
Softw Syst Model (2014) 13:1085–1116
DOI 10.1007/s10270-012-0288-2

THEME SECTION PAPER

An enterprise architecture framework for multi-attribute
information systems analysis

Per Närman · Markus Buschle · Mathias Ekstedt

Received: 11 September 2011 / Revised: 7 August 2012 / Accepted: 13 September 2012 / Published online: 16 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Enterprise architecture is a model-based IT and
business management discipline. Enterprise architecture
analysis concerns using enterprise architecture models for
analysis of selected properties to provide decision support.
This paper presents a framework based on the ArchiMate
metamodel for the assessment of four properties, viz., appli-
cation usage, system availability, service response time and
data accuracy. The framework integrates four existing meta-
models into one and implements these in a tool for enter-
prise architecture analysis. The paper presents the overall
metamodel and four viewpoints, one for each property. The
underlying theory and formalization of the four viewpoints is
presented. In addition to the tool implementation, a running
example as well as guidelines for usage makes the viewpoints
easily applicable.

Keywords Enterprise architecture · Enterprise architecture
analysis · Enterprise architecture tool · Data accuracy ·
Technology usage · Service availability · Service response
time

1 Introduction

The use of IT is pervasive in today’s business and signifi-
cantly impacts business operations [11,26,79,83]. Manag-
ing IT properly has become an imperative and enterprise
architecture (EA) has become an established discipline to

Communicated by Dr. Tony Clark, Balbir Barn, Alan Brown,
and Florian Matthes.

P. Närman (B) · M. Buschle · M. Ekstedt
Royal Institute of Technology, Industrial Information and Control
Systems, Osquldas väg 10, 10044 Stockholm, Sweden
e-mail: pern@ics.kth.se

this end [10,15,104,105,119]. EA uses architecture mod-
els to aid communication and ease understanding of com-
plex systems comprising multiple business, application and
IT infrastructure components [60]. Analysis of architecture
models for decision support is one tenet of such understand-
ing [60,68]. EA analysis involves querying models with
the aim of evaluating various properties, such as business
IT-alignment, security and more. Nevertheless, the concept of
EA analysis has not made it into mainstream enterprise archi-
tecture practice. There are some publications on the topic of
EA analysis, notably [24,34,40,51,60,61], but the major EA
frameworks such as the Zachman framework [131], TOGAF
[115], NAF [89] or DoDAF [30] fail to address the topic
at all.

EA analysis is useful both in identifying improvement
areas related to the as-is architecture but also when faced with
decisions regarding the future to-be architectures [61]. The
process of using EA analysis for decision-making involves
(i) defining the scenarios—for instance the choice of a best-
of-breed application or a component from an ERP-package;
(ii) determining the properties of interest when making
the decision—for instance functionality, security or avail-
ability; (iii) modeling the scenarios using an architecture
metamodel which allows for analysis of the properties of
interest; (iv) analyzing the scenario’s properties of interest to
the decision-maker—functionality and availability-wise, the
best-of-breed application may be superior to the ERP pack-
age but does not meet the mandated security levels; and (v)
make a decision—for instance the ERP package may be cho-
sen since security is prioritized more highly than the other
properties.

This paper presents the results from a research program on
quantitative EA analysis for decision-making. The approach
employs probabilistic modeling and analysis [60,69,111,
116]. A specific aim has been to create models which are

123

1086 P. Närman et al.

not prohibitively expensive to use, especially in terms of data
collection; a frequent cost driver [58,88].

As a part of this research program, four metamodels based
on ArchiMate [114] have been developed for the analysis of
service availability [90], response time 1[85], data accuracy
[87] and application usage [86].

Application usage, i.e., determining whether application
users voluntarily use the application, is a key concern in eval-
uating application portfolios since low application usage is
often associated with poor user performance [25,26,128].
Service response time, i.e., the time a service requires to
complete a transaction, significantly impairs user experience
when degraded [93]. Service availability, i.e., the fraction of
the total time that a service is available to its users, is crucial
to ensure continuous business operations [107]; not only are
the direct costs of unavailable IT systems high [52], but IT
incidents disrupting business operations also have an adverse
impact on the market value of publicly traded companies [8].
Poor data accuracy, i.e., the fraction of a set of data objects
are accurate, impairs organizational decision-making, drives
cost of operations and reduces customer satisfaction [99].

The four properties do not constitute an exhaustive set
of aspects to consider when making IT-related decisions.
The reason for choosing these particular properties is due to
requirements made by organizations with which the authors
have performed case studies over the past years (notably the
one reported in [38]). Even though the properties are not
the full set of important properties, they still cover many
important facets of information systems. This can be shown
by comparing the attributes to Delone and McLean’s model
for information system success [25,26]. This model posits
that system quality, service quality and information quality
affect user satisfaction, user intention to use as well as system
usage and the higher these factors are the higher the net ben-
efits will be [26]. The application usage metamodel could be
mapped to the user satisfaction, intention to use and system
usage. The service availability and the service response time
metamodels are squarely within the service quality dimen-
sion and data accuracy is relevant to the information quality
dimension.

It is beneficial to reuse models as far as possible since it
promotes easier communication between different domains
[77] and keeps modeling costs down [95]. Creating mul-
tiple and incompatible models depicting the same reality
but with a slightly different purpose is a common prob-
lem. For instance, process models made by for the purpose
of ISO 9000 certification are seldom reused in “regular”
EA modeling for purpose of design or documentation [95].
Despite using ArchiMate as their base metamodel, the four
metamodels were not fully consistent in their use of con-

1 Pre-print, revision submitted to the Journal of Strategic Information
Systems, manuscript available for review upon request.

structs thus prohibiting architects from leveraging the archi-
tecture content for multiple analyses and driving the cost of
modeling.

Another important aspect of information system decision-
making is the necessity to make trade-offs between different
properties. For instance, security is much improved by adding
anti-virus software, but it may have an adverse impact on
performance.

This paper integrates these four metamodels on EA analy-
sis into one combined EA metamodel thereby allowing both
re-use and trade-off analysis. The four different metamodels
mentioned above are codified as pre-defined and re-usable
viewpoints each addressing a specific concern, i.e., a spe-
cific analysis.

Moreover, the original metamodels were expressed using
a probabilistic formalism known as probabilistic relational
models (PRM) featuring Bayesian networks [37]. PRMs
are capable of integrated modeling and analysis but come
with a number of drawbacks including (i) intractability of
inference—when dealing with particularly hybrid Bayesian
networks, the analyst may encounter difficulties in perform-
ing accurate inference [20], this almost always necessitates
approximate reasoning; (ii) no mechanism to query models
for structural information—the PRMs are limited to reason-
ing about object attributes and finally; (iii) poor support for
specifying modeling constraints—PRMs are not very sophis-
ticated in defining modeling constraints.

To overcome these drawbacks, the four metamodels
have been re-implemented in the more expressive formal-
ism known as the p-OCL, short for probabilistic Object
Constraint Language [116], which extends OCL [1] with
probabilistic reasoning. The viewpoints have also been
implemented in a tool (known as EAAT for Enterprise Archi-
tecture Analysis Tool 2) for p-OCL modeling and analysis
[16]. The resulting EAAT files can be found online and down-
loaded, see Appendix C.

In summary, this article has the following aims:

1. To integrate four previously published metamodels for
architecture analysis into one coherent metamodel thus
allowing reuse of models and easy trade-off analysis.

2. To formalize the four metamodels using the p-OCL for-
malism and to implement them in the EAAT tool.

3. To present the individual metamodels as viewpoints per-
taining to the overall metamodel.

The result, an integrated metamodel, is a Design Theory
[42] or a theory for “design and action”. Unlike other scien-
tific theories which aim to predict or analyze certain aspects
of reality, a theory for design and action provides guidance

2 http://www.ics.kth.se/eat.

123

http://www.ics.kth.se/eat.

Enterprise architecture framework 1087

on how to do something (in this case perform EA analysis)
[42]. It will be discussed as such in the Discussion section.

The remainder of this article is outlined as follows. Sec-
tion 2 will cover some related works on EA analysis. Sec-
tion 3 will briefly introduce the OCL formalism in which the
metamodel is expressed. Section 4 provides an overview of
the entire metamodel. Section 5 presents the four viewpoints
in detail, Sect. 6 discusses the results from a design science
perspective and Sect. 7 concludes the paper.

2 Related works

The EA frameworks in use today offer little or no support for
architecture analysis. The Zachman framework categorizes
architecture models according to a taxonomy, but does not
attach them to any metamodel and does not offer any support
as far as analysis goes. The military frameworks MoDAF
[81] and DoDAF [30] both offer wide arrays of viewpoints
addressing multiple stakeholder concerns. They do not, how-
ever, formally specify how to perform analysis beyond offer-
ing modeling suggestions. An exception to the rule is the
LISI framework for interoperability analysis which is tightly
integrated with the DoDAF framework [63].

The ArchiMate EA framework [114] comes with exten-
sions which allow for EA analysis, specifically of perfor-
mance and IT cost [50,51]. The former is partly integrated
in the framework presented here. However, there is a lack of
formal integration between the metamodel and the analysis
mechanisms which makes tool implementation difficult.

There is a stream of research on EA analysis of individual
non-functional properties [61] such as security [111], mod-
ifiability [69], interoperability [117] or data accuracy [87].
These metamodels presented in these examples have how-
ever been limited to analysis of single properties. An early
attempt at EA analysis of multiple properties was presented
in the work by Gammelgård et al. [38], but with a very weak
link to actual architecture models.

The work by [40] proposed describing the EA of an entire
enterprise and perform simulations on it to identify oppor-
tunities to increase enterprise profitability. Although worthy
of praise for its ambition, the notion of simulating the entire
enterprise has very little connection to IT decision-making.
De Boear et al. [24] present an XML-based formalism for
EA analysis, but offer very few details on how specifically
to undertake the analysis. Enterprise architecture patterns is
a topic gaining traction in the community, but these either
support qualitative analysis [32] or focuses only on business
processes [106].

As far as tools are concerned, the ABACUS tool [31] offers
several analysis possibilities including performance, total
cost of ownership and reliability analyses. Although there
is some overlap with the present work in terms of addressing

concerns, (performance and availability) the ABACUS does
not offer any support for application usage or data accuracy
analysis.

There are plenty of multi-attribute software architecture
analysis methods such as [5,7,39,64–66]. These are, how-
ever, demanding in terms of data collection and often require
the user to exhaustively test the system’s constituent com-
ponents which is not feasible in an EA context with a large
number of components.

There are many frameworks for assessment of applica-
tion portfolio evaluation [13,102,108,128]. None of these,
however, are able to explain why some applications are vol-
untarily used and why others are not.

The software architecture community offers specific reli-
ability and availability analysis frameworks as well such
as [9,21,56,73–75,101,103,126,127,130], but these too are
rather cumbersome to use in an EA setting. There are some
dedicated EA availability analysis methods, but these are
purely qualitative [97], fail to take component redundancy
into account [14,47], or restrain themselves to the military
domain [35,36].

As for response time, there are three kinds of analysis
methods: [57] measurements—using experimental methods
to directly measure response time [82], simulation-based
methods—creating executable response time simulation mod-
els [5,31,80], and analytical modeling—using queueing the-
ory [12,17,18,70,100] to measure response time [96,110].
There are methods for response time analysis of business
processes (e.g., [2]), software applications (e.g., [110]), the
infrastructure domain (e.g., [43]), or embedded systems (e.g.,
[27]), however, there are few attempts at integrating these
perspectives into one coherent method [49]. Both the IT
governance framework COBIT [55] and service manage-
ment framework ITIL [118] propose capacity management
processes service response time management but do not go
into detail on how to perform response time analysis. The
method by Iacob and Jonkers [49–51,71] employs queuing
networks to analyze performance incorporating all architec-
tural domains.

As for data accuracy, The Quality Entity Relationship
(QER) model and the Polygen model represent some of
the earliest attempts at classifying data quality [124] using
relational algebra but without integrating the analysis with
modeling. So called Information Product Maps models [76],
extended to an UML profile [125], are able to graphically
depict information flow but without quantitative data qual-
ity analysis. Ballou et al. [4] used data flow diagrams and
a quantitative approach to illustrate data accuracy deterio-
ration in applications, but this was confined to numerical
data. Cushing et al. [22] presented a method to illus-
trate how all kinds of data could both improve and dete-
riorate across business processes, but not in a modeling
context.

123

1088 P. Närman et al.

In conclusion, we find that there are no methods avail-
able to perform integrated EA analysis of the four properties
mentioned in the introduction, and we therefore proceed to
integrate the metamodels published in [85–87,90].

3 Probabilistic OCL

The Object Constraint Language (OCL) is a formal lan-
guage typically used to describe constraints on UML models
[1]. These expressions typically specify invariant conditions
that must hold for the system being modeled, pre- and post-
conditions on operations and methods, or queries over objects
described in a model.

The p-OCL language is an extension of OCL for proba-
bilistic assessment and prediction of system qualities, first
introduced in [116] (under the name Pi-OCL). The main fea-
ture of p-OCL is its ability to express uncertainties of objects,
relations and attributes in the UML-models and perform
probabilistic assessments incorporating these uncertainties,
as illustrated in [116].

A typical usage of p-OCL would thus be to create a model
for predicting, e.g., the availability of a certain type of appli-
cation. Assume the simple case where the availability of
the application is solely dependent on the availability of the
redundant servers executing the application; a p-OCL expres-
sion might look like this,

This example demonstrates the similarity between p-OCL
and OCL, since the expression is not only a valid p-OCL
expression, but also a valid OCL expression. The first line
defines the context of the expression, namely the application.
In the second line, the attribute available is defined as
a function of the availability of the servers that execute it.
In the example, it is sufficient that there exists one available
server for the application to be available.

In p-OCL, two kinds of uncertainty are introduced.
Firstly, attributes may be stochastic. When attributes are
instantiated, their values are thus expressed as probability
distributions. For instance, the probability distribution of the
instance myServer.available might be

The probability that a myServer instance is avail-
able is thus 99 %. For a normally distributed attribute
operatingCost of the type Real with a mean value of
$3,500 and a standard deviation of $200, the declaration
would look like this,

i.e., the operating costs of server is normally distributed with
mean 3,500 and standard deviation 200.

Secondly, the existence of objects and relationships may
be uncertain. It may, for instance, be the case that we no
longer know whether a specific server is still in service or
whether it has been retired. This is a case of object existence
uncertainty.

Such uncertainty is specified using an existence attribute
E that is mandatory for all classes (here using the concept
class in the regular object-oriented aspect of the word), where
the probability distribution of the instance myServer.E
might be

i.e., there is a 80 % chance that the server still exists.
We may also be uncertain of whether myServer is still

in the cluster servicing a specific application, i.e., whether
there is a connection between the server and the application.
Similarly, this relationship uncertainty is specified with an
existence attribute E on the relationships.

In the present article the reader will be confronted with
p-OCL in three ways: (i) in the form of metamodel attribute
specifications; (ii) as metamodel invariants which constrain
the way in which the model may be constructed; and (iii) as
operations which are methods that aid the specification of
invariants and attributes. Appendix A and B contains all of
these expressions.

An example metamodel attribute expression is shown below:

This is referring to the class UsageRelation in
Fig. 2 and specifies that getFunctionality() opera-
tion should be utilized. The operation getFunctionality() is
specified as follows:

where it says that getFunctionality() requires no
input, and generates a Real as output according to a state-
ment (which will be explained in Sect. 5.1). See also State-
ment 2 in Appendix A.

An example invariant, noWriteAndRead, can be found
below:

123

Enterprise architecture framework 1089

Fig. 1 The original ArchiMate metamodel [114]

This specifies that objects of the class Internal
BehaviorElement from Fig. 2 are not allowed to both
write and read the same data object.

A full exposition of the p-OCL language is beyond
the scope of this paper. Suffice to say here that the
EAAT tool described in [16] now implements p-OCL
using the EMF-OCL plug-in to the Eclipse Modeling
Framework [33] and has been employed to implement the
metamodels of this paper. The probabilistic aspects are
implemented in a Monte Carlo fashion: in every itera-
tion, the stochastic p-OCL variables are instantiated with
instance values according to their respective distribution.
This includes the existence of classes and relationships,
which are sometimes instantiated, sometimes not, depend-
ing on the distribution. Then, each p-OCL statement is
transformed into a proper OCL statement and evaluated
using the EMF-OCL interpreter. The final value returned
by the model when queried is a weighted mean of all the
iterations.

4 Metamodel

This section will describe the overall metamodel which
underlies the viewpoints described in the next section.

4.1 ArchiMate

The metamodel is a modification of the ArchiMate meta-
model [114] which is a mature and much used EA frame-
work, see Fig. 1.

The original ArchiMate metamodel contains active struc-
ture elements, passive structure elements and behavioral
structure elements. Behavioral elements describe dynamic
behavior which can be performed by either IT systems
or human beings and which are modeled as active struc-
ture elements. ArchiMate differentiates between internal
behavior elements, which are directly linked to active struc-
ture elements, and external behavior elements i.e., differ-
ent kinds of services, which represent the behavior as seen

123

1090 P. Närman et al.

Fig. 2 The metamodel on which the viewpoints are based. The white attributes show the output attributes, and the grey denote the input attributes;
those that need to be set by the users. The grey boxes represent classes which have been added to the original ArchiMate metamodel

by the users. The passive structure elements describe what
is accomplished as a consequence of the behavior. Exam-
ples of behavior concepts are BusinessProcesses or
ApplicationServices, active structure components
can be ApplicationComponent or Roles and exam-
ples of passive structure elements are DataObjects.

Furthermore, the classes of the ArchiMate metamodel can
be grouped in three layers; business, application and technol-
ogy. This is fairly standard in EA modeling apart from the
fact that ArchiMate integrates the informational aspect in all
three layers, information is otherwise often considered as a
layer of its own, see e.g., TOGAF 9 [115].

4.2 The metamodel

The ArchiMate metamodel has been augmented with a
number of classes and attributes, and this has resulted in
the metamodel described in Fig. 2. The metamodel shows
all of the metamodel classes, and all attributes which are

relevant to users by either requiring some sort of input
from the user (grey attributes) or by providing the users
with useful information about either one of the four prop-
erties (white attributes). For clarity, the metamodel in
Fig. 2 omits attributes which are used as intermediary
variables, these are included in the individual viewpoint
below. Notice also that the present metamodel contains the
InfrastructureFunction which was not present in
the original metamodel, but added in more recent ArchiMate
works [72].

The passive structure elements of the metamodel are
called DataSet and RepresentationSet and are
slight alterations of the original ArchiMate DataObjects
and Representations. The modification consists in
defining DataSet and Representation Set as
sets comprising multiple DataObjects or Representa
tions. These are used for the data accuracy viewpoint.

The internal active structure elements consist of
BusinessProcesses, ApplicationFunctions

123

Enterprise architecture framework 1091

and InfrastructureFunctions. These interface with
the external services through a number of placeholder
classes, Realize and Use which allow the modeler to
set attribute values on relations for the service response
time viewpoint, and Gate_Use and Gate_Realize
which are logical gates depicting how availability flows
through the architecture in the availability viewpoint. The
GateToGate_Realize andGateToGate_Use classes
are used as containers for intermediate attributes
when multiple gates are connected which is important
in the service availability and the response time
viewpoints.

The external services of the metamodel are
ApplicationService and Infrastructure
Service. ApplicationServices and Business
Processes have a special relation as shown in the
Process-ServiceInterface class which is used in
the Application Usage viewpoint.

The active structure elements of the metamodel are repre-
sented as Roles, Application Components
and Nodes. Roles interface with Application
Components through theRoleComponentInterface
class for the Application Usage viewpoint. Furthermore,
there is a class between the Process–Service
Interface class and the ApplicationComponent
class which is called UsageRelation. This is also used
in the Application Usage viewpoint.

4.3 Creating the metamodel

As mentioned above, the metamodel was created by
integrating and slightly altering the original metamodels
from [85–87,90]. The metamodel classes were compared
one-by-one and those classes which were identical between
the metamodels had their respective sets of attributes and
relations merged. In some cases, changes to the overall meta-
model had to be made. In particular, the service response
time metamodel and the availability metamodel exhibited
traits which were at odds with each other: firstly, the
response time metamodel differentiated Services from
InternalBehaviorElements. The availability meta-
model, however did not distinguish between Service and
InternalBehaviorElement. Secondly, the two meta-
models used logical gates in a slightly different manner.
Ultimately, these two differences led to the inclusion of
both the Service and InternalBehaviorElement
classes as well as two new logical gates, one for the Use
relation and one for the Realize relation.

The original response time metamodel stipulated that
there was a one-to-one relation between Internal
BehaviorElements and Services. This is incompat-
ible with the application usage and service availability meta-
models, and thus some changes had to be made to the service

response time metamodel to accommodate many-to-many
relations (see Sect. 5.3).

Furthermore, the original metamodels were expressed
using either the Probabilistic Relational Model (PRM)
[37] or the hybrid PRM (HPRM) [84] formalism, imple-
mented in the EAAT tool. The present metamodel is also
implemented in the EAAT tool, but uses the p-OCL formal-
ism instead. Thus, all of the PRM and HPRM expressions
have been transformed into p-OCL statements. In the case
of the logical gates, the superior flexibility of the p-OCL
formalism made it possible to avoid having separate meta-
model classes for AND-gates and OR-gates, and instead
choose the kind of gate in the attribute Gate.Type.

An addition to the previous work are the p-OCL
invariants that express constraints on how model
objects may be connected to each other; these are found in
Appendix B. There is the checkLayerMatching invari-
ant (Statement 23), which specifies that Services may only
be realized by InternalBehaviorElements from the same
ArchiMate layer, there is the noReadAndWrite and
noWriteAndRead invariances (Statements 21 and 22),
which make sure that a PassiveComponentSet cannot
be read and written simultaneously by the same Service
or InternalBehaviorElement, respectively.

5 Viewpoints

This section will present a number of viewpoints, i.e.,
re-usable ways in which to model so as to address commonly
encountered stakeholder concerns [113]. Each viewpoint
describes the specific concerns it addresses and the stakehold-
ers likely to possess these concerns. Next is an account of the
theory used to perform the analysis that addresses the con-
cerns together with a detailed description of how the view-
point works, an example view is presented as well as some
guidelines for how to use the viewpoints in practice. TOGAF
9 describes the relation between viewpoints and views: “A
viewpoint is a model (or description) of the information con-
tained in a view” [115]. Conversely, the view is a concrete
representation of reality described according to a viewpoint.
Throughout the text, there will be qualitative definitions of
all derived viewpoint attributes together with references to
the actual OCL Statements found in Appendix A.

5.1 Application usage viewpoint

The application usage viewpoint is an adaption of the meta-
model which was developed and validated in [86].

Concerns The first viewpoint concerns application usage;
why do users voluntarily embrace certain applications and
object to using others? Voluntary application usage is a very

123

1092 P. Närman et al.

important indicator of the quality of the application portfolio
[26,128].

Stakeholder The stakeholders are those interested taking a
top-down perspective on the application portfolio. These
may include enterprise architects or application architects
and ultimately the organization’s CIO.

Theory Two of the most widely used theories for technol-
ogy and IT usage predictions are the technology acceptance
model (TAM) [23] and the task-technology Fit (TTF) model
[41].

The TAM posits that the usage of information systems
can be explained by two variables; the perceived usefulness
(PU) and the perceived ease of use (PEoU) of the information
system [23].

TTF is built on the idea that if the users perceive a infor-
mation systems to have characteristics that fit their work
tasks, they are more likely to use the technology and per-
form their work tasks better. Dishaw and Strong [28] defined
task-technology fit as “the matching of the functional capa-
bility of available software with the activity demands of the
task”, and operationalized task and tool characteristics for the

domain of computer maintenance based on previously pub-
lished reference models of computer maintenance tasks [122]
and maintenance software tool functionality [44]. Dishaw
and Strong [28] used the concept of strategic fit as inter-
action [121] (meaning multiplication of task and functional
fulfillment) to operationalize TTF.

Dishaw and Strong [29] also applied an integrated
TAM/TTF model with greater explanatory power than the
separate models, something which was corroborated by [19,
67,92]. Similarly, the application usage viewpoint employs
a combined TAM/TTF theory.

Viewpoint description This viewpoint needs to be tailored to
its application domain. The tailoring involves defining and
operationalizing the domain’s tasks, IT functionality, how the
IT functions support the tasks (i.e., the TTF variables) and
finally the quantitative degree to which this support exists in
the form of a linear regression model. Närman et al. [86] pre-
sented a tailored metamodel and associated linear regression
model for the maintenance management domain.

The viewpoint is presented in Fig. 3. The aim of
employing the viewpoint is to obtain a value for the
ApplicationComponent.Usage attribute. This is

Fig. 3 The application usage viewpoint

123

Enterprise architecture framework 1093

derived through a linear regression model which relates the
pertinent TTF and TAM variables to usage according to Eq. 1.

Usage = (α + β1 ∗ T T F1 + · · · + βn ∗ T T FN

+βn+1 ∗ PU + βn+2 ∗ P EoU) (1)

The constants α and βi,...,n+2 (one β per TTF matching,
see below) are constants determined by processing empirical
survey data of application usage, PU, PEoU and TTF for the
domain in question.

To express attributes on relations, a number of placeholder
classes are introduced. Thus, the viewpoint features Role-
ComponentInterface, which can be used to express the
PU and PEoU attributes on the relations between Roles and
ApplicationComponents. The ProcessService
Interface is used to determine the degree to which
TTF exists between pairs of BusinessProcesses and
ApplicationServices. TheUsageRelationplace-
holder class is used to propagate TTF values back to theApp-
licationComponents which implements (parts of) the
functionality.

The PU and PEoU variables are found as the attributes
RoleComponentInterface. PerceivedUseful
ness andRoleComponentInterface.Perceived-
EaseOfUse (PEoU and PU henceforth), respectively. These
are assessed by asking the actors using Application-
Components about the usefulness and ease of use of that
particular application. The attribute values are derived by tak-
ing the mean of the answers per Role and Application-
Component pair.

The attribute ApplicationComponent.
WeightedTAM is the linear combination of the mean of
all RoleComponentInterface.PU and RoleCom-
ponentInterface.PEoU attributes pertaining to the
ApplicationComponent, and the regression coeffi-
cients, in the model denoted ApplicationComponent.
Regr.Coeff.PU and ApplicationComponent.
Regr.Coeff.PEoU, respectively, see Statement 1.

As mentioned already, the TTF values need to be
assigned to ApplicationComponents through the
UsageRelation. There are three attributes on the
UsageRelation class: (i)UsageRelation.Regres-
sionCoefficient, (ii) UsageRelation.Appli
cationWeight and (iii) UsageRelation.
WeightedTTF. These express (i) the regression coefficient
showing the quantitative impact a particular TTF variable
has on Application Component.Usage (theβ in
Eq. 1), (ii) the relative functional contribution of
the ApplicationComponent to the total Applica-
tionService.Functionality, and (iii) the TTF value
weighted using the former two attributes (see Statement 3).

The TTF variable itself is represented as the Pro-
cessServiceInterface.TTF attribute and is derived

by multiplying the attributes ApplicationService.-
Functionality andBusinessProcess.TaskFul-
fillment, see Statement 5. BusinessProcess.
TaskFulfillment is the mean of user assessments of
the task fulfillment for a particular business process, and
ApplicationService.Functionality is the mean
of user assessments of the total offered functionality with
respect to a standard service description.

This functionality may be offered by several
ApplicationComponents; the specific functionality
implemented in a particular ApplicationComponent
is therefore modeled in the ApplicationFunction.
Functionality attribute. Sometimes several Applica
tion Functions aggregate to form otherApplication
Functions. The sum of their functionality is then found in
the ApplicationService.Functionality
attribute. The ApplicationFunction.Functiona-
lity attribute is also used to determine the Usage-
Relation.ApplicationWeight by dividing the
associatedApplicationFunction.Functionality
and ApplicationService.Functionality
attributes, see Statement 2.

Finally, the sum of the attributes ApplicationCom-
ponent.WeightedTAM, the UsageRelation.
WeightedTTF and ApplicationComponent.
DomainConstant (the α in Eq. 1) yields the
ApplicationComponent.Usage attribute, see State-
ment 4.

Validation of the technology usage viewpoint The tech-
nology usage viewpoint was validated by (i) demonstrat-
ing that it was possible to tailor the viewpoint for a
specific domain, and (ii) by showing that the operational-
ization of the tailored viewpoint did indeed account for
variations in application usage within the maintenance man-
agement domain. As for (i) it was taken care of by creating
reference models of IT functionality and task descriptions
based on [53,59,62,94,109,129] and validating these with
interviews.

The second part of the validation consisted of testing the
three task-technology fit dimensions in a survey with 55
respondents working with maintenance management at five
companies. The results showed that the model taken as a
whole did predict a high degree of variation in application
usage (adj.R2∗∗ = 0.548).

More details on the maintenance management opera-
tionalization and the validation of the viewpoint can be found
in [86].

Guidelines for use In the case the organization does not have
reference models for tasks and functionality, these have to
be developed, perhaps using the approach of [86]. Once the
appropriate models are in place, however, the viewpoint may
be employed as follows:

123

1094 P. Närman et al.

Fig. 4 An example application usage view

Firstly, compile a list of all applications and processes
relevant to the inquiry. These lists can be elicited by process
managers or anyone with a holistic view of the pertinent
processes.

Secondly, perform a survey with a sufficient subset of
application users or process performers. For each function
of the reference model, the respondents are asked to name
the application that implements the function the most and
to which degree. For all tasks of the task reference model,
the respondents are asked to rate the degree to which they
perform the activities. The users are also asked to rate the
applications for PU and PEoU.

Thirdly, populate the architecture models with the
quantitative data from the surveys and perform the analysis.

An example application usage view To illustrate the use
of the viewpoint we present an example view for the fic-
titious company ACME Energy. The ACME Energy CIO
has ordered an exploratory study of the quality of ACME
Energy’s application portfolio. The application usage view-
point was employed to determine which applications users
liked and would use voluntarily. Here, we model one of

the applications, the computerized maintenance management
system (CMMS).

In the view of Fig. 4 we see the single Applica-
tionComponentCMMS which offers two Applica-
tionFunctions Generate failure statistics and Compile
maintenance KPIs which realize an ApplicationSer-
viceStudy Maintenance which in turn supports a Bus-
inessProcess with the same name. It was
discovered that the users considered the CMMS to be
all right functionality-wise, which together with a high
degree of BusinessProcess.TaskFulfillment
yielded a high ProcessService Interface.TTF for
the interface between the Study ApplicationService
and BusinessProcess.

Based on the PU and PEoU assessments by the roles
RolesMaintenance engineers and Maintenance analysts it
was obvious that in spite of the high mark for TTF, the users
did not find the CMMS to be particularly useful and certainly
not easy to use.

To investigate what caused the low PU and PEoU
assessments, the architects decided to investigate the service

123

Enterprise architecture framework 1095

availability offered by the CMMS. This was done using a
dedicated service availability viewpoint.

5.2 The service availability viewpoint

The service availability viewpoint is based on the metamodel
originally presented in [90].

Concerns The service availability viewpoint addresses the
concern of determining the availability of IT services deliv-
ered to application users, taking into account both the appli-
cation and infrastructure layer.

Stakeholder Some likely stakeholders for this viewpoint are
service managers and end-users.

Theory Availability is defined as the probability that a service
is available to its users [118] over its overall duration of time,
which mathematically can be defined as

Availability = MTTF

MTTF + MTTR
(2)

where MTTF denotes “mean time to failure” and MTTR
“mean time to repair”, respectively. MTTF is the inverse of
the failure rate (λ) of a component and MTTR is the inverse
of the repair rate of a component (μ). The average availability
Aavg of a component is thus:

Aavg = µ

µ + λ
(3)

Systems rarely consist of a single component. To model
availability in complex systems, three basic cases serve as
building blocks; the AND-case where the failure of a single
component is enough to bring the system down, the OR-case
where a single working component is enough to keep the sys-
tem up and the k-out-of-n case in which systems are function-
ing if at least k components are functioning, see Fig. 5. These
three cases are used recursively to model more advanced sce-
narios.

The viewpoint utilizes fault tree analysis (FTA) [112] for
the availability analysis.

A first assumption in FTA is independent of failures
among different component—implying that there are no
common cause failures—which simplifies the modeling task
[21].

Furthermore, the assumption of passive redundancy, per-
fect switching and no repairs is made [48].

When considering components a repaired item is assumed
to be in an “as good as new” condition, i.e., assuming perfect
repair. If not, assuming a constant MTTF over infinite time
will not be valid but instead the component would be in a dif-
ferent state after repair with a different probability of failure.
In the ISO 9126-2 standard a similar assumption is stated
implicitly [54]. The implications of these assumptions make

Fig. 5 The basic cases for parallel, serial and k-out-of-n systems,
respectively

it impossible to model common cause failures, active redun-
dancy and a variations in MTTF over time. These assump-
tions notwithstanding, it was found in [90] that it is possible
to make accurate availability assessments.

The availability viewpoint The viewpoint can be found in
Fig. 6. The viewpoint incorporates FTA through the introduc-
tion of gates which may assume AND or OR characteristics
in line with above. The behavior elements are represented
by Services and InternalBehaviorElements (or
Functions for brief). Both of these have an availability
which is represented in the Service.Availability
and Function.Availability attributes, respectively.
Services are realized by Functions and when this

is the case, there is a Gate_Realize class on the rela-
tion between them which qualitatively shows how the real-
ization relation works through the Gate_Realize.Type
attribute which may assume either one of two states, AND
and OR (to implement k-out-of-n is left for future works).

Conversely, Functions use Services, and there is a
gate on this relation as well: Gate_Use.

Acting as an intermediate availability variable on the gates
we find the attributes Gate_Realize.Availability
and Gate_Use.Availability and depending on the
type of gates, the availabilities are set computed according
to Fig. 5, see also Statements 6 and 7.
Services are merely externally visible containers of

application behaviors and their availability is as such only
dependent on the realizingFunctions and thus identical to
the Gate_Realize.Availability, see Statement 8.

123

1096 P. Närman et al.

Fig. 6 The service availability viewpoint

Function.Availability on the other hand depends
also on the ActiveResourceElement to which it
is assigned. When the Functions uses Services,
Function.Availability is the product of the
Gate_Use.Availability and theActiveResource
Element.Availability, since there is an implicit
AND relationship between the underlying services and the
application realizing the Functions, see Statement 9.

Sometimes, there is a need to set the availability directly
on a Function or Service, and this can be done using the
attribute Function.EvidentialAvailability or
Service.EvidentialAvailability, respectively.

Guidelines for use The following steps should be taken to
use the Service availability viewpoint.

Firstly, identify and scope the service or services of
interest, either from a service catalog or through interviews.
Defining the service properly is essential to defining what
the service being ‘available’ means.

Secondly, use the viewpoint to qualitatively model the
application and infrastructure architecture connected to the
service.

Thirdly, elicit quantitative measures of component avail-
abilities. Usually, the easiest way of obtaining the compo-
nent availability is to ask the respondent (typically a system
owner) to estimate how often the component breaks down
and estimate the repair time.

Fourthly, run the analysis.

Validation of the service availability viewpoint The view-
point was tested in five cases with respect to its ability to
model and analyze service availability accurately. Further-
more, to investigate the feasibility of the approach, the time
spent modeling and analyzing was recorded in each case.
Input data was elicited through interviews.

The estimates were compared with existing log files. In
each case, the difference in yearly downtimes between the
assessed values and the log data was within a few hours of
down time per year. Each study required less than 20 man-
hours to perform. For the purpose of obtaining good decision
support, this indicates that the suggested method yields suf-
ficiently accurate availability estimates.

An example service availability view To probe deeper
into the rumors flourishing at ACME Energy regarding the

123

Enterprise architecture framework 1097

Fig. 7 An example service availability view

incidents affecting the availability of the Application
ServiceStudy Maintenance, the analysts performed an ini-
tial round of interviews with system administrators to obtain
qualitative data concerning the architecture realizing the
Application Service. This was modeled according to
the service availability viewpoint described above. Quantita-
tive data regarding component availabilities were collected
during a second round of interviews.

In Fig. 7 we see the result. The aggregated availabil-
ity was found to be 98 % which is considered acceptable
to most users. Thus, the analysts decide to scrutinize other
aspects of the architecture, beginning with service response
time.

5.3 The service response time viewpoint

The service response time viewpoint is an adaption of the
metamodel which was developed and validated in [85]. That
metamodel in turn is an adaptation of the work done by Iacob
and Jonkers [49].

Concerns The viewpoint is used to analyze service response
time taking both the application and infrastructure layer into
account.

Stakeholders Service managers interested in maintaining
agreed service levels are obvious stakeholders, but also
end-user organizations wishing to ascertain that changes to

123

1098 P. Närman et al.

the present architecture will result in acceptable service
levels.

Theory This section will introduce a service response time
analysis framework employing common queuing networks as
presented by [50]. To use the framework, the analyst needs
to model structural elements, the internal behavior elements
they offer and the externally exposed services.

The approach for workload estimation is top-down and
begins with the arrival frequency of usage requests from
the business layer which is converted into arrival rates
for the underlying components in the architecture. Based
on the workload, response times of the behavior compo-
nents and utilizations of the resources can be determined
bottom-up.

The arrival rate λa of behavioral node a (referring to any-
one of the behavioral concepts in ArchiMate) is computed
using Eq. 4. Here d+

a is the number of outgoing relations to
other components, i.e., components that use or are realized
by component a. ki refers to one of the d+

a child compo-
nents of component a, i.e., those that use or are realized by
component a. λki refers to the child components’ respective
arrival rates. na,ki is the number of times node a is used by
component ki . fa is the local arrival frequency of component
a. Local frequency refers to arrival rates which are incurred
on node a from other parts of the structure not modeled in
the architecture model.

λa = fa +
d+

a∑

i=1

na,ki ∗ λki (4)

The utilization of resource r, Ur refers to the faction of the
resource that is being used is found recursively using Eq. (5).
Here, Cr refers to capacity, which in this context means the
number of servers.

Ur =
∑dr

i=1 λki ∗ Tki

Cr
(5)

where dr is the number of behavior components ki which
are assigned to the resource, λki is the arrival rate and Tki is
process time, which is computed as follows:

Ta = Sa +
d−

a∑

i=1

nki ,a ∗ Rki (6)

where d−
a denotes the “in-degree” of node a, i.e., the number

of parent components of component a that are either used by
component a or realizing component a. ki is a parent of a, ra

is a resource assigned to a and Rki is the response time of a,
to which we will return below. The internal service time Sa

is taken to be a known constant for every behavior element.
To compute the response time, there is a need to determine

which queueing model to use. One of the most common is the
M/M/1 model, which assumes Poisson distributed arrival

rates, that the Service time is exponential and that a single
server queue [57]. Under these assumptions Ra becomes

Ra = F(a, ra) = Ta

1 − Ura

(7)

Other models include the M/M/s model with multiple
servers (i.e., when C > 1), or the M/G/1 model which
assumes Poisson distributed arrival rates, but no knowledge
of service time distributions [46]. Queues to the resources are
treated as independent from each other which will introduce
minor errors in the performance estimates [49].

The service response time viewpoint Fig. 8 shows the service
response time viewpoint. Services are realized by vari-
ous kinds of InternalBehaviorElements, (as usual
denoted Functions for brevity). From a response time
perspective, the realization relation in itself does not unam-
biguously state howFunctions realize Services. In the
original work by [49], it was assumed that there was a one-
to-one relation between Functions and Services, and
that each Function is called upon only when realizing a
Service.

However, when integrating the service response time
viewpoint with the other viewpoint, the one-to-one assump-
tion does not hold; to be able to integrate with the Service
availability and application usage viewpoints, the present
viewpoint must allow many-to-many relations between
Functions and Services. Therefore, there is a need to
introduce the class Gate_Realize between Functions
and Services. This class has the attribute Gate_
Realize.ExecutionPattern which may assume the
values (Serial, Parallel). The former value means that the
Functions are used sequentially, and the latter that they
are used in parallel, this is very similar to the approach for
response time aggregation suggested in [56].

Depending on the execution pattern, the response time
propagations between theFunctions and Serviceswill
differ. The gate class also contains the attribute Gate_
Realize.ResponseTime which is an intermediate
response time which is

Gate_Reali ze.ResponseT ime =
n∑

i=1

Ri (8)

in the serial case, or

Gate_Reali ze.ResponseT ime = max Ri (9)

in the parallel case. Ri is the response time of Function i
realizing the Service, see Statement 10.

Since it may be the case that several Functions are used
when realizing a Service, the viewpoint expresses this in
an attribute (used in Eqs. 4, 6) belonging to the placeholder
class Realize attribute Realize.Weight. Following
Eq. 4, we introduce the Realize.WeightedWorkload

123

Enterprise architecture framework 1099

Fig. 8 The service response time viewpoint

attribute, see Statement 12. To be able to accommodate
multiplying the weight with the response time from
underlying nodes as defined in Eq. 6, the attribute
Realize.WeightedResponseTime is also
introduced, see Statement 11.

The Gate_Realize class can be connected to
other Gate_Realize classes through the
GateToGate_Realize class which has weight, weighted
workloads and response time attributes. This allows the
modeler to model arbitrarily complex compositions of
Functions and to be able to recursively propagate the
workload from Services to Functions using virtually
the same expression as Statement 12.
Service.ResponseTime is identical to the response

time of the its closest GateRealize class, see State-
ment 13. Service.Workload will depend on both the

arrival frequency (i.e., the frequency of invocations from
business processes or other services not shown in the model)
and the frequency of calls from Functions which use
the Service. The attribute Use.WeightedWorkload
of the class closest to the Service will determine the
Service.Workload, see Statement 14.
Functions are assigned to ActiveStructure-

Elements and use Services. The workload of the
functions is derived from the Services realized by
the Function, and by the arrival frequency of requests
from Services not explicitly modeled. Thus, the
attribute Function.Workload is determined by the
sum of the attributes Function.ArrivalFrequency
and Realize.WeightedWorkload for all Realize
objects which are directly related to the Function, see
Statement 15.

123

1100 P. Närman et al.

Fig. 9 An example service response time view

123

Enterprise architecture framework 1101

To calculate Function.ResponseTime there is a
need to know the Function.ProcessingTime, which
is the sum of the internal Function.ServiceTime and
the Service.ResponseTimes of all used Services,
see Statement 17.

The ActiveStructureElement to which a
Function is assigned has some ActiveStructure-
Element.Utilization. To find this value, we introduce
the attribute Function.Throughput; the product of
Function.Workload andFunction.Processing-
Time, see Statement 16. ActiveStructureElement.
Utilization is the quotient of Function.Through
put and ActiveStructureElement.Capacity,
where the latter refers to the number of identical
ActiveStructureElements to which the
Functions are assigned, see Statement 18.

Depending on the kind of queue Function.
ResponseTime will be computed differently, see e.g.,
Eq. 7. The present implementation allows for M/M/1 queues
(whenActiveStructureElement.Capacity is one)
and M/M/s (when ActiveStructureElement.
Capacity exceeds one), see Statement 19 which imple-
ments both of these following [46].

Validation A case study was conducted at a Swedish power
company where a total of five ApplicationServices
were evaluated using the modeling and analysis method
described above. Input data came from interviews with sys-
tem experts and a survey with application users to deter-
mine the service workload. The results of these evaluations
were compared with measurements of the response times of
said Application Services and the differences were
within 15 % for four out of five services. Furthermore, using
the proposed viewpoint consumed a third of the time it took
to measure the same values using an experimental approach
which leads us to believe that it is a resource-efficient and
fairly accurate method.

Guidelines for use The following steps should be taken when
employing this viewpoint.

Firstly, select and scope a service to be measured.
Secondly, perform the qualitative modeling and model all

relevant objects that are connected to the service. The respon-
dent or respondents need to be knowledgeable about the sys-
tem architecture.

Thirdly, elicit workload data. If the number of users is
large, a survey might be used, else use interviews.

Fourthly, elicit the the remaining component performance
parameters. The respondents could, e.g., be system adminis-
trators.

Fifthly, run the analysis.

An example service response time view The analysts sus-
pect that the Study Maintenance ApplicationService

might be insufficient with respect to service time and decide
to use the service time viewpoint described here to investi-
gate this further. Users indicated that at the end of contract-
ing periods when maintenance engineers from all of ACME
Energy perform contractor evaluations, the workload is quite
high for the Study Maintenance ApplicationService,
which sometimes results in high response times. The ana-
lysts therefore model ed the scenario of peak load for the
service.

Figure 9 is a service response time view of the Study
Maintenance ApplicationService. We see that the
response time for of the Application Service Study
Maintenance is around 19 s, which is fairly high but
acceptable to most users. However, the Application
Component.Utilisation of the CMMS is quite high,
and could thus be a possible future bottleneck. In summary,
service time does not appear to be the reason why users do
not like the CMMS and the analysts decide to focus more on
data accuracy.

5.4 The data accuracy viewpoint

This subsection describes the data accuracy viewpoint, which
is an adaptation of the metamodel from [87].

Concerns Using this viewpoint makes it possible to estimate
the accuracy of data sets within the organization. It is also
possible to determine which applications or business process
that introduce errors into the data sets.

Stakeholders Obvious stakeholders are data custodians, i.e.,
those in charge of maintaining data quality, but also end users
wishing to know the quality of the data which they use in their
daily activities.

Theory The present viewpoint employs process modeling in
a manner similar to that of IP maps and that of [4]. Further-
more, following [22], the viewpoint also shows how data can
improve when manipulated in business processes.

The Passive Component Set is used to describe
sets of information objects whether stored in databases
(then specialized into DataSets) or as more unstructured
information (specialized into RepresentationSet).
The attribute PassiveComponentSet.Accuracy is
defined below.

Firstly, we denote the individual Representations
and DataObjects PassiveComponentObjects.
Next, we introduce the following:

N : Number of PassiveComponentObjects in the
PassiveComponentSet
N acc: Number of accurate PassiveComponent
Objects in the PassiveComponentSet

123

1102 P. Närman et al.

N inacc: Number of inaccurate PassiveComponent-
Objects in the PassiveComponentSet

where “accurate” or “inaccurate” for the Passive
ComponentObjects is defined as their value V being
sufficiently close to the true value V ′ in line with [6,98].

Since PassiveComponentObjects can be either
accurate or inaccurate we have

N acc + N inacc = N . (10)

The accuracy of the PassiveComponentSet can then
be defined as

PassiveComponent Set.Accuracy = N acc

N
(11)

The number of accurate PassiveComponent
Objects in a PassiveComponentSet may change
when processed by a Function or a Service. These may
corrupt a PassiveComponentObject which was accu-
rate at process step T = t into being inaccurate at time step
T = t +1. To be able to reason about this we introduce N det:
the number of accurate PassiveComponentObejects
at process step T = t which were made inaccurate by a
Function or a Service at process step T = t + 1.

The frequency of this happening is

α = N det

N acc
t

(12)

Similarly, an Function or a Service may correct
inaccurate PassiveComponentObjects. We introduce
N corr: the number of PassiveComponentObjects that
were inaccurate at process step T = t but made accurate by
a Function or a Service at time step T = t + 1.

β = N corr

N inacc
t

(13)

The number of accurate objects at process step T = t + 1
is given by

N acc
t+1 = N acc

t − N det + N corr (14)

From the above, an expression of the accuracy of a
PassiveComponentSet at T = t + 1 can be derived:

PassiveComponent Set.Accuracyt+1 = N acc
t+1

N

= N acc
t

N
− N det

N
+ N corr

N

= N acc
t

N
− α ∗ N acc

t

N
+ β ∗ N inacc

t

N

= N acc
t

N
∗ (1 − α) + β(N − N acc

t)

N

= N acc
t

N
(1 − α) + β(1 − (N acc

t)

N
)

= PassiveComponent Set.Accuracyt ∗ (1 − α)

+ β ∗ (1 − PassiveComponent Set.Accuracyt)

(15)

In
I

I I

I I

I II

Fig. 10 The data accuracy viewpoint

123

Enterprise architecture framework 1103

I
I

I
I

I I

I

I

I

I

I

I

I

Fig. 11 An example data accuracy view

I
I

I I I
I

I
I

I

I

I

I

I

I

I

I

II

I

Fig. 12 The data accuracy view for the suggested to-be scenario

The data accuracy viewpoint The data accuracy viewpoint
can be found in Fig. 10.

The propertiesα andβ are found as attributesFunction.
Correction, Function.Deterioration,
Service.Deterioration and Service.
Deterioration. Whenever a Passive
ComponentSet is read or written by a Service
or Function these attributes either improve or dete-
riorate the PassiveComponentSet.Accuracy, see
Statement 20. PassiveComponentSet.InputAccu-
racy is an attribute used to specify the baseline accuracy of
the first PassiveComponentSet in the process.

Validation The data accuracy viewpoint was tested in a case
study at the same Swedish power company in which the ser-
vice response time was tested, see [87]. Using interviews and
the viewpoint a process model was created and the accuracy
of a DataSet was estimated to 94.905 %. When sampling
37 Data Objects from the same DataSet, the accu-
racy was determined to be 94.6 %, a rather small difference
suggesting that the viewpoint is indeed useful. It took sig-
nificantly longer to do the sampling (17 man-hours) than the
modeling and analysis (11 h) which indicates that the present
viewpoint is resource-efficient to use.

Guidelines for use To use the viewpoint follow the following
process.

Firstly, model the data flow qualitatively. Suitable respon-
dents are those performing the process who understand the
process side of the flow or system architects which under-
stand the application side of things.

Secondly, elicit parameters input accuracy, deterioration
and correction from the same respondents.

Thirdly, run the analysis.

An example data accuracy view An example data accuracy
view can be found in Fig. 11. The ACME Energy analysts
decide to investigate whether the reason CMMS users hold
the application to a low esteem is due to a poor data accuracy
in the information provided by the application.

One important piece of information used when compiling
the maintenance key performance indicators (KPIs) is the
field “Failure description” which the maintenance workers
use to report what caused a failure in a piece of equipment.
This is reported as a part of closing the work order which
was issued when the failure was first detected. Eliciting esti-
mates of the correction and deterioration attributes as well
as the input accuracy of the processes and services was done
through interviews. Using these estimates and the viewpoint
above, it was estimated that the accuracy of the output Main-
tenance KPIs (with respect to failure statistics) was 87.8 %.
This is a low number, and in order to improve the perceived
usefulness of the application improving this number might
be a viable option.

123

1104 P. Närman et al.

l

l

l l

l

l

l
l

l l

l
l

l

l

I

l

I

l ll

l

l l l
l
l

l

l

l l

l

Fig. 13 The application usage view for the suggested to-be scenario

5.5 Decision-making concerning future architecture
changes

On behalf of the ACME CIO, the architects were given
the task to find a way of improving the poor data accu-
racy: to implement an Application Function with
which to perform automatic quality checks of data consis-
tency and accuracy when closing the work order. See Fig. 12.
It was decided based on some initial tests that such qual-
ity checks would probably correct 90 % of errors, while
deteriorating approximately 1 % of the data objects in the
set. From Fig. 12 it is evident that he introduction of these
checks would enhance output data quality significantly, from
the original 87.8 to 96.2 %.

The impact on performance and availability was found to
be negligible, but the impact on application usage was not.
By making a user survey with test users of the pilot data
quality enhancement implementation it was concluded that
users found the new interface more difficult to use while
at the same time greatly appreciating the increase in data
accuracy. Quantitatively, this translated into a decrease in

perceived ease of use for both involved roles and an increase
in perceived usefulness.

To handle the trade-off between the increase in useful-
ness and the decrease in ease of use the scenario was mod-
eled using the Application usage viewpoint. The predicted
application usage rose from about 2.68 to 2.98 which is an
11 % improvement over the present situation, see Fig. 13.
ACME’s application architect therefore recommended to the
CIO to include the function in the next release of the CMMS
software.

5.6 Tool implementation

As noted in Sect. 3, the present framework has been imple-
mented in the EAAT tool. Below are screenshots of the accu-
racy viewpoint (Fig. 14a) and the accuracy view (Fig. 14b)
as implemented in the tool.

Since the p-OCL formalism is probabilistic, it is possible
to insert uncertain evidence. For instance, a respondent might
not know the exact value of the input accuracy but instead
approximate it with a normal distribution with a mean of

123

Enterprise architecture framework 1105

Fig. 14 EAAT Tool screenshots: a the accuracy viewpoint and b the accuracy view with some probabilistic evidence inserted

95 % with a variance of 0.03 (see the little box ‘evidence’ to
the left in Fig. 14b). Using the Monte Carlo simulations of
the tool, a select number of iterations can be performed to
reach the final output value which is normally distributed as
well, see the box with the histogram to the right in Fig. 14b.

Thus, decision-makers using the tool may be able to judge
the degree of uncertainty in the architecture analysis.

The implementation of the metamodel and the viewpoints
of this paper are available for download, see Appendix C for
further details.

123

1106 P. Närman et al.

6 Discussion

6.1 Findings

The present paper presents an EA framework featuring four
viewpoints addressing different concerns. In being concerned
with modeling enterprise information systems and their busi-
ness contexts the framework can be considered an IT artifact
[45]. As such it belongs in the research stream commonly
referred to as design science [3,42,45,78,91,123].

This section will elaborate on the qualities of the work
presented through framing and comparing it with the criteria
from [42], which state that a design science theory should
comprise eight structural components:

1. Purpose and scope—what purpose(s) does the theory fill
and what are the limit(s) to its use?

2. Constructs—which are the basic constructs involved in
employing the theory?

3. Principles of form and function—how does the artifact
behave?

4. Artifact mutability—how does the artifact vary with its
environment?

5. Testable propositions—which are the theory’s testable
propositions?

6. Justificatory knowledge—How do we justify stating that
the theory works?

7. Principles of implementation—Which are the principles
of implementations for practitioners?

8. Expository instantiation—Is there an instantiation to fur-
ther understanding of the artifact?

Purpose and scope The purpose of the present EA frame-
work can be summarized in a number of ‘meta requirements’
[123]. The artifact aids modeling of enterprise architectures
comprising both information systems as well as parts of the
business environment so as to make the models amenable
to analysis of four properties: the likelihood of application
usage, the availability of services, the response time services
and data accuracy.

Another meta-requirement is that the modeling and analy-
sis should be resource-efficient even when data are scarce:
the artifact does not pre-suppose that there are architecture
models available, nor that the organizations employing the
artifact need to procure expensive equipment such as avail-
ability logging equipment to measure the service availability.
This has led to the use of data collection methods based on
surveys and interviews, which have been demonstrated to be
resource-efficient elsewhere.

Constructs The constructs of the present EA framework are
primarily the classes from the ArchiMate metamodel. These
have been augmented with a number of classes which are

needed to support the analysis as well as attributes that cap-
ture a number of variables. Relations between the attributes
themselves, and between classes and attributes are described
in p-OCL-statements found in Appendix 7.

Principles of form and function The overall principles of how
the EA framework behaves have been sketched for each view-
point in Sect. 5. Additionally, the exact analysis mechanisms
of the models have been detailed in the p-OCL statements of
Appendix 7.

Artifact mutability The present EA framework must be
adapted to fit its environment. This is particularly so for
the application usage viewpoint which requires functional
and process descriptions to fit the application domain. For
service response time it is possible to expand the viewpoint to
also encompass business services. The response time calcu-
lations are contingent upon assumptions made about arrival
rate and service time distributions (Poisson and exponential,
respectively); under other assumptions other queuing mod-
els would apply. The availability equations hold under the
assumptions of exponential failure rates and it is conceivable
that other distributions, for instance the log normal, should
be used in some situations.

Testable propositions Each viewpoint implies a testable
proposition of the form, “is it possible to yield accurate
availability/response time/accuracy/application usage pre-
dictions using viewpoint X and input data collection method
Y”, where X is one of the four viewpoints and Y is either
interviews or surveys. These have been tested elsewhere in
[85–87,90]. A brief summary of the results from these stud-
ies are presented in Table 1, they demonstrate that employing
the metamodels together with the suggested data collection
methods yields fairly accurate results.

Furthermore, in the cases data accuracy, service availabil-
ity and service response time, the effort required to perform
the case studies and analysis was recorded, see Table 2. In
these cases, the researchers began from scratch with creat-
ing the models and collecting the data. When applying the
integrated approach, the effort spent per property is likely to
fall substantially since it is possible to re-use the architec-
ture content for multiple analyses. Thus, the model should
be useful in a practical setting.

As for the overall framework presented here, the testable
proposition is ‘is it possible to integrate the four metamodels
into one integrated metamodel and still retain the analysis
capabilities of the individual metamodels’. This has been
tested through example instantiations where a number of
views have been implemented. More importantly, the entire
framework has been successfully implemented in the EAAT
tool, with the analysis capabilities intact.

Justificatory knowledge The viewpoints are based on sound
and previously published ‘kernel theories’ [123].

123

Enterprise architecture framework 1107

Table 1 Summary of the validation activities

Property Type Data collection No. respondents or cases Results

Application usage [86] User survey Online questionnaire 55 respondents The model was able to
explain variations in user
behavior

Service availability [90] Case study Interviews/ observations 5 organizations, 7 services The availability predictions
were all within a few hours of
the actual, measured yearly
downtimes

Service response time [85] Case study Interviews/ experiments One organization, 5 services 4 out of 5 predictions within
15 % of measured service
response times

Data accuracy [87] Case study Interviews/ observations One organization, one data set Predicted accuracy within
0.1 % of actual

Table 2 The effort spent doing the case studies for three of the property
assessments

Property Effort case study (man hours)

Service availability <20
Service response time <20

Data accuracy <12

The effort takes both the researcher’s and the organization’s time into
account

For service availability, the underlying kernel theory is
fault tree analysis, which is commonly employed by prac-
titioners for reliability and availability analysis of com-
plex systems. For service response time the underlying
kernel theory is queuing theory which is employed exten-
sively for performance analysis previously. For data
accuracy, the work of Cushing [22] and Ballou et al. [4]
constitute kernel theories albeit with modifications. For
application usage, the technology acceptance model (TAM)
[23] and the task-technology fit (TTF) model [41] serve as
kernel theories.

Principles of implementation Each viewpoint description
includes basic method guidelines for users (who are most
likely enterprise architects). Since the viewpoints are also
implemented in the EAAT tool, which is free for anyone to
download and use, practitioners can easily start using the
framework from this paper.

Expository instantiation The integrated and revised meta-
model has been instantiated in four example views in this
paper. Furthermore, screenshots from the implemented mod-
els in the tool EAAT have been shown, to illustrate what the
models look like in a tool implementation.

6.2 Limitations and future works

An obvious limitation with the current framework is that
it comprises four viewpoints only. In the non-functional

property sphere alone there are several other concerns which
could be addressed using architecture models, e.g., security
[111], interoperability [116] or modifiability [69]. An fruitful
next step would be to integrate these architecture metamodels
as viewpoints into the current framework.

So far, ArchiMate has served as the basis for the meta-
model, an interesting future work could be to test the method
using other architecture metamodels as foundations as well.

To further enhance the predictive capabilities of the appli-
cation usage viewpoint it is possible to use a kernel theory
that provides even more explanatory power. The unified the-
ory of acceptance and use of technology [120] could be used
as a starting point in this respect.

The proposition that EA aids decision-making is com-
monly encountered [60,61,68], but with the exception of
[38], there is little research done on actually employing the
EA frameworks to aid decisions. A case study involving the
current framework, a decision concerning the EA and some
way of evaluating decision quality would be very valuable.

The viewpoints have been tested individually using their
original metamodels, but mostly in very few cases: both
service response time and data accuracy in a single case
study, and application usage for one application domain only.
More studies are thus needed to test the individual proper-
ties. Furthermore, the overall framework presented here has
made some changes to the original metamodels and apart
from an example instantiations this new integrated frame-
work has not been tested in its entirety, which is left to future
works.

6.3 Contributions

The above limitations aside, the present framework must still
be seen as a valuable artifact. To practitioners it offers both
method and modeling assistance in evaluating several prop-
erties which are in themselves closely related to achieving
net benefits from information systems [26].

123

1108 P. Närman et al.

To researchers, the present framework offers a foundation
on which to either integrate additional viewpoints to extend
the analysis capabilities, for instance by adding security or
interoperability analyses.

To researchers within enterprise modeling, the present
framework offers some input into which constructs are of
use when modeling for architecture analysis. The extensions
that have been made to ArchiMate indicate areas of improve-
ment: by including Gates for the fault tree based availabil-
ity analysis, by adding classes on the Realized and the
Used relations to be able to express weights for the response
time case, by adding the ProcessServiceInterface
class between the business process and the application ser-
vices to be able to state something about the matching of
the functionality with the task requirements, to add the class
RoleComponentInterface between the Role class
and the Application Component class thus being able
to capture user opinions of the application components. Fur-
thermore, the addition of attributes could serve as input to
the ArchiMate work.

7 Conclusions

This article describes an EA framework which can be
employed for modeling and analysis of four properties, viz.:
(i) application usage, (ii) service response time, (iii) service
availability, and (iv) data accuracy. The present work inte-
grates metamodels presented in previous work and presents
them as four viewpoints with brief introductions to their
underlying theory and short accounts of their validation and
testing. The instantiation of these viewpoints into views are
shown by means of a running example. p-OCL statements
describing the exact analysis mechanisms are also provided.
The measures can be used to either assess the as-is archi-
tecture to explore which parts of it to make changes to, or
they can be applied to future scenarios thereby making them
comparable to the decision-maker.

Appendix A: p-OCL statements

Below are the attribute definitions and operations employed
for this paper. In Figs. 3, 6, 8 and 10, we have omitted the role

labels on the relations to avoid cluttering the figures to much.
In the p-OCL statements below, it is assumed that the ‘main
direction role’ gets the same name as the relation name, but
with a small case letter. The other role has the same name,
but with the added ‘_inv’ at the end.

123

Enterprise architecture framework 1109

123

1110 P. Närman et al.

123

Enterprise architecture framework 1111

Appendix B: OCL code for metamodel invariants

123

1112 P. Närman et al.

Appendix C: Instructions for using the EAAT tool

In order to comprehend the models that are presented in the
submission you need to use the enterprise architecture analy-
sis tool. The following describes the usage with a Windows
operating system:

1. Download the file “SoSyM-GUPM.zip” from http://
www.ics.kth.se/eat/SoSyMGUPM.zip.

2. Extract the zip file “SoSyMGUPM.zip”.
3. In the created folder you find two subfolders (CM con-

taining the tool and Model containing the presented
model).

4. If you are using Windows with limited user privileges,
please copy the jsmile.dll to be found in the CM folder
into your C:\windows\system32 folder (you must have
administrator privileges to do so).

5. Execute the runCM.bat file that is included in the CM
folder.

6. In the “Load Abstract Model File/ previously created
Model” dialog that is shown on start click on the browse
button and navigate to the Model folder, which was
included in the zip file. Select “EntireGUPMShow-
case.iEaat” and press the ok button.

7. Now the Enterprise Architecture Analysis Tool is shown
allowing to consider both models and meta model used
within the paper.

8. To the left you find “Views” that correspond to the view-
points presented in Sect. 5 of the submission.

9. Below you find the “Meta model” and the “Viewpoints”
as they have been described in Sects. 4 and 5.

10. Right-clicking on entities of the models shows details and
allows to trace how attribute values are calculated.

11. The models can be calculated by clicking the “Calculate”
button at the upper right-side of the tool.

References

1. Object constraint language, version 2.2. Tech. rep., Object Man-
agement Group, OMG (2010). http://www.omg.org/spec/OCL/2.
2. OMG Document Number: formal/2010-02-01

2. Van der Aalst, W., Van Hee, K.: Business process redesign: a
Petri-net-based approach. Comput. Ind. 29(1–2), 15–26 (1996)

3. Aier, S., Fischer, C.: Criteria of progress for information systems
design theories. Inf. Syst. E Bus. Manag. 9(1), 133–172 (2011)

4. Ballou, D.P., Pazer, H.L.: Modeling data and process quality in
multi-input, multi-output information systems. Manag. Sci. 31(2),
150–162 (1985). http://www.jstor.org/stable/2631512

5. Barber, K., Graser, T., Holt, J.: Enabling iterative software archi-
tecture derivation using early non-functional property evaluation.
In: Proceedings of the 17th IEEE International conference on
Automated Software Engineering (ASE), pp. 172–182 (2002)

123

http://www.ics.kth.se/eat/SoSyMGUPM.zip
http://www.ics.kth.se/eat/SoSyMGUPM.zip
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2
http://www.jstor.org/stable/2631512

Enterprise architecture framework 1113

6. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodolo-
gies and Techniques. Springer, New York (2006)

7. Bengtsson, P., Bosch, J.: Scenario-based software architecture
reengineering. In: Proceedings of the Fifth International Confer-
ence on Software Reuse, 1998, pp. 308–317. IEEE (2002)

8. Bharadwaj, A., Keil, M., Mähring, M.: Effects of information
technology failures on the market value of firms. J. Strateg. Inf.
Syst. 18(2), 66–79 (2009)

9. Bocciarelli, P., D’Ambrogio, A.: A model-driven method for
describing and predicting the reliability of composite ser-
vices. Softw. Syst. Model. 10, 265–280 (2011). doi:10.1007/
s10270-010-0150-3

10. Bradley, R.V., Pratt, R.M.E., Byrd, T.A., Simmons, L.: The role
of enterprise architecture in the quest for it value. MIS Q. Exec.
10(2), 73–80 (2011)

11. Brynjolfsson, E., Hitt, L.: Paradox lost? firm-level evidence on
the returns to information systems spending. Manag. Sci. 42(4),
pp. 541–558 (1996). http://www.jstor.org/stable/2634387

12. Buchholz, P.: A class of hierarchical queueing networks and their
analysis. Queueing Syst. 15(1), 59–80 (1994)

13. Buckl, S., Ernst, A., Matthes, F., Schweda, C.: An information
model for landscape management-discussing temporality aspects.
In: Proceedings of the Service-Oriented Computing-ICSOC 2008
Workshops pp. 363–374 (2009)

14. Buckl, S., Franke, U., Holschke, O., Matthes, F., Schweda, C.,
Sommestad, T., Ullberg, J.: A pattern-based approach to
quantitative enterprise architecture analysis. In: 15th Americas
Conference on Information Systems (AMCIS). Association for,
Information Systems (2009)

15. Burton, B., Allega, P.: Hype Cycle for Enterprise Architecture,
2010. GARTNER, vol. G00201646 (2010)

16. Buschle, M., Ullberg, J., Franke, U., Lagerström, R., Sommestad,
T.: A tool for enterprise architecture analysis using the prm formal-
ism. Information Systems Evolution. Lecture Notes in Business
Information Processing, vol. 72, pp. 108–121 (2011)

17. Buzen, J.: Computational algorithms for closed queueing net-
works with exponential servers. Commun. ACM 16(9), 527–531
(1973)

18. Buzen, J.: Fundamental operational laws of computer system per-
formance. Acta Informatica 7(2), 167–182 (1976)

19. Chang, H.: Intelligent agent’s technology characteristics applied
to online auctions’ task: A combined model of TTF and TAM.
Technovation 28(9), 564–577 (2008)

20. Cobb, B.R., Shenoy, P.P.: Inference in hybrid bayesian networks
with mixtures of truncated exponentials. Int. J. Approx. Reason.
41(3), 257–286 (2006). doi:10.1016/j.ijar.2005.06.002

21. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment
of uml based software models. In: WOSP ’02: Proceedings of
the 3rd international workshop on Software and performance,
pp. 302–309. ACM, New York, NY, USA (2002). doi:10.1145/
584369.584415

22. Cushing, B.E.: A mathematical approach to the analysis and
design of internal control systems. Acc. Rev. 49(1), 24–41 (1974).
http://www.jstor.org/stable/244795

23. Davis, F.D.: Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q. 13(3), 319–340
(1989). http://www.jstor.org/stable/249008

24. De Boer, F., Bonsangue, M., Jacob, J., Stam, A., Van der Torre, L.:
Enterprise architecture analysis with xml. In: Proceedings of the
38th Annual Hawaii International Conference on System Sciences
2005, HICSS’05, p. 222b. IEEE (2005)

25. DeLone, W., McLean, E.: Information systems success: the quest
for the dependent variable. Inf. Syst. Res. 3(1), 60–95 (1992)

26. DeLone, W., McLean, E.: The DeLone and McLean model of
information systems success: A ten-year update. J. Manag. Inf.
Syst. 19(4), 9–30 (2003)

27. Demathieu, S., Thomas, F., André, C., Gérard, S., Terrier, F.: First
experiments using the uml profile for marte. In: 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008, pp. 50–57. IEEE (2008)

28. Dishaw, M., Strong, D.: Supporting software maintenance with
software engineering tools: A computed task-technology fit analy-
sis. J. Syst. Softw. 44(2), 107–120 (1998)

29. Dishaw, M., Strong, D.: Extending the technology acceptance
model with task-technology fit constructs. Inf. Manag. 36(1),
9–21 (1999)

30. DoD: Dod architecture framework version 2.0. United States
Department of Defense (2009)

31. Dunsire, K., O’Neill, T., Denford, M., Leaney, J.: The ABACUS
architectural approach to computer-based system and enterprise
evolution. In: Proceedings of the 12th IEEE International Confer-
ence and Workshops on Engineering of Computer-Based Systems,
p. 69. IEEE Computer Society (2005)

32. Ernst, A.: Enterprise architecture management patterns. In: Pro-
ceedings of the 15th Conference on Pattern Languages of Pro-
grams, p. 7. ACM (2008)

33. Framework, E.M.: EMF: OCL plugin for the Eclipse Modeling
Framework (2011). http://www.eclipse.org/emf/

34. Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing
and utilising business indicator systems within enterprise models-
outline of a method. Modellierung betrieblicher Information-
ssysteme (MobIS, 2008) : November, Saarbrücken. Germany,
pp. 89–105 (2008)

35. Franke, U., Flores, W.R., Johnson, P.: Enterprise architecture
dependency analysis using fault trees and bayesian networks.
42nd Annual Simulation Symposium (ANSS) (2009)

36. Franke, U., Johnson, P., Ericsson, E., Flores, W.R., Zhu, K.: Enter-
prise architecture analysis using fault trees and MODAF. In: Pro-
ceedings of the CAiSE Forum 2009, vol. 453, pp. 61–66 (2009).
ISSN: 1613–0073

37. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning prob-
abilistic relational models. In: International Joint Conference on
Artificial Intelligence, vol. 16, pp. 1300–1309. Citeseer (1999)

38. Gammelgård, M., Ekstedt, M., Närman, P.: A method for assess-
ing the business value of information system scenarios with an
estimated credibility of the result. Int. J. Serv. Technol. Manag.
13(1), 105–133 (2010)

39. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M.,
Varró, D.: Non-functional properties in the model-driven devel-
opment of service-oriented systems. Softw. Syst. Model. 10, 287–
311 (2011). doi:10.1007/s10270-010-0155-y

40. Glazner, C.: Understanding enterprise behavior using hybrid sim-
ulation of enterprise architecture. Ph.D. thesis, Massachusetts
Institute of Technology (2009)

41. Goodhue, D., Thompson, R.: Task-technology fit and individual
performance. Mis Q. 19(2), 213–236 (1995)

42. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc.
Inf. Syst. 8(5), 312–335 (2007)

43. Harrison, P., Patel, N.: Performance Modelling of Communication
Networks and Computer Architectures. International Computer
Science. Addison-Wesley Longman Publishing Co., Inc., Boston
(1992)

44. Henderson, J., Cooprider, J.: Dimensions of I/S planning and
design aids: a functional model of CASE technology. Inf. Syst.
Res. 1(3), 227 (1990)

45. Hevner, A., March, S., Park, J., Ram, S.: Design science in infor-
mation systems research. Mis Q. 28(1), 75–105 (2004)

46. Hillier, F., Lieberman, G.: Introduction to Operations Research
Eighth. McGraw-Hill, Singapore (2005)

47. Holschke, O., Närman, P., Flores, W., Eriksson, E., Schönherr, M.:
Using enterprise architecture models and bayesian belief networks

123

http://dx.doi.org/10.1007/s10270-010-0150-3
http://dx.doi.org/10.1007/s10270-010-0150-3
http://www.jstor.org/stable/2634387
http://dx.doi.org/10.1016/j.ijar.2005.06.002
http://dx.doi.org/10.1145/584369.584415
http://dx.doi.org/10.1145/584369.584415
http://www.jstor.org/stable/244795
http://www.jstor.org/stable/249008
http://www.eclipse.org/emf/
http://dx.doi.org/10.1007/s10270-010-0155-y

1114 P. Närman et al.

for failure impact analysis. In: Service-Oriented Computing-
ICSOC 2008 Workshops, pp. 339–350. Springer (2009)

48. Høyland, A., Rausand, M.: System Reliability Theory: Models
and Statistical Methods. Wiley, New York (1994)

49. Iacob, M., Jonkers, H.: Quantitative analysis of enterprise archi-
tectures. Interoperability of Enterprise Software and Applications
pp. 239–252 (2006)

50. Iacob, M., Jonkers, H.: Quantitative analysis of service-oriented
architectures. Int. J. Enterp. Inf. Syst. 3(1), 42–60 (2007)

51. Iacob, M.E., Jonkers, H.: Analysis of enterprise architectures.
Tech. Rep, Telematica Instituut (TI) (2004)

52. IBM Global Services: Improving systems availability. Tech. Rep,
IBM Global Services (1998)

53. IEC technical committee 57: Iec 61968-1—application inte-
gration at electric utilities—system interfaces for distribution
management—part 1: Interface architecture and general require-
ments (2003)

54. ISO: Iso/iec 9126–2:2003 software engineering—product
quality—part 2: External metrics (2003)

55. IT Governance Institute: Cobit 4.1. ISACA (2007). http://www.
isaca.org/Knowledge-Center/cobit/Pages/Downloads.aspx

56. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: Qos aggregation
in web service compositions. In: Proceedings of the 2005 IEEE
International Conference on e-Technology, e-Commerce and
e-Service, 2005. EEE’05, pp.181–185 (2005)

57. Jain, R.: The Art of Computer Systems Performance Analysis :
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. Wiley, New York (1991)

58. Johansson, E., Ekstedt, M., Johnson, P.: Assessment of enterprise
information security: the importance of information search cost.
In: Proceedings of the 39th Annual Hawaii International Confer-
ence on System Sciences, 2006. HICSS’06, pp. 219a–219a (2006)

59. Johansson, K.: Driftsäkerhet och underhåll. Studentlitteratur,
Lund (1997)

60. Johnson, P., Ekstedt, M.: Enterprise Architecture: Models and
Analyses for Information Systems Decision Making. Studentlit-
teratur, Lund (2007)

61. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enter-
prise architecture analysis with extended influence diagrams. Inf.
Syst. Front. 9(2), 163–180 (2007)

62. Kans, M., Ingwald, A.: Analysing it functionality gaps for main-
tenance management. In: Engineering Asset Lifecycle Manage-
ment. Proceedings of the 4th World Congress of Engineering
Asset Management (WCEAM) 2009. The original pulication is
available at http://www.springerlink.com

63. Kasunic, M.: Measuring systems interoperability: challenges and
opportunities. Tech. Rep, DTIC Document (2001)

64. Kazman, R., Bass, L., Webb, M., Abowd, G.: SAAM: A method
for analyzing the properties of software architectures. In: Proceed-
ings of the 16th International Conference on Software Engineer-
ing, pp. 81–90 (1994)

65. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H.,
Carriere, J.: The architecture tradeoff analysis method. In: Pro-
ceedings of the Fourth IEEE International Conference on Engi-
neering of Complex Computer Systems, 1998. ICECCS’98, pp.
68–78 (2002)

66. Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M.,
Lipson, H.: Attribute-based architecture styles. In: Software
Architecture: TC2 First Working IFIP Conference on Software
Architecture (WICSA1): 22–24 February 1999, San Antonio,
Texas, USA, p. 225. Kluwer Academic Publishing, Dordrecht
(1999)

67. Klopping, I., McKinney, E.: Extending the technology acceptance
model and the task and the task-technology fit model to technology
fit model to consumer E Consumer E-Commerce. Inf. Technol.
Learn. Perform. J. 22(1), 35 (2004)

68. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engi-
neering. EMISA 2007, 143 (2007)

69. Lagerström, R., Johnson, P., Höök, D.: Architecture analysis of
enterprise systems modifiability-models, analysis, and validation.
J. Syst. Softw. 83(8), 1387–1403 (2010)

70. Lam, S., Lien, Y.: A tree convolution algorithm for the solution
of queueing networks. Commun. ACM 26(3), 215 (1983)

71. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Com-
munication and Analysis. Springer, Berlin (2009)

72. Lankhorst, M., Proper, H., Jonkers, H.: The Architecture of the
ArchiMate Language. In: Enterprise, Business-Process and Infor-
mation Systems Modeling: 10th International Workshop, Bpmds
2009, and 14th International Conference, Emmsad 2009, Held at
Caise 2009, Amsterdam, the Netherlands, June 8–9, 2009, Pro-
ceedings, p. 367. Springer (2009)

73. Laprie, J., Kanoun, K.: X-ware reliability and availability model-
ing. IEEE Trans. Softw. Eng. 18(2), 130–147 (2002)

74. Leangsuksun, C., Shen, L., Liu, T., Song, H., Scott, S.: Avail-
ability prediction and modeling of high mobility OSCAR cluster.
In: Proceedings of the 2003 IEEE International Conference on
Cluster Computing, 2003, pp. 380–386. IEEE (2005)

75. Ledoux, J.: Availability modeling of modular software. IEEE
Trans. Reliab. 48(2), 159–168 (2002)

76. Lee, Y.W., Pipino, L.L., Funk, J.D., Wang, R.Y.: Journey to Data
Quality. MIT Press, Cambridge (2006)

77. Lankhorst, M.M.: Enterprise architecture modelling-the issue of
integration. Adv. Eng. Inform. 18(4), 205–216 (2004). doi:10.
1016/j.aei.2005.01.005

78. March, S.T., Smith, G.F.: Design and natural science research
on information technology. Decis. Support Syst. 15(4), 251–266
(1995). doi:10.1016/0167-9236(94)00041-2

79. Melville, N., Kraemer, K., Gurbaxani, V.: Review: information
technology and organizational performance: An integrative model
of it business value. MIS Q. 28(2), pp. 283–322 (2004). http://
www.jstor.org/stable/25148636

80. de Miguel, M., Lambolais, T., Hannouz, M., Betgé-Brezetz, S.,
Piekarec, S.: UML extensions for the specification and evaluation
of latency constraints in architectural models. In: Proceedings of
the 2nd international workshop on Software and performance, pp.
83–88. ACM (2000)

81. Ministry of Defence: MODAF Handbook, technical specification
for MODAF. Ministry of Defence (2005)

82. Montgomery, D.: Design and Analysis of Experiments. Wiley,
New York (1991)

83. Mukhopadhyay, T., Kekre, S., Kalathur, S.: Business value of
information technology: A study of electronic data interchange.
MIS Q. 19(2), pp. 137–156 (1995). http://www.jstor.org/stable/
249685

84. Närman, P., Buschle, M., König, J., Johnson, P.: Hybrid prob-
abilistic relational models for system quality analysis. In:
Enterprise Distributed Object Computing Conference 2010,
EDOC ’10: Vitoria, ES, Brazil. 14th International IEEE. IEEE
(2010) (inpress)

85. Närman, P., Holm, H., Ekstedt, M., Honeth, N.: An interview-
based enterprise architecture analysis method for service response
time predictions. J. Strateg. Inf. Syst. (2011) (submitted)

86. Närman, P., Holm, H., Höök, D., Honeth, N., Johnson, P.: Using
enterprise architecture and technology adoption models to predict
application usage. J. Syst. Softw. 85(8), 1953–1967 (2012)

87. Närman, P., Holm, H., Johnson, P., König, J., Chenine, M.,
Ekstedt, M.: Data accuracy assessment using enterprise architec-
ture. Enterp. Inf. Syst. 5(1), 37–58 (2011)

88. Närman, P., Johnson, P., Lagerström, R., Franke, U., Ekstedt, M.:
Data collection prioritization for system quality analysis. Elec-
tron. Notes Theor. Comput. Sci. 233, 29–42 (2009)

123

http://www.isaca.org/Knowledge-Center/cobit/Pages/Downloads.aspx
http://www.isaca.org/Knowledge-Center/cobit/Pages/Downloads.aspx
http://www.springerlink.com
http://dx.doi.org/10.1016/j.aei.2005.01.005
http://dx.doi.org/10.1016/j.aei.2005.01.005
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://www.jstor.org/stable/25148636
http://www.jstor.org/stable/25148636
http://www.jstor.org/stable/249685
http://www.jstor.org/stable/249685

Enterprise architecture framework 1115

89. NATO Consultation, Command and Control Board: Command
and control board (nc3b):“Snato c3 system architecture frame-
work. Tech. Rep., AC/322-WP/0125, Brussels (2007)

90. Närman, P., Franke, U., König, J., Buschle, M., Ekstedt, M.: Enter-
prise architecture availability analysis using fault trees and stake-
holder interviews. Enterp. Inf. Syst. 0(0), 1–25 (2012). doi:10.
1080/17517575.2011.647092. Available online 31 Jan 2012

91. Nunamaker, J., Chen, M., Purdin, T.: Systems development in
information systems research. J. Manag. Inf. Syst. 7(3), 89–106
(1990)

92. Pagani, M.: Determinants of adoption of high speed data ser-
vices in the business market: Evidence for a combined technol-
ogy acceptance model with task technology fit model. Inf. Manag.
43(7), 847–860 (2006). doi:10.1016/j.im.2006.08.003

93. Palmer, J.: Web site usability, design, and performance metrics.
Inf. Syst. Res. 13(2), 151–167 (2003)

94. Patton, J.D.: Preventive maintenance. Instrument Society of
America, New York (1983)

95. Bernus, P.: Enterprise models for enterprise architecture and
iso9000:2000. Annu. Rev. Control 27(2), 211–220 (2003). doi:10.
1016/j.arcontrol.2003.09.004

96. Petriu, D., Wang, X.: From UML descriptions of high-level
software architectures to LQN performance models. In: Appli-
cations of Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science, vol. 1779/2000, pp. 217–221
(2000). doi:10.1007/3-540-45104-8_4

97. Raderius, J., Närman, P., Ekstedt, M.: Assessing system availabil-
ity using an enterprise architecture analysis approach. In: Pro-
ceedings of 3rd Workshop on Trends in Enterprise Architecture
Research (TEAR 2008), Sydney, Australia. Springer (2009)

98. Redman, T.C.: Data Quality for the Information Age. Artech
House, Boston (1996)

99. Redman, T.C.: The impact of poor data quality on the typical enter-
prise. Commun. ACM 41, 79–82 (1998). doi:10.1145/269012.
269025

100. Reiser, M., Lavenberg, S.: Mean-value analysis of closed multi-
chain queuing networks. J. ACM (JACM) 27(2), 313–322 (1980)

101. Reussner, R., Schmidt, H., Poernomo, I.: Reliability prediction
for component-based software architectures. J. Syst. Softw. 66(3),
241–252 (2003)

102. Riempp, G., Gieffers-Ankel, S.: Application portfolio manage-
ment: a decision-oriented view of enterprise architecture. Inf.
Syst. E Bus. Manag. 5(4), 359–378 (2007)

103. Rodrigues, G., Rosenblum, D., Uchitel, S.: Using scenarios to
predict the reliability of concurrent component-based software
systems. Lecture Notes in Computer Science, vol. 3442, pp. 111–
126 (2005). doi:10.1007/978-3-540-31984-9_9

104. Ross, J., Beath, C.: Sustainable it outsourcing success: Let enter-
prise architecture be your guide. MIS Q. Exec. 5(4), 8–92 (2006)

105. Ross, J., Weill, P., Robertson, D.: Enterprise Architecture as Strat-
egy: Creating a Foundation for Business Execution. Harvard Busi-
ness Press, Boston (2006)

106. Sasa, A., Krisper, M.: Enterprise architecture patterns for business
process support analysis. J. Syst. Softw. 84(9): 1480–1506 (2011)

107. Scott, D.: How to Assess Your IT Service Availability Levels
(2009)

108. Simon, D., Fischbach, K., Schoder, D.: Application portfolio
management-an integrated framework and a software tool evalu-
ation approach. Comm. Assoc. Inf. Syst. 26(1), 3 (2010)

109. Smit, K., Slaterus, W.: Information Model for Maintenance Man-
agement (IMMM). Cap Gemini Publishing, Rijswijk (1922)

110. Smith, C., Williams, L.: Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Addison-Wesley,
Boston (2002)

111. Sommestad, T., Ekstedt, M., Johnson, P.: A probabilistic relational
model for security risk analysis. Comput. Secur (2010)

112. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick,
J., Railsback, J.: Fault tree handbook with aerospace applications
(2002). http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

113. International Organization for Standardization.: Iso/iec
42010:2007—systems and software engineering—recommended
practice for architectural description of software-intensive
systems. JTC 1/SC 7—Softw. Syst. Eng. (2007)

114. The Open Group: Archimate 1.0 specification. Van Haren Pub-
lishing, Zaltbommel (2009)

115. The Open Group: Togaf version 9 “enterprise edition”
(2009)

116. Ullberg, J., Franke, U., Buschle, M., Johnson, P.: A tool for
interoperability analysis of enterprise architecture models using
pi-OCL. In: Proceedings of the International Conference on Inter-
operability for Enterprise Software and Applications (I-ESA)
(2010)

117. Ullberg, J., Lagerström, R., Johnson, P.: A framework for ser-
vice interoperability analysis using enterprise architecture mod-
els. In: IEEE International Conference on Services Computing
(2008)

118. Van Bon, J.: Foundations of IT Service Management based on
ITIL. Van Haren Publishing, Zaltbommel (2007)

119. Venkatesh, V., Bala, H., Venkatraman, S., Bates, J.: Enterprise
architecture maturity: The story of the veterans health adminis-
tration. MIS Q. Exec. 6(2), 79–90 (2007)

120. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User accep-
tance of information technology: Toward a unified view. MIS Q.
27(3), pp. 425–478 (2003). http://www.jstor.org/stable/30036540

121. Venkatraman, N.: The concept of fit in strategy research: Toward
verbal and statistical correspondence. Acad. Manag. Rev. 14(3),
423–444 (1989)

122. Vessey, I.: Expertise in debugging computer programs: An analy-
sis of the content of verbal protocols. Systems, Man and Cybernet-
ics, IEEE Transactions on 16(5), 621–637 (1986). doi:10.1109/
TSMC.1986.289308

123. Walls, J., Widmeyer, G., El Sawy, O.: Building an information
system design theory for vigilant eis. Inf. Syst. Res. 3(1), 36–59
(1992)

124. Wang, R., Ziad, M., Lee, Y.: Data Quality. Kluwer Academic
Publishing, Dordrecht (2001)

125. Wang, R.Y.: Information Quality. M. E. Sharpe, Armonk (2005)
126. Wang, W., Wu, Y., Chen, M.: An architecture-based software

reliability model. In: Dependable Computing, 1999. Proceed-
ings. 1999 Pacific Rim International Symposium on, pp. 143–150.
IEEE (2002)

127. Wang, W.L., Pan, D., Chen, M.H.: Architecture-based software
reliability modeling. J. Syst. Softw. 79(1), 132–146 (2006).
doi:10.1016/j.jss.2005.09.004

128. Weill, P., Vitale, M.: Assessing the health of an information sys-
tems applications portfolio: An example from process manufac-
turing. MIS Q. 23(4), 601–624 (1999)

129. Woodhouse, J.: Putting the total jigsaw puzzle together: PAS 55
standard for the integrated, optimized management of assets. In:
International Maintenance Conference (2006)

130. Yacoub, S., Cukic, B., Ammar, H.: A scenario-based reliabil-
ity analysis approach for component-based software. Reliability,
IEEE Transactions on 53(4), 465–480 (2004). doi:10.1109/TR.
2004.838034

131. Zachman, J.: A framework for information systems architecture.
IBM Syst. J. 38(2/3), 454–470 (1999)

123

http://dx.doi.org/10.1080/17517575.2011.647092
http://dx.doi.org/10.1080/17517575.2011.647092
http://dx.doi.org/10.1016/j.im.2006.08.003
http://dx.doi.org/10.1016/j.arcontrol.2003.09.004
http://dx.doi.org/10.1016/j.arcontrol.2003.09.004
http://dx.doi.org/10.1007/3-540-45104-8_4
http://dx.doi.org/10.1145/269012.269025
http://dx.doi.org/10.1145/269012.269025
http://dx.doi.org/10.1007/978-3-540-31984-9_9
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://www.jstor.org/stable/30036540
http://dx.doi.org/10.1109/TSMC.1986.289308
http://dx.doi.org/10.1109/TSMC.1986.289308
http://dx.doi.org/10.1016/j.jss.2005.09.004
http://dx.doi.org/10.1109/TR.2004.838034
http://dx.doi.org/10.1109/TR.2004.838034

1116 P. Närman et al.

Author Biographies

Per Närman is a PhD stu-
dent at the department of Indus-
trial Information and Control
Systems at the Royal Institute
of Technology (KTH) in
Stockholm, Sweden. He has pub-
lished several journal and con-
ference papers on the topic of
enterprise architecture analysis
and IT management. As of 2011
he is also employed as a man-
agement consultant at Capgem-
ini Consulting.

Markus Buschle received his
M.Sc degree in computer sci-
ence at TUB, Berlin Institute
of Technology, Germany. He is
currently a PhD student at the
department Industrial Informa-
tion and Control systems at KTH
the Royal Institute of Technology
Stockholm Sweden. His research
focuses on the development of
languages for enterprise archi-
tecture analysis and how they
could be supported tool based.

Mathias Ekstedt is Associate
Professor at the Royal Institute
of Technology (KTH) in Stock-
holm, Sweden. His research
interests include systems and
enterprise architecture modelling
and analysis in particular with
respect to information and cyber
security.

123

	An enterprise architecture framework for multi-attribute information systems analysis
	Abstract
	1 Introduction
	2 Related works
	3 Probabilistic OCL
	4 Metamodel
	4.1 ArchiMate
	4.2 The metamodel
	4.3 Creating the metamodel

	5 Viewpoints
	5.1 Application usage viewpoint
	5.2 The service availability viewpoint
	5.3 The service response time viewpoint
	5.4 The data accuracy viewpoint
	5.5 Decision-making concerning future architecture changes
	5.6 Tool implementation

	6 Discussion
	6.1 Findings
	6.2 Limitations and future works
	6.3 Contributions

	7 Conclusions
	Appendix A: p-OCL statements
	Appendix A: p-OCL statements
	Appendix B: OCL code for metamodel invariants
	Appendix B: OCL code for metamodel invariants
	Appendix C: Instructions for using the EAAT tool
	Appendix C: Instructions for using the EAAT tool
	References

