
Softw Syst Model (2014) 13:1395–1415
DOI 10.1007/s10270-012-0277-5

THEME SECTION PAPER

Evaluating probabilistic models with uncertain model parameters

Indika Meedeniya · Irene Moser · Aldeida Aleti ·
Lars Grunske

Received: 30 January 2012 / Revised: 1 July 2012 / Accepted: 23 July 2012 / Published online: 1 September 2012
© Springer-Verlag 2012

Abstract Probabilistic models are commonly used to eval-
uate quality attributes, such as reliability, availability, safety
and performance of software-intensive systems. The accu-
racy of the evaluation results depends on a number of system
properties which have to be estimated, such as environmental
factors or system usage. Researchers have tackled this prob-
lem by including uncertainties in the probabilistic models
and solving them analytically or with simulations. The input
parameters are commonly assumed to be normally distrib-
uted. Accordingly, reporting the mean and variances of the
resulting attributes is usually considered sufficient. However,
many of the uncertain factors do not follow normal distribu-
tions, and analytical methods to derive objective uncertainties
become impractical with increasing complexity of the prob-
abilistic models. In this work, we introduce a simulation-
based approach which uses Discrete Time Markov Chains
and probabilistic model checking to accommodate a diverse

Communicated by Prof. Dr. Dorina Petriu and Dr. Jens Happe.

I. Meedeniya (B) · I. Moser
Faculty of Information and Communication Technologies,
Swinburne University of Technology,
Hawthorn,VIC 3122, Australia
e-mail: imeedeniya@swin.edu.au

I. Moser
e-mail: imoser@swin.edu.au

A. Aleti
Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia
e-mail: aldeida.aleti@monash.edu

L. Grunske
Faculty of Computer Science and Center for Mathematical
and Computational Modelling (CM), University of Kaiserslautern,
67653 Kaiserslautern, Germany
e-mail: grunske@cs.uni-kl.de

set of parameter range distributions. The number of simula-
tion runs automatically regulates to the desired significance
level and reports the desired percentiles of the values which
ultimately characterises a specific quality attribute of the sys-
tem. We include a case study which illustrates the flexibility
of this approach using the evaluation of several probabilistic
properties.

Keywords Software architecture evaluation ·
Parameter uncertainty · Probabilistic quality models ·
Monte-Carlo simulation

1 Introduction

Probabilistic quality evaluation models are an important asset
during the development of software-intensive embedded sys-
tems. The benefit of these evaluation models is especially evi-
dent in the architectural design phase, since different design
alternatives can be evaluated and software architects are able
to make informed choices between these alternatives. To date,
a number of evaluation models have been proposed for eval-
uating specific quality attributes such as performance [7,9],
reliability [23] and safety [30]. However, specific parameters
of these quality evaluation models are often just estimated.
These estimations tend to use field data obtained during
testing or operational usage, historical data from products
with similar functionality, or reasonable guesses made by
domain experts. In practice, however, parameters can rarely
be estimated accurately [4,20,28]. In the context of software-
intensive systems design and probabilistic quality evaluation
models, the sources of uncertainty can be classified into two
major categories.

Aleatory uncertainty is the inherent variation associated
with the physical system or environment under consideration

123

1396 I. Meedeniya et al.

[43]. This category refers to sources of uncertainty that are
inherently stochastic in nature. Physical uncertainties such as
noise in electrical conductors, humidity, temperature, mater-
ial parameters, behavior and instantaneous decisions of oper-
ators are examples in the domain of embedded systems. This
type of uncertainty cannot be avoided [10].

Epistemic uncertainty is uncertainty of the outcome due to
the lack of knowledge or information in any phase or activity
of the modelling process [43]. This source of uncertainty
reflects the lack of knowledge about the exact behaviour
of the system. Uncertainties of this type are subjective and
depend on factors such as maturity of the design and models,
experience of the application domain and the coverage and
extent of testing.

Both of these types of uncertainty manifest themselves
in model parameters related to software components, inter-
component interactions, hardware components, communica-
tion links, operational profile and use cases. Thus a solution
to handle uncertain parameters in probabilistic quality evalu-
ations is relevant for the decision making in the development
phases of software-intensive systems.

Related work In the context of quality evaluation under uncer-
tainty, a considerable amount of research has been conducted
in the area of sensitivity analysis with respect to the para-
meters of probabilistic quality evaluation models. Most of
the approaches to date have concentrated on specific quality
attributes. In the area of architecture-based reliability eval-
uation Cheung [14] presented a sensitivity analysis method
for his original reliability model with a composite Discrete-
Time Markov Chain (DTMC) abstraction. The method is
purely analytical and consists of a number of 2nd and 3rd
order partial derivatives of system reliabilities which are
hard to estimate in real cases. Goševa-Popstojanova and
Kamavaram [28] proposed the method of moments to cal-
culate the sensitivity of a system’s reliability to component
reliabilities and transition probabilities analytically. Cortel-
lessa and Grassi [18] discussed the significance of error prop-
agation to other parts of the system. Their sensitivity analysis
can help identify the most critical system components. Coit et
al. [16,51] have used means and variances of reliability esti-
mates of software components to derive the mean and vari-
ance of the reliability of a redundancy allocation. Assuming
normal distributions for input, Finodella and Gokhale [20]
derived the distribution of system reliability from a multino-
mial distribution. Coit and Smith [17] presented an analytical
approach to obtain the lowerbound percentile of the reliabil-
ity in series–parallel systems. Bhunia et al. [11] applied a
similar method to the evaluation of reliability bounds. All of
the above methods are analytical approaches to quantifying
sensitivity. One disadvantage of these analytical sensitivity
analysis methods is poor generalisability. All methods dis-
cussed are based on the assumption of normal parameter dis-

tributions which are characterised by the mean and variance
alone.

Goševa-Popstojanova et al. [26,27] have shown that ana-
lytical methods of uncertainty analysis do not scale well
and proposed a method based on Monte Carlo (MC) simula-
tion. Using experimental validation they demonstrated that
the MC method scale better than the method of moments
approach [24]. Similarly, Marseguerra et al. [38] have used
mean and variance estimates of component reliabilities
to obtain the mean and variance of the system reliabil-
ity using MC simulation. These approaches have applied
simulations to reliability-specific models, assuming normal
input distributions. Yin et al. [52] have proposed a DTMC
simulation-based approach to derive system reliability from
the probability distributions of component reliabilities under
the assumption that component and system reliabilities are
gamma-distributed. Axelsson [4] has also highlighted the sig-
nificance of MC-based approaches in cost evaluation with
uncertainty.

The existing MC-simulation-based uncertainty analysis
approaches are based on the assumption that there is a specific
continuous input distribution and that the resulting sample
distribution is normal or Weibull. In contrast, practical expe-
rience in connection with reliability studies [21,37] show
that the actual distributions are hard to determine. Mean-
and-variance-based quality evaluations are not sufficient for
informed decision making in the case of safety-and-mission-
critical systems.

Contribution and overview In previous work [41], we
investigated different aspects of parameter uncertainties in
architecture-based quality evaluation with a specific focus
on reliability and formulated a framework that incorporates
specification, evaluation and quantification of probabilistic
quality attributes in the presence of uncertainty. This frame-
work uses Monte Carlo simulations to evaluate the reliabil-
ity of a system based on its architecture specification. As a
result, the approach is able to incorporate such heterogeneous
uncertainties as they naturally occur in software architecture
evaluation models [4,45,46,52]. Figure 1 illustrates the ele-
ments of the approach proposed in Meedeniya et al. [41]
and their relationships. The leftmost element represents the
specification of the uncertainty of parameters in terms of
a diverse set of probability distributions. These parameters
and the system architecture are used to generate a reliability
evaluation model which is analysed to determine the quality
of the prospective system. Based on the results of multiple
Monte Carlo (MC) simulations, estimates for the reliability
attributes of the architectures are computed. A dynamic stop-
ping criterion terminates the MC simulations when sufficient
samples have been taken to achieve the desired accuracy.

In this paper, we extend the previous work and show that
the approach applies not only to reliability evaluations but

123

Evaluating probabilistic models with uncertain model parameters 1397

Probabilistic
Model

Construction

Monte Carlo
Simulation

Parameter
Specification

with Uncertainty

Dynamic
Stopping
Criterion

Quality
Metric

 Sampling

 Control

Fig. 1 Architecture evaluation under uncertainty

also to a variety of probabilistic properties. Instead of using
a dedicated reliability evaluation model with a specific evalu-
ation technique we utilise probabilistic model checking. As a
result, we are able to handle any probabilistic quality require-
ment that can be formulated in the probabilistic temporal
logical formula [5,6,31]. To implement the approach we use
the PRISM model-checker [34] as a back-end to evaluate a
specific quality evaluation model for a Monte Carlo (MC)
simulation run. As a result, our approach can be integrated
into any of the probabilistic quality evaluations and evalua-
tion models that are supported by PRISM.

The remainder of this article is organised as follows:
In Sect. 2 we shortly describe the main formalisms used
throughout the paper, namely probabilistic temporal logics
and Markov Models. Section 3 motivates the research and
provides the details of an Anti-lock Brake System (ABS),
which is used in this paper as a example to explain the con-
cepts. The four elements of the approach depicted in Fig. 1
are defined in detail in Sects. 4–7, while a validation of the
proposed approach is presented in Sect. 8. Section 9 con-
cludes the paper and points out directions for future works.

2 Preliminaries

2.1 Formal definition of quality requirements with
probabilistic temporal logics

The precise specification of quality requirements is an
important aspect for architecture evaluation procedure [22].
Probabilistic temporal logic formulations are a suitable spec-
ification formalism [29]. These probabilistic logic models
extend real-time temporal logic such as MTL (Metric Tem-
poral Logic) [33] and TCTL (Timed Computational Tree
Logic) [1] with operators to reason about the probabilistic
behavior of a system. Commonly used probabilistic tempo-
ral logic formulations are PCTL (Probabilistic Computation
Tree Logic) [31], PCTL* [5], PTCTL (Probabilistic Timed
CTL) [36] and CSL (Continuous Stochastic Logic) [6]. The
significant benefits of using logic-based requirement specifi-
cations include the ability to define these requirements con-
cisely and unambiguously and to analyse architectures using

rigorous, mathematics-based tools such as model checkers.
In this article we focus on PCTL which is defined as follows
[31]:

Definition 1 (PCTLSyntax) Let AP be a set of atomic
propositions and a ∈ AP, p ∈ [0, 1], tPCT L ∈ N, and
��∈ {≥,>,<,≤}, then a state-formula � and a path for-
mula � in PCTL are defined by the following grammar:

� ::= true | a | � ∧ � | ¬� | P��p(�)

� ::= X� | �U� | �U≤tPCT L �

Probabilistic temporal logic distinguishes between state
and path formulae. The state formulae include the standard
logical operators ∧ and ¬, which also allow a formulation
of other usual logical operators (disjunction (∨), implication
(⇒), etc.) and f alse. The main extension of the state formu-
lae, compared with non-probabilistic logics, is to replace the
traditional path quantifier ∃ and ∀ with a probabilistic oper-
ator P . This probabilistic operator defines upper or lower
bounds on the probability of the system evolution. As an
example, the formula P≥p(�) is true at a given state if the
probability of the future evolution of the system satisfying
� is at least p. Similarly, the formula P≤p(�) is true if the
probability that the system fulfils (�) is less than or equal
to p. In addition to the P��p(�) probability bound spec-
ification in PCTL syntax, the numerical probability value
that the system fulfils (�) is denoted by P=?(�) [35]. The
path formulae that can be used with the probabilistic path
operator are the “next” formula X�, time bounded “until”
formula �1U≤t�2 and unbounded “until” formula �1U�2.
The formula X� holds if � is true in the next state of a
path. Intuitively, the time bounded “until” formula �1U≤t�2

requires that �1 holds continuously within a time interval
[0, x) where x ∈ [0, t], and �2 becomes true at time instance
x . The semantics of the unbounded versions is identical, but
the (upper) time bound is set to infinity t = ∞. Based
on the time-bounded and -unbounded “until” formula fur-
ther temporal operators (“eventually” ♦, “always” �, and
“weak until” W) can be expressed as described in Ciesinski
and Größer [15] as well as Grunske [29]. For example, the
eventually formula P��p(♦�) is semantically equivalent to
P��p(trueU�).

123

1398 I. Meedeniya et al.

Traditionally, the semantics of the PCTL is defined with
a satisfaction relation |= over the states S and possible paths
PathM(s) that are possible in a state s ∈ S of a discrete
time probabilistic model M. For details about the formal
semantics the reader is referred to Ciesinski and Größer [15]
or Hansson and Jonsson [31].

2.2 Quality evaluation models

Several approaches exist in the literature for the model-based
quality analysis and prediction, spanning the use of Petri nets,
queueing networks, layered queueing networks, stochastic
process algebras, Markov processes, fault trees, statistical
models and simulation models (see Ardagna et al. [2] for a
recent review and classification of models for software qual-
ity analysis).

In this article, we focus on Markov models which are a
very general evaluation model that can be used to reason
about a wide variety of properties including performance and
reliability.

Specifically, Markov models are stochastic processes
defined as state-transition systems augmented with probabil-
ities. Formally, a stochastic process is a collection of random
variables X (t), t ∈ T all defined on a common sample (prob-
ability) space. The X (t) is the state while (time) t is the index
that is a member of set T (which can be discrete or continu-
ous). In Markov models [13], states represent possible con-
figurations of the system being modelled. Transitions among
states occur at discrete or continuous time-steps and the prob-
ability of making transitions is given by exponential proba-
bility distributions. The Markov property, which defines a
subsequent state as dependent of the immediately preceding
state only, characterises these models. In other words, the
description of the present state fully captures all the informa-
tion that could influence the future evolution of the process.
The most commonly used Markov models include

– Discrete Time Markov Chains (DTMC), which are the
simplest Markovian model where transitions between
states happen at discrete time steps;

– Continuous Time Markov Chains (CTMC) where the
value associated with each outgoing transition from a
state is intended not as a probability but as a parameter of
an exponential probability distribution (transition rate);

– Markov Decision Processes (MDP) [44] that are an exten-
sion of DTMCs allowing multiple probabilistic behav-
iours to be specified as output of a state. These behaviours
are selected non-deterministically.

Definition 2 A Discrete Time Markov Chain (DTMC) is a
tuple (S, P) where S is a finite set of states, and P : S×S →
[0, 1] is a transition probability matrix.

A DTMC is absorbing when at least one of its states has no
outgoing transition [49]. Such states are known as absorbing
states.

Definition 3 A labelled discrete time Markov Reward Model
(MRM) is a triple M = ((S, P), ρ, τ) where (S, P) is an
underlying DTMC, ρ : S → R≥0 is a state reward struc-
ture and τ : S × S → R≥0 is an impulse reward structure
satisfying ∀s ∈ S : τ(s, s) = 0.

A path of an absorbing DTMC is a finite sequence σ =
s0s1s2 . . . sn of states, where sn is an absorbing state. Let
Xσ (s) denote the number of visits of state s in path σ . Sim-
ilarly, let XTσ (s, s′) represent the number of occurrences of
transition (s, s′) in σ . Then we can calculate the accumulated
reward ofσ as

Rσ =
∑

s∈S

(Xσ (s) · ρ(s))+
∑

(s,s′)∈(S×S)

(XTσ (s, s′) · τ(s, s′))

(1)

The accumulated reward properties can also be specified
in conjunction with CSL, when a set of paths is given in
CSL formula. For instance, R=?(♦ �) denotes the expected
reward cumulated before a state satisfying � is reached.

The analytical solution techniques for Markov models
differ according to the specific model and the underlying
assumptions (e.g., transient or non-transient states, continu-
ous vs. discrete time, etc.). For example, the evaluation of
the stationary probability πs of a DTMC model requires the
solution of a linear system whose size is given by the car-
dinality of the state space S. The exact solution of such a
system can be obtained only if S is finite or when the matrix
of transition probabilities has a specific form.

3 Example application

The example of a deployment architecture which assigns
software components to a hardware infrastructure of elec-
tronic control units (ECUs) is used to illustrate the concepts
introduced in this paper. The software components belong to
the Anti-lock Brake System (ABS) of a car. ABS is a system
that maintains traction during braking manoeuvres to prevent
skidding. It is therefore a crucial safety feature found in most
contemporary cars. The system and its parameters are briefly
described in this section, and further details can be found in
Meedeniya et al. [40].

3.1 Software components and interactions

The software components in this example are treated as black
boxes [32], i.e. a description of the externally visible parame-
ters while the internal structures are unknown and not modifi-
able. The components interact to implement a set of services,

123

Evaluating probabilistic models with uncertain model parameters 1399

Emergency
Stop
Detector

1

ABS
Main
Unit

0

Load
Compen-
sator

3

5
WSR-F

6
WAC-R

7WAC-F

4
WSR-R

WAC : Wheel Actuator Controllers (Front and Rear)
WSR : Wheel Sensor Readers (Front and Rear)

Cruise
Control

8

Brake
Pedal

2

B
us

0
(C

A
N

)

B
us

2
(R

ea
r

LI
N

)

B
us

1
(F

ro
nt

 L
IN

)

1
5

7

2

3
8

0
6

4

E
C

U
2

E
C

U
1

E
C

U
4

E
C

U
5

E
C

U
0

E
C

U
3

(a) (b)

Fig. 2 Software components and their interactions. The deployment shows the allocations of software components, represented by numbers, to
the HW topology of the ABS system. a SW architecture. b Deployment

defining the functional units accessed by the user of the sys-
tem. The ABS activity is initiated in one software component
(with a given probability) which may employ many auxiliary
components it is connected to via communication links. The
process and logical views of the subsystems are depicted in
Fig. 2a. The ABS Main Unit is the major decision-making unit
regarding the braking levels for individual wheels, while the
Load Compensator unit assists with computing adjustment
factors from the wheel load sensor inputs. Components 4 to
7 represent transceiver software components associated with
each wheel and communicate with sensors and brake actua-
tors. Brake Pedal is the software component that reads from
the paddle sensor and sends the data to the Emergency Stop
Detection software module.

The software components are characterised by two exter-
nally observable parameters:

(a) Workload (wl): computational load of a software com-
ponent in executing a requested task; expressed in MI
(million instructions).
(b) Execution initiation probability (q0): the probability
of the program execution starting at this component.

The interaction between two components Ci and C j have
the following observable characteristics:

(a) Data size (ds): the amount of data transmitted from
software component Ci to C j during a single communi-
cation event; expressed in KB (kilobytes).

(b) Next-step probability (p): the probability that a ser-
vice calls component C j after component Ci .

3.2 Hardware topology and deployment

The hardware model used to deploy the software components
is comprised of a distributed set of certified ECUs having dif-
ferent capacities of memory, processing power, access to sen-
sors, etc. ECUs communicate through buses. Many types of
buses with different data rates and reliability can be present.
The ECUs and the bus system that compose the hardware
architecture for the system are depicted in Fig. 2b. In this
example, we consider one of the feasible deployments of soft-
ware components to the hardware architecture. The numbers
in Fig. 2b refer to the allocated software components with
corresponding ids in Fig. 2a.

The ECUs in this system have the following relevant para-
meters:

(a) Processing speed (ps): the instruction-processing
capacity of the ECU; expressed in MIPS (million instruc-
tions per second). This is used to calculate the execution
time, which is a function of processing speed of the ECU
and the computation workload of the service.
(b) Failure rate (f r): failure rate (of the exponential dis-
tribution [3,12]) that characterises the probability of a
single ECU failure.
(c) Energy dissipation rate (er): the rate of energy dis-
sipation during execution within an ECU; expressed in
mW (millijoules per second).

123

1400 I. Meedeniya et al.

Table 1 Probability distributions and their specification

Distribution Specification syntax Range Example

Normal NORMAL, μ, σ 2 (−∞,∞) N O RM AL , 3.75, 0.05

Beta BETA, α, β [0, 1] B ET A, 10, 2

Shifted beta BETA_SHD, x, x, α, β (x, x) B ET A_SH D, 3, 5, 2, 10

Exponential EXP, λ (0,∞) E X P, 7.5 × 10−6

Uniform UNIFORM, x, x (x, x) U N I F O RM, 3.5, 4.0

Gamma GAMMA, λ (0,∞) G AM M A, 1.5

Weibull WEIBULL, α (0,∞) W E I BU L L , 1.5

Discrete DISCRETE, x0, p0, x1, p1, . . . , xn, pn (x0, xn) DI SC RET E, 2, 0.4, 2.1, 0.5, 2.3, 0.1

The buses that connect the ECUs can vary in terms of the
following observable properties:

(a) Data rate (dr): the data transmission rate of the bus,
expressed in KBPS (kilobytes per second). This is used
to calculate the latency in for data transmission, as it is
a function of the data rate of the bus and the amount of
data transmitted during the communication.
(b) Failure rate (f r): failure rate of the exponential distri-
bution characterizing data communication failure of each
bus.
(c) Energy dissipation rate (er): the rate of energy
dissipation during the use of communication channel,
expressed in mW (millijoules per second).

3.3 Objectives

The case study is concerned with the architecture-based eval-
uation of reliability, response time and energy consumption.
As a guiding example throughout the presentation of the
approach, we evaluate the reliability of the ABS function in
a given deployment architecture. With respect to the deploy-
ment, two sources of failure, defined in Meedeniya et al. [40],
are considered for the reliability evaluation.
Execution failures Failures may occur in the ECUs during
the execution of a software component, which affects the
reliability of the software modules running on that ECU. For
this illustration, we assume a fixed deterministic scheduling
of tasks within the ECU. It is also assumed that the failure that
happens in an ECU while a software component is executing
or queued leads to a service execution failure.
Communication failures Failure of a data communication bus
when a software component communicates with another over
the bus directly leads to a failure of the service that depends
on this communication.

The annotations, model and evaluation of the reliability
are presented in later subsections.

4 Specification of uncertain parameters

Even when there is uncertainty in the parameter space, not all
the parameters necessarily have probabilistic values. Often
there are considerable dissimilarities between parameters
whose values cannot be determined definitively. Since it
has been established that the variability of parameter esti-
mates significantly affects the quality metric of the archi-
tecture [8,24,48], it is important to capture the variability
characteristics as accurately as possible. Given these consid-
erations, we comprehend architecture parameters as a mix of
precise and imprecise sets.

4.1 Probability distributions

As a means to capture heterogeneous uncertainties in para-
meter estimation, we propose to use generalised probability
distributions. A parameter in an architecture specification is
considered as a random variable, whose variability is charac-
terised by its—continuous or discrete—distribution. For the
parameter specifications in the architecture descriptions we
propose a generic notation that can cater for any distribution.
The specification is given as a parameter list, starting with
a unique identifier assigned to the distribution. Some exam-
ples for Probability Density Function (PDF) specifications
are given at Table 1.

4.2 Mapping uncertainty into PDFs

The proposed approach makes it possible to combine diverse
sources that affect the nominal value of the parameter and
consider their impact on the quality evaluation in addition to
the conventional point estimates. Some guidelines to obtain
the PDFs at the design stage can be given as follows:

• Derive from the source variations The uncertainty of
parameters is often influenced by the origin of compo-
nents. Information from hardware manufactures, third
party software vendors or system experts is useful in

123

Evaluating probabilistic models with uncertain model parameters 1401

Ta
bl

e
2

Pa
ra

m
et

er
sp

ec
ifi

ca
tio

n
of

so
ft

w
ar

e
an

d
ha

rd
w

ar
e

el
em

en
ts

of
th

e
ar

ch
ite

ct
ur

e

C
om

p.
ID

w
l(

M
I)

q 0

(a
)

So
ft

w
ar

e
C

om
po

ne
nt

s

0
1.

2
0

1
0.

6
0

2
0.

4
D

IS
C

R
E

T
E

,
0.

03
,
0.

2,
0.

3,
0.

4,
1.

5,
0.

2,
3,

0.
2

3
1

0

4
0.

4
N

O
R

M
A

L
,
0.

3,
0.

07
5

5
0.

4
N

O
R

M
A

L
,
0.

3,
0.

07
5

6
0.

4
0

7
0.

4
0

8
0

D
IS

C
R

E
T

E
,
0.

01
,
0.

2,
0.

1,
0.

4,
0.

5,
0.

2,
1,

0.
2

T
ra

ns
c i

→
c

j
p(

c i
,
c

j)
d

s
(K

B
)

(b
)

C
om

po
ne

nt
In

te
ra

ct
io

ns

0
→

6
D

IS
C

R
E

T
E

,
0.

05
,
0.

2,
0.

5,
0.

4,
2.

5,
0.

2,
5,

0.
2

2

0
→

7
D

IS
C

R
E

T
E

,
0.

05
,
0.

2,
0.

5,
0.

4,
2.

5,
0.

2,
5,

0.
2

2

1
→

3
1

2

2
→

1
1

2

3
→

0
1

2

4
→

0
G

A
M

M
A
,
0.

7
1

4
→

3
G

A
M

M
A
,
0.

3
2

5
→

0
G

A
M

M
A
,
0.

7
1

5
→

3
G

A
M

M
A
,
0.

3
2

8
→

0
1

0

E
C

U
ID

ps
(M

IP
S)

fr
(h

−1
)

ec
(m

W
)

(c
)

E
C

U
s

0
4

D
IS

C
R

E
T

E
,
4

·1
0−

5
,
0.

2,
4

·1
0−

4
,
0.

4,
4

·1
0−

3
,
0.

2,
0.

04
,
0.

2
G

A
M

M
A
,
2

1
2

D
IS

C
R

E
T

E
,
4

·1
0−

5
,
0.

2,
4

·1
0−

4
,
0.

4,
4

·1
0−

3
,
0.

2,
0.

04
,
0.

2
G

A
M

M
A
,
1

2
2

D
IS

C
R

E
T

E
,
2

·1
0−

6
,
0.

2,
2

·1
0−

5
,
0.

4,
2

·1
0−

4
,
0.

2,
2

·1
0−

3
,
0.

2
N

O
R

M
A

L
,
2.

5,
0.

62
5

3
2

D
IS

C
R

E
T

E
,
1

·1
0−

5
,
0.

2,
1

·1
0−

4
,
0.

4,
1

·1
0−

3
,
0.

2,
0.

01
,
0.

2
N

O
R

M
A

L
,
3,

0.
75

4
11

D
IS

C
R

E
T

E
,
8

·1
0−

5
,
0.

2,
8

·1
0−

4
,
0.

4,
8

·1
0−

3
,
0.

2,
0.

08
,
0.

2
N

O
R

M
A

L
,
4,

1

5
11

D
IS

C
R

E
T

E
,
2

·1
0−

5
,
0.

2,
2

·1
0−

4
,
0.

4,
2

·1
0−

3
,
0.

2,
0.

02
,
0.

2
G

A
M

M
A
,
2

123

1402 I. Meedeniya et al.

Ta
bl

e
2

co
nt

in
ue

d

B
U

S
ID

d
r

(K
B

PS
)

fr
(h

−1
)

ec
(m

W
)

(d
)

B
us

es

0
12

8
B

E
T

A
_S

H
D

,
3

·1
0−

6
,
3

·1
0−

4
,
10

,
2

N
O

R
M

A
L
,
3,

0.
75

1
64

B
E

T
A

_S
H

D
,
1.

2
·1

0−
5
,
1.

2
·1

0−
3
,
10

,
2

G
A

M
M

A
,
2

2
64

B
E

T
A

_S
H

D
,
4

·1
0−

6
,
4

·1
0−

4
,
10

,
2

G
A

M
M

A
,
2

characterising the uncertainty in specific parameters. In
some situations, the distribution of the source variables
can be obtained and consequently, the desired parame-
ter’s distribution can be approximated from its sources.

Example The failure rate (λ) of an ECU is a function of
its ambient temperature (T in Kelvin) [12], such as λ =
4·10−6×T +100. Consider an automotive electronic system
where the temperature profile around ECU X varies between
300K and 400K, has a 370K mode and is negatively skewed.
The PDF of λ of ECU X can be derived and specified as
λX = B ET A_SH D, 400 × 4 · 10−6, 500 × 4 · 10−6, 10, 2.

• Histogram approximation Prior information on the para-
meters may be available. For certain parameters, large
numbers of raw data may be available as a result of test-
ing. In such situations, the PDFs can be approximated
from the histograms of the raw data.

Example In functional test executions of the system model,
the histogram of the test results indicated that the message
transfer probability from component Ci to component C j is
normally distributed. The average of the samples is 0.2 with
a variance of 0.04. Therefore, the transfer probability can be
given as pi, j = N O RM AL , 0.2, 0.04.

• Uniform approximation It is common to have limited
information on the range of the variation without any
specification on variation within the range. Uniform dis-
tributions can be used to approximate such situations.

Example The system has a need to communicate with a new
external service X, of which we only know that its worst case
response time is 1.0 s. The communication link takes at least
5ms for the data transfer. r t = U N I F O RM, 5 · 10−3, 1.0.

• Specify distinct information as a discrete-sample distri-
bution : In cases where the a parameter can only vary
within a discrete set, discrete-sample distributions can
be used to capture it. This is a very powerful feature in
our approach as in most of the practical situations it is
relatively easy to obtain discrete estimates.

Example Experts have indicated that the request rate (rr)

for a service X can be either 200 or 800 per second. In
75 % of the cases it is 200. This will be given as rr =
DI SC RET E, 200, 0.75, 800, 0.25.

4.3 Illustration using the example

Not every parameter pertaining to the current example is sub-
ject to uncertainty. For instance, the processing speed (ps) of

123

Evaluating probabilistic models with uncertain model parameters 1403

Fig. 3 Annotated DTMC for service reliability evaluation. Note that only a few of the possible failure transitions are included in the diagram as
an illustration. Similar arcs should be drawn from each transient state to the state F

an ECU or the computational load (wl) of a software com-
ponent can realistically be considered fixed and determinis-
tic. However, parameters such as the failure rates of ECUs,
failure rates of buses, execution initiation probabilities and
transition probabilities are subject to uncertainty and have to
be estimated. Table 2 shows an example set of parameters.

The probabilistic specification of parameters in the tables
reflects the variability of these parameters in relation to the
automotive ABS system. It is realistic to assume that even
the same parameter of different architectural elements can
have very different uncertain characteristics [3,12,25,40].
For example, execution initialisation probabilities of com-
ponents 4 and 5 depend on vehicle dynamics in various road
conditions, whereas the uncertainty of the execution initial-
isation probability of component 8 arises from probabilistic
user actions from a discrete set of choices. Hence, within
the same column, we may have mentioned different PDFs as
well as distinct values.

5 Probabilistic model construction

5.1 Propagation of uncertainty in models

The specification of architectural elements as discussed
above has to be incorporated into the quality evaluation.
Different quality attributes can be evaluated using differ-
ent modelling approaches as discussed in the introduction.
In the case of probabilistic quality attributes, the evalua-
tion models are also probabilistic. The model parameters
are often derived from the parameters of the architectural
elements. This process results in one-to-one, one-to-many,
many-to-one or many-to-many relationships of architecture
parameters to the parameters of probabilistic model. As we

have incorporated probabilistic specifications for some of the
architectural elements’s properties, the probabilistic notion is
transformed to the evaluation model parameters. Due to the
fact that the inputs are probability distributions, the resulting
evaluation model parameters become probability distribu-
tions or functions of probability distributions.

5.2 Illustration using the example

In order to obtain a quantitative estimation of the reliability
of the automotive architecture in focus, a well-established
DTMC-based reliability evaluation model [14,23] is used.
From the software components and hardware specification,
an absorbing DTMC [49] is constructed for each subsystem
such that a node represents the execution of a component
and arcs denote the transfer from the execution of one com-
ponent to that of another. Figure 3 shows the DTMC for
the example case. The digits in the node labels point to the
corresponding nodes in Fig. 2a. Single-digit nodes represent
execution of a software component, and li, j labelled nodes
denote the communications among software components. A
super-initial node [50] has been added to represent the start
of the software execution, and arcs originating at the node
have been annotated with relevant execution initialization
probabilities (q0). Two new absorbing states C and F have
been added, representing the correct output and failure states,
respectively. Failures during execution have been mapped to
arcs from each execution node ci to the F state with a prob-
ability (1 − Ri) and communication failures are mapped to
arcs from each communication node li j to F with a probabil-
ity (1 − Ri j), where Ri , Ri j represent component reliability
and execution link reliability, respectively. Note that only a
few of these failure transitions have been added for the clarity
of the figure.

123

1404 I. Meedeniya et al.

Monte Carlo Sampling

Estimate
Samples

Probabilistic Quality Model

Uncertain
Parameters

(UPs)

Deterministic
Parameters

(DPs)

4

5

0

3

1

7 Statistical
Estimation

Attribute
Samples

Accuracy
Monitor

Quality
Metric

Parameter
Samples

Fig. 4 Monte Carlo simulation

In the resulting DTMC we find only two absorbing states
(i.e. C and F) and the reliability of the ABS service can be
defined as ‘successfully reaching the state C , without being
absorbed at F’. In terms of the property specification, a fail-
ure of the system is a probabilistic reachability property
which can be given as ‘eventually reaching the state F’.
Hence, the reliability property can be specified in PCTL nota-
tion,

R = 1 − P=?(♦ F) (2)

where P=? denotes the probability of satisfying the property.
Once all the transition probabilities of the DTMC in Fig. 3
have been obtained, the property formula 2 can be computed
by solving the DTMC [14,49] manually or with the use of a
probabilistic model checking tool like PRISM [34]. However,
in order to compute the transition probabilities, the following
quantities have to be defined.

The failure rates of the execution elements can be obtained
from the ECU parameters. The execution time is defined
as a function of the software-component workload and the
processing speed of its ECU. Similar to the models used
in [3,39], the reliability of the ABS system considers both
ECU and communication link failures. The reliability of a
component ci can be computed using Eq. 3,

Ri = e
− f r(d(ci)) · wl(ci)

ps(d(ci)) (3)

where d(ci) denotes the ECU allocation of component ci . A
similar computation can be employed to establish the reliabil-
ity of the communication elements [39], which, in our model,
is characterised by the failure rates of the hardware buses, and
the time taken for inter-component communication, defined
as a function of the buses’ data rates dr and the size of the data
exchange ds between the software components. Therefore,
the reliability of the communication between component ci

and c j is defined according to Eq. 4.

Ri j = e
− f r(d(ci), d(c j)) · ds(ci , c j)

dr(d(ci), d(c j)) (4)

Some of the entries for the parameters in Table 2
(e.g. pi, j , f ri , f ri, j , q0i) are probability distributions. These
parameters form part of the transition probabilities of
the DTMC given in Fig. 3. Furthermore, Ri and Ri j in
formulations (3) and (4) are influenced by the probabilis-
tic specifications of f ri and f ri, j in Table 2. Hence, the
transition probability values of the DTMC become functions
of probability distributions rather than distinct numerical
values. Computing the reliability (i.e. reachability property
given in Eq. 2) requires solving the annotated DTMC. How-
ever, the analytical reachability calculation [49] or Markov
chain solving tools like PRISM cannot be used in this situa-
tion, since transition probabilities are mathematical functions
with probability distribution variables rather than numerical
values.

6 Quality metric estimation

The probabilistic model with partially uncertain parameter
space has to be evaluated to obtain the quantitative metric
of the quality of the system architecture at hand. It has been
emphasised before that these models are often hard to repre-
sent as linear mathematical functions. When many parame-
ters are uncertain with diverse distributions, the quantitative
metric as a distribution cannot be derived analytically. Con-
sequently, the Monte Carlo(MC)-based approach presented
here draws samples from the probability distributions of input
parameters.

Figure 4 illustrates the architecture evaluation process
using MC simulation. The input of the MC simulation of
the probabilistic model (PM) is a set of parameters speci-
fied as probability distributions (UPs) as well as determinis-
tic/certain parameters (DPs).

123

Evaluating probabilistic models with uncertain model parameters 1405

6.1 Monte Carlo simulation

The MC simulation takes samples from input probability
distributions of the architectural elements within the prob-
abilistic evaluation model. Any single parameter of an archi-
tectural element may contribute to more than one parameter
in the evaluation model. Every time a sample is taken from
an input distribution, all model parameters dependent on this
parameter have to be updated. The resulting strategy for a sin-
gle run of the MC simulation is explained in the following:

1. Sample A sample is taken from the Cumulative Distri-
bution Function (C DF) of each parameter. The inverse
transformation method [47] can be used for this process.

2. Update Using the samples drawn from the input distri-
butions, the numerical values for the evaluation model
parameters are updated. Since more than one parameter
of the probabilistic model may be dependent on a parame-
ter in the architecture, a Publisher–Subscriber paradigm
can be used. Whenever a sample is taken for a specific
architectural parameter, all the subscribing model para-
meters are updated and recomputed.

3. Resolve dependencies The model-specific parameter
dependencies are solved in this phase. The numerical
values for the outgoing transition probabilities are nor-
malised to comply with the model assumptions.

4. Compute The model is analytically solved/simulated and
the quantitative metric of the system quality is obtained.

A single run of this MC simulation results in one numer-
ical value for the quality attribute (a). Due to the proba-
bilistic inputs (UPs), the values obtained from different runs
({a1, a2, a3, . . . , aN } = A) are most often not identical.
From the software architect’s point of view, a single sta-
tistical index of a quality metric (â) is desirable despite the
uncertainty. The level of tolerance in the statistical estimation
depends on the application domain and the quality attribute.
Depending on the character of the system to be designed, the
expected value, variance, quartiles, confidence intervals and
worst-case values have been used to describe the quality of
a system.

One important challenge regarding this estimation is that
the actual distribution of the quality metric (A) is unknown.
The existing uncertainty analysis techniques in software
architecture evaluation have a prior assumption regarding the
distribution of the metric (A). With some exceptions [17,52],
most studies assume a normal distribution [16,28]. Due to
the heterogeneity of the uncertainty in the input parameters,
and the non-linearity and complexity of the model evaluation
techniques, the resulting quality distribution after the MC
simulation is unpredictable. For our approach, we introduce
a generalised estimation of (â), using the flexible percentiles
while supporting the expected/worst case measures.

6.2 Distribution estimation

The statistical data (A = {a1, a2, a3, . . . , aN }) obtained
from the MC runs can be processed using statistical methods
to identify parameters of a candidate distribution. Possible
approaches are the method of maximum likelihood and the
method of moments, as well as Bayesian estimation [42].
These methods can be applied when prior information about
the distribution of the resulting quality metric (A) is avail-
able. Due to the diverse nature of the input parameter distri-
butions and the complexity of the quality evaluation models,
estimating the prior distribution is hard and computationally
expensive, since it would have to be repeated for each archi-
tecture evaluation.

6.3 Non-parametric estimation

Non-parametric estimation has the major advantage of not
making any assumptions about the probability distribution
of the population (A). Non-parametric methods lend them-
selves to providing a generic estimation for flexible percentile
estimates (Â).

Instantaneous objective values for each MC run (A =
a1, a2, a3, . . . , aN) are stored and sorted in ascending or
descending order. Percentile estimates can be obtained from
retrieving the appropriate position in the array.

Example Assume the quantitative predictions reliability of
an architecture X for each MC run (A) have been captured
in an array S = s1, s2, s3, . . . , sN and sorted in ascending
order. The 95th percentile of reliability for architecture X is
easily obtained calculating the index i = N ∗ 95/100 of the
required entry.

7 Dynamic stopping criterion

All of the estimation techniques discussed above sample from
appropriate distributions and obtain a desired statistical index
of a quality attribute â. However, the accuracy of the estimate
â strongly depends on the sample size, i.e. on the number of
MC trials carried out. One important characteristic of the
problem is that the actual value of the estimate (â) or the
distribution of A is not known. Large numbers of MC runs
cannot be conducted because given the large number of can-
didate architectures produced in stochastic optimization, the
computational expense is prohibitive.

7.1 Sequential statistical significance test

To solve this issue, we propose a dynamic stopping crite-
rion based on accuracy monitoring. In this approach, the
assumptions on the monitored distribution (A) are relaxed

123

1406 I. Meedeniya et al.

by transforming the monitoring phase to the estimate Â.
A statistical significance test is carried out on the samples
of the statistical index (Â).

– A minimum of k MC executions (a1, .., ak) are conducted
before estimating the desired index Â. After k repeats,
one of the methods discussed in Sect. 6.3 can be used to
obtain each â.

– The variation of the estimate Â = {â1, â2, â3, . . . , âk} is
monitored for a sliding window of size k. Only the last k
samples of the estimate Â are monitored, as the accuracy
of the estimation is a changing property. The objective is
to detect when sufficient accuracy has been obtained.

– The statistical significance is calculated for the last k esti-
mates [47]:

wr = 2z(1−α/2)√
k

√
â2 − (

â
)2

â
(5)

where wr is the relative error, â is the average of last k
estimates, â2 is the mean-square of the last k estimates,
α is the desired significance of the test and z refers to the
inverse cumulative density value of the standard normal
distribution. The relative error wr of the estimate Â is
checked against a tolerance level, e.g. 0.05. The complete
process is explained in Algorithm 1.

It should be noted that in Algorithm 1, the parameters
epoch size (k) and significance (α) can be set independently
of the architecture evaluation problem.

7.2 Illustration using the example

The above algorithm can be applied to the example case as
follows:

1. The DTMC reliability model given in Fig. 3 is con-
structed from the architecture specification. The parame-
ters are sampled according to the specifications in Table 2.

2. Using the instantaneous samples of the input parameters,
the transition probabilities of the DTMC are computed.
From the sampled failure rates of ECUs and buses, the
reliabilities can be calculated using formulae (3) and (4).

3. Model-specific parameter dependencies are resolved. In
the DTMC-based reliability model, model parameters are
normalised to satisfy the following properties.

– The sum of all outgoing transitions from any non-
absorbing node must be equal to 1.

– The sum of execution initialization probabilities
(q0’s) must be equal to 1.

4. Now that numerical values have been calculated for the
transition probabilities of the DTMC, the reachability
property (Formula 2) can be computed. This process rep-
resents a single MC run, which yields a reliability value
ai ∈ A.

5. The steps (1) to (4) are repeated k = 10 times, after
which the accuracy estimation process starts. Assuming
the goal of 90 % significance (α = 0.1), for k samples,
the initial estimate of reliability (â1) is computed using
a non-parametric percentile estimation of the tolerance
level (5th percentile) described in Sect. 6.3.
All existing samples are used to estimate â after each
MC run. When k estimates â are available, the dynamic
stopping criterion in Eq. 5 is applied.

6. If wr is less than a threshold, the last â is considered as
the 5th percentile reliability of the architecture. Other-
wise, the process repeats from step 1. When the stopping
criterion is reached, the final estimate of â is taken as the
quality metric â∗ ∈ Â∗.

8 Experiments

8.1 Experiments on the example

Reliability The first set of experiments validating the MC sim-
ulation process has been conducted on reliability evaluation
using the properties of the case study. In each MC run, sam-
ples were taken from the input parameter specification, and
a DTMC-based reliability model was created as described.
The DTMC was expressed as a PRISM [34] model (.pm)
and reachability formulae (2) were evaluated by executing
the PRISM model checker. The results of 3000 MC trials are

123

Evaluating probabilistic models with uncertain model parameters 1407

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000

R
el

ia
bi

lit
y

Sample Index

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

R
el

at
iv

e
F

re
qu

en
cy

Reliability

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0 500 1000 1500 2000 2500 3000

20
th

 P
er

ce
nt

ile
 R

es
po

ns
e

T
im

e
E

st
im

at
e

Monte Carlo Samples

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0 10 20 30 40 50 60 70 80

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 500 1000 1500 2000 2500 3000

E
st

im
at

io
n

E
rr

or
 (

w
r)

Monte Carlo Samples

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200

(a)

(b)

(c)

(d)

Fig. 5 Results of the experiments with ABS system example. a Instantaneous samples of reliability in MC trials. b Histogram of reliability samples.
c Variation of the estimate over the MC runs. d Relative error of sequential accuracy monitoring

presented in Fig. 5. The samples for each MC run, taken as
described in step 4 in Sect. 7.2, are distributed as depicted
in Fig. 5a. It can be seen that the values for the reliability
vary from 0.85 to 0.999, which is a significant variation with
respect to the notion of reliability. The histogram of the reli-
ability obtained from 3000 samples in Fig. 5b shows that the
conventional assumption of a normal or Weibull distribution
of the system reliability is not applicable to the actual char-
acteristics of the sample distribution obtained from the MC
simulation.

The goal of the MC run was set to the 20th percentile, i.e.
the reliability of the system will be greater than the estimate
for 80 % of the cases. The epoch size k was set to 10. The
values of each estimation is presented in Fig. 5c (note that the
graph starts at sample size of 10). Considerable variations can
be observed at the early estimations, while an observable sta-
bilisation is achieved after around 100 MC runs. These vari-
ations are reflected in the error values (Fig. 5d). The stopping
criterion uses a significance test configuration of α = 0.05

and wr = 0.0005, which leads to the MC simulation achiev-
ing the required accuracy at 156 runs, with the estimate for
the 20th percentile reliability of 0.974527.

The reliability evaluation of the case study which is an
instance of the reachability property of the absorbing Markov
chain. The attribute evaluation method has also been applied
to the evaluation of response time and energy consumption,
which represent the nature of path properties of the Markov
chain.
Response time The response time metric of the ABS system
is defined as the ‘when a break service is triggered, the time
taken to complete the breaking activity’. To assess this prop-
erty it is necessary to consider the execution times of software
components, the scheduling delays as well as the communi-
cation among the components in executing the function. The
time taken to process a request in a software component ci

is denoted by ti and can be considered as a function of the
execution load (wl) of the component and the processing
speed (ps) of the ECU in which the component is deployed.

123

1408 I. Meedeniya et al.

Using the same notation scheme described in Sect. 5.2 where
d(ci) denotes the ECU allocation of component ci , wl(ci) to
denote the workload of component ci and ps(d(ci)) repre-
senting the processing speed of the ECU of component ci , ti
can be given as follows:

ti = wl(ci)

ps(d(ci))
(6)

Similarly, the communication time between software
components ci and c j is denoted by ti j and computed using
bus speed (dr) and communication data size (ds).

ti j = ds(ci , c j)

dr(d(ci), d(c j))
(7)

In formula 7, ds(ci , c j) represents the data size of the com-
munication between ci to c j , and dr(d(ci), d(c j)) denotes
the data rate of the communication channel between the
ECUs where ci and c j are deployed.

In modelling the response time considering the afore-
mentioned two factors, the system model is considered as
a Markov Reward Model where execution and communica-
tion delays are treated as state rewards. The execution states
of the DTMC given in Fig. 3 are annotated with the state
reward structure of execution time (ti) values and commu-
nication nodes in the DTMC are annotated with communi-
cation delay (ti j) rewards. Consequently, the response time
property can be specified as a PCTL formula

RT = R=? (“time rewards”)(♦C) (8)

where R=? (“time rewards”) denotes the expected time rewards
accumulated in all the paths that lead to the satisfying states.
Note that not only the transition probabilities but also the
state rewards of the model become variables (functions of
uncertain parameters) which prevent the application of con-
ventional model evaluation techniques to the computation of
the property.

The results of the evaluation of the system response time
in the presence of uncertain parameters are given in Table 2.
As in the experiments on reliability evaluation, the PRISM
model checker was used to evaluate the reward property for
models generated in each MC sample. The results of 3000
MC trials are presented in Fig. 6. The histogram of the prop-
erty obtained from the samples is depicted in Fig. 6b, whose
shape is also not indicative of a normal distribution. Consid-
ering the nature of the property, the goal of the estimation
was set to the 75th percentile, i.e. the response time of the
system will be lower than the estimate for more than 75 %
of the uncertain cases. The epoch size k was set to 10. The
values of each estimation is presented in Fig. 6c. Consider-
able variations can be observed at the early estimations, while
an observable stabilization is achieved after around 100 MC
runs. These variations are reflected in the error values (Fig.
7d). The stopping criterion uses a significance test configu-

ration of α = 0.05 and wr = 0.0005, which leads to the MC
simulation achieving the required accuracy at 166 runs, with
the estimate for 75th percentile response time of 7.2506 ms.
Energy consumption With emerging trends towards
energy-efficient embedded software design, energy con-
sumed in electronics is becoming an important property.
Model-based evaluation of energy consumption helps the
software architects make better design decisions. In the auto-
motive ABS example, the energy consumed in a single exe-
cution of the service is an important quantity, especially with
regard to the current trend towards electric cars.

The evaluation of this property requires the consideration
of energy consumed during the execution of software and the
energy spent for communication among the components in
executing the service. The energy consumed in processing
a request in a software component ci is denoted by ei , and
can be considered as a function of execution load (wl) of
the component, and the processing speed (ps) and energy
dissipation rating (er) of the ECU in which the component
is deployed.

ei = wl(ci)

ps(d(ci))
· er(d(ci)) (9)

The same notation scheme from the previous section is
used here where d(ci) denotes the ECU allocation of com-
ponent ci , wl(ci) to denote the workload of component ci

and er(d(ci)) representing the energy dissipation rating of
the ECU of component ci .

Similarly, the energy consumed in a single communication
between software components ci and c j is denoted by ei j and
computed using the energy dissipation rating of the bus (er)

and communication time.

ei j = ds(ci , c j)

dr(d(ci), d(c j))
· er(d(ci), d(c j)) (10)

In the above formula, ds(ci , c j) represents the data size of
the communication between ci to c j , and dr(d(ci), d(c j))

and er(d(ci), d(c j)) denote the data rate and energy dissipa-
tion rating of the communication channel between the ECUs
where ci and c j are deployed, respectively.

In order to model the energy consumed in electronics dur-
ing one execution of the ABS service, the system model
is considered as a Markov Reward Model where execution
and communication energy consumptions are treated as state
rewards. The execution states of the DTMC given in Fig. 3
are annotated with the state reward structure of processing
energy consumption (ei)s and the communication nodes in
the DTMC are annotated with communication energy con-
sumption (ei j) rewards. Accordingly, the response time prop-
erty can be specified as a PCTL formula

EC = R=?(“energy consumption rewards”)(♦C) (11)

123

Evaluating probabilistic models with uncertain model parameters 1409

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 500 1000 1500 2000 2500 3000

R
es

po
ns

e
T

im
e

(m
s)

Sample Index

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

R
el

at
iv

e
F

re
qu

en
cy

Response Time (ms)

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 500 1000 1500 2000 2500 3000

3rd
 Q

ua
rt

ile
 R

es
po

ns
e

T
im

e
E

st
im

at
e

Monte Carlo Samples

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 50 100 150 200 250

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 500 1000 1500 2000 2500 3000

E
st

im
at

io
n

E
rr

or
 (

w
r)

Monte Carlo Samples

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250

(b)

(c)

(d)

Fig. 6 Results of the response time estimation of the ABS system
example. a Instantaneous samples of response time in MC trials. b
Histogram of response time samples. c Variation of the estimate over

the MC runs. The graph starts at a sample size of 10. d Relative error
of sequential accuracy monitoring

which captures the expected energy rewards cumulated over
all paths to execution completion (state C).

The energy consumption of the architecture at hand is
evaluated considering the uncertain parameters given in
Table 2. The results of 3000 MC trials obtained using the
PRISM model checker are presented in Fig. 7. The histogram
of the property obtained from the samples is depicted in
Fig. 7b. The goal of the estimation was set to quantify the
mean energy consumption under the uncertain input para-
meters. The epoch size k was set to 10. The values of each
estimation is presented in Fig. 7c. As with the other two
probabilistic property estimations, the variations observed
during the early stages stabilise as the sampling process
continues. These variations are reflected in the error values
(Fig. 7d). The stopping criterion uses a significance test con-
figuration of α = 0.05 and wr = 0.0005, which leads to
the MC simulation achieving the required accuracy at 235

runs, with the estimate for average energy consumption of
18.0126 mJ.

8.2 Experiments on generated problems

Experimental setup In addition to the three probabilistic
property evaluations of the automotive case study, a series
of experiments have been conducted to further investigate
the presented architecture evaluation approach under uncer-
tainty. The scalability of the approach is explored by gener-
ating instances from a range of problem sizes. Without loss
of generality, the objective of each problem is estimation of
reliability.

– To represent the uncertainties in the component reliability
figures, each component’s reliability is specified as a ran-
dom distribution in the range 0.99–0.9999. For a single

123

1410 I. Meedeniya et al.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 500 1000 1500 2000 2500 3000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Sample Index

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 8 10 12 14 16 18 20 22 24 26 28

R
el

at
iv

e
Fr

eq
ue

nc
y

Energy Consumption (mJ)

(b)

 16.8

 17

 17.2

 17.4

 17.6

 17.8

 18

 18.2

 18.4

 0 500 1000 1500 2000 2500 3000

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n

E
st

im
at

e

Monte Carlo Samples

 16.8

 17

 17.2

 17.4

 17.6

 17.8

 18

 18.2

 18.4

 0 100 200 300 400 500

(c)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 500 1000 1500 2000 2500 3000

E
st

im
at

io
n

E
rr

or
 (

w
r)

Monte Carlo Samples

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 100 200 300 400 500

(d)

Fig. 7 Results of the energy consumption estimation of the ABS system example. a Instantaneous samples of energy consumption in MC trials.
b Histogram of energy consumption samples. c Variation of the estimate over the MC runs. d Relative error of sequential accuracy monitoring

problem, the distributions remain unchanged through-
out the experiments to maintain the comparability of the
results.

– Additional distributions are introduced to represent
uncertainties associated with other parameters. The num-
ber of additional uncertainties is varied from 0 to 10 for
each problem size in order to investigate the level of
uncertainty in different instances. Parameters with uncer-
tainty draw their values from Normal, Uniform, Beta,
Shifted Beta, Gamma, Exponential, Weibull and Discrete
distributions.

– In order to represent diverse architecture design prob-
lems, the DTMC is constructed using random relation-
ships between components. Therefore, a parameter may
have an effect on randomly selected transition probabil-
ities in the generated DTMC.

– The support for different levels of compromise in the esti-
mation process is captured by optimizing each problem
instance for median, 25th percentile (75 % pessimistic),

5th percentile (95 % pessimistic) of the reliability. The
dynamic stopping criterion is applied with a significance
level of α = 0.05, an error margin of wr = 0.005 and an
epoch size of k = 10.

The configurations for the problem instances are given in
Table 3.

Results Table 4 lists the results for the expected value, 25th
percentile (75 % pessimistic), 5th percentile (95 % pes-
simistic) of the reliability using the 16 problem instances
and 3 classes of tolerance described in Table 3. In the table,
N refers to the number of MC evaluations needed to satisfy
the stopping criterion. The estimation of the quality at the
stopping condition is listed in the columns â∗.

The MC simulations were carried out for a large num-
ber of evaluations (10,000), even after the stopping criterion
had been met. The final estimation a f obtained from 10,000
runs was compared with the estimation achieved at the stop-
ping condition. The column labelled dr indicates the relative

123

Evaluating probabilistic models with uncertain model parameters 1411

Table 3 Experiment configurations

Case ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DTMC nodes 10 10 10 10 20 20 20 20 50 50 50 50 100 100 100 100

Additional uncertainties 0 2 5 10 0 2 5 10 0 2 5 10 0 2 5 10

Table 4 Results of the randomly generated experiments against 16 problem instances and 3 classes of tolerance

Case ID Median (50th percentile) 25th percentile (75 % pessimistic) 5th percentile (95 % pessimistic)

N â∗ a f dr N â∗ a f dr N â∗ a f dr

1 19 0.952560 0.954734 0.002277 19 0.945523 0.948031 0.002646 19 0.935858 0.002277 0.003700

2 19 0.965903 0.962922 0.003097 19 0.954604 0.957312 0.002828 19 0.949370 0.003097 0.000109

3 19 0.966705 0.968018 0.001356 19 0.962980 0.961934 0.001088 19 0.934353 0.001356 0.018801

4 19 0.942744 0.932468 0.011020 19 0.918319 0.918192 0.000138 23 0.903614 0.011020 0.013062

5 19 0.897277 0.902449 0.005732 19 0.890973 0.892493 0.001703 19 0.880296 0.005732 0.002291

6 19 0.913447 0.907576 0.006469 19 0.900099 0.899102 0.001109 26 0.877142 0.006469 0.011810

7 19 0.912154 0.916944 0.005224 19 0.908060 0.908293 0.000256 19 0.888432 0.005224 0.007256

8 19 0.966131 0.965325 0.000834 19 0.961862 0.960805 0.001101 19 0.948812 0.000834 0.000323

9 19 0.784776 0.785679 0.001149 30 0.767856 0.773189 0.006897 19 0.762634 0.001149 0.007971

10 28 0.739862 0.736462 0.004617 21 0.721135 0.721837 0.000972 19 0.698968 0.004617 0.003520

11 19 0.783287 0.778369 0.006317 19 0.774306 0.762080 0.016042 133 0.725934 0.006317 0.012663

12 19 0.771074 0.748191 0.030584 125 0.727915 0.722666 0.007264 257 0.691504 0.030584 0.013951

13 19 0.592317 0.594764 0.004113 19 0.579529 0.580552 0.001761 48 0.562311 0.004113 0.003324

14 64 0.593832 0.593420 0.000693 34 0.572371 0.579086 0.011595 19 0.545807 0.000693 0.021654

15 33 0.584036 0.589625 0.009480 19 0.576236 0.573726 0.004375 21 0.563660 0.009480 0.020882

16 269 0.536075 0.530330 0.010832 241 0.481548 0.483096 0.003204 19 0.438971 0.010832 0.042167

N number of MC evaluations at reaching stopping criterion, â∗ estimation at reaching stopping criterion, a f estimation at 1000 MC runs,
dr relative difference between a f and â∗

difference between â∗ and a f calculated as

dr =
(

â∗ − a f

a f

)2

(12)

In all cases, the relative difference dr is smaller than the
relative error wr calculated by Eq. 5. The results show that
the approach is applicable to different sizes of the problem
as well as diverse levels of uncertainty. The accuracy of the
MC simulations complies with the specified tolerance levels.
It should be noted that the novel stopping criterion controls
the process with the effect of saving large number of compu-
tational resources. For example in 5th percentile estimations,
many cases have achieved sufficient accuracy with a small
number of MC runs, while cases like 12 are automatically
continued for longer to obtain an accurate estimation.

Figure 8 illustrates a comparison of number of MC runs
when the dynamic stopping criterion is reached with differ-
ent problem configurations. Even for the same number of
uncertain parameters, large problem instances exhibit higher
number of MC runs to converge. This observation supports
the uncertain parameter generation scheme used in the prob-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

10 20 50 100

M
C

 R
un

s
at

 th
e

R
ea

ch
 o

f S
to

p

Model Size (DTMC Nodes)

Additional Uncertainties = 0

Additional Uncertainties = 2

Additional Uncertainties = 5

Additional Uncertainties = 10

C
rit

er
io

n

Fig. 8 Average dynamic stopping size for different problem configu-
rations

lem generation. Since we have let a model parameters to take
an arbitrary relationship to uncertain input parameters, larger
problems use the uncertain ones more often than the small
problem instances. Therefore, the large problem instances
would require higher number of MC samples to obtain a sta-
ble statistical index of the quality attribute.

123

1412 I. Meedeniya et al.

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100A
ve

ra
ge

 T
im

e
to

 C
on

ve
rg

e
(m

s)

Model Size (DTMC Nodes)

Fig. 9 Scalability of the approach

In order to investigate the scalability of the approach, the
average time taken to reach the dynamic stopping criterion
in each problem instance has been recorded. Figure 9 depicts
the time taken in milliseconds averaged over the three types
of experiments (i.e. median, 25th percentile and 5th per-
centile estimations). The results indicate that the time needed
for reaching the stopping criterion grows exponentially with
respect to the problem size. It should be noted that this growth
has strong relationship with the quality evaluation functions
as well. When the problem gets bigger, complex quality
evaluation functions like Markov Chain-based evaluations
require exponentially growing computation time [19].

8.3 Discussion of results

The experiments on the case study illustrated that the
new DTMC-based evaluation model is able to include het-
erogeneous uncertainties associated with parameters into
architecture specification and use them in probabilistic qual-
ity evaluation. The input parameter specification shows the
capability to cater for different combinations of probability
distributions to specify various characteristics of the para-
meters. The evaluation of three probabilistic properties using
the models for uncertain input parameters has illustrated the
applicability of the approach to probabilistic models.

The experiments also indicate that the resulting distribu-
tions of the probabilistic properties are not necessarily nor-
mal (e.g. Figs. 5b, 6b), further justifying the inapplicability of
methods which depend on the assumption of normality. As a
result, the conventional assumptions on input parameter dis-
tributions have been relaxed and extended support has been
introduced for heterogeneous software architecture parame-
ters. Furthermore, assumptions on distributions of the quality
metric have been relaxed, and distribution-free statistics has
been adopted to support different levels of tolerance. Con-
ventional limitations on mean, variance of the desired qual-
ity analysis have been mitigated with the further support of
quartile and percentiles. This extends the applicability of the
approach to domains like safety–critical embedded systems,

where more pessimistic estimates are necessary for certain
quality attributes.

The goal settings of 20th percentile, third quartile and
mean for the three probabilistic properties also demonstrate
the ability of the approach to use various statistical indices
as measures of the quality attributes under uncertainty. The
contribution of the new dynamic stopping criterion is evi-
dent in the evaluation of all three properties, where the esti-
mation and error variation graphs shows the stabilisation of
the estimation process. As a result, the approach has provided
quantitative metrics for the probabilistic properties including
the aspect of robustness with respect to the uncertainty asso-
ciated with the input parameters. The architect is given the
flexibility to specify uncertain input parameters and the level
of required tolerance against the uncertainty. The quantitative
metric produced from the new approach includes additional
decision support with a confidence in the robustness of the
solutions, which has not been possible with the conventional
point-estimate-based architecture evaluation methods.

The experiments that use generated problem instances
have been designed with the intention of validating the
method’s ability to capture heterogeneous and diverse char-
acteristics of uncertainty as well as its applicability to prob-
abilistic quality evaluation. These experiments also aimed
at demonstrating the accurate performance of the dynamic
stopping criterion. The new framework’s capability of han-
dling a diverse range of probability distributions has been
validated with the experiments in which random distribu-
tions were used. It has been shown that the new approach
can successfully evaluate a number of very diverse problem
instances, indicating versatile applicability. The percentiles
estimated by the MC-simulator have been chosen to cover
moderate and more pessimistic requirements with the quality
attributes in practice. The novel dynamic stopping criterion
has been tested for the 16 random cases and for three differ-
ent percentile estimations, and accuracy of the tests has been
validated under the specified tolerance levels.

The framework presented in this paper is deliberately
generic and treats the probabilistic evaluation model as a
black box. We suggest that the evaluation model contributed
here can be applied to any architecture-based evaluation
model.

9 Conclusions

In this paper, we have addressed the problem of probabilistic
quality evaluations in the presence of uncertainty. The evalu-
ation framework introduced in this work provides support for
heterogeneous uncertainties. Probabilistic parameter values
and their evaluation have been accommodated through the
use of probabilistic model checking and MC simulations. A
non-parametric significance test as a stopping criterion has

123

Evaluating probabilistic models with uncertain model parameters 1413

significantly reduced the number of trial runs and function
evaluations necessary to achieve the desired confidence level.
The functionality of the framework has been illustrated using
a practical case study.

In all of our experiments, the window size of the dynamic
stopping criterion was set to 10. This was an arbitrary
decision which is still to be substantiated. The current
results indicates that this window size was appropriate for
all cases considered. However, further research is required
to determine the ideal window length. Ideally, the process
of finding an ideal or near-optimal window size ought to
be automated. In future work, we aim to apply sequential
hypothesis testing principles to analyze the accuracy of the
evaluation results. We also intend to investigate the applica-
bility of the approach to multi-variate sensitivity and bottle-
neck analysis in architecture-based quality evaluation. We are
currently working on the integration of uncertainty analysis
with design space exploration with the intention of providing
a method for a more robust architecture optimisation.

Acknowledgments This original research was proudly supported by
the Commonwealth of Australia, through the Cooperative Research
Center for Advanced Automotive Technology (projects C4-501: Safe
and Reliable Integration and Deployment Architectures for Automo-
tive Software Systems). Furthermore, the research was supported by
the Center for Mathematical and Computational Modelling (CM)2 at
the University of Kaiserslautern.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-
time. Inf. Comput. 104(1), 2–34 (1993)

2. Ardagna, D., Ghezzi, C., Mirandola, R.: Rethinking the use of mod-
els in software architecture. In: Quality of Software Architectures.
Models and Architectures, pp. 1–27. Springer, Berlin (2008)

3. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristic
for distributed embedded systems under reliability and real-time
constraints. In: Dependable Systems and Networks, pp. 347–356.
IEEE (2004)

4. Axelsson, J.: Cost models with explicit uncertainties for electronic
architecture trade-off and risk analysis. In: Current Practice (2006)

5. Aziz, A., Singhal, V., Balarin, F.: It usually works: The temporal
logic of stochastic systems. In: Wolper, P. (ed.) Proceedings of 7th
International Conference on Computer Aided Verification, CAV
95. LNCS, vol 939, pp. 155–165. Springer, Berlin (1995)

6. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic
model checking of continuous-time markov chains. In: Baeten,
J.C.M., Mauw, S. (eds.) Proceedings of 10th International Con-
ference on Concurrency Theory, CONCUR 99. LNCS, vol. 1664,
pp. 146–161. Springer, Berlin (1999)

7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development: a survey. IEEE
Trans. Softw. Eng. 30(5), 295–310 (2004)

8. Basseur, M., Zitzler, E.: A preliminary study on handling uncer-
tainty in indicator-based multiobjective optimization. In: Appl. of
Evol. Computing, pp. 727–739. Springer, Berlin (2006)

9. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance
prediction of component-based systems—a survey from an engi-

neering perspective. In: Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 169–192. Springer, Berlin
(2006)

10. Beyer, H., Sendhoff, B.: Robust optimization: a comprehensive
survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–
3218 (2007)

11. Bhunia, A., Sahoo, L., Roy, D.: Reliability stochastic optimization
for a series system with interval component reliability via genetic
algorithm. Appl. Math. Comput. 216(3), 929–939 (2010)

12. Birolini, A.: Reliability Engineering: Theory and Practice.
Springer, Berlin (2010)

13. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queuing Network
and Markov Chains. Wiley, New York (1998)

14. Cheung, R.: A user-oriented software reliability model. IEEE
Trans. Softw. Eng. 6(2), 118–125 (1980)

15. Ciesinski, F., Größer, M.: On probabilistic computation tree logic.
In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle,
M. (eds.) Validation of Stochastic Systems: A Guide to Cur-
rent Research. LNCS, vol. 2925, pp. 147–188. Springer, Berlin
(2004)

16. Coit, D., Jin, T., Wattanapongsakorn, N.: System optimization
with component reliability estimation uncertainty: a multi-criteria
approach. IEEE Trans. Reliab. 53(3), 369–380 (2004)

17. Coit, D.W., Smith, A.E.: Genetic algorithm to maximize a
lower-bound for system time-to-failure with uncertain component
Weibull parameters. Comput. Ind. Eng. 41 (2002)

18. Cortellessa, V., Grassi, V.: A modeling approach to analyze the
impact of error propagation on reliability of component-based sys-
tems. In: Component-Based Software Engineering, pp. 140–156.
Springer, Berlin (2007)

19. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient proba-
bilistic model checking. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Hon-
olulu, HI, USA, May 21–28, 2011, pp. 341–350. ACM, New York
(2011)

20. Fiondella, L., Gokhale, S.S.: Software reliability with architec-
tural uncertainties. In: Parallel and Distributed Processing, pp. 1–5.
IEEE (2008)

21. Förster, M., Trapp, M.: Fault tree analysis of software-controlled
component systems based on second-order probabilities. In: Inter-
national Symposium on Software Reliability Engineering, pp. 146–
154. IEEE, Nov 2009

22. Frolund, S., Koistinen, J.: Quality-of-service specification in dis-
tributed object systems. Distrib. Syst. Eng. J. 5(4), 179–202 (1998)

23. Goeva-Popstojanova, K., Trivedi, K.: Architecture-based approach
to reliability assessment of software systems. Perform. Eval.
45(2–3), 179–204 (2001)

24. Goseva-Popstojanova, K., Hamill, M.: Architecture-based software
reliability: why only a few parameters matter?. In: Computer Soft-
ware and Applications Conference, 2007, vol. 1, pp. 423–430. IEEE
(2007)

25. Goseva-Popstojanova, K., Hamill, M., Perugupalli, R.: Large
empirical case study of architecture-based software reliability. In:
International Symposium on Software Reliability Engineering, vol.
54, pp. 10–52. IEEE (2005)

26. Goseva-Popstojanova, K., Hamill, M., Wang, X.: Adequacy, accu-
racy, scalability, and uncertainty of architecture-based software
reliability: lessons learned from large empirical case studies. In:
International Symposium on Software Reliability Engineering, pp.
197–203. IEEE (2006)

27. Goseva-Popstojanova, K., Kamavaram, S.: Assessing uncertainty
in reliability of component-based software systems. In: ISSRE
2003, pp. 307–320. IEEE (2003)

28. Goseva-Popstojanova, K., Kamavaram, S.: Software reliability
estimation under uncertainty:generalization of the method of
moments. High Assur. Syst. Eng. 2004, 209–218 (2004)

123

1414 I. Meedeniya et al.

29. Grunske, L.: Specification patterns for probabilistic quality proper-
ties. In: Proceedings of the 13th International Conference on Soft-
ware Engineering, ICSE ’08 61(0), 31 (2008)

30. Grunske, L., Han, J.: A comparative study into architecture-based
safety evaluation methodologies using AADL’s error annex and
failure propagation models. High Assurance Systems Engineering,
Symposium, pp. 283–292 (2008)

31. Hansson, H., Jonsson, B.: A logic for reasoning about time and
reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

32. Jhumka, A., Hiller, M., Suri, N.: Component-based synthesis of
dependable embedded software. Lect. Notes Comput. Sci. 2469,
111–128 (2002)

33. Koymans, R.: Specifying real-time properties with metric temporal
logic. Real-Time Syst. 2(4), 255–299 (1990)

34. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic
model checking with PRISM: a hybrid approach. Int. J. Softw.
Tools Technol. Transfer 6(2), 128–142 (2004)

35. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model
checking in practice: case studies with PRISM. ACM SIGMET-
RICS Perform. Eval. Rev. 32(4), 16–21 (2005)

36. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Perfor-
mance analysis of probabilistic timed automata using digital clocks.
Formal Methods Syst. Des. 29(1), 33–78 (2006)

37. Limbourg, P.: Multi-objective optimization of generalized relia-
bility design problems using feature models: a concept for early
design stages. Reliab. Eng. Syst. Saf. 93(6), 815–828 (2008)

38. Marseguerra, M., Zio, E., Podofillini, L., Coit, D.: Optimal design
of reliable network systems in presence of uncertainty. IEEE Trans.
Reliab. 54(2), 243–253 (2005)

39. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Architecture-
driven reliability and energy optimization for complex embedded
systems. In: Quality of Software Architectures, QoSA 2010. LNCS,
vol. 6093, pp. 52–67. Springer, Berlin (2010)

40. Meedeniya, I., Bühnova, B., Aleti, A., Grunske, L.: Reliability-
driven deployment optimization for embedded systems. J. Syst.
Softw. 84(5), 835–846 (2011)

41. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Architecture-based
reliability evaluation under uncertainty. In: 7th International Con-
ference on the Quality of Software Architectures, QoSA 2011 and
2nd International Symposium on Architecting Critical Systems,
ISARCS 2011, pp. 85–94 (2011)

42. Montgomery, D., Runger, G.: Applied Statistics and Probability
for Engineers. Wiley, India (2007)

43. Oberkampf, W., Helton, J., Joslyn, C., Wojtkiewicz, S., Ferson, S.:
Challenge problems: uncertainty in system response given uncer-
tain parameters. Reliab. Eng. Syst. Saf. 85(1–3), 11–19 (2004)

44. Puterman, M.L.: Markov Decision Processes. Wiley, New York
(1994)

45. Roshandel, R., Banerjee, S., Cheung, L., Medvidovic, N., Gol-
ubchik, L.: Estimating software component reliability by leverag-
ing architectural models. In: International Conference on Software
Engineering, p. 853. ACM, New York (2006)

46. Roshandel, R., Medvidovic, N., Golubchik, L.: A Bayesian model
for predicting reliability of software systems at the architectural
level. LNCS 4880, 108–126 (2007)

47. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo
Method. Wiley-Interscience, New York (2008)

48. Sanchez, A., Carlos, S., Martorell, S., Villanueva, J.: Addressing
imperfect maintenance modelling uncertainty in unavailability and
cost based optimization. Reliab. Eng. Syst. Saf. 94(1), 22–32 (2009)

49. Trivedi, K.: Probability & Statistics with Reliability. Queuing and
Computer Science Applications. Wiley, India (2009)

50. Wang, W., Wu, Y., Chen, M.: An architecture-based software reli-
ability model. In: Proceedings of 1999 Pacific Rim International
Symposium on Dependable Computing, pp. 143–150. IEEE (2002)

51. Wattanapongskorn, N., Coit, D.W.: Fault-tolerant embedded sys-
tem design and optimization considering reliability estimation
uncertainty. Rel. Eng. 92, 395–407 (2007)

52. Yin, L., Smith, M., Trivedi, K.: Uncertainty analysis in reliability
modeling. In: Symposium on Reliability and Maintainability, pp.
229–234 (2001)

Author Biographies

Indika Meedeniya is a research
fellow at Swinburne Univer-
sity of Technology, Melbourne,
Australia, where he received
his Ph.D. in 2012. He grad-
uated with a BSc in Elec-
tronic and Telecommunication
Engineering from the Univer-
sity of Moratuwa, Sri Lanka in
2005, and he worked as a Tech-
Lead in developing performance-
and reliability-critical software
at Millennium IT until 2008.
His research interests include
modeling and architecture-based

evaluation of probabilistic quality attributes, software architecture
optimisation and methods to deal with uncertainty in design-time esti-
mates.

Irene Moser is a Lecturer in
the Faculty of ICT at Swin-
burne University of Technol-
ogy, where she received her
Ph.D. Her research interests
include combinatorial, multi-
and manyobjective optimisation
using stochastic (evolutionary)
and deterministic methods. Her
specialisations encompass the
use of statistical methods for
optimisation and search space
diagnostics as well as the mod-
elling of practical problems.

Aldeida Aleti is a lecturer at
Monash University. She received
her Ph.D. degree from Swin-
burne University of Technol-
ogy, Melbourne, in 2012. She
studied BEng (Hons) in Com-
puter Engineering at Yildiz Uni-
versity in Istanbul, 2005, and
MEng in Computer Engineer-
ing at Polytechnic University of
Tirana, 2008. Since 2008, she has
held a Ph.D. scholarship from the
Cooperative Research Centre for
Advanced Automotive Technol-
ogy in Australia. Her research

interests include optimization of software architectures at design time.

123

Evaluating probabilistic models with uncertain model parameters 1415

Lars Grunske is Jun. Profes-
sor at the University of Kaiser-
slautern, Germany. He received
his Ph.D. degree in computer
science from the University
of Potsdam, Germany, (Hasso-
Plattner-Institute for Software
Systems Engineering), in 2004.
He was Boeing Postdoctoral
Research Fellow at the Univer-
sity of Queensland, Australia,
and Lecturer at the Swinburne
University of Technology, Aus-
tralia. He has active research
interests in the areas of modeling

and verification of systems and software. His main focus is on architec-
ture optimization and model-based dependability evaluation of complex
software intensive systems.

123

	Evaluating probabilistic models with uncertain model parameters
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Formal definition of quality requirements with probabilistic temporal logics
	2.2 Quality evaluation models

	3 Example application
	3.1 Software components and interactions
	3.2 Hardware topology and deployment
	3.3 Objectives

	4 Specification of uncertain parameters
	4.1 Probability distributions
	4.2 Mapping uncertainty into PDFs
	4.3 Illustration using the example

	5 Probabilistic model construction
	5.1 Propagation of uncertainty in models
	5.2 Illustration using the example

	6 Quality metric estimation
	6.1 Monte Carlo simulation
	6.2 Distribution estimation
	6.3 Non-parametric estimation

	7 Dynamic stopping criterion
	7.1 Sequential statistical significance test
	7.2 Illustration using the example

	8 Experiments
	8.1 Experiments on the example
	8.2 Experiments on generated problems
	8.3 Discussion of results

	9 Conclusions
	Acknowledgments
	References

