular defect
class (e.g., MT, IT).

3.3.4 Comprehension questionnaire

As we discussed above, we also want to compare how easy it
is to comprehend the various types of state machines. To this
effect, a comprehension questionnaire was designed to eval-
uate, in a repeatable and objective way, the extent to which
a subject can understand the state machines. For example,
some questions concern what scenario is triggered when an
event happens in a certain state. The subjects were asked
the same ten questions on crosscutting behaviors together
for all three state machines. Participants had to answer each
question by inspecting the state machine assigned to them
and correctness scores were computed by accounting for
partially correct answers. For example, if the answer to a
question entailed to list four transitions, then pointing out
each correct transition contributed 0.25 to the full mark of
the question.

3.3.5 Answer sheets

Three answer sheets were developed to collect answers for
three readability measures (defect identification, defect fix-
ing, and comprehension). The first answer sheet was devel-
oped to collect information about classes of defects that were
identified by each subject, the number of defects in each class,
and the location of identified defects. A table was provided
to the subjects for each crosscutting behavior. The rows of
the table were labeled with each defect class, whereas the
columns featured two pieces of information about defects:
number of defects identified in each class and location of
each identified defect. The second answer sheet was devel-
oped to collect the state machine corrected by the subjects.
The third answer sheet was designed to collect answers to
the comprehension questionnaire.

3.4 Design

In this section, we present the design of the initial experi-
ment and its replication. In the initial experiment, we used
a between-subjects [27] design for reasons discussed in
Sect. 3.4.1, whereas in the replication, we used both between-
subjects and within-subjects designs for each of the two
rounds, respectively (Sect. 3.4.2).

3.4.1 Design of the initial experiment

The design of our experiment is summarized in Table 4. Our
experiment design consists of two rounds and there were
three groups denoted Group 1, Group 2, and Group 3. Given
the number of the subjects, this led, respectively, to 8, 8,
and 9 subjects in each group. In each round, one group was
given a different type of state machines (Aspect, Hierarchi-
cal, or Flat). During the training sessions (Sect. 3.7), each
subject was equally trained to understand the three differ-
ent types of state machines: Aspect, Flat, and Hierarchical.
The subjects were also given a modeling assignment, after

123

1198 S. Ali et al.

Table 4 Design of the initial
experiment

DI defect identification,
AC answer comprehension
questionnaire, A aspect,
H hierarchical, F flat

Round Case study Crosscutting behavior Task Group 1 Group 2 Group 3

1 ECS Stop DI A H F

Call A H F

2 Stop and Call AC F A H

the training sessions, for them to practice before the actual
experiment tasks. This assignment was marked by the first
author of this paper and grades were used to form blocks
(i.e., groups of students of equivalent skills). The experi-
ment groups were then formed through randomization and
blocking to obtain three comparable groups with similar pro-
portions of students from each skill block. The two rounds
of the experiments were conducted in sequence on the same
day.

This initial experiment used a between-subjects design,
where different groups of subjects are compared when using
different state machine modeling techniques. As shown in
Table 4, in the first round, each group was asked to iden-
tify defects in two separate tasks corresponding to the Call
and Stop crosscutting behaviors. Group 1 was given state
machines modeled using the Aspect approach. The subjects
in Group 1 were given one base state machine and one
aspect state machine modeling Call in Task 1, whereas in
Task 2, Group 1 was given the same base state machine and
one aspect state machine for the Stop crosscutting behavior.
Group 2 was given one hierarchical state machine for Call
and one hierarchical state machine for Stop for Task 1 and
Task 2, respectively. Similarly, Group 3 was given one flat
state machine for Call and one flat state machine for Stop
for Task 1 and Task 2, respectively. Seeded defects for each
type of state machines (Aspect, Hierarchical, and Flat) are
presented in Table 3. For each task, the subjects were allowed
to take as much time as they needed, but when they finished
the first task, their answer sheets for this task were collected
and then they were handed the description of the second task
and a new answer sheet. The starting and completion times
were noted on each answer sheet by the subjects and were
checked for correctness by the instructors while collecting
the solutions.

For the second round, the three groups were rotated: Group
1 was asked to answer comprehension questionnaire for flat
state machine, Group 2 for aspect state machines, and Group
3 for hierarchical state machines. This rotation was per-
formed only for pedagogical reasons such that each group
can be exposed to a different type of state machines than the
previous round. However, since we had only two tasks due
to time constraints, it was not possible for all of the groups
to experience all three approaches. The starting and comple-
tion times for this task were collected following the same
procedure as for Round 1.

3.4.2 Design of the replication

The design of the replication is summarized in Table 5. Our
replication design consists once again of two rounds (Round
1 and Round 2) and each round was conducted on a sepa-
rate day. During the training session (Sect. 3.7), each subject
was equally trained to understand the three different types
of state machines: Aspect, Flat, and Hierarchical. The sub-
jects were divided to form blocks (i.e., groups of students
of equivalent skills) based on their seniority in their graduate
programs. Notice that in the initial experiment, skill level was
determined based on scores of assignments, whereas in the
replication skill level was determined based on the seniority
of students due to practical limitations. The groups were then
formed through randomization and blocking to obtain three
comparable groups with similar proportions of students from
each skill block. We divided the subjects into three groups:
Group 1, Group 2, and Group 3. For Round 1, there were
17, 15, and 15 subjects, respectively. For Round 2, due to
practical reasons such as time clash with courses and exams,
fewer students participated than in Round 1. In Round 2, we
had 14, 10, and 15 in Group 1, 2 and 3, respectively.

In Round 1, the ECS system and a between-subjects [27]
design were used. We did not have a third crosscutting behav-
ior to opt for a balanced, within-subjects design, as for
the second round that is described next. Every participant
was exposed to only one modeling approach. Group 1 was
given state machines modeled using the Aspect (A) approach,
Group 2 with the Hierarchical (H) approach and Group 3
with the Flat approach (F).

In Round 2, regarding detecting and fixing defects, we
used a within-subjects design [27] since we have three cross-
cutting behaviors and three treatments (Aspect, Hierarchical,
or Flat). A within-subjects design offers two main advan-
tages. First, with this type of design, we can reduce the error
variance due to individual differences in human performance,
which is quite common in software engineering tasks. This is
due to the fact that the same group of students is exposed to all
modeling approaches across the different crosscutting behav-
iors (e.g., Call and Stop). Second, within-subjects designs
provide more statistical power as compared with a between-
subjects design [27] as it leads to more observations for each
treatment. Potential threats from within-subjects designs are
“carryover” effects. To address this, for each of the three
crosscutting behaviors, each group was given a different

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1199

Table 5 Design of the
replication

DI defect identification,
DF defect fixing, AC answer
comprehension questionnaire,
A aspect, H hierarchical, F flat

Round Case study Aspect Task Group 1 Group 2 Group 3 Time (min)

1 ECS Stop DI A H F 15

DF 15

Call DI A H F 15

DF 15

Stop and Call AC A H F 30

2 VCS DnD DI A H F 15

DF 15

Standby DI F A N/A 15

DF 15

AQ DI H F A 15

DF 15

DnD, Standby, AQ AC A H F 30

treatment in such a way that ordering effects were counterbal-
anced: each of the three modeling approaches occurred once
in a different order across the three groups. For example, as
shown in Table 5, for aspect DnD, each group was asked to
detect and fix defects and Group 1, Group 2, and Group 3
were given treatment Aspect, Hierarchical, and Flat, respec-
tively. For Standby, the three groups were rotated: Group 1
was asked to identify and fix defects for flat state machines,
Group 2 used aspect state machines, and Group 3 used hier-
archical state machines. Similarly, the groups were rotated
again for AQ. With a within-subjects design, a matched pair
analysis can be applied by comparing the performance of
subjects with themselves across treatments.

In both rounds, the subjects were presented with all three
crosscutting behaviors together and were asked to answer
questions from a comprehension questionnaire for one type
of state machine. For each crosscutting behavior, the sub-
jects were given a fixed time as shown in Table 5. Fixing the
time for task execution tends to yield more differences in task
effectiveness, but then results cannot be used to study time
differences across treatments [27]. Note that in the replica-
tion, we ordered the crosscutting behaviors based on their
complexity as measured by their number of modeling ele-
ments (Table 2) from simple to complex, to enable the sub-
jects to tackle increasingly more complex models and thus
smooth the learning curve.

3.5 Dependent variables

Defect Identification Rate (DIR) and Defect Fixing Rate
(DFR): These variables capture whether a subject accurately
identifies/fixes seeded defects. Based on the information col-
lected in the answer sheet described in Sect. 3.3.5, there are
several different ways to measure DIR and DFR, which we
discuss below.

1. Average DIR/DFR
For each type of defect, Average DIR/DFR (DIR
_Average/DFR_Average) is measured as the percentage
of identified/fixed defects over the total number of seeded
defects:

number of identi f ied or f i xed de f ects/total

number of seeded de f ects

2. DIR and DFR on binary scale with minimum defect iden-
tification and fixing
As discussed in Sect. 3.3.1, one defect seeded in aspect
state machines may correspond to more than one defect in
hierarchical or flat state machines. Therefore, to allow for
a meaningful combination of observations across tasks
and state machines, we use a binary measure indicat-
ing whether at least one defect was found (DIR_Binary)
or fixed (DFR_Binary). As long as at least one defect
is identified/ fixed in a given task by a subject in hier-
archical and flat state machines, value 1 is assigned
to DIR_Binary/DFR_Binary. For example, as shown in
Table 3, the flat state machine modeling the Call cross-
cutting behavior contains 10 MT defects, 10 IT defects,
and one IS defect. If at least any one of these defects is
identified by a subject, then DIR_Binary = 1; otherwise
DIR_Binary = 0. It is important to note that we devel-
oped this measure such that comparisons across the three
approaches are made possible. This is due to the reason
that different numbers of defects are introduced in three
types of state machines corresponding to a single defect
in a crosscutting behavior.

3. DIR and DFR on binary scale with maximum defect iden-
tification and fixing
This measure (DIR_Binary_Max/DFR_Binary_Max) is
a variation of DIR_Binary/DFR_Binary—which is also

123

1200 S. Ali et al.

Table 6 Dependent variables corresponding to each research question

Research question Dependent variables

RQ1 DIR_Average, DIR_Binary, DIR_Binary_Max

RQ2 DFR_Average, DFR_Binary, DFR_Binary_Max

RQ3 SCQ

RQ4 Effort

comparable across state machines—and is assigned value
1 when all defects seeded in a crosscutting behav-
ior are identified/fixed by a subject in a task. For
instance, in Table 3, the hierarchical state machine mod-
eling the Call crosscutting behavior has 10 MT defects.
DIR_Binary_Max = 1, if all these defects are identified
by a subject; otherwise, it is assigned 0. In comparison
with the measure DIR_Binary, this measure is stricter in
the sense that it requires all the seeded defects in each
of the three types of state machines to be identified to
obtain a value 1. None of these measures are perfect but
such binary measures are necessary to combine all obser-
vations in one data set. We will interpret differences in
results of binary measures if they arise. The purpose of
defining this measure is the same as for the previous
measure: render possible comparisons across the three
approaches, but in a different way.

4. Score of the responses to the comprehension question-
naire (SCQ): Correctness of the responses to the com-
prehensive questionnaire is calculated as follows:

Sum of scores of all questions/10

In the above-mentioned formula, the score for each
question is calculated based on the marking procedure
discussed in Sect. 3.3.4 and 10 is the total number of
questions in the questionnaire.

5. Required effort (Effort): This is measured in minutes
taken by a subject to identify/fix defects in each cross-
cutting behavior. Similarly, we also measure effort in
minutes taken by a subject to answer the comprehension
questionnaire.

Table 6 summarizes which dependent variables are used
to answer research questions presented in Sect. 3.1.

3.6 Data collection

For the initial experiment, the solutions were collected from
the subjects and were marked by the first author of this paper.
In the replication, the solutions were marked by the second
author of this paper. The data were encoded into a JMP [28]
data file to perform the statistical analysis.

For the experiment, data integrity was checked using
the following rule: for the same subjects and for each step,
the starting time should precede the completion time, and the
completion time of the current task must precede the start-
ing time of the next task. For the replication, since the time
for each task was fixed (Sect. 3.4.2), the answer sheets for a
task were collected before handing over the next task to the
subjects to ensure that each subject used exactly the same
time. In addition, to avoid mistakes in marking the solutions,
the first two authors double-checked the solutions marked
by the other. Moreover, for a sample of randomly selected
solutions, the first two authors also checked the consistency
of the entries in the JMP file with the marks on the answer
sheets and no inconsistencies were detected.

3.7 Training

In the initial experiment, the subjects were trained by the
first author of this paper. Two 3-h sessions were given on
the following topics: (1) Recap of UML state machines
since the subjects were already familiar with this topic
preceding the training (Sect. 3.2) and a presentation of
the metamodel for UML state machines, (2) Introduction
to the Object Constraint Language (OCL), (3) Introduc-
tion to aspect-oriented software development (AOSD), and
(4) AOM using the AspectSM profile. Each topic was accom-
panied by several examples and interactive class assign-
ments. As previously discussed, the subjects were given a
home assignment after the training sessions to practice the
three state machine modeling approaches and groups were
later formed based on the grades of this assignment.

For the replication, the subjects were trained by the second
author of this paper. One 3-h session was given on the same
topics as the ones used in the initial experiment. However,
in this case, there were no class assignments given to the
students due to practical constraints.

3.8 Replication

There are several potential reasons why replications of exper-
iments are necessary in software engineering [29]. Our
replication was motivated by the following reasons: (1) to
reduce the validity threats that were observed in the intitial
experiment, (2) to increase the sample sizes and improve
the statistical power of results, and (3) to address the prob-
lems identified in the design and material. The differences
between the initial experiment and its replication are sum-
marized below:

3.8.1 Reduced external validity threats

In the replication, we reduced external validity threats by
doing the following. (1) We added an additional case study,

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1201

which is a reduced version of an industrial videoconferenc-
ing system developed by Cisco, Norway. In addition, we
included three real crosscutting behaviors of the videoconfer-
encing system. (2) We replicated the experiment in a differ-
ent geographical area with graduate students from a different
education system.

3.8.2 Improved hierarchical modeling of ECS

The ECS system was used in both the initial experiment and
its replication. For the replication, we improved the design for
Hierarchical. The Stop crosscutting behavior of ECS in the
replication is modeled with a reduced number of modeling
elements as compared to its design in the initial experiment.

3.8.3 Improved assignments of subjects to treatments

In the initial experiment (Sect. 3.4.1), we rotated the groups
for two tasks (defect identification and answering compre-
hension questionnaire) such that each group can inspect the
state machines modeled with a different approach. Though
this rotation was done for pedagogical reasons, since we
had only two tasks for ECS (Sect. 3.3.1), not all of the
groups could experience state machines modeled with all
three approaches. In the replication, in contrast, we used
a within-subjects design for the VCS system, where each
group was exposed to all treatments exactly once. As dis-
cussed above, this also led to higher statistical power and a
reduction in variance associated with individual differences
by enabling the use of matched pair analysis.

3.8.4 Other differences

In the initial experiment, we measured readability from two
perspectives: defect identification and answering a compre-
hension questionnaire. In the replication, we added another
perspective: defect fixing. In the initial experiment, we gave
subjects as much time as they wanted to perform each
task. The results did not, however, reveal any significant
differences between various approaches in terms of time
(Sect. 4.4). In the replication, we fixed the time for each
task and this expectedly led to most subjects using most of
the allocated time. As expected, the differences across treat-
ments, if any, are in such a context only visible in terms
of effectiveness (e.g., defect identification/fixing rates) [27].
Exact times for tasks in the replication were estimated based
on the time taken by the subjects for various tasks in the
initial experiment.

3.9 Overview of statistical tests

In this section, we provide justifications for the statistical
tests run for our data analysis.

3.9.1 Statistical tests

Using statistical testing, we check whether the differences
between modeling approaches are statistically significant
to determine if we can reject the null hypotheses stated in
Sect. 3.1. For all statistical tests reported in this section, we
used a significance level of α = 0.05, though exact p values
are also reported. To check if, overall, there exist signifi-
cant differences among the three approaches under inves-
tigation, we performed the one-way ANOVA test [30] on
each dependent variable defined on an interval scale, i.e.,
DIR_Average, DFR_Average, SCQ, and Effort. Our sam-
ples for all dependent variables meet all assumptions of the
ANOVA test, which are as follows: (1) the samples should
be approximately normal, (2) the samples must be indepen-
dent, and (3) variances of populations must be equal. To
check for normality, we performed the Shapiro–Wilk W test
[30] for each dependent variable. The results showed that
their distributions do not strongly depart from normality. The
second assumption also holds since our samples are collected
on different groups of the subjects, working independently.
To check the equivalence of variances, we performed the
Bartlett’s test [30] which showed that the variances across
samples are equal for all dependent variables. In addition to
the one-way ANOVA test, we also performed the Kruskal–
Wallis one-way analysis of variance test [30], which is a
non-parametric equivalent of the one-way ANOVA test. The
results of both tests turned out to be consistent.

For those dependent variables for which one-way ANOVA
results were significant, we performed a pair-wise compari-
son of the distributions obtained for the three state machines
using Tukey_Kramer HSD [30], which is the ANOVA post-
hoc test. As an adaptation of t test, the Tukey_Kramer HSD
test is designed to handle the increase in Type-I error resulting
from multiple comparisons. It assumes normally distributed
samples and requires samples of equal or comparable size, or
otherwise yields conservative results [30]. We have (nearly)
equal sample sizes (see Sect. 3.4) and our dependent vari-
able distributions do not strongly depart from normality as
the results of the Shapiro–Wilk W test [30] showed. We also
report the mean differences between pairs of approaches indi-
cating the direction in which the result is significant. We
also performed the Wilcoxon Signed-Rank test [30], which
is a non-parametric equivalent of Tukey_Kramer HSD. The
results of both tests were consistent.

For Round 2 in the replication, since our design is a
within-subjects design, we performed the matched pairs
t test, in addition to the one-way ANOVA and pair-wise
comparisons with Tukey_Kramer HSD since matched pairs
analysis improves statistical power over independent sam-
ple testing, as discussed in Sect. 3.4. In our context, a
pair is the same student performing the same type of
task (e.g., defect identification) on different crosscutting

123

1202 S. Ali et al.

behaviors (e.g., DnD and Standby) on state machines
designed with different approaches (e.g., Aspect and Hierar-
chical). We double checked the results of the matched pairs t
test with a Wilcoxon matched pairs test, which is an equiva-
lent, non-parametric test. The results of the tests turned out to
be consistent. Since the results of both parametric and non-
parametric tests are consistent, we only report the results of
the parametric tests in this paper.

For DIR_Binary, DFR_Binary, DFR_Binary_Max, and
DIR_Binary_Max, we performed the Fisher’s exact test [30]
to compare the defect identification/fixing proportions for the
various state machines. These four measures are binary and
observations can be therefore classified into two categories
(either 0 or 1 showing ‘not found’ or ‘found’, respectively),
which is exactly what the Fisher’s exact test is designed for.
For these binary variables, for Round 2 in the replication,
since our design is a within-subjects design, we also per-
formed the McNemar’s Test [31] for matched pairs analysis.
This test is specifically designed for matched pairs analysis
of binary data.

We performed all the tests mentioned in this section using
JMP [28] except for the McNemar’s Test [31], for which we
used the web-based application [31].

3.9.2 Power analysis

Power analysis can be used during the design stage of an
experiment to determine how many subjects are likely to
be needed, or after to help interpret non-significant results.
The latter may be due to small sample sizes and effect sizes
that are smaller than expected. Power analysis is particu-
larly important for controlled experiments in software engi-
neering that involve human subjects, as they normally suffer
from small sample sizes because of the limited availability
of trained subjects and the high cost of conducting exper-
iments. In our context, like in most software engineering
experiments, the number of subjects is imposed by external
constraints and a retrospective power analysis, as suggested
in [32], helps interpret non-significant results in such con-
ditions. For each statistical test considered, such an analysis
estimates the minimum effect size at which we can observe
an acceptable level of power (typically 80 %). This means
that above that minimum, we can probably interpret a non-
significant result as an absence of effect. Below this threshold
the effect might be present but remain undetected.

In our experiments, we are interested in comparing the
Aspect approach with Hierarchical and Flat approaches. We
perform power analysis for the dependent variables that did
not yield significant results and followed the method of cal-
culating power as reported in [32], which requires a fixed
sample size, a set significance level (0.05), and power level
(80 %) and uses the observed variance to calculate the corre-
sponding, minimum effect size. We did not use standardized

effect sizes as suggested by Cohen [33] since those cannot
be easily interpreted in a software engineering context.

4 Results and discussion

We analyze and present our experiment results in this sec-
tion. We present the results for the four research questions
in Sects. 4.1, 4.2, 4.3, and 4.4, respectively. Within each sec-
tion, we provide results for both the initial experiment and
its replication, and a plausible explanation of the results. In
Sect. 4.5, we provide concluding remarks on the results and
discussions.

4.1 Results and analysis for defect identification (RQ1)

In this section, we report results for RQ1 presented in
Sect. 3.1. As shown in Table 6, we will answer this research
question based on the DIR_Average, DIR_Binary, and
DIR_Binary_Max dependent variables, for both the initial
experiment (Sect. 4.1.1) and its replication (Sect. 4.1.2). We
provide individual discussions of the results for each experi-
ment in Sect. 4.1.3 and an overall discussion in Sect. 4.1.3.3.

4.1.1 Results for the initial experiment

Regarding DIR_Average, from Table 7 we can observe higher
values for Aspect than for Hierarchical and Flat. More specif-
ically, the Aspect group performed 56 and 62 % better than
the Hierarchical and Flat groups. These results show that it
is easier to correctly detect the defects seeded in aspect state
machines than in the flat and hierarchical state machines.
The most plausible explanation is that the number of model
elements (Sect. 3.3.1) for aspect state machines is lower
than in the other two types of state machines (Table 2) and
complexity of pointcuts written as OCL queries does not
override this effect. In addition, we checked whether the dif-
ferences observed for DIR_Average are statistically signifi-
cant to determine if we can reject the null hypotheses stated
in Sect. 3.1. As shown in Table 8, we observed significant dif-
ferences for DIR_Average. Since the results were statistically
significant, we further performed Tukey_Kramer HSD for a
pair-wise comparison of modeling approaches. The results
showed that Aspect significantly outperformed both Flat and
Hierarchical in terms of DIR_Average as p values are lower
than α (Table 9).

For DIR_Binary as shown in Table 7, for Aspect, 93.7 %
of the subjects managed to catch at least one defect
from any of the defect types seeded in both tasks. This
is 37.5 and 27 % higher than for Hierarchical and Flat,
respectively. For DIR_Binary_Max, we observed a pat-
tern similar to DIR_Binary for both tasks, as shown in
Table 7. DIR_Binary_Max is higher for Aspect than that of

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1203

Table 7 Descriptive statistics
for various DIR measures Experiment System Measure Crosscutting behavior Approach

Aspect Hierarchical Flat

Experiment ECS DIR_Average Call and Stop 0.81 0.25 0.19

DIR_Binary 0.94 0.56 0.67

DIR_Binary_Max 0.69 0.13 0.28

Replication ECS DIR_Average Stop 0.29 0.46 0.40

DIR_Binary 0.29 0.46 0.73

DIR_Binary_Max 0.29 0.46 0.06

DIR_Average Call 0.27 0.53 0.16

DIR_Binary 0.52 0.93 0.73

DIR_Binary_Max 0.05 0.06 0

DIR_Average Call and Stop 0.28 0.5 0.28

DIR_Binary 0.41 0.7 0.73

DIR_Binary_Max 0.17 0.26 0.03

VCS DIR_Average DnD 0.30 0.1 0.18

DIR_Binary 0.71 0.4 0.6

DIR_Binary_Max 0 0 0

DIR_Average Standby 0.6 – 0.33

DIR_Binary 0.6 – 0.64

DIR_Binary_Max 0.6 – 0

DIR_Average AQ 0.25 0.19 0.26

DIR_Binary 0.66 0.57 1

DIR_Binary_Max 0 0 0

DIR_Average DnD, Standby, and AQ 0.36 0.15 0.25

DIR_Binary 0.66 0.5 0.71

DIR_Binary_Max 0.15 0 0

Hierarchical and Flat, i.e., for the Aspect group, 68.7 % of
the subjects managed to find all the defects seeded in both
tasks, which is 56.2 % more than for the Hierarchical group
and 40.9 % more than for Flat (see Table 7). As discussed
in Sect. 3.9, we performed the Fisher’s exact test to check
statistical significance of difference in binary variables and
the results are provided in Table 10. For DIR_Binary, Aspect
significantly outperformed Hierarchical, but there were no
significant differences observed for Aspect versus Flat. In the
case of DIR_Binary_Max, Aspect significantly outperformed
both Hierarchical and Flat.

4.1.2 Results for the replication

In this section, we provide results for the replication for
defect identification. Sect. 4.1.2.1 provides the results for
ECS, whereas Sect. 4.1.2.2 provides the results for VCS.

4.1.2.1 Results for the ECS System Table 7 shows descrip-
tive statistics for various measures of ECS. For Stop,
DIR_Average for Hierarchical (0.46) and Flat (0.40) is

Table 8 Results for one-way ANOVA for DIR_Average

Experiment System Crosscutting behavior p value

Experiment ECS Call and Stop 0.0001

Replication ECS Stop 0.55

Call 0.003

Stop and Call 0.04

VCS DnD 0.10

Standby 0.12

AQ 0.64

DnD, Standby, and AQ 0.02

better than Aspect (0.29). For Call, again Hierarchical has
higher DIR_Average (0.53) than Aspect (0.27). However, in
this case Aspect has higher DIR_Average than Flat (0.16). For
Stop and Call together Hierarchical has higher DIR_Average
(0.53) than Aspect and Flat, and DIR_Average is tied between
Aspect and Flat. For Stop, DIR_Binary is higher (0.73)
for Flat than Hierarchical and Aspect, which are 0.46 and
0.29, respectively. DIR_Binary of Call for Hierarchical

123

1204 S. Ali et al.

Table 9 Comparisons of all pairs for DIR_Average using Tukey_Kramer HSD

Experiment System Crosscutting behavior Aspect versus Hierarchical Aspect versus Flat

Mean difference
(Aspect−Hierarchical)

p value Mean difference
(Aspect−Flat)

p value

Experiment ECS Stop and Call 0.36 0.02 0.44 0.005

Replication ECS Call −0.25 0.04 0.11 0.48

Stop and Call −0.21 0.03 0.003 0.99

VCS DnD, Standby, and AQ 0.20 0.01 0.10 0.27

Table 10 Two-tailed Fisher’s exact test for DIR binary measures at α = 0.05

Experiment System Measure Aspect versus Hierarchical Aspect versus Flat

Difference in proportion
(Aspect−Hierarchical)

p value Difference in proportion
(Aspect−Flat)

p value

Experiment ECS DIR_Binary 0.375 0.03 0.27 0.09

DIR_Binary_Max 0.56 0.003 0.40 0.03

Replication ECS DIR_Binary (Stop) −0.17 0.46 −0.43 0.03

DIR_Binary_Max (Stop) −0.17 0.46 0.22 0.17

DIR_Binary (Call) −0.40 0.01 −0.20 0.29

DIR_Binary_Max (Call) −0.0007 1 0.05 1

DIR_Binary −0.28 0.02 −0.32 0.01

DIR_Binary_Max −0.09 0.54 0.14 0.10

VCS DIR_Binary (DnD) 0.31 0.21 0.11 0.69

DIR_Binary_Max (DnD) 0 – 0 –

DIR_Binary (Standby) − – −0.04 1

DIR_Binary_Max (StandBy) − – 0.6 0.001

DIR_Binary (AQ) 0.09 0.71 −0.33 0.06

DIR_Binary_Max (AQ) 0 – 0 –

DIR_Binary 0.16 0.28 −0.05 0.80

DIR_Binary_Max 0.15 0.07 0.15 0.02

(0.93) is higher than Aspect (0.52) and Flat (0.73), respec-
tively. For Call and Stop together, Flat (0.73) has higher
DIR_Binary than Hierarchical (0.7) and Flat (0.41). For
DIR_Binary_Max in Stop, Hierarchical (0.46) outperformed
Aspect (0.15) and Flat (0.40), but for Call, Hierarchical
and Aspect show values for DIR_Binary_Max of 0.06 and
0.5, respectively, whereas Flat has DIR_Binary_Max of 0.
For Stop and Call together, Hierarchical is better than both
Aspect and Flat.

In addition, we checked the statistical significance of
DIR_Average using one-way ANOVA, as discussed in
Sect. 3.9. Table 8 shows the ANOVA results for ECS, where
the p values are made bold when below than our chosen
significance level (0.05). For ECS, we observed significant
differences in DIR_Average for Call individually and Stop
and Call together. We then performed a pair-wise compari-
son of the distributions obtained for the three state machines

using Tukey_Kramer HSD [30]. The results are presented
in Table 9. For DIR_Binary and DIR_Binary_Max, we per-
formed the two-tailed Fisher’s Exact test, whose results are
also summarized in Table 10.

4.1.2.2 Results for the VCS system Table 7 shows the descrip-
tive statistics for various measures of VCS. For DnD, Aspect
outperformed both Hierarchical and Flat for DIR_Average
and DIR_Binary; however, DIR_Binary_Max is 0 for all
groups. Note that we could not model the Standby crosscut-
ting behavior with Hierarchical. Again, for Standby, Aspect
outperformed Flat for DIR_Average and DIR_Binary_Max,
whereas we observed the reverse for DIR_Binary (Table 7).
In case of DIR_Average and DIR_Binary for AQ, Flat
outperformed Aspect, which in turn outperformed Hierar-
chical. For all three crosscutting behaviors together, Aspect
outperformed Hierarchical and Flat in terms of DIR_Average

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1205

Table 11 Results of the
matched pairs for VCS at
α = 0.05 for various DIR
measures

Measure Test Pair of approaches Mean difference p value

DIR_Average t test Aspect-Hierarchical 0.27 0.002

DIR_Average Aspect–Flat 0.19 0.02

DIR_Binary McNemar’s test Aspect–Hierarchical 0.16 0.03

DIR_Binary Aspect–Flat −0.05 0.02

DIR_Binary_Max Aspect–Hierarchical 0.15 0.001

DIR_Binary_Max Aspect–Flat 0.15 5.42e−07

Table 12 Estimation of the
effect size corresponding to
80 % power for ECS

A aspect, H hierarchical, F flat

Experiment Measure p value Observed
effect
size

Minimum
effect
size

Average Minimum
effect
size/average

Experiment DIR_Binary (A vs. F) 0.09 0.14 0.20 0.80 0.24

Replication DIR_Average (A vs. F) 0.99 0.001 0.13 0.29 0.46

DIR_Binary_Max (A vs. H) 0.54 0.04 0.15 0.22 0.69

and DIR_Binary_Max, whereas for DIR_Binary, Flat (1.0)
outperformed Aspect (0.66), which in turn outperformed
Hierarchical (0.57).

In addition, the ANOVA results (Table 8) showed sig-
nificant differences in DIR_Average with Call individually
and Stop and Call together. We, therefore, performed a pair-
wise comparison of the distributions obtained for the three
state machines using Tukey_Kramer HSD [30]. The results
of the test are reported in Table 9. For VCS, in addition we
performed the matched pairs t test (Sect. 3.9) as reported
in Table 11. We observed that Aspect significantly outper-
formed Hierarchical and Flat with p values of 0.002 and 0.02
(Table 11), respectively. Hence, it shows that Aspect has a
high likelihood of having higher DIR_Average than both Flat
and Hierarchical. For DIR_Binary and DIR_Binary_Max,
we performed the two-tailed Fisher’s Exact test, whose
results are also summarized in Table 10. The results of the
McNemar’s test for matched pairs analysis of these binary
measures are reported in Table 11. For DIR_Binary_Max,
Aspect significantly performed better than both Hierarchical
and Flat. For DIR_Binary, Aspect significantly outperformed
Hierarchical, but Flat significantly performed better than
Aspect.

4.1.3 Discussion

In this section, we discuss the results reported in Sect. 4.1.1
and Sect. 4.1.2. First, we provide discussion of the results for
each experiment (Sect. 4.1.3.1 and Sect. 4.1.3.2) individually
followed by an overall discussion in Sect. 4.1.3.3.

4.1.3.1 Analysis of results for the initial experiment Based
on the experiment results reported in Sect. 4.1.1, we conclude

that overall, Aspect state machines are better than Flat and
Hierarchical ones in terms of the overall defect identification
rate, even though the difference between Aspect and Flat for
one of the binary measures (DIR_Binary) is not statistically
significant given our selected α (0.05) and sample size. One
reasonable explanation is that, when compared with flat and
hierarchical state machines, aspect state machines are much
less complex in terms of number of states and transitions
(Table 2); therefore it is expected to be much easier to iden-
tify defects in aspect state machines. It is also interesting to
note that the additional complexity introduced by pointcuts
in Aspect does not have any visible negative effect on defect
identification.

We further analyzed non-significant results using the
power analysis reported in Table 12. The table shows the
estimated effect size thresholds corresponding to 80 % power
for DIR_Binary (Aspect vs. Flat) that yielded non-significant
results in the previous section (Minimum effect size). This
means that for effect sizes less than these thresholds, power
is less than 80 % thus entailing a significant risk of error
(type II) in not rejecting the null hypotheses. In other
words, for effect sizes below these thresholds, we cannot
draw conclusions with confidence from the statistical test
results in Table 12. The Average column in Table 12 shows
the average values for the dependent variables, when com-
bining all the observations being compared. The last col-
umn shows the percentage of Average that corresponds to
the minimum effect size. The result of power analysis for
DIR_Binary regarding Aspect vs. Flat (Table 12) shows an
estimated effect size of 0.20 (24 % of average) to achieve
80 % power. The observed effect size is 0.14, which is lower
than this estimated effect size thus explaining the lack of
significance. This suggests that we need to collect more

123

1206 S. Ali et al.

Table 13 Summary of statistically significant results for DIR measures

Dependent variable Approach pair Round 1 Round 2

ECS VCS (Tukey_Kramer HSD) VCS (Matched pairs)

Crosscutting behavior (X) Crosscutting behavior (X) Test Crosscutting
behavior (X)

DIR_Average A > X – All (H) t test All (H), All (F)

X > A Call (H), All (H) – –

DIR_Binary A > X – – McNemar’s test All (H)

X > A Stop (F), Call (H), All (F), All (H) – All (F)

DIR_Binary_Max A > X – Standby (F), All (F) All (H), All (F)

X > A – – –

X either H (Hierarchical) or F (Flat), A aspect, H hierarchical, F flat, ‘–’ non-significant results

observations, if we want to draw conclusions with confi-
dence for effect sizes below 24 % of the average, regard-
ing which approach (Aspect or Flat) is better in terms of
DIR_Binary.

4.1.3.2 Analysis of results for the replication In this section,
we provide a discussion on DIRs for each crosscutting
behavior individually and all crosscutting behaviors together
for the replication. Recall that DIRs are measured with
three dependent variables: DIR_Average, DIR_Binary, and
DIR_Binary_Max. Results for all those variables for which
the results were statistically significant are summarized in
Table 13. The first column lists the dependent variables which
are used to answer RQ1 (Table 6). The second column repre-
sents a pair of approaches being compared and each depen-
dent variable has two rows in this column: A > X and
X > A, denoting whether Aspect (A) is significantly bet-
ter than Hierarchical or Flat (X), and Hierarchical or Flat
(X) are significantly better than Aspect (A), respectively. The
third column (labeled “Crosscutting Behavior (X)”) presents
two pieces of information: (1) name(s) of the crosscutting
behavior(s) for which the results were significant for ECS,
(2) name of the approach in brackets against which the results
were significant, i.e., the approach is either significantly bet-
ter than Aspect if it is in the row X > A or vice-versa if it
is in the row A>X. For example, in case of DIR_Average in
the row labeled “X > A”, Call (H) means that Hierarchical
is significantly better than Aspect for the Call crosscutting
behavior. If results were significant for all crosscutting behav-
iors together, for instance in the case of ECS, when the
observations are combined for Call and Stop for a depen-
dent variable (e.g., DIR_Average), we denote it as All in
the table. The fourth column is similar to the third column
except that it presents the results of VCS. The sixth column
is similar to the fourth column, but the only difference is
that the sixth column represents the results of the matched
pairs tests, whereas the fourth column shows the results of

Tukey_Kramer HSD for VCS. The fifth column represents
the type of the matched pairs tests applied to each dependent
variable. For instance, the McNemar’s test is applied to the
two binary dependent variables. Non-significant results are
indicated by “–” in Table 13.

From Table 13, we can see that in the case of the ECS sys-
tem, we observed a significance difference across the three
approaches for Call and for Stop and Call together in terms
of DIR_Average, where Hierarchical fared significantly bet-
ter than Aspect. This could be due to the reason that in this
first round, students were more familiar with standard UML
state machines as compared with aspect state machines. For
VCS, in case of DIR_Average, Aspect has significantly higher
DIR_Average than Hierarchical for all crosscutting behav-
iors together (column 4, row 1, in Table 13). The results of
the matched pairs t test on VCS show consistent results with
Tukey_Kramer HSD, since in both cases Aspect significantly
outperformed Hierarchical andFlat.

In case of DIR_Binary, for E CS, again Hierarchical and
Flat significantly performed better than Aspect, whereas for
VCS we did not observe significant differences between
approaches using the Tukey_Kramer HSD test. However,
based on the results of matched pairs analysis with the
McNemar’s test for DIR_Binary, we observed that Aspect
significantly outperformed Hierarchical, whereas Flat sig-
nificantly outperformed Aspect. Regarding the latter, it could
be due to an inherent bias of DIR_Binary towards Flat as find-
ing just one defect out of all seeded defects will give Flat a
maximum score (Sect. 3.5). For DIR_Binary_Max in ECS we
did not observe any significant differences. With VCS, Aspect
significantly outperformed Flat for Standby and Aspect sig-
nificantly performed better than Flat for all crosscutting
behaviors together. Similar results were observed for the
McNemar’s test for DIR_Binary_Max, where Aspect outper-
formed both Flat and Hierarchical. In conclusion, a plausible
explanation for the results presented above is that, when com-
pared with flat and hierarchical state machines, aspect state

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1207

Table 14 Estimation of the
effect size corresponding to
80 % power for VCS

A aspect, H hierarchical, F flat

Dependent variable p value Observed
effect size

Minimum
effect size

Average Minimum effect
size/average

DIR_ Average (A vs. F) 0.27 0.05 0.1 0.31 0.32
DIR_Binary (A vs. H) 0.28 0.1 0.11 0.28 0.39
DIR_Binary (A vs. F) 0.80 0.05 0.11 0.31 0.35
DIR_Binary_Max (A vs. H) 0.54 0.08 0.18 0.6 0.30

Table 15 Summary of statistically significant results for both experiments

Dependent variable Pair of approaches Experiment Replication

ECS ECS VCS (Tukey_Kramer HSD) VCS (Matched Pairs)

DIR_Average A > X H, F – H t test H, F

X > A – H – –

DIR_Binary A > X H – – McNemar’s test H

X > A – H, F – F

DIR_Binary_Max A > X H, F – F H, F

X > A – – – –

X either H (Hierarchical) or F (Flat), A aspect, H hierarchical, F flat, ‘–’ non-significant results

machines are much less complex in terms of number of states
and transitions (Table 2); therefore, it is expected to be easier
to identify defects in aspect state machines. The fact that the
reader has to mentally weave the aspects with the base state
machines to get the full picture does not seem to be a severe
hindrance for these defect identification tasks.

By looking at the above results, it is also interesting to note
that the results of Round 2 are different than those of Round
1 since all the results in Round 2, as opposed to Round 1, are
in favor of AspectSM, except the McNemar’s test results for
DIR_Binary between Aspect and Flat. This could be due to
the reason that AspectSM entails a steep learning curve as
the experience gained by the subjects of the Aspect group in
Round 1 helped them in performing significantly better than
the subjects in other groups in Round 2.

To discuss non-significant results, we performed power
analysis, which results are summarized in Tables 12 and 14.
Note that we did so only for those cases where the results
were not significant when observations were combined for
all crosscutting behaviors. In case of DIR_Average (Stop and
Call) regarding the three approaches (Table 12), an estimated
minimum effect size of 0.13 (46 % of average) is required to
achieve 80 % power as shown in Table 12. The observed effect
size is 0.001, which is much lower than 0.13. Since this is a
quite large effect size threshold, to draw useful conclusions
with confidence regarding which approach (Aspect or Flat or
Hierarchical) is better in terms of DIR_Average for Stop and
Call, we probably need more observations. Similar results are
obtained for other dependent variables for which the results
were not significant, as shown in Tables 12 and 14.

4.1.3.3 Overall discussion In this section, we discuss the
results of RQ1 for the initial experiment and the replication
together. Table 15 summarizes the statistically significant
results of the initial experiment and its replication. The first
column represents dependent variables for defect identifica-
tion, i.e., DIR_Average, DIR_Binary, and DIR_Binary_Max.
The second column denotes the pair of approaches being
compared, e.g., A > X reports on whether the Aspect (A)
approach is significantly better than Hierarchical and/or Flat
(X). In our particular case, we have three approaches Aspect,
Hierarchical, and Flat denoted as A, H , and F , respec-
tively, in the table. In addition, each dependent variable has
two corresponding rows: A > X and X > A, reporting on
whether Aspect is significantly better than Hierarchical or
Flat, and Hierarchical or Flat are significantly better than
Aspect, respectively. The third column tells the name(s) of
the approaches(s) for which the results were significant for
ECS in the experiment. For example, for RQ1, in the case
of DIR_Average in the row labeled “A > X”, H means that
Aspect is significantly better than Hierarchical. The fourth
and fifth columns are similar to the third column, but the
only difference is that these columns represent the results for
ECS and VCS for the replication using Tukey_Kramer HSD.
The seventh column presents the results of matched pairs for
VCS, whereas the sixth column lists tests being applied for
matched pairs analysis for all the dependent variables. In the
table, “−” indicates non-significant results.

For DIR_Average, in the experiment, for ECS, Aspect per-
formed significantly better than both Flat and Hierarchical.
In contrast, in the replication, we observed that Hierarchical

123

1208 S. Ali et al.

Table 16 Descriptive statistics
for various DFR measures System Measure Crosscutting behavior Approach

Aspect Hierarchical Flat

ECS DFR_Average Stop 0.64 0.66 0.49

DFR_Binary 0.64 0.66 0.93

DFR_Binary_Max 0.64 0.66 0

DFR_Average Call 0.64 0.63 0.31

DFR_Binary 0.94 0.86 0.93

DFR_Binary_Max 0.47 0.4 0.13

DFR_Average Call and Stop 0.64 0.65 0.40

DFR_Binary 0.79 0.76 0.93

DFR_Binary_Max 0.55 0.53 0.06

VCS DFR_Average DnD 0.5 0.125 0.16

DFR_Binary 0.71 0.4 0.26

DFR_Binary_Max 0.28 0 0

DFR_Average Standby 0.4 – 0.59

DIR_Binary 0.4 – 0.85

DFR_Binary_Max 0.4 – 0.07

DFR_Average AQ 0.62 0.16 0.43

DFR_Binary 1 0.5 0.7

DFR_Binary_Max 0.33 0 0

DFR_Average DnD, Standby, and AQ 0.52 0.14 0.38

DFR_Binary 0.74 0.45 0.58

DFR_Binary_Max 0.33 0 0.02

outperformed Aspect for DIR_Average. This can be explained
from the fact that the subjects in the initial experiment had
more training and previous experience in modeling as com-
pared with the subjects in the replication (Sect. 3.7). This
can be further seen from the results of the VCS system in
the replication, where Aspect significantly performed better
than Hierarchical and Flat using matched pairs analysis for
DIR_Average, consistent with those for the ECS system in
the initial experiment.

We observed similar results for DIR_Binary. In the ini-
tial experiment, Aspect significantly outperformed Hierar-
chical for ECS but for the replication, we observed that Flat
and Hierarchical performed significantly better than Aspect.
Again, this is probably due to the differences in training that
the subjects received in the initial experiment and replica-
tion. For DIR_Binary_Max, we observed consistent results
for the initial experiment and the replication, in which Aspect
outperformed Flat and Hierarchical.

4.2 Results and analysis for defect fixing (RQ2)

In this section, we present results for defect fixing (RQ2)
based on the DFR_Average, DFR_Binary, and DFR_Binary
_Max dependent variables (Sect. 3.5). Recall from Sect. 3.8
that defect fixing was only conducted in the replication.

4.2.1 Results for the ECS system

For ECS, in case of the Stop crosscutting behavior (Table 16),
Hierarchical scored 0.66 for DFR_Average outperform-
ing Aspect (0.64) and Flat (0.49). For DFR_Binary, Flat
(0.93) outperformed Hierarchical (0.66) and Aspect (0.64).
For DFR_Binary_Max (Table 16), Hierarchical (0.66) out-
performed Aspect (0.64) and Flat (0). In Call, Aspect
(0.64) outperformed both Hierarchical (0.63) and Flat
(0.31) and similar results were observed for DFR_Binary
and DFR_Binary_Max for Stop. For Call and Stop taken
together, Hierarchical scored 0.65 for DFR_Average, out-
performing Aspect (0.64) and Flat (0.40). For DFR_Binary,
Flat (0.93) outperformed Aspect (0.79) and Hierarchical
(0.76) respectively, whereas Aspect (0.55) outperformed
Hierarchical (0.53) and Flat (0.06) for DFR_Binary_Max
(Table 16).

The one-way ANOVA results presented in Table 17 show
that there are significant differences for DFR_Average (Call)
and DFR_Average (Stop and Call). For these variables,
we performed a pair-wise comparison of the distributions
obtained for the three state machines using Tukey_Kramer
HSD [30], reported in Table 18. The results of the two-
tailed Fisher exact test for binary variables (DFR_Binary
and DFR_Binary_Max) are shown in Table 19, where

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1209

Table 17 Results of One-way ANOVA for DFR_Average at α = 0.05

System Crosscutting behavior p value

ECS Stop 0.48

Call 0.03

Stop and Call 0.02

VCS DnD 0.008

Standby 0.23

AQ 0.0003

DnD, Standby, AQ 0.0003

p values are given in bold when below our selected level
of significance.

4.2.2 Results for the VCS system

For VCS, in case of DnD, Aspect outperformed both Hierar-
chical and Flat for all three defect fixing measures as it can be
seen from the means reported in Table 16. For the Standby
crosscutting behavior, for DFR_Average and DFR_Binary,
Flat outperformed Aspect, whereas Aspect outperformed
Flat for DFR_Binary_Max. Recall that for Standby, we did
not have a solution using the Hierarchical approach. For
AQ, Aspect outperformed Hierarchical and Flat for all three
defect fixing measures. For all three crosscutting behaviors
together, Aspect outperformed Hierarchical and Flat for all
three defect fixing dependent variables.

The results of one-way ANOVA presented in Table 17
show that there are significant differences for DFR_Average
(DnD), DFR_Average (AQ), and DFR_Average (DnD,
Standby, and AQ). For these variables, since one-way
ANOVA results were significant, we performed a pair-wise
comparison of the distributions obtained for the three state
machines using Tukey_Kramer HSD [30] and the results are
given in Table 18. For binary variables DFR_Binary and
DFR_Binary_Max, we report the results of the Fisher exact
test in Table 19. In all these tables, bold p values highlight sta-
tistically significant results and the mean differences between
pairs of approaches indicate the direction of the effect.

The results for the matched pairs t test for DFR_Average
are shown in Table 20. For all three crosscutting behaviors

together, Aspect significantly outperformed Hierarchical;
however, there is no significant difference between Aspect
and Flat. For matched pairs analysis of the binary depen-
dent variables, the results of the McNemar’s test are shown
in Table 20, where Aspect significantly outperformed Hier-
archical and Flat regarding DFR_Binary_Max. For DFR
_Binary, a significant difference is once again observed
between Aspect and Flat, but not between Aspect and
Hierarchical.

4.2.3 Discussion

In this section, we provide a discussion on DFRs for
each crosscutting behavior individually and all crosscut-
ting behaviors together. DFRs are measured based on
three dependent variables: DFR_Average, DFR_Binary, and
DFR_Binary_Max. Statistically significant results are sum-
marized in Table 21. The first column lists the dependent
variables which are used to answer RQ2 (Table 6). The sec-
ond column denotes pairs of approaches being compared
and each dependent variable has two rows in this column:
A > X and X > A denoting whether Aspect (A) is sig-
nificantly better than Hierarchical or Flat (X), and Hierar-
chical or Flat (X) are significantly better than Aspect (A),
respectively. The third column (labeled “Crosscutting Behav-
ior (X)”) presents two pieces of information: (1) name(s) of
the crosscutting behavior(s) for which the results were sig-
nificant for ECS, (2) name of the approach in brackets against
which the results were significant, i.e., the approach is either
significantly better than Aspect if located in row X > A or
vice versa if located in row A > X. For example, in case of
DIR_Average in the row labeled “X > A”, Call (H) means
that Hierarchical is significantly better than Aspect for the
Call crosscutting behavior. If results were significant for all
crosscutting behaviors together, for instance in the case of
ECS, when the observations are combined for Call and Stop
for a dependent variable (e.g., DIR_Average), we denote it
as All in the table. The fourth column is similar to the third
column except that it presents the results of VCS. The fifth
column is similar to the fourth column, but the only difference
is that it reports the results of the matched pairs t test, whereas

Table 18 Comparisons of all pairs using Tukey_Kramer HSD for DFR_Average

System Measure Aspect versus Hierarchical Aspect versus Flat

Mean difference (Aspect−Hierarchical) p value Mean difference (Aspect−Flat) p value

ECS DFR_Average (Call) 0.01 0.99 0.33 0.04

DFR_Average −0.0002 0.99 0.24 0.04

VCS DFR_Average (DnD) 0.37 0.02 0.34 0.02

DFR_Average (AQ) 0.46 0.0002 −0.26 0.06

DFR_Average 0.37 0.0002 0.13 0.18

123

1210 S. Ali et al.

Table 19 Two tailed Fisher’s exact test for DFR binary measures

System Measure Aspect versus Hierarchical Aspect versus Flat

Difference in proportion
(Aspect−Hierarchical)

p value Difference in proportion
(Aspect−Flat)

p value

ECS DFR_Binary (Stop) −0.01 1 −0.28 0.08

DFR_Binary_Max (Stop) −0.01 1 0.64 0.0001

DFR_Binary (Call) 0.07 0.58 0.0007 1

DFR_Binary_Max (Call) 0.07 0.73 0.33 0.06

DFR_Binary 0.02 1 −0.13 0.15

DFR_Binary_Max 0.02 1 0.49 0.0001

VCS DFR_Binary (DnD) 0.31 0.21 0.44 0.02

DFR_Binary_Max (DnD) 0.28 0.11 0.28 0.04

DFR_Binary (Standby) − – −0.45 0.03

DFR_Binary_Max (Standby) − – 0.32 0.12

DFR_Binary (AQ) 0.50 0.002 0.3 0.05

DFR_Binary_Max (AQ) 0.33 0.04 0.33 0.06

DFR_Binary 0.28 0.03 0.15 0.22

DFR_Binary_Max 0.33 0.001 0.30 0.0005

Table 20 Results of matched
pairs for VCS for various DFR
measures at α = 0.05

Dependent variable Pair of approaches Mean difference Test p value

DFR_Average Aspect–Hierarchical 0.31 t test 0.004

DFR_Average Aspect–Flat 0.14 0.11

DFR_Binary Aspect–Hierarchical 0.33 McNemar’s test 0.832

DFR_Binary Aspect–Flat 0.15 0.03

DFR_Binary_Max Aspect–Hierarchical 0.33 2.98e−08

DFR_Binary_Max Aspect–Flat 0.31 4.17e−07

Table 21 Summary of statistically significant results

Dependent variable Approach pair Round 1 Round 2

ECS VCS (Tukey_Kramer HSD) VCS (Matched Pairs t test)

Crosscutting behavior (X) Crosscutting behavior (X) Crosscutting behavior (X)

DFR_Average A > X Call (F), All (F) DnD (H), DnD (F), AQ (H), All (H) All (H)

X > A – – –

DFR_Binary A > X – DnD (F), Standby (F), AQ (H), All (H) All (F)

X > A – – –

DFR_Binary_Max A > X Stop (F), All (F) DnD (F), AQ (H), All (H), All (F) All (H), All (F)

X > A – – –

X either H (Hierarchical) or F (Flat), A aspect, H hierarchical, F flat, ‘–’ non-significant results

the fourth column shows the results of Tukey_Kramer HSD
for VCS. In Table 21, a “–” indicates non-significant results.

From Table 21, we can see that overall Aspect signifi-
cantly performed better than Flat in terms of DFR_Average
and DFR_Binary_Max, but there are no significant differ-
ences between Aspect and Hierarchical. When compared to
the results of DIRs from Round 1, the results are in favor
of AspectSM because the students gained experience with

AspectSM while identifying defects. In addition, due to the
lower complexity of aspect state machines (Table 2), it was
easier for the subjects to fix the defects. For Round 2, in
the case of VCS, Aspect is overall significantly better than
Hierarchical and Flat as it can be seen from the results of
Tukey_Kramer HSD for all three DFR variables in Table 21.
The results of the matched pairs t test for DFR_Average and
the McNemar’s test for the two binary dependent variables

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1211

Table 22 Estimation of the effect size corresponding to 80 % power

System Measure (approaches) p value Observed
effect size

Minimum
effect size

Average Minimum effect
size/average

ECS DFR_ Average (A vs. H vs. F) 0.48 0.07 0.20 0.60 0.34

DFR_ Average (A vs. H) 0.99 0.001 0.15 0.65 0.23

DFR_Binary(A vs. H) 1 0.01 0.15 0.78 0.19

DFR_Binary (A vs. F) 0.15 0.06 0.12 0.85 0.14

DFR_Binary_Max (A vs. H) 1 0.01 0.18 0.54 0.33

VCS DFR_ Average (A vs. H vs. F) 0.18 0.06 0.12 0.45 0.27

DFR_Binary (A vs. H vs. F) 0.22 0.07 0.15 0.66 0.22

A aspect, H hierarchical, F flat

Table 23 Descriptive statistics
for SCQ Experiment System Crosscutting behavior Approach

Aspect Hierarchical Flat

Experiment ECS Call and Stop 6.38 8.56 4.50

Replication ECS Call and Stop 5.52 7.06 5.33

VCS DnD, Standby, and AQ 6.92 6.6 6.4

yielded consistent results. Similar to defect identification,
plausible explanation is that, when compared with flat and
hierarchical state machines, aspect state machines are much
less complex in terms of number of states and transitions
(Table 2); therefore, it is expected to be much easier to fix
defects in aspect state machines.

To further investigate non-significant results, we per-
formed power analysis, whose results are summarized in
Table 22. Note that we did so only for those cases where the
results are not even significant when observations are com-
bined for all crosscutting behaviors. In case of DFR_Average
(Call and Stop) regarding three approaches, the results of the
power analysis shows an estimated minimum effect size of
0.20 (60 % of average) to achieve 80 % power in Table 22.
The observed effect size is 0.07, which is much lower than
the estimated effect size (0.20) thus explaining lack of sig-
nificance. Given that 60 % is a large threshold, this suggests
that we need to collect more observations to draw conclu-
sions with confidence regarding which approach (Aspect or
Flat or Hierarchical) is better in terms of DFR_Average for
Call and Stop. Similar results are obtained for other depen-
dent variables for which the results were not significant in
Table 22.

4.3 Results and analysis for comprehensibility (RQ3)

In this section, we present results for answering compre-
hension questionnaire (RQ3) based on the SCQ dependent
variable (Sect. 3.5).

4.3.1 Results for the initial experiment

The descriptive statistics for SCQ are presented in Table 23.
We observed that Hierarchical yields higher correctness than
Aspect and Flat. More specifically, Hierarchical performed
21.8 and 40 % better than Aspect and Flat, respectively. We
checked the significance of the results by applying one-way
ANOVA to SCQ (Table 24), which shows significant dif-
ferences between the approaches as the p value is 0.002.
Since one-way ANOVA results are significant, we performed
a pair-wise comparison of the distributions obtained for the
three state machines using Tukey_Kramer HSD. The results
showed that differences are not significant between Aspect
vs. Hierarchical and Aspect vs. Flat. However, the results
are significant between Hierarchical and Flat, but we do not
report them here since this is not the focus of our study.

4.3.2 Results for the replication

For the replication with ECS, we observed that Hierarchical
yields higher comprehensibility (SCQ) than Aspect and Flat
as it can be seen from the results reported in Table 23. For
VCS, we observed that Aspect scored on average 6.92, which
is higher than Hierarchical (6.6) and Flat (6.4) in Table 23. A
one-way ANOVA with SCQ for ECS is reported in Table 24
and shows a significant difference. However, the results of
a pair-wise comparison using Tukey_Kramer HSD shows,
once again, significant differences only between Hierarchi-
cal and Flat. For VCS, the result of one-way ANOVA on
SCQ showed no significant differences (Table 24).

123

1212 S. Ali et al.

Table 24 Results of One-way ANOVA for SCQ at α = 0.05

Experiment System Crosscutting behavior p value

Experiment ECS Stop and Call 0.002

Replication ECS Stop and Call 0.02

VCS DnD, Standby, and AQ 0.79

4.3.3 Discussion

Overall, the differences between Aspect vs. Hierarchical and
Aspect vs. Flat are not significant. One plausible explana-
tion is that for Aspect the subjects needed to carefully read
and understand Pointcut specifications in the Aspect state
machines. With more training and practice on AspectSM,
subjects would be expected to gain better comprehension of
aspect state machines as compared with flat and hierarchical
state machines, for which they had more prior experience.

The power analysis results for SCQ for the initial exper-
iment, when comparing Aspect vs. Hierarchical and Aspect
vs Flat, revealed that we need minimum effect sizes of 1.27
(17 % of average) and 1.65 (30 % of average), respectively,
to achieve 80 % power (Table 25). These effect sizes are
larger than the observed effect sizes, i.e., 1.08 and 0.94,
thus explaining lack of significance. For VCS, power analy-
sis revealed similar results, where we need minimum effect
size of 1.10 (17 % of the average) to achieve 80 % of power
as reported in Table 25. The minimum effect size, i.e., 1.10
(score out of 10) is much larger than the observed effect
size (0.23). Thus, overall, if we want to investigate effects
below the minimum thresholds mentioned above, the results
of power analysis suggest that we need to collect more obser-
vations either by increasing the number of subjects and/or
adding more case studies with crosscutting behaviors.

4.4 Results and analysis for effort (RQ4)

In this section, we present results for effort (RQ4) based
on the Effort dependent variable (Sect. 3.5). Recall from
Sect. 3.8 that the effort was measured only for the initial
experiment and thus in this section we only present results
and analysis for the initial experiment.

4.4.1 Results

From Table 26, we can observe that in Task 1, the subjects
took approximately 34 min on average for Hierarchical to
identify defects. However, both Aspect and Flat took the same
average time to complete the task: 32 min. Task 2 took 3 and
7 min less for Aspect than for Hierarchical and Flat to iden-
tify defects. For answering the comprehension questionnaire
(Task 3), the subjects took 10 and 5 min more for Hierar-
chical than Aspect and Flat, respectively. In summary, there
is no practically significant time difference across the three
state machines (Table 26).

As discussed in Sect. 3.9.1, we applied the one-way
ANOVA test to assess the statistical significance of differ-
ences for Effort (for each task) distributions across the three
approaches. Table 27 shows the results of the test, where
significant differences were observed for the Effort of Task
3. Since one-way ANOVA results were significant, we per-
formed a pair-wise comparison of the distributions obtained
for the three state machines using Tukey_Kramer HSD [30].
The results are presented in Table 28, where Hierarchical
took significantly more time than Aspect (p value = 0.01),
whereas Aspect took less time than Flat, though the latter is
not significant (pvalue = 0.39).

4.4.2 Discussion

There were no significant differences in effort between any
pair of approaches for defect identification (Task1 and Task2).
This means that the effort spent for identifying defects across
the three state machines is roughly the same. Regarding Task
3 (i.e., answering the comprehension questionnaire), we only
observed significant differences for Effort between the Aspect
and Hierarchical groups, where the hierarchical group took
significantly more time than the Aspect group (Table 28).
Between Aspect and Flat, for Task 3, we did not observe
significant differences in terms of Effort.

The power analysis in Table 29 shows that the minimum
effect size corresponding to 80 % power is 3.62 min (i.e., 16 %
of the average effort for the combined groups). The observed
effect size is 2.14 min, thus explaining lack of significance.
Drawing reliable conclusions for effect sizes below 3.62 min
would require larger sample sizes. However, note that the

Table 25 Estimation of the effect size corresponding to 80 % power for SCQ

Experiment System Pair of approaches p value Observed effect
size

Minimum effect
size

Average (score
out of 10)

Minimum effect
size/average

Experiment ECS Aspect versus Hierarchical 0.09 1.08 1.27 7.41 0.17

Replication ECS Aspect versus Flat 0.15 0.94 1.65 5.5 0.3

VCS Aspect versus Hierarchical
versus Flat

0.79 0.23 1.10 6.64 0.17

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1213

Table 26 Mean values in minutes for effort across three tasks

Measure Aspect Hierarchical Flat

Effort (Task 1) 32 34 32

Effort (Task 2) 12 15 19

Effort (Task 3) 20 30 25

Table 27 Results for one-way ANOVA test for Effort using
Tukey_Kramer HSD

Measure Effort (Task1) Effort (Task2) Effort (Task3)

p value 0.86 0.09 0.02

difference between the two averages, i.e., 2.14 and 3.62 min,
is small and therefore practically negligible.

4.5 Concluding remarks

Based on the above results and discussions, we suggest that
aspect state machines should be used to model crosscut-
ting behavior, but one should always use, when applica-
ble, hierarchical state machines features within aspect state
machines to further improve their comprehensibility. There
are cases in which hierarchical state machines (submachines)
are not applicable and aspect state machines are then the
only option. For example, separating out constraints mod-
eling non-functional properties (e.g., video or audio qual-
ity) from state invariants is not possible using hierarchical
state machines without introducing accidental complexity
and redundancy as we demonstrated in [10]. Easier iden-
tification/fixing of defects in aspect state machines also
implies that it is easier to ensure their conformance to
specifications.

5 Threat to validity

Below, we discuss the threats to validity of our controlled
experiments based on the guidelines presented in [27].

5.1 Conclusion validity threats

Conclusion validity threats are concerned with factors that
can influence the conclusion that can be drawn from
the results of the experiments. As with most controlled
experiments in software engineering, our main conclusion
validity threat is related to the sample size on which we
base our analysis. For the initial experiment, we performed
a two-round experiment to maximize the number of obser-
vations within time constraints. However, the lack of sig-
nificance of certain differences (e.g., the difference in SCQ
for Aspect vs. Hierarchical and Aspect vs. Flat, effort for

answering the comprehension questionnaire (Aspect vs.
Flat), and DIR_Binary for Aspect vs Flat) may be due to
low statistical power if actual effect sizes are below a cer-
tain threshold (Sect. 4.5). Studying the presence of smaller
effect sizes requires replicating the experiment and collecting
additional data points. Due to this reason, we replicated the
experiment with an additional industrial case study including
three crosscutting behaviors (Sect. 3.3.1) and with more sub-
jects (Sect. 3.2) to increase the sample sizes and thereby the
power of statistical tests. Statistical conclusions were drawn
by applying appropriate statistical tests based on a careful
analysis of their assumptions (Sect. 3.9).

5.2 Internal validity threats

Internal validity threats exist when the outcome of results are
influenced by external factors and are not necessarily due to
the application of the treatment being studied. Through our
experiment design (between-subjects design) for the initial
experiment and Round 1 of the replication, we have tried
to minimize the chances of other factors being confounded
with our primary independent variable: the use of aspect state
machines. We avoided any biased assignment of subjects to
groups by using blocking based on assignment marks.

In Round 2 of the replication, regarding identification and
fixing defects, we used a within-subjects design and matched
pairsanalysis. The strength of this design is that the variation
due to differences in subjects is eliminated as each subject
acts as its own control. A within-subjects design may, how-
ever, be subject to learning effects, for example, due to using
the same material for various tasks (e.g., defect identification
and defect correction) that could result in improved perfor-
mance from one task to the next. To counterbalance such
effects, we rotated our groups to each crosscutting behavior
for each task (e.g., defect identification) as we discussed in
Sect. 3.4.2. In the initial experiment, we gave the subjects as
much time as they wished to use for each task, though there
was a time limit by which they had to finish all the tasks. No
time differences were observed across modeling approaches.
In the replication, we gave the subjects a fixed amount of time
for each activity. Such an approach only enables, however,
an investigation of the effect of the modeling approaches in
terms of effectiveness.

5.3 Construct validity threats

Construct validity threats are related to the degree to which
the construct being studied (i.e., readability in our context)
is affected by experiment settings, which include the cover-
age of modeling elements of three types of state machines:
the coverage of different types of defects, and the cover-
age of features of aspect-orientation. Regarding readability
based on defect identification rates, due to time and resource

123

1214 S. Ali et al.

Table 28 Comparisons of all pairs for Effort (Task 3) using Tukey_Kramer HSD

Aspect versus Hierarchical Aspect versus Flat

Mean difference (Aspect−Hierarchical) p value Mean difference (Aspect−Flat) p value

−9.31 0.01 −4.3 0.39

Table 29 Estimation of the effect size corresponding to 80 % power

Measure p value Observed effect size Minimum effect size Average (min) Minimum effect size/average

Effort (Task 3 for Aspect versus Flat) 0.39 2.13 3.62 22.43 16 %

constraints, we could not seed all types of defects in the
defect classification (Sect. 3.3.2). It is also not practically
feasible to devise case studies containing all types of defects
from the defect classification. Nevertheless, we tried to max-
imize defect classification coverage based on the available
case studies and seeded defects of types MT, IT, MS, and
IS to compute defect identification rates. Another threat of
construct validity is that we were not able to investigate all
features of aspect-orientation (e.g., all types of basic advices)
due to the nature of the crosscutting behaviors in our case
studies.

In terms of the coverage of UML state machine model-
ing elements, we cover submachine states, composite states,
orthogonal states, signal events, call events, change events,
time events, entry and exit points, history states, effects, and
guards. In our experiments, we did not study the impact
of interactions between aspect state machines. However,
it is important to recall that the experiments presented in
this paper are, to the best of our knowledge, the very first
experiments with AOM, which focus only on studying the
readability of models. In the future, we plan to conduct
more experiments to study the impact of interactions between
aspect state machines.

5.4 External validity threats

This is typically the most common threat in controlled exper-
iments. Due to time constraints, case studies and tasks are
usually small, and this often tends to minimize the differ-
ences among treatments. As we see in Table 2 for ECS,
for crosscutting behavior Call, the flat state machine has 15
states and 27 transitions. Similarly, for the Stop crosscutting
behavior, we have 13 states and 25 transitions. Such numbers
are at least representatives of the state machines of classes
and small components. In addition, we also replicated the
experiment on an industrial case study with three crosscut-
ting behaviors and more students to further reduce external
validity threats. However, because crosscutting concerns are
expected to have an even higher impact on large models, we
expect the use of AspectSM to be even more beneficial in

such cases. It is worth noting that we replicated the experi-
ment in a different geographical area and education system
to reduce external validity threats. One may also question
the use of students as subjects for the experiment. Note that
many practitioners have very little knowledge of AOP or
AOM in general and hence require significant training and
cost to teach them AOM. Due to this reason, we chose a
group of experienced graduate students with a suitable edu-
cational background (Sect. 3.2). In addition, some studies
in [34–36] reported on the performance of trained software
engineering students for various tasks when compared with
professional developers. These differences turned out not to
be statistically significant when compared with junior and
intermediate developers, thus suggesting that there is no evi-
dence that students trained for the tasks at hand may not be
used as subjects in place of professionals.

6 Related work

In this section, we compare our controlled experiment
with the experiments reported in the literature of Aspect-
Orientation (AO) in Sect. 6.1 and experiments related to state
machines in the non-AO literature in Sect. 6.2.

6.1 Comparison with experiments reported in AO

Most experimentation in Aspect-Oriented Software Devel-
opment (AOSD) has been conducted to evaluate aspect-
oriented programming when compared with object-oriented
programming in terms of development time, errors in devel-
opment, and performing maintenance tasks. An initial search
on the IEEE, ACM, Science Direct, Wiley Interscience,
and Springer digital libraries yielded 517 papers; however,
none of them reported any controlled experiment to eval-
uate AOM approaches. A controlled experiment [37] was
performed in industry settings to measure effort and errors
using aspect-oriented programming for applying different
maintenance tasks related to the tracing crosscutting con-
cern, i.e., the use of logging to record execution of a program.

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1215

The results showed that aspect-orientation resulted in reduc-
ing both development effort and number of errors.

Another experiment is reported in [38], which compares
aspect-orientation (AspectJ) with a more traditional approach
(Java) in terms of development time for crosscutting con-
cerns. A similar experiment is reported in [39] focusing on
development time to perform debugging and change activi-
ties on object-oriented programs using AspectJ. Both of these
experiments revealed mixed results, i.e., aspect-orientation
has positive impact on development time only for certain
tasks. For instance, Aspect-oriented Programming (AOP)
seems to be more beneficial when the crosscutting concern
is more separable from the core behavior.

An exploratory study is reported in [40] to assess if AOP
has any impact on software maintenance tasks. Eleven soft-
ware professionals were asked to perform different main-
tenance tasks using Java and AspectJ. The results of the
experiment revealed that AOP performed slightly better than
Object-oriented Programming (OOP), but there were no sta-
tistically significant results observed. Another exploratory
study is reported in [41] to measure fault-proneness with
AOP. Three evolving AOP programs were used and data
about different faults made during their development were
collected. The experiment revealed two major findings:
(1) Most of the faults were due to lack of compatibility
between aspect and base code, (2) The presence of faults in
AOP features such as Pointcuts, Advice, and inter-type dec-
larations was as likely as for normal programming features.
The results turned out to be statistically significant.

An experiment is reported in [42], where two software
development processes based on a same aspect modeling
approach (i.e., the Theme approach [43]) are compared to
determine their impacts on maintenance tasks such as adding
new functionality or improving existing functionality. The
first process (aspectual process) involves generating AO code
in AspectJ from Theme AO models, whereas the second
process (hybrid process) involves generating object-oriented
code in Java from Theme models. Maintenance tasks are
measured based on metrics such as size, coupling, cohesion,
and separation of concerns. The results showed that on aver-
age the aspectual process took lesser time than the hybrid
process.

An exploratory study is reported in [44], which aims to
assess if aspects can help reduce effort on resolving conflicts
that can occur during model compositions. To do so, they
compared AOM with non-AOM in terms of effort to resolve
conflicts and number of conflicts resolved on six releases of
a software product line. The results of the study showed that
aspects improved modularization and hence helped better
localize conflicts, which in turn resulted in reducing the effort
involved in resolving conflicts.

Our controlled experiments are different from the above
experiments from several perspectives. First, our controlled

experiments focused on the design phase of the software
development life cycle and AOM. Most of the experiments
in the literature have focused on comparing AOP with OOP.
We evaluated the “readability” (i.e., defect identification,
defect fixing, and answering comprehension) of crosscut-
ting behaviors modeled as aspect state machines as com-
pared with directly modeling them in UML state machines.
We further compared the effort for defect identification and
answering comprehension for the experiment. Apart from
these differences, we observed results in our experiments to
be consistent with some of the results observed in the lit-
erature. For instance, similar to the results on development
time using AspectJ reported in [41], we did not observe any
reduced effort in inspecting state machines developed using
our AspectSM approach. Also, similar to results reported
in [38] and [39], where they observed inconsistent results
for different measures corresponding to different program
development and maintenance activities, our results also dif-
fered for defect identification/fixing rates and responses to
the comprehension questionnaire.

6.2 Comparison with non-AO experiments for state
machines

A series of experiments is presented in [45] that compares a
state-based testing strategy (All round-trip paths coverage)
with a code-based structural coverage test strategy (edge cov-
erage) in terms of fault detection. Another series of exper-
iments is reported in [46], which compares All round-trip
paths coverage with a black-box functional testing technique
called Category Partition in terms of fault detection. Our
experiment is different from these experiment since we study
the readability of three types of state machines developed for
robustness testing and do not focus on studying the effective-
ness of test strategies defined on state machines.

Another experiment is reported in [47], which studies the
effect of six factors (e.g., representation of state machines,
hierarchies and triggering conditions) on the readability of
three types of state machine specifications: tabular, textual,
and graphical. The experiment was conducted with graduate
students and questionnaires were designed to ask students to
answer different subjective and objective questions. Interest-
ing results were obtained. For example, in terms of repre-
sentation, most of the students found graphical and tabular
representations more readable than textual ones. For hierar-
chies, all subjects agreed that hierarchies increase readability.
In our experiment, we also measured readability using a ques-
tionnaire with subjective questions; however, the following
differences can be noted: (1) We evaluate the readability of
crosscutting behaviors when modeled using aspect, hierar-
chical, and flat state machines; (2) We evaluate readability by
asking subjects to identify/fix seeded defects in crosscutting

123

1216 S. Ali et al.

behaviors; and (3) We evaluate the readability of aspect state
machines, which has not been studied before.

7 Conclusion and future work

Aspect-oriented Modeling (AOM) is a very active field of
research and can potentially yield several benefits while mod-
eling systems, including enhanced separation of concerns,
improved readability, easier model evolution, increased
reusability, and reduced modeling effort. However, to authors’
knowledge, there is no reported empirical evidence regarding
such benefits.

This paper reports the results of the first two con-
trolled experiments in the literature to report on the eval-
uation of AOM, and more precisely whether AOM can help
improve the “readability” of UML state machines in terms
of design defect identification, defect fixing, comprehen-
sion, and inspection effort. The specific AOM approach
under evaluation is a recently published UML profile
(AspectSM), which was specifically designed to model cross-
cutting behavior (e.g., robustness behavior) using standard
UML 2 state machines with a lightweight extension for
aspect-oriented features. The AspectSM profile has been
previously applied to an industrial case study for auto-
mated, state-based robustness testing. The readability of state
machines modeling crosscutting behavior using AspectSM
(aspect state machines) is compared with standard UML 2
state machines using advanced features such as hierarchy
and concurrency (hierarchical state machines) and without
hierarchical features (flat state machines).

Results show that the defect identification and defect
fixing rates of aspect state machines are significantly higher
than the ones for the hierarchical and flat state machines.
For instance, for the industrial case study in the replication,
aspect state machines show, on average, increases of 28 and
19 % in defect identification rates when compared with hier-
archical and flat state machines, respectively. This is most
likely due to the fact that aspect state machines are less
complex than hierarchical and flat state machines in terms
of modeling elements such as states and transitions. But on
the other hand, aspect state machines can be potentially dif-
ficult to comprehend in terms of mentally processing how
an aspect is woven into its base state machine. This may
explain why, based on subjects’ responses to a comprehen-
sion questionnaire, results show that the subjects that were
given hierarchical state machines outperformed the ones that
were assigned aspect state machines, though that difference
was not statistically significant. No significant difference in
effort was observed between any types of state machines
in both defect identification and comprehension. Based on
the results above, our practical recommendation is to model
crosscutting behaviors using aspect state machines in com-

bination with hierarchical/concurrent features of UML state
machines, where applicable, in order to improve the overall
readability of crosscutting behaviors.

In the future, we are planning to replicate the experiment
to study the readability of aspect state machines in the pres-
ence of interactions between aspects as well as compare the
understandability, modeling effort, and quality of aspect state
machines with flat and hierarchical state machines.

Acknowledgments Lionel Briand was in part supported by a PEARL
grant from the Fonds National de la Recherche, Luxembourg.

Appendix A: Models for elevator control system (ECS)

In this Appendix, we provide the description and models for
one of the case studies that we used in the replication: the Ele-
vator Control System (ECS). Note that we provide this infor-
mation only for one crosscutting behavior EmergencyCall
(Call) of ECS, to provide an idea of how the models devel-
oped using different modeling approaches look like and to
demonstrate that these models are semantically equivalent.
The crosscutting behavior EmergencyCall is an important
robustness behavior of an elevator. Whenever the elevator is
operating, an emergency call can be made at any time. When
a call is made, it is dialed to the control room and if the call is
successful, the person in the elevator can talk to a person in the
control room. When the person in the elevator is done talking,
he/she can disconnect the call from the control room. Notice
that all these operations related to the emergency call are
performed concurrently to the operation of the elevator. All
the diagrams used in the experiments and shown in Figs. 3,
4, and 5 were drawn using IBM Rational Software Architect
(RSA) [48] and therefore, the diagrams conform to the RSA
graphical notations. In addition, the experiment participants
were trained to understand these graphical notations.

The base state machine of ECS is shown in Fig. 3, which
controls movements of an elevator in a building. The speci-
fication of the elevator is obtained from [11]. From the Idle
state, call the RequestUp trigger (method of the ECS class),
and then the elevator goes to the DoorClosingToMoveUp
state representing the behavior of the system when the door is
closing and moving up. Similarly, from the Idle state, when
the RequestDown trigger is fired, the elevator goes to the
DoorClosingToMoveDown state. From ElevatorAtFloor, if
no trigger is fired within 5 s, the elevator state machine transits
to the Idle state (modeled as a time event). Similarly, different
states and transitions are modeled in the base state machine.

Aspect state machine for the EmergencyCall aspect is
shown in Fig. 4. Stereotype �Aspect� is applied to the
EmergencyCall state machine, indicating that it is an aspect
state machine. The attributes for �Aspect� contain the fol-
lowing information: the name of the aspect state machine
and the name of the base state machine (ElevatorControl

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1217

Fig. 3 Base state machine for ECS

Fig. 4 Aspect state machine for EmergencyCall

123

1218 S. Ali et al.

Fig. 5 EmergencyCall modeled with the Hierarchical approach

in this example). State SelectedStates is stereotyped as
�Pointcut�, which shows that this state selects states from
the base state machine. Stereotype �Pointcut� has two
attributes: the name of the pointcut (SelectedStates in this
case) and its type (SelectionType:All meaning that it selects
all states of the base state machine). New transitions are
added in the base state machine, with trigger named as
EmergencyCallPressed stereotyped with �Introduction�,
from all the states of ElevatorControl to a newly introduced
state named as DialingToControlRoom stereotyped with
�Introduction�. A new transition with trigger DialSuccess-
ful is added from DialingToControlRoom to a newly intro-
duced state Connected. Finally, from Connected, a newly
introduced transition with trigger DisconnectCall is added to
a newly introduced state DisconnectingFromControlRoom.
Note that in Fig. 4, a new region is introduced: Emergency-
Call, which is orthogonal to the normal operation of Eleva-
torControl.

The EmergencyCall behavior modeled using the
Hierarchical approach is shown in Fig. 5. The behavior
of ElevatorControl is modeled in a composite state (i.e.,
ElevatorControl) in Fig. 5. From the boundary of the
ElevatorControl composite state, a transition with trigger
EmergencyCallPressed goes to DialingToControlRoom. This
means that from any of the states in ElevatorControl, when-
ever EmergencyCallPressed is pressed, the emergency call
is made. An equivalent design of EmergencyCall using flat
state machines is shown in Fig. 6.

Appendix B: Comprehension questionnaire
for replication

1. Explain the possible subsequent scenario when Saturn
is in a videoconference with three endpoints and audio
quality is within the allowed threshold value?

123

Does aspect-oriented modeling help improve the readability of UML state machines? 1219

Fig. 6 EmergencyCall modeled with the Flat approach

2. Explain the possible subsequent scenario when Saturn is
Idle and audio quality is greater than the allowed thresh-
old?

3. Explain the possible subsequent scenario when Saturn
could not recover audio quality and is in a videoconfer-
ence with one endpoint?

4. Explain the possible subsequent scenario when Saturn is
connected to one endpoint and Do Not Disturb mode is
turned On?

5. Explain the possible subsequent scenario when Saturn is
in Do Not Disturb mode and is connected to two endpoints
and two more endpoints are dialing to Saturn at the same
time?

6. Explain possible subsequent scenario when Saturn is in
Connected state for m minutes?

7. Explain the possible subsequent scenario when Saturn is
in StandbyOn and an endpoint dials to it?

8. Explain the possible subsequent scenario when Saturn is
Idle and an endpoint dials to it with H254 videoconfer-
ence protocol?

9. Explain the possible subsequent scenario when Saturn is
in a videoconference with two endpoints with SIP proto-

col and a third endpoint dials to Saturn with H323 video-
conference protocol?

10. Explain the scenario when Saturn is in a videoconfer-
ence with six endpoints with SIP protocol and another
endpoint dials to Saturn with H323 videoconference
protocol?

References

1. Ali, M.S., Babar, M.A., Chen, L., Stol, K.-J.: A systematic review of
comparative evidence of aspect-oriented programming. Inf. Softw.
Technol. 52, 871–887 (2010)

2. Chitchyan, R., Rashid, A., Sawyer, P., Bakker, J., Alarcon, M.P.,
Garcia, A., Tekinerdogan, B., Clarke, S., Jackson, A.: Survey of
Aspect-Oriented Analysis and Design. Aspect-Oriented Software
Engineering Special Interest Group, Lancaster University, AOSD-
Europe-ULANC-9 (2005)

3. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Soft-
ware Development. Addison-Wesley Professional, Reading, MA
(2004)

4. Yedduladoddi, R.: Aspect Oriented Software Development: An
Approach to Composing UML Design Models. VDM Verlag Dr,
Müller, Saarbrücken (2009)

123

1220 S. Ali et al.

5. IEEE Standard Dictionary of Measures of the Software Aspects of
Dependability. IEEE Std 982.1-2005 (Revision of IEEE Std 982.1-
1988), pp. 1–34 (2006)

6. Standard for Software Quality Characteristics, International Orga-
nization for Standardization, ISO-9126-32003

7. Software Assurance Standard, NASA Technical Standard, NASA-
STD-8739.82005

8. Binder, R.V.: Testing object-oriented systems: models, patterns,
and tools. Addison-Wesley Longman Publishing Co., Inc., Read-
ing, MA (1999)

9. Drusinsky, D.: Modeling and Verification using UML Statecharts:
A Working Guide to Reactive System Design, Runtime Monitoring
and Execution-based Model Checking, 1st edn. Newnes (2006)

10. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior
using aspect-oriented modeling to support robustness testing of
industrial systems. Syst. Softw. Model. (SOSYM) J. (Accepted for
publication) (2011)

11. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley Professional, Reading,
MA (2000)

12. Weigert, T., Reed, R.: Specifying Telecommunications Systems
with UML. In: UML for real: design of embedded real-time
systems. Kluwer Academic Publishers, Dordrecht, pp. 301–322
(2003)

13. SmartState. Available: http://www.smartstatestudio.com/. Acc-
essed April (2012)

14. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools
Approach. Morgan-Kaufmann, London (2007)

15. Cavarra, R., Crichton, C., Davies, J., Hartman, A., Mounier, L.:
Using UML for Automatic Test Generation Presented at the Inter-
national Symposium on Software Testing and Analysis (ISSTA
’02) (2002)

16. Pender, T.: UML Bible. Wiley, Hoboken (2003)
17. Whittle, J., Moreira, A., AraúJ., Jayaraman, P., Elkhodary, A.,

Rabbi, R.: An Expressive Aspect Composition Language for UML
State Diagrams. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) Model Driven Engineering Languages and Systems (2007)

18. Tessier, F., Badri, L., Badri, M.: Towards a Formal Detection of
Semantic Conflicts Between Aspects: A Model-Based Approach.
Presented at the 5th Aspect-Oriented Modeling Workshop In Con-
junction with UML 2004 (2004)

19. Ibm, OCL Parser. Available: http://www-01.ibm.com/software/
awdtools/library/standards/ocl-download.html. Accessed April
(2012)

20. Chiorean, D., Bortes, M., Corutiu, D., Botiza, C., Câu, A.: OCLE
(V2.0 ed.). Available: http://lci.cs.ubbcluj.ro/ocle/. Accessed April
(2012)

21. Egea, M.: EyeOCL Software. Available: http://maude.sip.ucm.es/
eos/. Accessed April (2012)

22. Zhang, G.: Towards Aspect-Oriented State Machines, Presented at
the 2nd Asian Workshop on Aspect-Oriented Software Develop-
ment (AOASIA’06), Tokyo (2006)

23. Zhang, G., Hö, M.: HiLA: High-Level Aspects for UML-
State Machines, Presented at the Proceedings of the 14th
Workshop on Aspect-Oriented Modeling (AOM@MoDELS’09)
(2009)

24. Zhang G., Hö M.M., Knapp, A.: Enhancing UML State Machines
with Aspects. In: Proceedings of the 10th International Conference
on Model Driven Engineering Languages and Systems (MoDELS)
(2007)

25. Xu, D., Xu, W., Nygard, K.: A State-Based Approach to Test-
ing Aspect-Oriented Programs. Presented at the 17th International
Conference on Software Engineering and Knowledge Engineering,
Taiwan (2005)

26. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications, Greenwich (2003)

27. Wohlin, C., Runeson, P., Höst, M.: Experimentation in Software
Engineering: An Introduction. Springer, Berlin (1999)

28. JMP. Available: http://www.jmp.com/. Accessed April (2012)
29. Shull, F., Singer, J., Sjø, D.I.K.: Guide to Advanced Empirical

Software Engineering. Springer, Berlin (2008)
30. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statis-

tical Procedures. Chapman and Hall/CRC, London (2007)
31. McNemar’s Test. Available: http://www.fon.hum.uva.nl/Service/

Statistics/McNemars_test.html. Accessed April (2012)
32. Thomas, L.: Retrospective power analysis. Conserv. Biol. 11, 276–

280 (1997)
33. Dybå, T., Kampenes, V.B., Hannay, J.E., Sjøberg, D.I.K.: System-

atic review: A systematic review of effect size in software engi-
neering experiments. Inf. Softw. Technol. 49, 1073–1086 (2007)

34. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects—
A comparative study of students and professionals in lead-time
impact assessment. Empir. Softw. Eng. 5, 201–214 (2000)

35. Arisholm, E., Sjoberg, D.I.K.: Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-
oriented software. IEEE Trans. Softw. Eng. 30, 521–534 (2004)

36. Holt, R.W., Boehm-Davis, D.A., Shultz, A.C.: Mental representa-
tions of programs for student and professional programmers. In:
Gary, M.O., Sylvia, S., Elliot, S. (eds.) Empirical Studies of Pro-
grammers: Second Workshop, pp. 33–46. Ablex Publishing Corp,
Norwood (1987)

37. Durr, P., Bergmans, L., Aksit, M.: A Controlled Experiment for the
Assessment of Aspects-Tracing in an Industrial Context. University
of Twente, CTIT, Enschede (2008)

38. Hanenberg, S., Kleinschmager, S., Josupeit-Walter, M.: Does
Aspect-Oriented Programming Increase the Development Speed
for Crosscutting Code? An Empirical Study, Presented at the 2009
3rd International Symposium on Empirical Software Engineering
and Measurement (2009)

39. Walker, R.J., Baniassad, E.L.A., Murphy, G.C.: An Initial Assess-
ment of Aspect-Oriented Programming, Presented at the 21st
international Conference on Software Engineering. Los Angeles,
California (1999)

40. Bartsch, M., Harrison, R.: An exploratory study of the effect
of aspect-oriented programming on maintainability. Softw. Qual.
Control 16, 23–44 (2008)

41. Ferrari, F., Burrows, R., Lemos, V., Garcia, A., Figueiredo, E.,
Cacho, N., Lopes, F., Temudo, N., Silva, L., Soares, S., Rashid,
A., Masiero, P., Batista, T., Maldonado, J.: An exploratory study of
fault-proneness in evolving aspect-oriented programs, presented at
the proceedings of the 32nd ACM/IEEE international conference
on software engineering? vol. 1, Cape Town (2010)

42. Farias, K., Garcia, A., Whittle, J.: Assessing the impact of aspects
on model composition effort, presented at the proceedings of the 9th
international conference on aspect-oriented software development,
Rennes and Saint-Malo

43. Carton, A., Driver, C., Jackson, A., Clarke, S.: Model-Driven
Theme/UML. In: Shmuel, K., Harold, O., Robert, F., Jean-Marc, J.,
Quel, Z. (eds.) Transactions on Aspect-Oriented Software Devel-
opment VI, pp. 238–266. Springer, Berlin (2009)

44. Hovsepyan, A., Scandariato, R., Baelen, S.V., Berbers, Y., Joosen,
W.: From aspect-oriented models to aspect-oriented code?: the
maintenance perspective, presented at the proceedings of the 9th
international conference on aspect-oriented software development,
Rennes and Saint-Malo

45. Mouchawrab, S., Briand, L.C., Labiche, Y., Penta, M.D.: Assess-
ing, comparing, and combining state machine-based testing and
structural testing: a series of experiments. IEEE Trans. Softw. Eng.
37, 161–187 (2011)

46. Briand, L.C., Penta, M.D., Labiche, Y.: Assessing and improv-
ing state-based class testing: a series of experiments. IEEE Trans.
Softw. Eng. 30, 770–793 (2004)

123

http://www.smartstatestudio.com/
http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://lci.cs.ubbcluj.ro/ocle/
http://maude.sip.ucm.es/eos/
http://maude.sip.ucm.es/eos/
http://www.jmp.com/
http://www.fon.hum.uva.nl/Service/Statistics/McNemars_test.html
http://www.fon.hum.uva.nl/Service/Statistics/McNemars_test.html

Does aspect-oriented modeling help improve the readability of UML state machines? 1221

47. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the
readability of state-based formal requirements specification lan-
guages, presented at the proceedings of the 24th international con-
ference on software engineering. Orlando, Florida (2002)

48. IBM Rational Software Architect (RSA). Available: http://www.
ibm.com/developerworks/rational/products/rsa/. Accessed April
(2012)

Author Biographies

Shaukat Ali is currently a
research scientist in Certus Soft-
ware Verification and Validation
Center, Simula Research Labora-
tory, Norway. He has been affil-
iated to Simula Research Lab
since 2007. He has been involved
in many industrial and research
projects related to Model-based
Testing (MBT) and Empiri-
cal Software Engineering since
2003. He has experience of work-
ing in several industries and aca-
demic research groups in many
countries including UK, Canada,

Norway, and Pakistan.

Tao Yue received her BEng
degree in the Department of
Automation Science and Electri-
cal Engineering, Beihang Uni-
versity, China, the M.A.Sc and
PhD degrees in the Department
of Systems and Computer Engi-
neering at Carleton University,
Ottawa, Canada in 2006 and
2010, respectively. She is now a
senior research scientist of Sim-
ula Research Laboratory, Oslo,
Norway, where she is leading the
expertise area of Model Driven
Engineering (MDE). She has

around 16 years of experience of conducting industry-oriented research
with a focus on MDE in various application domains such as Avion-
ics, Maritime and Energy, and Communications in several countries
including Canada, Norway, and China. Her main research area is soft-
ware engineering, with specific interested in requirements engineering,
model-based development, model-based configuration and variability
modeling, and empirical software engineering.

Lionel C. Briand is pro-
fessor and FNR PEARL chair
in software verification and
validation at the SnT centre for
Security, Reliability, and Trust,
University of Luxembourg. Lionel
started his career as a software
engineer in France (CS Commu-
nications & Systems) and has
conducted applied research in
collaboration with industry for
more than 20 years. Until moving
to Luxembourg in January 2012,
he was heading the Certus center
for software verification and val-

idation at Simula Research Laboratory, where he was leading applied
research projects in collaboration with industrial partners. Before that,
he was on the faculty of the department of Systems and Computer Engi-
neering, Carleton University, Ottawa, Canada, where he was full pro-
fessor and held the Canada Research Chair (Tier I) in Software Quality
Engineering. He has also been the software quality engineering depart-
ment head at the Fraunhofer Institute for Experimental Software Engi-
neering, Germany, and worked as a research scientist for the Software
Engineering Laboratory, a consortium of the NASA Goddard Space
Flight Center, CSC, and the University of Maryland, USA. Lionel has
been on the program, steering, or organization committees of many
international, IEEE and ACM conferences. He is the coeditor-in-chief
of Empirical Software Engineering (Springer) and is a member of the
editorial boards of Systems and Software Modeling (Springer) and Soft-
ware Testing, Verification, and Reliability (Wiley). He was on the board
of IEEE Transactions on Software Engineering from 2000 to 2004.
Lionel was elevated to the grade of IEEE Fellow for his work on the
testing of object-oriented systems. He was recently granted the IEEE
Computer Society Harlan Mills award for his work on model-based
verification and testing. His research interests include: model-driven
development, testing and verification, search-based software engineer-
ing, and empirical software engineering.

123

http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/

	Does aspect-oriented modeling help improve the readability of UML state machines?
	Abstract
	1 Introduction
	2 Background
	2.1 UML state machines
	2.2 Aspect state machines
	2.2.1 Introduction
	2.2.2 Main concepts in AspectSM
	2.2.3 Example of applying AspectSM

	3 Experiments planning
	3.1 Goal, research questions and hypotheses
	3.2 Participants
	3.3 Material
	3.3.1 Case study system
	3.3.2 Design defect classification
	3.3.3 Seeded defects
	3.3.4 Comprehension questionnaire
	3.3.5 Answer sheets

	3.4 Design
	3.4.1 Design of the initial experiment
	3.4.2 Design of the replication

	3.5 Dependent variables
	3.6 Data collection
	3.7 Training
	3.8 Replication
	3.8.1 Reduced external validity threats
	3.8.2 Improved hierarchical modeling of ECS
	3.8.3 Improved assignments of subjects to treatments
	3.8.4 Other differences

	3.9 Overview of statistical tests
	3.9.1 Statistical tests
	3.9.2 Power analysis

	4 Results and discussion
	4.1 Results and analysis for defect identification (RQ1)
	4.1.1 Results for the initial experiment
	4.1.2 Results for the replication
	4.1.3 Discussion

	4.2 Results and analysis for defect fixing (RQ2)
	4.2.1 Results for the ECS system
	4.2.2 Results for the VCS system
	4.2.3 Discussion

	4.3 Results and analysis for comprehensibility (RQ3)
	4.3.1 Results for the initial experiment
	4.3.2 Results for the replication
	4.3.3 Discussion

	4.4 Results and analysis for effort (RQ4)
	4.4.1 Results
	4.4.2 Discussion

	4.5 Concluding remarks

	5 Threat to validity
	5.1 Conclusion validity threats
	5.2 Internal validity threats
	5.3 Construct validity threats
	5.4 External validity threats

	6 Related work
	6.1 Comparison with experiments reported in AO
	6.2 Comparison with non-AO experiments for state machines

	7 Conclusion and future work
	Acknowledgments
	Appendix A: Models for elevator control system (ECS)
	Appendix A: Models for elevator control system (ECS)
	Appendix B: Comprehension questionnaire for replication
	Appendix B: Comprehension questionnaire for replication
	References

