
Softw Syst Model (2014) 13:273–299
DOI 10.1007/s10270-012-0247-y

THEME SECTION PAPER

Bridging the gap between formal semantics and implementation
of triple graph grammars
Ensuring conformance of relational model transformation specifications
and implementations

Holger Giese · Stephan Hildebrandt · Leen Lambers

Received: 3 April 2011 / Revised: 20 March 2012 / Accepted: 5 April 2012 / Published online: 28 April 2012
© Springer-Verlag 2012

Abstract The correctness of model transformations is a
crucial element for model-driven engineering of high-quality
software. A prerequisite to verify model transformations at
the level of the model transformation specification is that an
unambiguous formal semantics exists and that the implemen-
tation of the model transformation language adheres to this
semantics. However, for existing relational model transfor-
mation approaches, it is usually not really clear under which
constraints particular implementations really conform to the
formal semantics. In this paper, we will bridge this gap for
the formal semantics of triple graph grammars (TGG) and an
existing efficient implementation. While the formal seman-
tics assumes backtracking and ignores non-determinism,
practical implementations do not support backtracking, re-
quire rule sets that ensure determinism, and include further
optimizations. Therefore, we capture how the considered
TGG implementation realizes the transformation by means of
operational rules, define required criteria, and show confor-
mance to the formal semantics if these criteria are fulfilled.

Communicated by Dr. Andy Schürr and Arend Rensink.

This work was developed in the course of the project—Correct Model
Transformations—Hasso Plattner Institut, Universität Potsdam and
was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft. http://www.hpi.uni-potsdam.de/giese/
projekte/kormoran.html?L=1.

H. Giese · S. Hildebrandt (B) · L. Lambers
Hasso Plattner Institute at the University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany
e-mail: stephan.hildebrandt@hpi.uni-potsdam.de

H. Giese
e-mail: holger.giese@hpi.uni-potsdam.de

L. Lambers
e-mail: leen.lambers@hpi.uni-potsdam.de

We further outline how static and runtime checks can be
employed to guarantee these criteria.

1 Introduction

Model transformations are an important element of Model-
Driven Engineering (MDE) [39] and allow several aspects of
software development to be automated. Therefore, it is cru-
cial that model transformations are correct and repeatable to
support incremental development and maintenance of high-
quality software. Like programming languages, model trans-
formation languages require an unambiguous semantics as a
reference to enable the verification of the outcome consider-
ing the model transformation specification (cf. [12]) and to
ensure that different implementations result in the same out-
come. In addition, an unambiguous formal semantics and
clear understanding of how the relational specification is
operationalized can help to identify which optimizations are
really the most appropriate.

We will consider this challenge for the specific case of
triple graph grammars (TGG) [38], which have a well-
understood formal semantics and are quite similar to other
relational approaches such as QVT Relational (c.f. [21]). For
TGGs, there are different tools, which realize slightly differ-
ent dialects, such as Fujaba TGG Engine [5], MOFLON [1],
or ATOM3 [6]. Furthermore, even for a single tool it holds
that different tool versions with different optimizations ex-
ist. For the Fujaba TGG Engine, there further exists a batch
version with support for incremental synchronization [20], a
version optimized for synchronizing multiple updates [13],
and a version that further improves the runtime for synchro-
nization [14] and can also be employed, for example, for
runtime monitoring [42].

123

http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1
http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1

274 H. Giese et al.

In this paper, we bridge the gap between the formal seman-
tics of triple graph grammars and the batch model trans-
formation of our related implementation [14] (cf. Fig. 1).
The formal semantics of TGGs generating related source
and target models simultaneously assumes backtracking and
ignores non-determinism. Therefore, it cannot be used to
build an efficient implementation. Practical implementations
for TGGs in contrast should be efficient and therefore usu-
ally do not support backtracking, need to produce a unique
transformation result, and include further optimizations in
order to ensure an efficient solution. Closing this gap for
this example is of general interest, as also for other TGG
implementations (e.g., [1,26]) as well as other model trans-
formation languages allowing for relational specifications
(e.g., ATL [25], QVT [33]) a similar gap exists. Therefore,
the outlined approach could serve as a scheme to also close
this gap for other cases or to make a comparison with other
approaches (e.g., [23,27]) presenting a solution to close this
gap.1

An initial step towards closing this gap is concerned with
allowing triple graphs with more flexible correspondences
as in the original formalization of TGGs [37], where triple
graphs are defined as morphism spans. When using mor-
phism spans to formalize triple graphs, correspondence nodes
need to be connected to exactly one source or target node,
respectively. Moreover, these morphism spans need to be flat-
tened [8] such that existing TGG implementations can inter-
pret the morphism spans as specific graphs. We introduce a
new category [15], where triple graphs are defined directly
as specifically typed graphs such that correspondence nodes
may be connected to more than one source or target node,
respectively, and such that no flattening for the implementa-
tion is needed. Apart from the handling of more flexible triple
graphs, our formalization follows the original one [37].

To further close the gap, we provide a first operationaliza-
tion for TGGs and then step-by-step eliminate assumptions
such as backtracking while adding constraints that the TGG
rules have to fulfill in order to permit their proper and effi-
cient operationalization: (1) As a starting point, we explain
and formally define the formal semantics of TGGs and the
related forward and backward transformations named rela-
tional scheme (see Fig. 1). (2) As a first step, we then derive
a naive operationalization for TGGs in the form of the oper-
ational scheme that employs backtracking and bookkeeping
for which we can show conformance to the formal seman-
tics by demonstrating consistency—each transformation re-
sult of the implementation must fit to the semantics—and
completeness—all possible transformations for the seman-
tics are also covered by the operationalization. (3) Then, we

1 For existing relational model transformation approaches such as
QVT [33] conformance and how to statically check related constraints
is an open problem [21,40].

define a deterministic operational scheme via suitable cri-
teria for determinism and show that for these criteria the
operational rules of (2) can guarantee a deterministic result
of the transformation. We thus can exclude non-determin-
ism, which is not ruled out by the original TGG semantics,
but is necessary as in practice a model transformation imple-
mentation needs to produce a unique result. Furthermore, we
can still show conformance to the formal semantics via the
operationalization introduced before (see step (2)). (4) There
is the limitation that the considered TGG implementation
only employs a bookkeeping approach for nodes but not for
edges. Again we can define a related implementation scheme
via adjusting the rules and criteria that if fulfilled guarantee
that also this scheme conforms to the formal semantics refer-
ring to the operationalization introduced before (see step (3)).
The provided bridge of steps (1)–(4) only closes the gap be-
tween the formal semantics of TGGs and the implementation
at the level of abstraction related to the standard graph trans-
formation system semantics. (5) In a final step, we present
an efficient implementation scheme covering several addi-
tional optimization tricks employed in the implementation
that go beyond this abstraction. These are, in particular, the
strategy to avoid searching for matches in the whole source
graph and the way control flow constructs are used in the
implementation to realize the transformation on top of the
graph transformation language Story Diagrams [11]. This
efficient implementation scheme is based on the model trans-
formation algorithm presented in [20]. In the meantime, the
algorithm’s implementation has been improved, especially
regarding model synchronization (although synchronization
is not considered in this paper). Note that in [16] we have al-
ready sketched steps (1)–(4). In this paper, we further close
the gap by also focusing on the optimizations (step (5)) used
in our implementation and presenting a run-time conflict
check. Moreover, we add explanations on attribute handling
and, finally, we present an evaluation of our approach on an
industrial case study [17,19].

Summarizing, the contribution of this paper is that it closes
the gap between the formal semantics of triple graph gram-
mars and the batch model transformation of our related imple-
mentation [14]. Note in particular that when developing the
bridge for this gap, we assumed our implementation to be
fix in the sense that we did not change or simplify anything
in our implementation to simplify this task. This means that
our research resolves the following question: given a TGG
implementation holding different optimizations2 necessary
to make the tool scalable to case studies of an industrial size,
is it possible to formally prove that the operationalization
including optimizations implemented in this tool conform

2 Comparing the optimizations in our implementation with other TGG
tools is not in the scope of this paper, instead we focus on proving
correctness of our optimizations with respect to TGG conformance.

123

Bridging the gap between formal semantics and implementation of triple graph grammars 275

(1) Relational
Scheme
(Sec. 3)

(3) Deterministic
Operational

Scheme (Sec. 5)

(2) Operational
Scheme
(Sec. 4)

(4) Implementation
Scheme
(Sec. 6)

create rules

Operational
Rules

Generator

Static Analyzer

TGG Editor

TGG Rules
Story

Diagrams

(5) Efficient
Implementation

Scheme
(Sec. 7)

TGG Engine

TGG Monitor

check implementation/
efficiency criteria

observe

execute

TGG Implementation

Fig. 1 Bridging the gap between formal semantics and implementation of TGGs

to the original TGG formal semantics (relational scheme)?
In this paper, we show that it is possible to close this gap
stepwise by proving that specific assumptions and optimiza-
tions in the tool conform to the TGG formal semantics when
they adhere to specific criteria. We show how to check these
criteria in a static manner. It turned out that the check for
one of these criteria does not scale very well. For this case,
we have developed a runtime check and integrated it into our
tool.

Related work

The relation of the derived forward transformations to the
formal semantics of TGGs has been the subject of several
research works already: In [38], a mechanism for control-
ling the application of the rules of the operationalization of
TGGs was proposed, for which consistency could be shown,
but completeness is not warranted. Based on the same idea, an
approach is presented in [9], which checks the consistency of
a forward transformation on-the-fly, maintains completeness,
but still involves parsing. In [10], from consistent forward
transformations so-called terminating NAC-consistent for-
ward ones are derived and checked for determinism. It is not
shown, as done in [16] and in this paper, that having a deter-
ministic set of forward rules with integrated mechanisms for
controlling the rules means that consistency follows.

In [23], an internal control mechanism3 for the operational
rules of TGGs is presented and its conformance is shown
with the external control mechanism previously introduced
in [9]. Having this internal control, it is shown that functional
behavior of the model transformation can be analyzed stati-
cally. In particular, it is argued that non-determinism can be

3 It adds special attributes to model elements, storing if the correspond-
ing elements have already been translated. We use so-called bookkeep-
ing edges pointing to model elements that still need to be translated (see
also [16]), which does not require changing meta models.

disregarded if it leads to incompletely translated models. No
TGG implementation is mentioned validating this approach
nor it is mentioned whether it would be possible to build one
working without backtracking.4 The static analysis is only
partially implemented, little information is given on its sca-
lability, and it is unclear how to automate the remaining parts
of the static analysis. As a follow-up paper for [9], [22] tackles
the backtracking issue by introducing so-called filter NACs
that to some extent can be derived automatically and that are
added to the operational rules without losing conformance.
Filter NACs help to reduce, but in general do not completely
avoid backtracking. In this paper, we show that if the TGG
fulfills some specific criteria, our TGG implementation using
an efficient matching strategy guarantees a unique transfor-
mation result without having to revert to backtracking. We
also show how the criteria guaranteeing uniqueness of the
transformation result can be analyzed statically within rea-
sonable constraints. Also in [27], it is shown that a conform as
well as an efficient operationalization for a new characteriza-
tion of well-formed TGGs exists. Here, TGGs do not have
to be deterministic as required in our approach. However,
requiring determinism has the advantage that if our transla-
tion algorithm aborts with an error, then we can be sure that
a conforming translation would not exist anyway. Moreover,
in contrast to the criteria we propose, the so-called integrity-
preserving properties that TGGs need to fulfill in [27] in order
to obtain conformance cannot be checked automatically yet.
This complex design task is left to the TGG developer.

Using TGGs to specify transformations between meta-
models with big structural and/or semantic differences can
be quite problematic. This is a general problem of relational
model transformation approaches and not the focus of the

4 At first sight, this seems difficult since the approach allows for
branches leading to incompletely translated models besides branches
leading to the unique transformation result.

123

276 H. Giese et al.

paper. Enhancing the expressiveness of TGGs is subject to
current research. For example, application conditions can be
used to enhance expressiveness as described in [22,27]. Note
that our implementation does not support general (negative)
application conditions. Including them into the formal frame-
work presented in this paper is part of future work. Also
[21] is concerned with expressiveness of TGGs and com-
pares them to the QVT Relational standard. Note that adding
new features to TGGs enhancing their expressiveness makes
the task of proving conformance more complex.

Finally, in contrast to [9,38], where triple graphs are
defined as spans of injective morphisms, we developed a for-
malization of triple graphs [15], based on plain graphs typed
over a suitable type triple graph, which is nearer to our imple-
mentation. Moreover, we do not assume that the TGG axiom
is empty, since this does not seem very realistic in praxis. Our
implementation is based on the Eclipse Modeling Frame-
work (EMF).5 However, in our formalization we abstract
from specific EMF features such as navigability, composi-
tions, or metamodel constraints. Supporting these features in
the formal semantics of triple graph grammars is a differ-
ent task and, therefore, we abstract from this problem in this
paper. However, there is already related work [4] which is
concerned with the problem of describing EMF transforma-
tions by a specific class of graphs and graph transformations
in a faithful way.

Another approach to relational, bidirectional transforma-
tions with a formal basis is [34] where a terminating, correct,
and complete operationalization for so-called patterns, some
kind of graph constraints for triple graphs, is derived. Large
sets of valid transformation results (i.e. non-determinism)
may occur, leading to efficiency problems concerning
implementation.

In [28], an approach is presented to systematically validate
model transformations with respect to termination and con-
fluence, and hence uniqueness of the transformation
result. Graph transformation theory is used to formally spec-
ify and statically analyze model transformations. However,
this approach uses an operational specification and does not
examine the conformance of the relational specification with
its operational counterpart.

Summarizing, as far as we know, there is no other approach
guaranteeing consistency, completeness, and determinism all
at once for a specific subset of TGGs or related relational
approaches on a formal as well as efficient and thus practical
implementation level.

Outline of the paper

We begin with an informal introduction on TGGs in Sect. 2,
introduce our running example and our tool support for

5 http://www.eclipse.org/emf.

TGGs. In Sect. 3, we describe TGGs in a more detailed and
formal way as a relational specification scheme for model
transformations. Then, we outline a naive operational com-
putation scheme in Sect. 4, and introduce a bookkeeping
mechanism and prove conformance to the formal semantics
in Sect. 5. This scheme is further refined towards a determin-
istic computation scheme in Sect. 6, where proper restrictions
for the rules are introduced that ensure determinism. Then,
we introduce minor derivations in the computation scheme
in Sect. 7 that hold for the implementation, show how the
corresponding restrictions for the rules can be checked stati-
cally, and prove that conformance and determinism also hold
for the implementation. In Sect. 8, we introduce a so-called
efficient implementation scheme containing several optimi-
zations with regard to match search strategies and control
flow constructs with regard to rule application. We show
conformance of the efficient implementation scheme with
the implementation scheme without optimizations. In Sect. 9,
we present the provided tool support including a new runtime
check that we have implemented to verify the uniqueness of
the transformation result and evaluate our approach on our
running example and on an industrial case study. Finally,
we close the paper with our conclusions and an outlook on
planned future work.

2 Introduction to triple graph grammars and our TGG
implementation

As a running example we will use a model transformation6

from SDL block diagrams [24] to UML class diagrams. The
metamodels of these languages are shown in Fig. 2. Block
diagrams are hierarchical structures, where a BlockDiagram
contains SystemBlocks which in turn contain Blocks. In the
class diagram, a ClassDiagram contains all other elements.
These are Classes that can be connected to each other via
Associations. Furthermore, Stereotypes can be attached to
classes. All these elements, except Stereotypes, can have a
name. There is also a correspondence metamodel. Its ele-
ments connect elements of the other two metamodels. This
way, the correspondence model stores traceability informa-
tion, which allows to find elements of one model that corre-
spond to an element of the other model.

Triple graph grammars (TGG) relate three different
models: A source model, a target model, and a correspon-
dence model. A TGG consists of an axiom (the grammar’s
start graph) and several TGG rules. The TGG for the trans-
formation of block and class diagrams is shown in Fig. 3.7

6 This model transformation is a simplified version of a transforma-
tion used in the industrial case study on flexible production control
systems [36].
7 Note, that the types defined in Fig. 2 are abbreviated in Fig. 3.

123

http://www.eclipse.org/emf

Bridging the gap between formal semantics and implementation of triple graph grammars 277

-name : string

BlockDiagram

-name : string

SystemBlock

-name : string

Block

1
*

1

BD2CD

SB2CL

BL2CL

-name : string

ClassDiagram

-name : string

Class

-text : string

Stereotype

-name : string

Association

1
*
1

*

1
*source

target

Block Diagram
Meta Model

Correspondence
Meta Model

Class Diagram
Meta Model

Fig. 2 Example metamodels

Here, we use a short notation that combines the left-hand
(LHS) and right-hand sides (RHS) of the graph transforma-
tion rule. Elements that belong to the LHS and RHS are drawn
in black; elements that belong only to the RHS (i.e. which
are created by the rule) are drawn green and marked with
“++”. TGG rules are divided into three domains: The source
model domain (left), target model domain (right), and the
correspondence model domain (middle). The axiom in Fig. 3
relates the root elements of the source and target models with
the axiom correspondence node.8 The attribute assignments,
defined through OCL expressions in our tool environment,
state that the names of the block and class diagrams must
be equal. Rule 1 creates a SystemBlock and a corresponding
Class. The BlockDiagram and ClassDiagram must already
exist. Rule 2 creates a Block in the block diagram domain and
connects it to the SystemBlock. In the class diagram domain,
a class is created and connected to the SystemBlock’s Class
with an Association.

TGGs cover three kinds of model transformation direc-
tions: Forward, backward, and correspondence transforma-
tions. A forward (backward) transformation takes a source
(target) model as input and creates the correspondence and
target (source) model. A correspondence transformation9

requires a source and target model and creates only the corre-
spondence model. This paper’s main concern is how to come
from the relational TGG description to a conforming and
efficient transformation covering one of these directions.

Thereby, we concentrate on showing conformance for
batch transformations, not for synchronizations [14,20].

We have developed an implementation of TGGs based
on Eclipse and the Eclipse Modeling Framework. The sys-
tem can perform model transformation and model synchro-
nization.10 It utilizes several optimizations to increase the

8 EMF requires all models to have a root node that contains all other
model elements.
9 The correspondence transformation is also known as mapping trans-
formation or model integration.
10 It can be downloaded from our Eclipse update site http://www.
mdelab.de/update-site.

bd1:BD cn1:BD2CD cd1:CD

bd1:BD cn1:BD2CD cd1:CD

++
++

++
++

++

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

++
++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target

++

++
++

++

++

++

++
++

++ ++

++
++

cn1:BD2CD cd1:CDbd1:BD

Axiom Rule (BlockDiagram to ClassDiagram)

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SA CA TA

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2

name := cd1.name name := bd1.name

name := cl2.name name := sb2.name

name := cl3.name

name := bl3.name

name := bl3.name

att: bd1.name == cd1.name

att: sb2.name == cl2.name

att: bl3.name == as3.name == cl3.name

Fig. 3 Example TGG rules and axiom rule

performance of model transformations. For example, these
optimizations limit the pattern matching process to a sub-
set of the source model (cf. Sect. 8). As shown in Fig. 1, our
TGG implementation includes an editor to create TGG rules.
Connected to the editor is a static analyzer that checks the
various criteria that will be presented in this paper. The TGG
rules are relational in nature. Therefore, operational rules
have to be derived in the form of Story Diagrams. These
Story Diagrams combine graph transformation rules, which
realize operational transformation rules with bookkeeping
(cf. Sect. 6) with control flow constructs for controlling rule
applications. A TGG engine executes the Story Diagrams
to perform model transformations. With the TGG Monitor
(see. Sect. 8), the execution of a model transformation can be
observed to aid the user in debugging TGG rules. In this pa-
per, we bridge the gap between the formal relational seman-
tics of TGGs and our TGG implementation.

3 Relational scheme

The relational scheme starts with an initial triple graph, called
the axiom. After that, TGG rules are applied to extend it. The
example in Fig. 4 was created in this manner. The block and
class diagrams are the source and target graphs connected by
a correspondence graph, constituting a triple graph. Further
on, we use a triple of variables SCT to denote one triple graph,

123

http://www.mdelab.de/update-site
http://www.mdelab.de/update-site

278 H. Giese et al.

bd1:BD

sb2:SB

bl3:BL

cn1:BD2CD

cn3:BL2CL

cn2:SB2CL

cd1:CD

cl2:CL

cl3:CL

as3:AS

source

target

a++: Created by TGG axiom; r1++: TGG rule 1; r2++: TGG rule 2

a++
a++

a++
a++

r1++
r1++

r1++
r1++

r1++
r1++ r1++

r2++
r2++

r2++
r2++

r2++
r2++ r2++

r2++

r2++
r2++

a++

S Ci Ti

name := "bd1" name := "bd1"

name := "sb2" name := "sb2"

name := "bl3"

name := "bl3"

name := "bl3"

Fig. 4 Example models connected by a correspondence model

where S denotes its source component, C its correspondence
component, and T its target component.

Formally,11 models can be interpreted as typed graphs
according to some given type graph (the model’s metamodel).
In case of triple graphs, the type graph in turn adheres to a par-
ticular structure reflecting its three components (the “meta-
metamodel” of triple graphs). A triple graph SCT is a graph
typed over

TRIPLE:
s c tectecs

ls lt

Therefore, a triple graph SCT consists of a source com-
ponent S, containing all elements of type s and ls ; a corre-
spondence component C , containing all elements of type s,
t , ecs,ect, and c; and a target component T, containing all ele-
ments of type t and lt . A triple type graph ST CT TT is a spe-
cial triple graph defining node and edge types for the source
component, correspondence component, and target compo-
nent of triple graphs. In particular, this means that the cor-
respondence component and source component (target com-
ponent) of a triple graph overlap in the source nodes (target
nodes) connected to correspondences. Thus, using this nota-
tion, a triple graph SCT coincides with the union of its source
component S, correspondence component C and target com-
ponent T. The metamodels of Fig. 2 can be interpreted as
a triple type graph. A typed triple graph is a triple graph
typed over ST CT TT , e.g., concrete block and class diagrams
connected by a correspondence model like shown in Fig. 4.
We say that a finite graph S (T or C) typed over ST (TT or
CT) is a source graph (target graph or correspondence graph,
respectively) and belongs to the language L (ST) (L (TT) or
L (CT), respectively). We extend these kinds of triple graphs

11 As mentioned in Sect. 1, we formalize triple graphs based on a new
category [15], allowing triple graphs with correspondence nodes that
do not necessarily need to be connected to exactly one source or target
node, respectively.

with attributes formalized using the symbolic approach [35].
Basically, in this approach first-order formulas over attribute
labels and values of the attribute domain are used to constrain
the possible attribute values.

Formally, a triple graph grammar TGG = (SACATA,R)

consists of an axiom SACATA and a set of non-deleting rules
R for triple graphs. Each rule consists of an inclusion from
the LHS SLCL TL to the RHS SRCR TR of the rule. Each ele-
ment in SLCL TL corresponds to an element in SRCRTR and is
preserved by the rule. Moreover, each rule is equipped with
a first-order formula �att (attribute formula) over attribute
labels occurring in the rule and values of the attribute domain,
expressing valid attribute value assignments for attributes in
the LHS and RHS of the rule.

All elements in SRCR TR \ SLCL TL are created when the
rule is applied. A rule r can be applied to a triple graph
SGCG TG if an injective morphism m of its LHS SLCL TL

into SGCG TG can be found such that corresponding attribute
values are valid assignments according to �att. We say that m
is a match from SLCL TL into SGCG TG . The result SH CH TH

of the rule application SGCG TG
m,r→ SH CH TH via rule r and

match m consists of the gluing of SGCG TG with elements
in SRCR TR \ SLCL TL via match m. This means that all ele-
ments created by r are added to the graph SGCG TG . More-
over, attribute values of created elements are set according
to �att.

Figure 4 shows in a compact way how rules 1 and 2 of our
TGG in Fig. 3 can be applied to the axiom obtaining SCi Ti .
The elements created by rules 1 and 2 are marked with “r1++”
and “r2++”, respectively. Rule 1 requires the presence of a
BlockDiagram connected with a ClassDiagram and thus can
be matched to the already present axiom such that a System-
Block connected with a Class can be added as children to
the already present BlockDiagram and ClassDiagram. The
attribute formula sb2.name==cl2.name derived from
rule 1 specifies that SystemBlock and Class must have equal
names.12 In this case, the name of the added SystemBlock
sb2 and Class cl2 are both set to “sb2”. After rule 1 has been
applied, analogously rule 2 can be applied obtaining SCi Ti ,
consisting of a block and class diagram related according
to our example TGG. The BlockDiagram contains a Sys-
temBlock containing a Block and the corresponding Class-
Diagram contains two Classes connected by an Association

12 In our tool as shown in Fig. 3, the user inputs the attribute assignments
for the corresponding forward (cl2.name:=sb2.name) and back-
ward transformation (sb2.name:=cl2.name) directly using OCL
expressions such that the (more conceptual) relational attribute formula
sb2.name==cl2.name is derived here. Note that the user himself
needs to take care of the fact that the attribute assignments for the for-
ward and backward direction are consistent to each other. More detailed
explanations to the specifics of attribute handling for TGGs can be found
in [31].

123

Bridging the gap between formal semantics and implementation of triple graph grammars 279

S21 C21 T21

S22 C22 T22

S C23 T23

S C24 T24
S25 C25 T25

S26 C26 T26

Relational
Scheme

...

SA CA TA

S11 C11 T11 S12 C12 T12 S13 C13 T13

Legend:

∈ FTTGG(S)Ci TiS

Fig. 5 Relational scheme: FT TGG

from the Class corresponding to the SystemBlock to the Class
corresponding to the Block.

We say that L (T GG) is the set of all triple graphs that can
be derived from SACATA using rule applications via rules
in R. Thereby, →∗TGG denotes the reflexive and transitive
closure of a rule application via some rule in T GG. Note,
that the standard results on graph transformation such as the
Concurrency Theorem, Local-Church Rosser Theorem, and
Critical Pair Lemma [7,30] hold for typed triple graph trans-
formations.13

As mentioned before, we can perform forward, backward,
and correspondence transformations based on a TGG. Sub-
sequently, we focus on forward transformations. Analogous
results can be derived for the correspondence case. For the
backward case we obtain similar results straightforwardly
because of symmetry reasons with the forward case.

We introduce the relational scheme FT TGG as follows:
FT TGG of a source graph S returns the set FT TGG(S) of

triple graphs SCi Ti that can be generated by the T GG start-
ing from the axiom SACATA and that have S as a source com-
ponent. This is illustrated in Fig. 5, where each arrow depicts
a rule application via some T GG rule. In other words, we
apply the triple graph grammar like an ordinary grammar to
generate the language of triple graphs defined by the TGG and
select those triple graphs that have S as a source component.

Definition 1 (relational scheme: FT TGG)
FT TGG : L (ST)→P(L (T GG)) is defined as follows:
FT TGG(S) := {SCi Ti |SACATA →∗TGG SCi Ti }.

Figure 4 shows a block diagram S with a correspond-
ing class diagram Ti . Both models are connected by a

13 As explained in more detail in [15], we can define the category
TripleGraphsST CT TT , having typed triple graphs as objects and typed
triple graph morphisms as arrows, such that TripleGraphsST CT TT with
the set M of injective morphisms (isomorphic on the data type part) is
an adhesive HLR category [7,30]. We extend these triple graphs with
attributes formalized using the symbolic approach [35]. As explained
in [35] this kind of attribute formalization fits into the adhesive HLR
framework as well.

correspondence model Ci . Assuming that we want to trans-
form S, this is a valid forward transformation result in
FT TGG(S) because there is a corresponding transformation
producing a triple graph SCi Ti according to the T GG in
Fig. 3. The attribute formulae ensure equality of the name
attributes of corresponding elements. However, while all three
models are created in parallel, the actual name values can be
chosen arbitrarily. The annotations in Fig. 4 indicate which
rules create the corresponding elements. Note that the gen-
eration of SCi Ti corresponds conceptually to one path in the
derivation tree of Fig. 5. Each path in this tree ending up
with a triple graph having S as a source component belongs
to FT TGG(S).

4 Naive operationalization

The relational scheme creates all three models in parallel.
However, in practice only the source or target model exists
and the correspondence and target or source model should
be created by the forward or backward model transforma-
tion, respectively. Alternatively, the source and target model
might exist and the correspondence model should be created
by a so-called correspondence transformation.

To this extent, operational transformation rules from the
relational TGG rules can be derived as introduced in [37]:
For the forward transformation, all elements belonging to the
source domain that were previously created are added to the
LHS of the rule. A forward rule then specifies how source
elements can be translated into target elements according
to the TGG (see Fig. 6 depicting the forward rule rF

1 de-
rived from rule r1 of our running example TGG). More for-
mally, given a triple graph rule r : SLCL TL → SRCR TR

a forward rule rF : SRCL TL → SRCR TR is derived. In
particular, the elements belonging to SR \ SL are added to
SLCL TL . Since these are all source elements, the source com-
ponent then consists of SR \ SL ∪ SL = SR and we ob-
tain a well-defined triple graph14 SRCL TL since SR ∩CL =
SL ∩ CL ⊆ CL . The attribute formula of rF is identical to
the attribute formula of r , since the same constraints should
still hold for the corresponding attribute values. The only
difference is that when applying rF attribute values of ele-
ments in SR \ SL are now also determined by matching
them to elements with concrete attribute values in the in-
stance graph. Analogously, a so-called backward rule and

14 The union of SR ,CL , and TL defines in this special case the intended
triple graph. Actually, the source nodes in SR \ SL (typed over s in
T RI P L E) should be added to the correspondence component CL . We
use this slight abuse of notation in case that the correspondence compo-
nent of a triple graph is not connected via correspondence edges to each
source or target node in the source or target component, respectively. It
is part of future work to introduce our triple notation in such a way that
it fits better also for these special cases.

123

280 H. Giese et al.

bd1:BD cn1:CN cd1:CD

sb2:SB cn2:CN cl2:CL++
++

++
++ ++

name := sb2.name

Fig. 6 Operational forward rule rF
1 derived from rule r1

correspondence rule can be derived. A backward rule spec-
ifies how target elements can be translated into source ele-
ments according to the TGG. More formally, given a tri-
ple graph rule r : SLCL TL → SRCRTR , a backward rule
rB : SLCL TR → SRCRTR is derived. A correspondence
rule specifies how source and target elements can be con-
nected to each other according to the TGG. More formally,
given a triple graph rule r : SLCL TL → SRCR TR , a corre-
spondence rule rC : SRCL TR → SRCR TR is derived. From
this point, we concentrate on forward transformations, since
the considerations for the other transformation directions are
analogous.

A decomposition and composition result as given in [9,37]
shows that a triple graph transformation creating a triple
graph SCT can be decomposed into a so-called source and
forward transformation, and vice versa.15 First, the source
transformation creates the source graph S to be translated by
applying source rules and the corresponding forward trans-
formation performs the actual translation into SCT via for-
ward rules. Source rules are rules that correspond to the
source projection of a TGG rule. More formally, given a
triple graph rule r : SLCL TL → SRCR TR , then a source
rule rS : SL → SR can be derived. The decomposition and
composition result relies on the fact that a triple graph rule
r : SLCL TL → SRCRTR can be understood as a sequen-
tial application (denoted by ∗) of the corresponding source
and forward rule r = rS ∗L F rF as shown in the following
diagram, where all arrows denote inclusions:

SL

��

�� SR

���
��

��
��

SRCL TL

����������
�� SRCR TR

��
SLCL TL �� SRCL TL �� SRCR TR

Consequently, a triple graph transformation creating SCT
can be decomposed into a sequence of steps, where each
step consists of a source transformation creating a part of the
source graph S to be translated and the corresponding for-
ward transformation translating these created elements. This
sequence can then be rearranged such that first all source
graph elements are created by the source transformations and
afterwards the created source graph is translated by the cor-
responding forward transformations. The decomposition and

15 We informally reintroduce this result here, since it is analogous to [9,
37].

composition result represents a first step to the operational-
ization of TGGs, since it demonstrates that it is possible to
find for each triple graph SCT generated by the TGG a for-
ward transformation translating S into SCT. The question
remains of how to apply the forward rules without having to
investigate how the source graph might have been created by
the corresponding source rules. The next sections describe
how to overcome this problem.

5 Operational scheme

In order to be able to guarantee consistency with the TGG,
the transformation implementation has to keep track of those
model elements that were already transformed in a previous
transformation step and which elements have not been trans-
formed yet. For this purpose, we introduce a special book-
keeping node b, which keeps a bookkeeping edge to each
source model element that has not been transformed yet (cf.
Fig. 7).16 When some source model element is transformed,
the corresponding bookkeeping edge is deleted. This implies
that the bookkeeping edges have to be added to S, which
is the source graph to be translated, once before executing
the model transformation, obtaining the initial source graph
Binit S. In contrast to [23], where a bookkeeping mechanism is
proposed using a special attribute added to the elements to be
translated, our mechanism has the advantage that the book-
keeping structures are stored as extensions referring to the
original source and target language elements, i.e. the meta-
models of the source or target language do not have to be
changed.17 Note that we do not introduce a bookkeeping
mechanism for attributes, since we assume that if a node is
created in a TGG it should be created together with all its
attributes and it does not make sense from a practical point
of view to do this in different TGG rules.

Furthermore, we extend each forward rule rF with a book-
keeping mechanism to rBF. Figure 8 shows the operational
bookkeeping forward rule derived from rule 1 in Fig. 3. When
it is applied, the bookkeeping edges pointing to model ele-
ments of SR \ SL are deleted. This is indicated by the “- -”
annotation and the red color of these edges. The model ele-
ments of SL must have been transformed already. This is
ensured by negative application conditions, which prohibit
bookkeeping edges to these elements. The attributes of cre-
ated target model elements are set according to �att. The
advantage of integrating the bookkeeping mechanism into
the forward rules is that, on the one hand, rule application
itself makes sure that consistency with the TGG is preserved

16 Note, that we use a graph model, where edges from nodes to edges
are allowed, as explained in more detail in [15].
17 [5] presents more detailed explanations on this kind of meta-model
integration pattern for the FUJABA Tool suite.

123

Bridging the gap between formal semantics and implementation of triple graph grammars 281

bd1:BD

sb2:SB

bl3:BL

cn1:BD2CD

cn3:BL2CL

cn2:SB2CL

cd1:CD

cl2:CL

cl3:CL

as3:AS

source

target

a++

r1++

r2++

b:B

a- - a++
a++a++

r1++ r1++
r1++ r1++

r1- -

r1- -

r2++ r2++

r2++
r2++

r2++

r2++ r2++

a++/a- -: Created/deleted by aBF; r1++/r1- -: r1
BF; r2++/r2- -: r2

BF

r2- -

r2- -

name := "bd1" name := "bd1"

name := "sb2"

name := "bl3"

name := "sb2"

name := "bl3"

name := "bl3"

Fig. 7 Forward transformation with bookkeeping

bd1:BD cn1:CN cd1:CD

sb2:SB cn2:CN cl2:CL++
++

++
++ ++

b:B
- -- -

name := sb2.name

Fig. 8 Operational forward rule rBF
1 with bookkeeping derived from

rule r1

since translated elements are marked as such and, on the other
hand, we can use this information (see Sect. 6) to predict at
design time potential conflicts between forward transforma-
tion steps competing to translate the same elements.

Formally, rF is extended18 to rBF : BSR\SL SRCL TL ←
bSRCL TL → bSRCRTR , a span of inclusions with N ACBF

defined as follows: A special bookkeeping node b is added,
which is preserved. For each node and edge x ∈ SR \ SL , we
add a bookkeeping edge from b to x , which is deleted by the
rule. The set BSR\SL consists of these bookkeeping edges and
the bookkeeping node b. N ACBF is a set of negative appli-
cation conditions, which forbid for each element x ∈ SL an
incoming bookkeeping edge from b. In the example in Fig. 8,
BSR\SL contains b, the bookkeeping edges to sb2, and to the
link between bd1 and sb2. N ACBF forbids the edge from b
to bd1.

We can apply a bookkeeping forward rule rBF to a triple
graph with bookkeeping BG SGCG TG if there exists a match
m : BSR\SL SRCL TL → BG SGCG TG , fulfilling N ACBF,
meaning that each node and edge in m(SL) has no incoming
edge from b (translated already), and each node and edge in
m(SR \ SL) has an incoming edge from b (to be translated).
The application of rule rBF to BG SGCG TG via m deletes all
bookkeeping edges in m(BSR\SL) and adds the translation
SRCR TR \ SRCL TL .

18 We therefore extend also the graph T RI P L E and ST CT TT with
corresponding bookkeeping node and edge types as presented in [15].

C25 T25S

C26 T26S

C21 T21S

C23 T23S

C22 T22S

S

......... ⊥⊥⊥

...

Operational
Scheme

CA1 TA1S

C11 T11S C12 T12S C13 T13S

C24 T24S

CA2 TA2S

Legend:

translated nodes and
edges of S

FTTGG(S)Ci TiS

S

∈

Fig. 9 Operational scheme: FT CON

We can interpret the axiom SACATA of a T GG as a triple
graph rule, called axiom rule, a : ∅ → SACATA. The book-
keeping forward rule aBF of a is built analogously to reg-
ular TGG rules. However, the bookkeeping is not sufficient
to exclude that it is applied multiple times. Thus, this rule
must be controlled separately at the beginning of each for-
ward transformation. We define C O N = O PFT (T GG) as
the rule set consisting of a bookkeeping forward rule rBF

for each rule r of the T GG (C O N because we will show
that it conforms to the TGG). Moreover, we have a mapping
T rans F computing for each triple graph with bookkeeping
the part of S that has already been translated by some book-
keeping forward rule. In particular, it consists of all nodes
and edges with no incoming bookkeeping edges. Finally, we
define Binit S as the initial source graph consisting of S and b
equipped with one bookkeeping edge for each graph element
in S.

We introduce the operational scheme FT CON as follows:
Given a TGG and its operationalization C O N , then FT CON

of a source graph S returns all triple graphs SCi Ti that can
be reached by first applying the forward axiom rule aBF to
Binit S once, and afterwards applying bookkeeping forward
rules in C O N up until all nodes and edges in S have been
translated such that S = T rans F (Bi SCi Ti). This is illus-
trated by Fig. 9, where the application of aBF is depicted by
a dashed arrow and all other arrows depict a rule application
via a bookkeeping forward rule in C O N . Derivation paths
ending up with⊥ denote terminating paths, where no rule is
applicable anymore.

Definition 2 (operational scheme: FT CON)
Given a TGG and its operationalization C O N , then FT CON :
L (ST) → P(L (T GG)) of a source graph S is defined
as follows: FT CON(S) := {SCi Ti |Binit S →aBF BA SCATA

→∗CON Bi SCi Ti∧ S = T rans F (Bi SCi Ti)}.

123

282 H. Giese et al.

This implies that all elements in S have been transformed
exactly once. We call this a valid transformation.

Figure 7 shows the valid forward transformation of our
example block diagram. Initially, there is a link from the
bookkeeping node b to each source model node and edge.
The bookkeeping forward axiom rule transforms bd1 and
produces cn1 and cd1. The bookkeeping edge to bd1 is
deleted. Next, bookkeeping forward rule rBF

1 is applied to
create cn2 and cl2. It also deletes the bookkeeping edges
to sb2 and to the link between bd1 and sb2. Finally, book-
keeping forward rule rBF

2 is applied, analogously. The name
attributes of target model elements are set according to the
attribute formulae. For example, when applying rBF

1 with
formula sb2.name == cl2.name the attribute value of
sb2.name is determined by matching sb2 such that the
value of the attribute cl2.name is determined according to
cl2.name:= sb2.name. Thus, when creating cl2, the
name of cl2 is set to the name of sb2. In Fig. 9, this book-
keeping forward transformation corresponds conceptually to
one path in the derivation tree ending up with a triple graph,
where S is completely translated. Because of conformance,
this resulting triple graph then belongs to FT TGG(S).

In the following, we show that FT TGG conforms with
FT CON, meaning that for each forward transformation via
bookkeeping rules a corresponding forward transformation
according to the T GG exists (consistency) and the other way
round (completeness). Intuitively, this means that each triple
graph result of the operational scheme SCi Ti (cf. Fig. 9),
where all elements of S have been translated, can be found
as an element of the triple graph language (cf. Fig. 5), and
vice versa.

In [8,37], it is argued already in detail that a TGG rule
application can be decomposed into a sequence of transfor-
mations via the corresponding source rule,19 where the cor-
respondence and target component of the rule are empty,
followed by a transformation via the corresponding forward
rule and the other way round (composition). Since our for-
ward and source rules are constructed analogously to [8,37],
in the following proof ideas, we assume these results and
concentrate on arguing that the bookkeeping mechanism as
added in this paper to the forward rules leads to consistency
and completeness as described above. Complete proofs can
be found in [15].

As an auxiliary result, we show that each application of
bookkeeping forward rules is backed up by a correspond-
ing TGG rule application (partial consistency). Then, it fol-
lows directly that also in the special case that a complete
source graph is translated, the correspondence must hold and
thus we have consistency. Conversely, we show that a for-
ward transformation via TGG rules guarantees that a related

19 Given a TGG rule r : SL CL TL → SRCR TR , then we have the
following corresponding source rule rS : SL → SR .

transformation via bookkeeping rules can be found, leading
to completeness.

Lemma 1 (partial consistency)
For a T GG and its operationalization C O N = O PFT

(T GG) holds that Binit S →aBF BA SCATA →∗CON
Bi SCi Ti∧ T rans F (Bi SCi Ti) = Si implies SACATA →∗TGG
Si Ci Ti via the related TGG rules.

Proof (Proof idea) The bookkeeping forward axiom rule
aBF is applied to Binit S via some match m A conforming
to SACATA only once. The set of translated elements after
this first step T rans F (BA SCATA) = m A(SA). Furthermore,
bookkeeping of the rules in C O N implies that during the
transformation of BA SCATA each node and edge of S \
m A(SA) is translated at most once conform to the corre-
sponding TGG rules. Each rule application of C O N via some
rule rBF enlarges the set of translated elements in S with the
matched elements of SR \ SL . Accordingly, when a series of
rule applications via C O N starting with BA SCATA delivers
Bi SCi Ti such that T rans F (Bi SCi Ti) = Si , then applying
the related T GG rules generates Si Ci Ti from SACATA. �

Lemma 2 (completeness)
For a T GG and its operationalization C O N = O PFT

(T GG), it holds that FT TGG(S) ⊆ FT CON(S). In particu-
lar, Binit S →aBF BA SCATA →∗CON Bi SCi Ti and T rans F

(Bi SCi Ti) = S if SACATA →∗TGG SCi Ti via the related
TGG rules.

Proof (Proof idea) The forward axiom rule aBF can be
applied to Binit S such that Binit S →aBF BA SCATA because
the source axiom SA is contained in S. Moreover, for each
T GG rule application via r generating the graph elements
SR \ SL in S, the related bookkeeping forward rule rBF of
C O N can be applied, translating exactly those elements in S
conforming to r . Since each element in S, except the axiom
elements, is generated by such a TGG rule application, we
have that Binit S→aBF BA SCATA →∗CON Bi SCi Ti such that
T rans F (Bi SCi Ti) = S. �

Theorem 1 (conformance)
For a T GG and its operationalization C O N = O PFT

(T GG), it holds that FT TGG(S) = FT CON(S). In particu-
lar, Binit S →aBF BA SCATA →∗CON Bi SCi Ti and T rans F

(Bi SCi Ti) = S if and only if SACATA →∗TGG SCi Ti via the
related TGG rules.

Proof FT TGG(S) ⊇ FT CON(S) (consistency) follows from
Lemma 1 for the special case that T rans F (Bi SCi Ti) = S.

FT TGG(S) ⊆ FT CON(S) (completeness) holds because
of Lemma 2. �

123

Bridging the gap between formal semantics and implementation of triple graph grammars 283

6 Deterministic operational scheme

As can be seen in Fig. 9, it is not guaranteed that whenever
a valid transformation result exists, it can be found without
backtracking. The determinism criteria studied in this sec-
tion restrict the TGGs to those ones where backtracking can
be safely avoided. These criteria ensure, on one hand, that
whenever a valid transformation result exists, it can be found
without backtracking. On the other hand, if no valid trans-
formation result exists, then we can find this out without
backtracking, as well.

In order to avoid backtracking, we need to show that apply-
ing bookkeeping forward rules as long as possible always
terminates with a unique result. To this extent, we use the
theory of critical pairs guaranteeing that under specific con-
ditions a set of bookkeeping forward rules is locally conflu-
ent [7,30]. A critical pair describes a conflict in a minimal
context. Conflicts arise for bookkeeping forward rules if one
rule deletes a bookkeeping edge marked for deletion also
by the other rule.20 This is because after applying the first
rule and deleting the bookkeeping edge which is marked for
deletion also by the other rule, this rule cannot be applied
anymore. We ignore critical pairs with the same rules and
same matches, since they represent a confluent situation in a
trivial way. We forbid the existence of critical pairs (conflict-
freeness criterion) since the corresponding conflicts may lead
to a result that is not unique. Note that this criterion could be
relaxed by allowing for critical pairs that are strictly NAC-
confluent [29,30]. Since we want to provide feasible practical
tool support for our approach, we have opted however for the
more severe conflict-freeness criterion.21

Moreover, we introduce a termination criterion ensuring
that each application of a bookkeeping forward rule indeed
diminishes the number of translated elements. In order to
ensure that new attribute values are set in a unique way such
that single rule applications have a unique transformation
result, we introduce an attribute criterion. Finally, we make
sure by the domain restriction criterion that the forward rule
of the axiom can only be applied in a unique way.

The forward determinism criteria are as follows: (1)
Each T GG rule creates at least one graph element on the
source part (termination criterion). (2) For the rules in C O N
= O PFT (T GG) there exist no critical pairs, ignoring pairs
with same rules and same matches (conflict-freeness crite-
rion). (3) For the rules C O N = O PFT (T GG), we require
for the attribute formula �att that attribute values of preserved

20 Note that neither produce-forbid conflicts can occur, since no book-
keeping edges are produced, nor can attribute conflicts occur, since we
assume that attributes are only written if the corresponding node is cre-
ated (attribute criterion).
21 Currently, there is no tool support for computing if critical pairs are
strictly NAC-confluent. Implementing such an algorithm would involve
exponential complexity with respect to the depth of the search tree.

bd1:BD cn1:BD2CD cd1:CD

cl2:CL

++
++

SL1 CL1 TL1

SR1 CR1 TR1

Fig. 10 Violation of forward termination criterion

bd1:BD cn1:BD2CD cd1:CD

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target

++

++
++

++
++

++

cn1:BD2CD cd1:CDbd1:BD

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2

b:B
--

b:B

--

--

Fig. 11 Operational backward rules r1B B and r2B B in conflict

elements remain unchanged and that attribute value assign-
ments of created elements are uniquely determined as soon
as the value assignments of attributes of preserved elements
are set (attribute criterion).

Moreover, we have the following domain restriction
criterion: Only source graphs, containing the source com-
ponent of the TGG axiom only once, are translated. We say
that these source graphs belong to L (S A

T) ⊆ L (ST).
The example rule in Fig. 10 illustrates a violation of the

termination criterion (forward). It depicts a TGG rule that
would lead to a non-terminating forward transformation,
because the corresponding bookkeeping forward rule would
create classes in a class diagram already connected with a
block diagram. No source element at all is created by the
TGG rule such that during the forward transformation target
elements are created without a corresponding source element.
No bookkeeping edges are consumed that would reduce the
number of source elements to be translated, leading to non-
termination.

The example transformation rules (cf. Fig. 3) illustrate a
violation of the conflict-freeness criterion because a conflict
exists between the bookkeeping rules 1 and 2 for the back-
ward direction. Figure 11 shows these rules. The LHS of rule
1 is completely contained in the LHS of rule 2 (shaded back-

123

284 H. Giese et al.

bd1:BD

sb2:SB

bl3:BL

cn1:BD2CD

cn3:BL2CL

cn2:SB2CL

cd1:CD

cl2:CL

cl3:CL

as3:AS

source

target

name := "bd1" name := "bd1"

name := "sb2"

name := "bl3"

name := "sb2"

name := "bl3"

name := "bl3"

cn3:SB2CLsb3:SB

name := "bl3"

Rule 2

Rule 1

r2++r2++

r1++ r1++

b:B

r2--

r1--/r2--

Fig. 12 Operational backward rules r1B B and r2B B competing for the
translation of cl3

ground). Therefore, both rules can be applied in the same
context and compete for the translation of the same Class,
namely cl2 in rule 1 and cl3 in rule 2, respectively. Figure 12
shows the backward transformation of a class diagram model
with both alternatives. In particular, cl3 can be translated by
rules 1 and 2 but with different results, which are both shown
in the figure.22 Rule 1 creates a second SystemBlock in the
block diagram model, rule 2 creates a Block. In particular, we
have a delete-use-conflict because if the bookkeeping edge
to the instance class cl3 is deleted by rule 1, then it cannot
be matched anymore by rule 2 and the other way round. In
addition, rule 1 leaves as3 untranslated. After applying rule
1 to translate cl3, the bookkeeping edge to as3 still exists.
Therefore, the transformation result is not unique and the
transformation not deterministic.

Theorem 2 (FT CON forward deterministic)
For a T GG and its operationalization C O N=O PFT (T GG)

fulfilling the forward determinism criteria, it holds that for
each S∈L (S A

T) either some SCT exists such that FT CON(S)

= {SCT} or FT CON(S) = ∅. We say that FT CON is forward
deterministic. (Proof see Appendix A)

Consequently, we can introduce the deterministic oper-
ational scheme FT DET that works without backtracking:
Given a T GG and its operationalization C O N = O PFT

(T GG) fulfilling the forward determinism criteria, and a
transformation domain L (S A

T) fulfilling the domain restric-
tion criterion, then FT DET returns a valid transformation
result SCT of S if after having applied the forward axiom
rule aBF to Binit S once, it is possible to apply bookkeep-
ing forward rules in C O N up until each node and edge in S

22 Thereby, cl2 of rule 1 as well as cl3 of rule 2 are mapped to the
instance Class cl3.

Deterministic
Operational

Scheme

...

⊥⊥

S

...

CA TAS

C11 T11S
C12 T12S

C21 T21S

C22 T22S

C23 T23S

C24 T24S

C25 T25S

C26 T26S

C TS

Legend:

translated nodes and
edges of S

FTTGG(S)Ci TiS

S

∈

Fig. 13 Deterministic operational scheme: FT DET

have been translated (see Fig. 13). Otherwise, FT DET returns
undefined.

Definition 3 (deterministic operational scheme: FT DET)
Given a T GG and its operationalization C O N = O PFT

(T GG) fulfilling the forward determinism criteria, then
FT DET :L (S A

T)→ L (T GG) is a partial mapping such that
FT DET(S) := SCT if FT CON(S) = {SCT}, else FT DET(S)

is undefined.

As can be seen in Fig. 13, there might be several book-
keeping transformations leading to a transformation result
where the complete source graph has been translated, but if
such a valid transformation result exists, then it is unique.

7 Implementation scheme

Our implementation [14] is based on the Eclipse Modeling
Framework23 (EMF). Currently, this implementation only
provides bookkeeping on nodes and does not provide book-
keeping for edges, because edges do not have an identity in
EMF-based models.24

The operational rules for the implementation, I M P , are
analogous to the bookkeeping forward rules in C O N , apart
from the fact that the bookkeeping for edges is omitted. Given
a TGG rule r , we have a node bookkeeping forward rule
r IF. First, let us assume that SRN and SL N denotes the set of
nodes in SR and SL , respectively. Given a T GG rule r , then a
node bookkeeping forward rule r IF : B N

SRN \SL N
SRCL TL ←

23 http://www.eclipse.org/modeling/emf/.
24 A helper structure would be required for edge bookkeeping.

123

http://www.eclipse.org/modeling/emf/

Bridging the gap between formal semantics and implementation of triple graph grammars 285

bd1:BD cn1:BD2CD cd1:CD

cl2:CL

++SL1 CL1 TL1

SR1 CR1 TR1

sb2:SB cn2:SB2CL

++

Fig. 14 Violation of refined forward termination criterion

bSRCL TL → bSRCRTR is a span of inclusions, deleting
for each node in SRN \ SL N the corresponding bookkeep-
ing edges, together with N AC IF a set of NACs forbidding
for each node n in SL an incoming bookkeeping edge from
b, expressing that the node has been translated already. For
example, r IF

1 is equal to rBF
1 (see Fig. 8) apart from the book-

keeping edge to the edge between bd1 and sb2. Given a
T GG, then I M P = O P IMP

FT (T GG) is the rule set consist-
ing of a node bookkeeping forward rule r IF for each rule r of
the T GG. Because we now only do bookkeeping on nodes
but not on edges, we adapt the forward determinism criteria
to forward implementation criteria such that uniqueness of
the transformation result can still be guaranteed [15]. The
domain restriction criterion remains unchanged. Moreover,
we start each node bookkeeping forward transformation with
the initial graph B N

init S (instead of Binit S) where bookkeeping
edges to each node (and not to the edges) in S were added
to S.

The forward implementation criteria are given as
follows: (1) Each T GG rule creates at least one graph node
on the source part (refined termination criterion). (2) For the
rules in I M P = O P IMP

FT (T GG) there exist no critical pairs,
ignoring pairs with same rules and same matches (conflict-
freeness criterion). (3) For the rules I M P = O PIMP(T GG),
we require for the attribute formula � that attribute values
of preserved elements remain unchanged and that attribute
value assignments of created elements are uniquely deter-
mined as soon as the value assignments of attributes of pre-
served elements are set (attribute criterion).

The example rule in Fig. 14 illustrates a violation of the
refined termination criterion (forward). It depicts a TGG rule
that would lead to a non-terminating node bookkeeping for-
ward transformation. The corresponding node bookkeeping
forward rule would create for each association between some
block diagram and system block a corresponding associa-
tion between a class diagram and a class. The problem is
that since a node bookkeeping forward rule does not perform
bookkeeping on edges this rule can be applied infinitely many
times to the same association. Concluding, no bookkeeping is
done reducing the number of source elements to be translated
leading to non-termination.

The mapping T rans F N computes for each triple graph
with node bookkeeping B N SCT the nodes that have already
been translated by some bookkeeping forward rule before:

Implementation
Scheme

...

S

C1 T1S

C TS

Legend:

translated nodes of S

FTTGG(S)Ci TiS

S

CA TAS

⊥

∈

Fig. 15 Implementation scheme: FT IMPd

T rans F N (B N SCT) is a subgraph of S, consisting of all
nodes with no incoming bookkeeping edge. We define B N

init S
as the initial source graph, consisting of S and b equipped
with one bookkeeping edge for each graph node in S. Given
a T GG and its operationalization I M P = O P IMP

FT (T GG),
then we can define FT IMP : L (ST) → P(L (T GG))

as follows: FT IMP(S) := {SCi Ti |B N
init S →aIF B N

A SCATA

→∗IMP B N
i SCi Ti ∧ SN = T rans F N (B N

i SCi Ti)}, where SN

is the set of all nodes in S. We prove that FT IMP is for-
ward deterministic if it fulfills the forward implementation
criteria and domain restriction criterion. Afterwards, we can
define the implementation scheme FT IMPd that works with-
out backtracking.

Theorem 3 (FT IMP forward deterministic)
For a T GG and its operationalization I M P = O P IMP

FT
(T GG) fulfilling the forward implementation criteria, it holds
that for each S ∈ L (S A

T) either some SCT exists such that
FT IMP(S) = {SCT} or FT IMP(S) = ∅. We say that FT IMP

is forward deterministic. (Proof see Appendix A)

We introduce an implementation scheme FT IMPd that
works without backtracking because of determinism of the
transformation result: Given a T GG and its operationalization
I M P = O P IMP

FT (T GG) fulfilling the forward implementa-
tion criteria, and a transformation domain L (S A

T) fulfilling
the restricted domain criterion, then FT IMPd returns a valid
transformation result SCT for S if after applying the forward
axiom rule aIF to B N

init S once, node bookkeeping forward
rules in I M P can be applied up until all nodes in S have
been translated (see Fig. 15). Otherwise, FT IMPd returns
undefined.

Definition 4 (implementation scheme: FT IMPd)
Given a T GG and its operationalization I M P = O P IMP

FT
(T GG) fulfilling the forward implementation criteria, then
FT IMPd : L (S A

T) → L (T GG) is a partial mapping such
that FT IMPd(S) := SCT if FT IMP(S) = {SCT}, otherwise
FT IMPd(S) is undefined.

123

286 H. Giese et al.

For valid source models, we can prove conformance of
FT IMPd with the TGG. A source model S is valid if there
exists a forward translation into a triple graph SCT accord-
ing to the TGG. More formally, S is valid if a triple graph
SCT ∈ L (T GG) with source component S exists. Note that
conformance for valid source graphs is obtained although we
only do bookkeeping on nodes. This is because if each node
in the source graph has been translated, we know that the
translation has achieved its unique result consistent with the
TGG and not only the nodes, but also all edges must have
been translated in a consistent and unique way.

Theorem 4 (FT IMPd conform with FT TGG)
Given a T GG with operationalization I M P = O P IMP

FT
(T GG) fulfilling the forward implementation criteria and
some valid S ∈ L (S A

T), it holds that {FT IMPd(S)} =
FT IMP(S) = FT TGG(S). (Proof see Appendix A)

Note that only with the restriction that S is valid, we can
conclude conformance of FT IMPd with the TGG. It would
be better to have an implementation, which checks this while
transforming S. The deterministic operational scheme
FT DET, with bookkeeping also for edges, provides such a
solution. Therefore, it is currently used to realize an improved
implementation providing this feature.

Example 1 (checking implementation criteria) When we
analyze the forward transformation of our example TGG, we
see that the forward axiom rule in Fig. 3 can only be matched
in a unique way to S, so the restricted domain criterion is
fulfilled. Moreover, it is obvious that each TGG rule in Fig. 3
creates at least one source node, which satisfies the refined
termination criterion. Furthermore, there are no rules that
change attribute values of elements of the LHS of the book-
keeping rule. Only attribute values of created elements are
set. These values are uniquely determined by the name attri-
bute value of the corresponding source element. Therefore,
the attribute criterion is also fulfilled.

For the conflict-freeness criterion, we need to compute
critical pairs for the node bookkeeping forward rules r IF

1 and
r IF

2 . AGG [41] is a graph transformation tool able to compute
this set for a given pair of rules. In particular, it computes that
indeed there exist no critical pairs such that the conflict-free-
ness criterion is fulfilled.

On the contrary, analyzing the backward transformation,
the conflict-freeness criterion is not fulfilled, since AGG [41]
computes a critical pair for the node bookkeeping backward
rules r IB

1 and r IB
2 . Both rules compete to translate the same

class, being the target of an association, see the more detailed
explanation in Sect. 6 and Fig. 11. Therefore, we have two
cases: (a) If the encoding of the target cannot be changed, the
backward transformation cannot be used. We can conclude
that the criteria implicitly allow us to check whether the rule
set is bidirectional or not. (b) We correct the encoding of

bd1:BD cn1:CN cd1:CD

sb2:SB cn2:CN cl2:CL

st2:ST

++ ++
++

++ ++

++

++
++

++

++

++

Rule 1 (SystemBlock to Class and Stereotype)

text := "system"

name := cl2.name name := sb2.name

Fig. 16 Corrected TGG rule r1 with a stereotype

the target if necessary and also the TGG rules in order to
obtain backward determinism. In our example, this can be
achieved by adding a stereotype in r1 to classes correspond-
ing to system blocks and another stereotype to classes being
target of an association as in rule r2. The text attribute of
the stereotype is set to “system” and “block”, respectively.
Figure 16 shows the corrected TGG rule r1. For these cor-
rected backward rules, AGG computes that indeed there exist
no critical pairs. In Sect. 9.4, we provide more information
on tool support for checking the implementation criteria.

Concluding, suppose that we would not be able to rely
on determinism of the model transformation result in our
implementation. In this case, we would need to apply back-
tracking in order to find all possible transformation results.
The complexity of such a backtracking algorithm would be
exponential with respect to the depth of the derivation tree.
On the contrary, if determinism can be assumed because it
has been computed statically beforehand, then performing
a model transformation becomes linear with respect to the
depth of the derivation tree (abstracting from the complex-
ity of matching rules, which would be comparable in both
algorithms).

8 Efficient implementation scheme

As mentioned in Sect. 1, our implementation covers sev-
eral additional optimizations that go beyond the abstraction
presented in the previous section. These optimizations are
based on the model transformation algorithm presented in
[20]. In the meantime, the algorithm’s implementation has
been migrated to EMF and improved, especially regarding
model synchronization (although synchronization is not con-
sidered in this paper). The optimizations in particular include
the strategy to avoid searching for matches in the whole
source graph and the way control flow constructs are used
in the implementation to realize the transformation on top of
the graph transformation language Story Diagrams [11] (see
step (5) in Fig. 1). Therefore, we present the optimizations
with regard to efficiency, implemented in the transformation
engine when applying node bookkeeping operational rules.
Thereafter, we prove that these optimizations preserve con-
formance with the TGG rules if they fulfill some additional

123

Bridging the gap between formal semantics and implementation of triple graph grammars 287

syntactical constraints. In fact, our efficient implementation
keeps track of correspondence nodes that may still lead to
new transformations because they were created by some pre-
vious transformation step. We use this tracking mechanism
in order to optimize matching by searching only for matches
including such a tracked correspondence node. We are even
able to perform a local search starting from the tracked cor-
respondence node in most cases.

To execute a model transformation, the engine is started
with the root elements of the source and target models as
parameters, as well as the desired transformation direction
(i.e. forward or backward). First, the axiom rule is applied to
transform the source axiom. The correspondence node that
was created by the axiom rule is the first one to be tracked
and it is saved into the so-called active correspondence set
P . One node in P at a time may be activated, and it is called
the active correspondence node. We can then apply transfor-
mation rules that expect this type of correspondence node in
their LHSs. If no more matches can be found for the active
correspondence node, it is not tracked further, deactivated
and removed from P . If during the search for matches a rule
has been applied successfully, then the created correspon-
dence node is marked to be tracked and added to the active
correspondence set P on his turn. This procedure is followed
until the active correspondence set P is empty and each cor-
respondence node has been deactivated.

The following algorithm in pseudo-code describes the
above procedure:

// Batch transformation algorithm with efficient
// matching
Apply axiom rule to create axiom correspondence

node
Create empty set P and add created axiom

correspondence node to P
Create empty set U

while (P is not empty)
{

Select a correspondence node c from P
U := rules in IMP with some node of same type
as c in LHS
if (some r in U applicable via match including
c)
{
Apply r
Add correspondence nodes created by r to P

}
else
{
Remove c from P
Empty U

}
}

In the following, we formalize this procedure and show
that using such an efficient matching algorithm, we do not

“miss” any matches. Therefore, we equip each graph with
node bookkeeping B N SCT of a forward transformation with
a set P of correspondence nodes created and still to be pro-
cessed during the forward transformation, also called active
correspondence set, a node c, also called active correspon-
dence node, and a set U of all rules in I M P , holding a node
of the same type as c in their LHS, also called active rule
set. We call these 4-tuples (B N SCT, P, c, U) also efficient
matching states.

First, we define a new transition →IMP,c where a rule
application via some rule in I M P on a graph with node
bookkeeping takes place only if it matches the active corre-
spondence node c.

Definition 5 (→IMP,c)
Given a T GG and the relation→IMP, then we define→IMP,c

as a relation over triple graphs with node bookkeeping and
one distinguished correspondence node c as follows:
B N

i SCi Ti →IMP,c B N
i+1SCi+1Ti+1 if B N

i SCi Ti →IMP

B N
i+1SCi+1Ti+1 via a match including correspondence

node c.

Now we define transitions over efficient matching states
performing analogous computations as given in the algorithm
described above.

Definition 6 (�aIF , �IMP)
Given a T GG and the relation →IMP and corresponding
→IMP,c, then we define �aIF and �IMP as a relation over
efficient matching states, being triple graphs with node book-
keeping equipped with an active correspondence set P , an
active correspondence node c, and an active rule set U , where
in particular the active correspondence node might be unde-
fined ⊥:

1. (B N
init S,∅,⊥,∅) �aIF (B N

a SCaTa, Pa,⊥,∅) if B N
init S

→aIF B N
a SCaTa , and Pa is the set of created correspon-

dence nodes in this step (axiom initialization).
2. (B N

i SCi Ti , P,⊥,∅) �IMP (B N
i SCi Ti , P, c, U) if c ∈

P , and U consists of all rules in I M P that contain in
their LHS a correspondence node of the node type of c
(new active correspondence node).

3. (B N
i SCi Ti , P, c, U) �IMP (B N

i+1SCi+1Ti+1, P ′, c, U)

if B N
i SCi Ti →IMP,c B N

i+1SCi+1Ti+1 via some rule r IF

in U , and P ′ is the set obtained by adding to P all created
correspondence nodes in this step (apply transformation
and update P).

4. (B N
i SCi Ti , P, c, U) �IMP (B N

i SCi Ti , P, c′, U ′) if c′ ∈
P , and U ′ consists of all rules in I M P that contain in
their LHS a correspondence node of the node type of c′
(switch active correspondence node).

5. (B N
i SCi Ti , P, c, U) �IMP (B N

i SCi Ti , P ′,⊥,∅) if no
B N

i SCi Ti →IMP,c B N
i+1SCi+1Ti+1 via some rule r IF in

123

288 H. Giese et al.

U exists and P ′ = P \ {c} (end active correspondence
node).

In order for this efficient matching strategy to still con-
form with the TGG rules, we need them to obey some addi-
tional syntactic constraints. Given a T GG, then the forward
efficiency criteria consist of the following syntactical con-
straints on each T GG rule:

(a) Each TGG rule except for the axiom rule contains at
least one correspondence node in its LHS (restricted
match search).

(b) Each target node in the LHS of a TGG rule is con-
nected with an incoming edge from exactly one corre-
spondence node in the LHS (restricted match search).

(c) The axiom rule and each TGG rule create exactly one
correspondence node (create new matches via corre-
spondence node only).

(d) If the axiom rule or some TGG rule create a target node,
then it is created together with an incoming edge from
the created correspondence node (create new matches
via correspondence node only).

(e) If the axiom rule or some TGG rule create a target edge,
then at least one of its end nodes is created as well
(create new matches via correspondence node only).

(f) If the axiom rule or some TGG rule create a correspon-
dence-source or correspondence-target edge, then it is
an outgoing edge from the created correspondence node
(create new matches via correspondence node only).

The forward efficiency criteria (a-f) ensure that each rule
application via the axiom rule aIF or some rule r IF in I M P
may only create new matches for some rule in I M P that
include the correspondence node c just created by aIF or r IF,
respectively. Assuming that a new match not including the
correspondence node c would arise. Then, aIF or r IF must
have created some elements other than c, leading to a new
match for some rule in I M P not including c. Therefore,
this element cannot be a correspondence-source or corre-
spondence-target edge, since then c would be included in the
match because of criterion (f). Moreover, it cannot be a target
node, since it has been created with an edge from c because of
criterion (d) and each target node must be matched together
with an edge from exactly one correspondence node because
of criterion (b). Thus, either it matches c or it does not match
at all. It cannot be a target edge either, because at least one
of its ends is a created target node because of criterion (e).
This target node was created with an edge from c because of
criterion (d) which must be matched together with an edge
from exactly one correspondence node because of criterion
(b). Thus, either it matches c or it does not match at all.

bd1:BD cd1:CD

sb2:SB cn2:SB2CL cl2:CL++
++

++

++

++

SL1 CL1 TL1

SR1 CR1 TR1

++
++

++

Fig. 17 Example rule violating the forward efficiency criteria (a)
and (b)

sb2:SB cn2:SB2CL cl2:CL

bl3:BL

cn3:BL2CL as3:AS

cl3:CL

source

target

++

++
++

++
++

++

++
++

++
++

++

++

cn1:BD2CD cd1:CDbd1:BD

SL2 CL2 TL2

SR2 CR2 TR2

cn4:BL2CL

++
++

Fig. 18 Example rule violating the forward efficiency criteria (b), (c),
(d), (e), and (f)

11..* 1..*10..*

0..* 0..*

0..*

11..* 1..*10..*

0..* 0..*

0..*

1..*

1++
++

++
++

++

1..*

0..*

1..*

0..*

++

++

SourceNode

SourceNode

CorrespondenceNode

CorrespondenceNode

TargetNode

TargetNode ++

++

Fig. 19 Prototypical structure of a TGG rule

Figure 17 shows an example rule, which violates forward
efficiency criteria (a-b). There is no correspondence node in
its LHS (a) and cd1 does not have an incoming edge (b).

Another invalid TGG rule is shown in Fig. 18. The node
cd1 is connected to two correspondence nodes of the LHS
(criterion (b)). The rule creates two correspondence nodes,
cn3 and cn4 (criterion (c)). cl3 has no incoming correspon-
dence edge (criterion (d)). Finally, the edge between cd1 and
cl2 is created but its end nodes are not (criterion (e)). The cre-
ated correspondence-source edge between cn2 and sb2 does
not start from the created correspondence node (criterion (f)).

We tried to keep the efficiency criteria only as strict as
necessary such that conformance with the TGG is still guar-
anteed. However, it is probably not that easy for an aver-
age model transformation developer to keep all these criteria
in mind. In practice, we employ the following prototypical
structure for TGG rules as shown in Fig. 19 as guideline. The
prototypical structure fulfills slightly stricter criteria, which
implies satisfaction of the forward and backward efficiency
criteria. Rules that adhere to this prototypical structure create
source and target models, where source and target patterns
that correspond to each other are connected by exactly one

123

Bridging the gap between formal semantics and implementation of triple graph grammars 289

correspondence node.25 The TGG rules in our running exam-
ple (see Fig. 3) adhere to the above prototypical structure and,
therefore, fulfill the efficiency criteria.

We introduced the efficiency criteria to be able to work
with the following efficient forward scheme: Given a T GG
and its operationalization I M P = O P IMP

FT (T GG), then we
can define FT EFF : L (ST) → P(L (T GG)) as follows:
FT EFF(S) :={SCi Ti |(B N

init S,∅,⊥,∅)�aIF (B N
a SCa Ta, Pa,

⊥,∅) �∗IMP (B N
i SCi Ti ,∅,⊥,∅) ∧ SN = T rans F N

(B N
i SCi Ti)}, where SN is the set of all nodes in S. FT EFF

uses the relations �aIF and �IMP over efficient matching
states and following our efficient matching strategy in order
to compute a transformation result.

We do not want conformance with the TGG to be disturbed
by applying this efficient matching strategy. Therefore, we
show that FT EFF conforms to FT IMP, without efficient
matching strategy, if the forward implementation criteria and
forward efficiency criteria are fulfilled. To this extent, we
argue in the following lemma that no matches can be “missed”
by the relation �IMP used by FT EFF. Afterwards, we can
follow directly that because of conformance of FT EFF with
FT IMP and the fact that FT IMP is forward deterministic, also
FT EFF is forward deterministic.

Lemma 3 (conformance of→IMP and �IMP)
For a T GG with operationalization I M P = O P IMP

FT (T GG)

satisfying the forward implementation and forward efficiency
criteria, it holds that B N

init S→aIF B N
a SCaTa →∗IMP B N

i SCi Ti

iff (B N
init S,∅,⊥,∅) �aIF (B N

a SCa Ta, Pa,⊥,∅) �∗IMP
(B N

i SCi Ti , P, c, U), where Pa consists of the correspon-
dence node created by aIF and the last transition in this
sequence via �IMP is one of type (3) in Definition 6. (Proof
see Appendix A)

Theorem 5 (conformance of FT EFF and FT IMP)
For a T GG with operationalization I M P = O P IMP

FT (T GG)

satisfying the forward implementation and forward efficiency
criteria, it holds that FT EFF(S) = FT IMP(S). (Proof see
Appendix A)

However, we do not only want FT EFF to be conform with
the TGG, but we also still aim for a scheme working without
backtracking. Therefore, we prove that FT EFF is forward
deterministic if it fulfills the forward implementation cri-
teria, forward efficiency criteria and the domain restriction
criterion.

Theorem 6 (FT EFF forward deterministic)
For a T GG and its operationalization I M P = O P IMP

FT

25 This prototypical structure allows to automatically derive the cor-
respondence structure in TGG rules if the transformation developer
specifies corresponding source and target patterns (although not imple-
mented in our tool yet). This would be similar to QVT Relational, where
such correspondences are hidden from the user.

(T GG) fulfilling the forward implementation and forward
efficiency criteria, it holds that for each S ∈ L (S A

T) either
some SCT exists such that FT EFF(S) = {SCT} or FT EFF(S)

= ∅. We say that FT EFF is forward deterministic.

Proof This follows directly from the fact that FT IMP and
FT EFF are conform (Theorem 5) and the fact that FT IMP is
forward-deterministic (Theorem 3). �

Consequently, we can introduce the efficient implemen-
tation scheme FT EFFd that works without backtracking and
conforms to FT IMPd: Given a T GG and its operationaliza-
tion I M P = O P IMP

FT (T GG) fulfilling the forward imple-
mentation criteria and the forward efficiency criteria, and a
transformation domain L (S A

T) fulfilling the domain restric-
tion criterion, then FT EFFd returns a transformation result
SCT of S if after having applied the forward axiom rule aBF

to Binit S via �IMP, it is possible to apply bookkeeping for-
ward rules in I M P via �IMP up until each node in S has
been translated. Otherwise, FT EFFd returns undefined.

Definition 7 (efficient implementation scheme: FT EFFd)
Given a T GG and its operationalization I M P = O P IMP

FT
(T GG) fulfilling the forward implementation and forward
efficiency criteria, then FT EFFd : L (S A

T)→ L (T GG) is a
partial mapping such that FT EFFd(S) := SCT if FT EFF(S)

= {SCT}, else FT EFFd(S) is undefined.

Theorem 7 (FT EFFd and FT TGG)
Given a T GG with operationalization I M P = O P IMP

FT
(T GG) fulfilling the forward implementation and forward
efficiency criteria and some valid S ∈ L (S A

T), it holds that
{FT EFFd(S)} = FT EFF(S) = FT TGG(S).

Proof This follows directly from conformance of FT EFF

with FT IMP (Theorem 5) such that FT EFF(S) = FT IMP(S).
Moreover, from conformance of FT IMPd with FT TGG (The-
orem 4) it follows that FT TGG(S) = FT IMP(S) =
{FT IMPd(S)} such that FT EFF(S) = FT TGG(S). Since S is
valid, FT TGG(S) is not empty and therefore, {FT EFFd(S)} =
FT EFF(S) = FT TGG(S). �

Finally, note that our implementation uses a queue instead
of a set to store the correspondence nodes contained in P and
a list L instead of a set to store the rules contained in U .
Moreover, a correspondence node c stays active up until
all applicable rules in L have been applied. This more con-
crete efficient matching strategy is described by the following
algorithm in pseudo-code:

// Batch transformation algorithm with
// efficient matching

// Tracking mechanism as a queue
Apply axiom rule to create axiom correspondence
node

123

290 H. Giese et al.

Create a queue Q and push the created axiom
correspondence node into Q

Create empty list L

while (Q is not empty)
{
Pop first correspondence node c from queue
L := rules in IMP having a node of same type
as c in LHS
foreach rule r in L
{
if (r applicable via match including c)
{

Apply r
Push correspondence nodes created by r
into Q

}
}

}

This transformation mechanism activates a new corre-
spondence node only if all rules via the active correspondence
node c have been applied already. Moreover, correspondence
nodes are activated and rules are applied in a specific order
because of the queue and list structure of tracked correspon-
dence nodes and rules, respectively. Because of Theorem 6
we know that the relation FT EFF is deterministic provided
that the forward implementation and efficiency criteria are
fulfilled. Therefore, we know that the algorithm as presented
in the beginning of this section allows for several different
computations, but always obtains the same transformation
result. Our implementation now realizes one of these com-
putations by choosing a specific order for which rule to apply
and where to apply it, and at the same time leading to the same
result.

Example 2 The running example in Fig. 3 obviously fulfills
the forward efficiency criteria. All rules contain correspon-
dence nodes in their LHS (except the axiom rule) and create
exactly one correspondence node, all target nodes are cre-
ated with a correspondence edge, and target edges are created
along with target nodes. Therefore, the running example is
suitable for applying the transformation algorithm according
to the efficient implementation scheme.

We have implemented a TGG Monitor (cf. Fig. 1) that
allows to observe the model transformation process. Some
screenshots of this monitor will be used in the following to
illustrate the forward transformation of the running example.
In the first step, the forward bookkeeping axiom rule is
applied (see Fig. 20). The source model’s root element is
provided as a parameter to the axiom rule. It creates a cor-
respondence node of type CorrAxiom, which is added to the
transformation engine’s queue Q, and a ClassDiagram in
the target model. The ClassDiagram’s name is set to the
BlockDiagram’s name.

In the next step, CorrAxiom is removed from the queue. It
is now the active correspondence node. The applicability of
all forward bookkeeping rules that contain a correspondence

Fig. 20 State of the model transformation after applying the axiom
rule

Fig. 21 State of the model transformation after applying rule rBF
1 via

CorrAxiom

node of this type in their LHS, which applies to both rules
of the running example, needs to be checked. Therefore, the
list of rules L contains these two rules. The application order
of the rules is not explicitly specified, so let us assume that
rule 2 is tried to be applied first. The active correspondence
node is provided as a parameter to the rule. Rule 2 matches it
to the appropriate correspondence node in its LHS, cn1, and
searches for matches of the other elements of its LHS. The
SystemBlock and its corresponding Class are required but the
Class does not exist because the SystemBlock has not been
transformed yet. Therefore, application of rule 2 fails and the
next rule is applied.

Now, a match for the application condition of rule 1 can
be found. Rule 1 transforms the SystemBlock and creates
a correspondence node and target elements (see Fig. 21).

123

Bridging the gap between formal semantics and implementation of triple graph grammars 291

Fig. 22 State of the model transformation after CorrAxiom has been
deactivated

Fig. 23 State of the model transformation after applying rule rBF
2 with

CorrSystem as the active correspondence node

The new correspondence node is added to Q (indicated by
the 〈〈NEXT〉〉 edge between the correspondence nodes).

After that, no more rules can be applied via the active
correspondence node CorrAxiom. Therefore, CorrAxiom is
deactivated and the next correspondence node, CorrSystem,
is removed from the queue and activated. This is shown in
Fig. 22.

Again, all rules are applied that contain a correspondence
node of this type in their LHS. In the example, only rule
2 requires a node of type CorrSystem so its application is
checked. Indeed, a match can be found for rule 2. It trans-
forms the Block and creates a correspondence node and target
elements. This correspondence node is also added to the
queue (see. Fig. 23).

After rule 2, there are no more rules to be applied. Rule
1 does not require a correspondence node of type CorrSys-
tem. Therefore, the transformation engine removes the next
correspondence node from the queue again, which is a Corr-
Block node, and turns it into the active correspondence node.
Again, all forward bookkeeping rules are tried to be applied
that contain a node of this type in their LHS. However, there
are no rules with this kind of correspondence node in their
LHS. Now, the queue has run empty and the transformation
process has finished.

9 Evaluation and tool support

The preceding sections presented the so-called implementa-
tion and efficiency criteria, which ensure conformance of a
model transformation following the efficient implementation
scheme with the TGG. To be useful to a model transforma-
tion developer, tools are needed that can check these criteria
automatically. The tools for editing TGGs and performing
model transformations will be briefly presented in Sect. 9.1.
Section 9.2 describes how checking the aforementioned cri-
teria is implemented. Finally, in Sect. 9.4 we recall the results
obtained for our running example. In Sect. 9.5, we present
and evaluate the results that we have obtained on an industrial
case study.

9.1 Tool support

With our tool framework,26 a model transformation devel-
oper can create TGG rules using a graphical TGG editor (see
Fig. 24). Using EMF’s validation mechanism, most of the
presented criteria can be checked directly within the editor
(cf. Sect. 9.2). Elements violating these criteria are high-
lighted in the editor so the user can easily fix these problems.

The generator (cf. Fig. 1) creates Story Diagrams from
the TGG. These Story Diagrams are executed by a Story
Diagram interpreter [18]. This interpreter has a dynamic pat-
tern matching strategy, which adapts to the specifics of the
instance model. This ensures good pattern matching
performance in many cases. The Story Diagram interpreter
is invoked by the TGG Engine to execute a model transfor-
mation. The efficient implementation scheme (see Sect. 8)
is realized by the TGG Engine and the generated Story Dia-
grams. The TGG Engine contains those parts that are inde-
pendent of the specific source and target metamodels, e.g.,
the transformation queue and the overall algorithm that con-
trols rule applications. The generated Story Diagrams contain
the operational rules for the forward, backward, and mapping
transformations. Besides transformations, also online model

26 It can be downloaded from our Eclipse update site http://www.
mdelab.de/update-site.

123

http://www.mdelab.de/update-site
http://www.mdelab.de/update-site

292 H. Giese et al.

Fig. 24 Screenshot of the TGG Editor showing the axiom of the example TGG

synchronization is supported by recording model changes
and propagating these changes to the other model according
to the TGG.

Recently, also a TGG Monitor was developed, which
allows the execution of a model transformation to be mon-
itored step by step. It can show the current state of the in-
stance models and the content of the TGG Engine’s queue
with tracked correspondence nodes. The model elements can
be colored depending on the order in which they were cre-
ated, or depending on which rule created them. This helps in
debugging model transformations.

9.2 Checking criteria

The implementation and efficiency criteria (apart from the
conflict-freeness criterion as explained in the next section) as
presented in Sects. 7 and 8, respectively, only impose some
simple constraints on the structure of TGG rules. For exam-
ple, the refined termination criterion demands that each TGG
rule creates at least one graph node on the source part. This
can be checked easily using constraint languages like OCL.

In our implementation, we use Check,27 a constraint lan-
guage very similar to OCL. The constraint for checking the
refined termination criterion looks like this:

context TGGRule ERROR
‘‘A TGG rule must create at least one source
graph node’’:
this.sourceDomain.modelElements.
exists(e|e.modifier ==
TGGModifierEnumeration::CREATE);

These checks are integrated with the EMF validation
framework and can be easily invoked from the TGG editor.
Elements violating a criterion are tagged and the appropriate
error message is displayed to the user.

9.3 Checking for conflicts

Static conflict detection is enabled by so-called critical pair
detection. A critical pair is a pair of conflicting transforma-
tions in a minimal context. In general, computing the com-
plete set of critical pairs for a given pair of rules is exponential

27 http://www.eclipse.org/modeling/m2t/?project=xpand.

123

http://www.eclipse.org/modeling/m2t/?project=xpand

Bridging the gap between formal semantics and implementation of triple graph grammars 293

in the number of rule elements in the LHSs of these rules.
This is because so-called overlaps of the rules’ preconditions
need to be built in order to compute all possible minimal
contexts of rule applications. AGG is a graph transformation
tool [41] able to compute the complete set of critical pairs for
a given set of graph transformation rules. We have developed
a prototypical implementation, translating TGG bookkeep-
ing operational rules into AGG rules.28 Unfortunately, the
AGG critical pair algorithm does not scale for the rules used
in our industrial case study (see Sect. 9.5) because of run-out-
of-memory problems. Similar problems have been reported,
for example, in [2,32].

Because of these scalability problems, we decided to
implement a runtime check reporting a uniqueness viola-
tion if the model transformation result obtained by our effi-
cient implementation scheme is not likely to be the only
one. Executing the implemented runtime check is roughly as
time-consuming as the transformation itself. Therefore, the
runtime check does not add any scalability problems. Note
that the results of such a runtime check are only valid for
the translation of a specific source model. On the contrary,
static conflict detection analysis is able to provide a unique-
ness result for any transformed model via the analyzed TGG.
The following pseudo-code describes the runtime check for a
given source model S and a TGG with the associated forward
rules without bookkeeping:

//Conflict check at runtime
//Given SCT, a transformation result of S
//according to the efficient implementation
//scheme

forall (forward rules without bookkeeping rF)
{
forall (matches m of rF in SCT)
{
if (application result of rF via m not

found)
report violation

}
}

This runtime check takes as input a transformation result
SCT of S obtained by the efficient implementation scheme.
First, it checks for each forward rule without bookkeeping if
it is applicable to SCT , i.e. it is searched for matches of rF

(cf. Sect. 5). Afterwards, it checks for each match if rF has
been applied. If not, a violation is reported, since in this case it
could have been possible to obtain a different transformation
result.

The core idea of the runtime check is that if a match
for the LHS of a forward rule without bookkeeping exists,

28 Since stereotypes are not supported by AGG, we need to translate
them into regular types, an automatic handling of this feature is not
supported yet.

then the preceding transformation must have created all ele-
ments specified by the RHS of the rule. If this is not the case,
then these matched elements must have been transformed by
another rule whose LHS overlaps with the LHS of the cur-
rent rule. This would be a violation of the conflict-freeness
criterion.

If the runtime check does not report a violation, then we
can be sure that the transformation result SCT of S is unique
in the sense that there exists no other transformation result
SC ′T ′ because of the following argumentation: Suppose that
we obtain a different transformation result SC ′T ′ without a
violation report. Then we would have another transforma-
tion instance reaching some state SC ′i−1T ′i−1 that can still be
mapped to SCT , but after applying some operational rule rF

the state SC ′i T ′i is obtained containing elements that cannot
be mapped anymore to SCT . In other words, rF is applicable
to SCT , although the application result cannot be found in
SCT . Consequently, the runtime check should have reported
a violation which is a contradiction. In order to also check
that no results SC ′T ′ may arise that can be mapped to SCT
because they are smaller than SCT (i.e. only create a subset of
CT), it is stored during the transformation which rule trans-
lates which elements into which elements. This is ensured by
marking the created correspondence node with the rule name
creating it together with the assumption that our TGG rules
adhere to the prototypical structure as presented in Fig. 19.
The runtime check then does not only check if the applica-
tion result for each match m of rF can be found in SCT . In
addition, it checks if the application result has indeed been
generated via match m and rule rF. Since elements can only
be translated once, this check is sufficient. Concluding, our
runtime check also excludes the case that a smaller result
could have been obtained.

9.4 Example: block diagrams—class diagrams

Our running example (see Fig. 3) consists of an axiom and
two TGG rules specifying the translation of block diagrams
into class diagrams and the other way round.

In Example 1, we have described how to check the imple-
mentation criteria. Checking the forward efficiency criteria
is described in Example 2. Executing the EMF validation as
described in Sect. 9.2 to check these criteria takes 8 s. How-
ever, the checks include checking the forward and backward
criteria, as well as several rather trivial checks (e.g., check if
the name and type of a node are set).

We used AGG to statically check that the node bookkeep-
ing forward rules I M P of our example are conflict-free. In
particular, AGG is able to verify this in 1 s.29 Note that AGG

29 All performance measurements were executed on a PC with the fol-
lowing configuration: Pentium Core i5 750 processor with 2.67 GHz,
6.00 GB RAM, Ubuntu 10.10 64bit, OpenJDK 6b20-1.9.7.

123

294 H. Giese et al.

does not provide the possibility to specify edges from nodes
to edges. However, since we do critical pair analysis on rules
in I M P , doing only bookkeeping on nodes, we do not need
this possibility. Moreover, note that for computing critical
pairs in AGG we interpret stereotypes with different text attri-
butes as distinct types and use maximal multiplicities in the
type graph ruling out critical pairs describing conflicts that
would never occur anyway. In [30], it is proven that ruling
out critical pairs by maximal multiplicities does not affect
the completeness of critical pairs.

On the contrary, analyzing the backward transformation,
we have seen that the conflict-freeness criterion was not ful-
filled. Figure 16 shows the corrected TGG rule r1. For these
corrected backward rules, AGG computes in 3 s. that indeed
there exist no critical pairs.

9.5 Industrial case study: SysML-AUTOSAR

We have employed the model transformation system in an
industrial case study [17,19] to integrate the open-source
SysML modeling tool TOPCASED30 and the commercial
modeling tool SystemDesk from dSPACE31 for AUTOSAR
modeling. Both modeling languages are widely used in the
automotive industry to model embedded systems. SysML is
less detailed but includes modeling hardware components
while AUTOSAR focusses on modeling software compo-
nents. The model transformation system was used to trans-
form SysML to AUTOSAR models and then to propagate
changes made in one model to the other. For this, we needed
the model synchronization feature of the transformation
system.

In the case study, two TGGs were developed: one for trans-
forming SysML models to AUTOSAR models, and the other
for transforming AUTOSAR models to SystemDesk mod-
els. TOPCASED is based on Eclipse and EMF so accessing
its models is very easy. SystemDesk only provides a COM
API to access the model that the user is currently editing. In
addition, the internal representation of SystemDesk differs
slightly from the official AUTOSAR standard. Therefore,
we decided to split the problem of propagating the AUTO-
SAR model to SystemDesk into two parts: First, the second
model transformation converts the AUTOSAR model to the
SystemDesk representation, then a COM adapter synchro-
nizes this model with SystemDesk’s internal model. Due to
the complexetiy of both languages, only significant parts of
their metamodels are covered by the developed transforma-
tion rules. For more information, we refer to [17,19].

The SysML-to-AUTOSAR TGG consists of 26 rules
(including axiom), where the largest rules contain 21 nodes.
Executing the EMF validation rules on the whole TGG to

30 http://www.topcased.org.
31 http://dspace.de.

check the implementation and efficiency criteria takes 24 s.32

This transformation maps many different AUTOSAR ele-
ments to the same SysML elements, especially SysML
blocks. To make the transformation conflict-free, we used ste-
reotypes in the SysML model, similar to the running example
(cf. Sect. 7). These stereotypes are already used by system
engineers in their SysML models. As mentioned before, the
static conflict detection check in AGG does not scale for TGG
rules of this size. Therefore, we only executed our runtime
check, which is roughly as time-consuming as the model
transformation itself.

The AUTOSAR-to-SystemDesk TGG contains 51 rules,
with a maximum of 31 nodes per rule. Here, checking the
implementation and efficiency criteria takes 38 s. Also in this
case, we only performed runtime checks showing uniqueness
of the transformation result. These numbers illustrate that
checking the implementation and efficiency criteria can be
done in quite a short time, even for very large transformations.

10 Conclusion

In this paper, we have closed the gap between the formal
semantics of TGGs and our implementation. This not only
ensures that a valid rule set results in a unique and seman-
tically correct outcome, it also permits to decide whether a
TGG can be applied in a conform way in the forward or
backward direction, or in particular, in both directions.

We learned from this work that it is possible to close the
gap between the formal semantics of TGGs and an already
existing implementation. As a guideline for similar work it
turned out to be successful to divide the proof into several
steps. In each step, an ideal implementation was presented
including more aspects of the real implementation. Corre-
sponding criteria still ensuring conformance with the TGG
were developed for each step. The first steps for bridging
the gap were mainly concerned with coming from the rela-
tional semantics to the bookkeeping mechanism as well as the
determinism assumption used in our tool. The last step was
concerned with showing that additional optimizations used
for efficiency reasons still conform with the relational TGG
semantics. Having formalized the assumptions and restric-
tions of our tool ensuring conformance, it makes our tool
comparable to other approaches with the same goal. More-
over, our criteria could serve as a basis for developing similar
criteria for other relational approaches such as QVT.

Concerning future work, this contribution links a practical
implementation with a suitable formal semantics such that
based on this sound foundation and former work [3,12,30]
we can now study the verification of model transformations

32 Intel Core i5 750, 2.67 GHz, 6GB RAM.

123

http://www.topcased.org
http://dspace.de

Bridging the gap between formal semantics and implementation of triple graph grammars 295

exploiting the identified criteria. In addition, it is planned to
also cover the sophisticated model synchronization schemes
that have been developed [14,20] in the same manner in order
to prove their correctness, define required constraints, and
maybe also identify further potential for optimization.

Acknowledgments We would like to thank dSPACE for the permis-
sion to use the TGG model transformation case study for this research
and Johann Schmidt for his work on the TGG Monitor implementation.

A Proofs

Theorem 2

Proof In case that no transformation of S exists such that all
elements can be translated, FT CON(S) is empty.

Suppose that FT CON(S) is not empty and that SCT be-
longs to FT CON(S). Then, we have that Binit S →aBF

BA SCATA →∗CON BSCT such that T rans F (BSCT) = S. It
follows that SCT is the only element belonging to FT CON(S)

because of the following argumentation: Since S ∈ L (S A
T),

the match of the forward axiom rule aBF is uniquely fixed
(domain restriction criterion). Because of the termination cri-
terion, it holds that each bookkeeping forward rule deletes at
least one bookkeeping edge to a source element in S. Because
bookkeeping forward rules are not producing any source ele-
ments and S is finite, this means that applying bookkeeping
forward rules as long as possible always terminates. The attri-
bute criterion ensures that each rule application ends up with a
unique transformation result, since attribute values of created
elements are uniquely determined. Moreover, it follows from
the Critical Pair Lemma in [7,29,30], the conflict-freeness
criterion and attribute criterion (attribute values of preserved
elements remain unchanged avoiding attribute conflicts) that
C O N is locally confluent. In particular, if there are no criti-
cal pairs, ignoring pairs with same rules and same matches,
then we can conclude that for each pair of transformations
H1

r1,m1⇐ G
r2,m2⇒ H2 either H1 ∼= H2 or there exist transfor-

mations H1
r2,m′1⇒ X

r1,m′2⇐ H2.
Together with termination this means that→∗CON is con-

fluent and thus, the application of rules in→∗CON as long as
possible terminates with a unique result. If all elements in
S have been translated, no rule in C O N is applicable any-
more, since the application of any other bookkeeping rule
would need at least one non-translated element (see termi-
nation criterion). Therefore, the result BSCT is a terminal
state, which is unique such that FT CON(S) = {SCT}. �
Theorem 3

Proof In case that no transformation via node bookkeep-
ing rules exists such that all nodes of S can be translated,
FT IMP(S) is empty.

Suppose that FT IMP(S) is not empty and that SCT be-
longs to FT IMP(S). Then, we have that B N

init S →aIF

B N
A SCATA →∗IMP B N SCT such that SN =

T rans F N (B N SCT). It follows that SCT is the only element
belonging to FT IMP(S) because of the following argumen-
tation. Recall that since S ∈ L (S A

T), the way to match the
forward axiom rule aIF is uniquely fixed. The attribute crite-
rion ensures that each rule application ends up with a unique
transformation result, since attribute values of created ele-
ments are uniquely determined. Moreover, analogous to the
proof of Theorem 2, it follows that the application of node
bookkeeping forward rules, fulfilling the forward implemen-
tation criteria and attribute criterion, as long as possible ter-
minates with a unique result. Thereby note that rules in I M P
only delete bookkeeping edges to nodes (not to edges) and
therefore, we need the refined termination criterion. If all
nodes in S have been translated, no rule in I M P is applicable
anymore, since the application of any other node bookkeep-
ing rule would need at least one non-translated node (again
because of the refined termination criterion). Therefore, the
result B N SCT is a terminal state, which is unique such that
FT IMP(S) = {SCT}. �
Theorem 4

Proof Because each rule application via rBF doing book-
keeping on nodes and edges implies a rule application via r IF,
where bookkeeping on edges is disregarded, we can conclude
that FT CON(S) ⊆ FT IMP(S).

Moreover, we can prove that FT CON(S) ⊇ FT IMP(S).
Suppose that SCT belongs to FT IMP(S) and therefore,
B N SCT exists such that SN = T rans F N (B N SCT). We
know by assumption that S is valid and therefore, it fol-
lows that there exists SC∗T∗ ∈ L (T GG) and consequently,
SC∗T∗ ∈ FT TGG(S). Then, it follows from completeness
of FT CON that SC∗T∗ ∈ FT CON(S). Therefore, there exists
B∗SC∗T∗ such that T rans F (B∗SC∗T∗) = S. Since
FT CON(S) ⊆ FT IMP(S), it follows that SC∗T∗ ∈ FT IMP(S)

with T rans F N (B N∗ SC∗T∗) = SN . Because of determinism
of I M P , it follows that SCT = SC∗T∗. Therefore, it fol-
lows that there exists B∗SC∗T∗ = B∗SCT such that S =
T rans F (B∗SC∗T∗) = T rans F (B∗SCT). Consequently,
SCT belongs to FT CON(S).

Concluding, FT IMP(S) = FT CON(S) and because of
conformance of FT CON with FT TGG also FT IMP(S) =
FT TGG(S). Since S is valid, FT TGG(S) is not empty and
therefore FT IMP(S) = {FT IMPd(S)}. �
Lemma 3

Proof It follows straightforwardly from Definition 6 that we
can restrict a sequence keeping track of active correspon-
dence nodes and rules to a corresponding sequence without
keeping track of active correspondence nodes and rules.

123

296 H. Giese et al.

For the opposite direction, we need to show that �IMP as
given in Definition 6 can manipulate the active correspon-
dence nodes and rules in such a way that the transitions in
B N

init S →aIF B N
a SCaTa →+IMP B N

i SCi Ti take place corre-
spondingly via �aIF and �IMP by arguing that no matches
can be “missed”. First, it follows straightforwardly from Def-
inition 6 that (B N

init S,∅,⊥,∅) �aIF (B N
a SCa Ta, Pa,⊥,∅).

Further on, we can follow from the forward efficiency
criteria (a-f) that each rule application via the axiom rule
aIF or some rule r IF in I M P may only create new matches
for some rule in I M P that include the correspondence node
c just created by aIF or r IF, respectively. This is because,
assume that a new match not including the correspondence
node c would arise. Then, aIF or r IF must have created some
elements other than c, leading to a new match for some rule
in I M P not including c. This element can not be a corre-
spondence-source or correspondence-target edge, since then
c would be included in the match because of criterion (f).
Moreover, it can not be a target node, since it has been cre-
ated with an edge from c because of criterion (d) and each
target node must be matched together with an edge from
exactly one correspondence node because of criterion (b).
Thus, either it matches c or it does not match at all. It cannot
be a target edge either, because at least one of its ends is a cre-
ated target node because of criterion (e). This target node was
created with an edge from c because of criterion (d) which
must be matched together with an edge from exactly one
correspondence node because of criterion (b). Thus, either it
matches c or it does not match at all. This is a contradiction
with our assumption that the new match would not include
the correspondence node c. Concluding, it is correct that we
only need to search for new matches including some pre-
viously created correspondence node c (see update actions
on P in (1) and (3) of Definition 6). Thereby, it is enough
to check only those rules for new matches that contain in
their LHS a correspondence node of the type of c because
of criterion (a) and since otherwise this rule would not be
able to match c anyway (see construction of U in (2) and
(4), rule application via rule in U as given in (3) of Defini-
tion 6).

Note that, in general, a new match for a rule r IF can
also arise if another rule r ′IF deletes something forbidden
by r IF. This might happen if bookkeeping edges are deleted
because the corresponding elements were translated. Con-
sequently, another rule might be able to match these trans-
lated elements. In this case, it would forbid bookkeeping
edges to these elements and we have found a trigger depen-
dency of the type delete-forbid. However, since in this case
rule r ′IF would create exactly one correspondence node and
r IF would expect to use it. This means that we have taken
into account this new match creation already above, because
delete-forbid dependencies coincide in this sense with
produce-use-dependencies.

Since each active correspondence node c that was cre-
ated by some previous transformation step may be deleted
from the active correspondence set as soon as all matches at
that time have been found (see (5) in Definition 6), we need
to argue that anyhow no matches can be missed. Suppose
that after having deleted c, in one of the next transforma-
tion steps a match for a rule in I M P including c exists.
Because of the above argumentation, this can only be the
case if some other correspondence node c′ has been created
that has led to a new match. This match would include c and
c′ and would be found via the active correspondence node c′
which is the last correspondence node created to enable this
match.

Having these arguments down pat, we can argue by induc-
tion over the number of rule applications via →IMP that
(B N

a SCaTa, Pa,⊥,∅) �+IMP (B N
i SCi Ti , P, c, U) if

B N
a SCa Ta →+IMP B N

i SCi Ti : First we prove that (B N
a SCaTa,

Pa,⊥,∅) �+IMP (B N
1 SC1T1, P1, c1, U1) if B N

a SCaTa →IMP

B N
1 SC1T1 via some rule r IF

1 . Since rule r IF
1 is applicable to

B N
a SCa Ta the axiom rule aIF must have created a corre-

spondence node c1 enabling this application. Therefore us-
ing (2) and (3) in Definition 6, we obtain (B N

a SCaTa, Pa,⊥,

∅) �IMP (B N
a SCa Ta, Pa, c1, U1) �IMP (B N

1 SC1T1, P1,

c1, U1), where r IF
1 belongs to U1 and P1 consists of Pa

together with the correspondence nodes created in this last
step.

Suppose that (B N
a SCaTa, Pa,⊥,∅) �+IMP (B N Si−1CTi−1

i − 1, P ′, c′, U ′) if B N
a SCaTa →i−1

IMP B N
i−1SCi−1Ti−1 where

after applying (3) in Definition 6 to obtain (B N
i−1SCi−1Ti−1,

P ′, c′, U ′) no updates on the active correspondence node
(set) and active rule set have took place. We prove that
(B N

a SCaTa, Pa,⊥,∅) �+IMP (B N
i−1SCi−1Ti−1, P ′, c′, U ′)

�+IMP (B N
i SCi Ti , P, c, U) if B N

a SCaTa →i−1
IMP

B N
i−1SCi−1Ti−1 →IMP B N

i SCi Ti . We know that the i − 1th
rule application via some rule r ′IF created B N

i−1SCi−1Ti−1

by matching correspondence node c′. Thereby, r ′IF belongs
to U ′ and c′ belongs to P ′. Moreover, we know that some rule
r IF is applicable to B N

i−1SCi−1Ti−1. Now we have the fol-
lowing cases: Either r IF matches c′ or it does not match c′. In
the first case, we can either apply directly (3) of Definition 6
obtaining (B N

i SCi Ti , P, c, U). Otherwise, we need to switch
the active correspondence node by (4) of Definition 6 obtain-
ing (B N

i−1SCi−1Ti−1, P ′, c, U), since the application of r IF

must have been enabled by some correspondence node c con-
tained in P ′ and different from c′. Then, we can apply rule
r IF via (3) of Definition 6 obtaining (B N

i SCi Ti , P, c, U).
�

Theorem 5

Proof Let SN be the set of all nodes in S. We need to show
that (B N

init S,∅,⊥,∅) �aIF (B N
a SCaTa, Pa,⊥,∅) �∗IMP

(B N
i SCi Ti ,∅,⊥,∅) where SN = T rans F N (B N

i SCi Ti) iff

123

Bridging the gap between formal semantics and implementation of triple graph grammars 297

B N
init S �aIF B N

a SCaTa �∗IMP B N
i SCi Ti where SN =

T rans F N (B N
i SCi Ti). In case that no rule of I M P is applied

this follows straightforwardly from Definition 6. In case that
at least one rule of I M P is applied we use Lemma 3. Then, we
can follow that (B N

init S,∅,⊥,∅) �aIF (B N
a SCaTa, Pa,⊥,

∅) �+IMP (B N
i SCi Ti , P, c, U) iff B N

init S →aIF B N
a SCaTa

→+IMP B N
i SCi Ti . It follows from SN =T rans F N (B N

i SCi Ti)

and Definition 6 that (B N
i SCi Ti , P, c, U) �+IMP (B N

i SCi Ti ,

∅,⊥,∅). This is because each source node has been trans-
lated and no rule in I M P is applicable anymore because it
would need at least one non-translated element (termination
criterion). Therefore, the rules (2) and (5) for updating the
active correspondence node and active rule set, and adapt-
ing the active correspondence set as given in Definition 6
can be applied up until both sets are empty and the active
correspondence node is undefined. �

References

1. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.:
Metamodel-based tool integration with MOFLON. In: ICSE ’08:
Proceedings of the 30th ICSE, pp. 807–810. ACM, New York
(2008)

2. Bapodra, M., Heckel, R.: From graph transformations to differen-
tial equations. In: Graph and Model Transformation. EC-EASST
(2010)

3. Becker, B., Giese, H.: Incremental verification of inductive invari-
ants for the run-time evolution of self-adaptive software-inten-
sive systems. In: Proceedings of 23rd IEEE/ACM International
Conference on Automated Software Engineering—Workshops,
pp. 33–40. IEEE Computer Society Press (2008)

4. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF
model transformations by graph transformation. In: Czarnecki, K.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds) Proceedings of the
11th International Conference on Model Driven Engineering Lan-
guages and Systems, Toulouse, France, September 28–October 3,
2008. LNCS, pp. 53–67 (2008)

5. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P.,
Wagner, R., Wendehals, L., Zündorf, A.: Tool integration at the
meta-model level within the fujaba tool suite. Int. J. Softw. Tools
Technol. Transf. (STTT) 6(3), 203–218 (2004)

6. de Lara, J., Vangheluwe, H.: AToM3 as a Meta-CASE Environment
(DFD to SC). In: Proceedings of the 4th International Conference
on Enterprise Information Systems (2002)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of
algebraic graph transformation. EATCS Monographs in Theoreti-
cal Computer Science. Springer, Berlin (2006)

8. Ehrig, H., Ermel, C., Hermann, F.: On the relationship of model
transformations based on triple and plain graph grammars. In: GRa-
MoT’08: Proceedings of the third International Workshop on Graph
and Model Transformations, pp. 9–16. ACM, New York (2008)

9. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-fly con-
struction, correctness and completeness of model transformations
based on triple graph grammars. In: Proceedings Models 2009
Model Driven Engineering Languages and Systems. LNCS, vol.
5795/2009, pp. 241–255. Springer Berlin (2009)

10. Ehrig, H., Prange, U.: Formal analysis of model transformations
based on triple graph rules with kernels. In: ICGT’08: Proceed-
ings of the 4th International Conference on Graph Transformation,
pp. 178–193. Springer, Berlin (2008)

11. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: a
new graph rewrite language based on the unified modeling language
and java. In: TAGT’98: Selected papers from the 6th International
Workshop on Theory and Application of Graph Transformations.
Lecture Notes in Computer Science (LNCS), vol. 1764/2000,
pp. 296–309. Springer, London, 16–20 November 2000

12. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards
verified model transformations. In: Hearnden, D., Süß, J., Baudry,
B., Rapin, N. (eds.) Proceedings of the 3rd International Workshop
on Model Development, Validation and Verification (MoDeVa),
Genova, Italy, pp. 78–93. Le Commissariat à l’Energie Atomi-
que—CEA, (2006)

13. Giese, H., Hildebrandt, S.: Incremental model synchronization for
multiple updates. In: Proceedings of the 3rd International Work-
shop on Graph and Model Transformations, May 12, 2008, Leip-
zig, Germany, volume Proceedings of GraMoT’08, May 12, 2008,
Leipzig, Germany. ACM Press (2008)

14. Giese, H., Hildebrandt, S.: Efficient model synchronization of
large-scale models. Technical Report 28, Hasso Plattner Institute
at the University of Potsdam (2009)

15. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging the gap
between formal semantics and implementation of triple graph
grammars. Technical Report 37, Hasso Plattner Institute at the Uni-
versity of Potsdam (2010)

16. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging
the gap between formal semantics and implementation of triple
graph grammars. In: Proceedings of MoDeVVa 2010, Models
Workshop on Model-Driven Engineering, Verification and
Validation, pp. 19–24. IEEE Computer Society (2010)

17. Giese, H., Hildebrandt, S., Neumann, S., Wätzoldt, S.: Industrial
Case Study on the Integration of SysML and AUTOSAR with Tri-
ple Graph Grammars. Technical Report 57, Hasso Plattner Institute
at the University of Potsdam (2012)

18. Giese, H., Hildebrandt, S., Seibel, A.: improved flexibility and
scalability by interpreting story diagrams. In: Magaria, T., Pad-
berg, J., Taentzer, G. (eds.) Proceedings of the Eighth International
Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT 2009), vol. 18. Electronic Communications of
the EASST (2009)

19. Giese, H., Neumann, S., Hildebrandt, S.: Model synchronization
at work: keeping SysML and AUTOSAR models consistent. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel,
B. (eds.) Graph Transformations and Model Driven Enginering—
Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday. Lecture Notes in Computer Science, vol. 5765, pp. 555–
579. Springer, Berlin (2010)

20. Giese, H., Wagner, R.: From model transformation to incremental
bidirectional model synchronization. Softw. Syst. Model. (SoSyM)
8(1) (2009)

21. Greenyer, J., Kindler, E.: Comparing relational model trans-
formation technologies: implementing query/view/transformation
with triple graph grammars. Softw. Syst. Model. 9(1), 21–46
(2010)

22. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and
execution of correct and complete model transformations based on
triple graph grammars. In: Proceedings of the First International
Workshop on Model-Driven Interoperability, MDI ’10, pp. 22–31.
ACM, New York (2010)

23. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of
functional behaviour for model transformations based on triple
graph grammars. In: Ehrig, H., Rensink, A., Rozenberg, G., Schrr,
A. (eds.) Graph Transformations. Lecture Notes in Computer Sci-
ence, vol. 6372, pp. 155–170. Springer Berlin (2010)

24. ITU International Telecommunication Union. ITU-T Recommen-
dation Z.100: Specification and Description Language (SDL)
(2002)

123

298 H. Giese et al.

25. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Satel-
lite Events at the MoDELS 2005 Conference. LNCS, vol. 3844,
pp. 128–138. Springer, Berlin (2006)

26. Kindler, E., Rubin, V., Wagner, R.: An adaptable TGG inter-
preter for in-memory model transformation. In: Schürr, A., Zün-
dorf, A. (eds.) Proceedings of the 2nd International Fujaba Days
2004, Darmstadt, Germany, vol. tr-ri-04-253 of Technical Report,
pp. 35–38. University of Paderborn (2004)

27. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended triple graph
grammars with efficient and compatible graph translators. In: Eng-
els, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B.
(eds.) Graph Transformations and Model-Driven Engineering. Lec-
ture Notes in Computer Science, vol. 5765, pp. 141–174. Springer,
Berlin (2010)

28. Küster, J.: Definition and validation of model transforma-
tions. Softw. Syst. Model. 5(3), 233–259 (2006)

29. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and con-
fluence of graph transformations with negative application condi-
tions. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.)
Proceedings of International Conference on Graph Transformation
(ICGT’08), LNCS, vol. 5214, pp. 162–177. Springer, Heidelberg
(2008)

30. Lambers, L.: Certifying Rule-based models using graph transfor-
mation. PhD thesis, Technische Universität Berlin (2010)

31. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute han-
dling for bidirectional model transformations: the triple graph
grammar case. In: Proceedings of First International Workshop on
Bidirectional Transformations. EC-EASST, (2012, to appear)

32. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolv-
ing model inconsistencies using transformation dependency anal-
ysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
Model Driven Engineering Languages and Systems. Lecture Notes
in Computer Science, vol. 4199, pp. 200–214. Springer, Berlin
(2006)

33. Object Management Group. MOF 2.0 QVT 1.0 Specification
(2008)

34. Orejas, F., Guerra, E., de Lara, J., Ehrig, H.: Correctness, complete-
ness and termination of pattern-based model-to-model transforma-
tion. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO. LNCS,
vol. 5728, pp. 383–397. Springer, Berlin (2009)

35. Orejas, F., Lambers, L.: Delaying constraint solving in symbolic
graph transformation. In: Proceedings of International Conference
on Graph Transformation (ICGT’10), vol. 6372, pp. 43–58 (2010)

36. Schäfer, W., Wagner, R., Gausemeier, J., Eckes, R.: An Engi-
neer’s Workstation to support integrated development of flexible
production control systems. In: Ehrig, H., Damm, W., Desel, J.,
Grosse-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.)
Integration of Software Specification Techniques for Applications
in Engineering. Lecture Notes in Computer Science (LNCS), vol.
3147, pp. 48–68. Springer, Berlin (2004)

37. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Pro-
ceedings of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science. LNCS, vol. 903, pp. 151–163.
Spinger, Herrsching (1994)

38. Schürr, A., Klar, F.: 15 Years of triple graph grammars: research
challenges, new contributions, open problems. In: 4th Interna-
tional Conference of Graph Transformation, ICGT 2008, Leices-
ter, United Kingdom, September 7–13, 2008. LNCS, vol. 5214,
pp. 411–425. Springer, Berlin (2008)

39. Sendall, S., Kozaczynski, W.: Model transformation: the heart
and soul of model-driven software development. IEEE Software,
pp. 42–45 (2003)

40. Stevens, P.: Bidirectional model transformations in QVT: seman-
tic issues and open questions. Softw. Syst. Model. 9(1), 7–20
(2010)

41. Taentzer, G., Ermel, C., Rudolf, M.: The AGG-approach: language
and tool environment. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) Handbook of graph grammars and computing
by graph transformation, vol. 2: Applications, Languages and
Tools, pp. 551–603. World Scientific, Singapore (1999)

42. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.:
Incremental model synchronization for efficient run-time mon-
itoring. In: Ghosh, S. (ed.) Models in Software Engineering,
Workshops and Symposia at MODELS 2009, Denver, CO, USA,
October 4–9, 2009, Reports and Revised Selected Papers. LNCS,
vol. 6002, pp. 124–139. Springer, Berlin (2010)

Author Biographies

Holger Giese is a full profes-
sor at the Hasso Plattner Institute
for Software Systems Engineer-
ing at the University of Potsdam.
Beforehand he was assistant pro-
fessor for object-oriented speci-
fication of distributed systems in
the Software Engineering Group
of the University of Paderborn
since 2001. He studied techni-
cal computer science at the Uni-
versity of Siegen and received
his engineering degree in Octo-
ber 1995. He received a doctor-
ate in Computer Science at the
Institute of Computer Science at

the University of Münster in February 2001. His research focus is the
model-driven development of software-intensive systems covering the
specification of dynamic and flexible systems by services, collabora-
tions, patterns, and components, approaches to analyze and formally
verify such models, and approaches for model synthesis. The main focus
are systems that are typically distributed systems, embedded real-time
systems as well as systems that are capable to adapt and coordinate
themselves. Furthermore, he does research on model transformation,
concepts for generating source code for structure and behavior, and
the general problem of model integration during the process of model-
driven development. He is member of the Association for Computing
Machinery, the IEEE Computer Society, and the German Informatics
Society.

Stephan Hildebrandt studied
Software Systems Engineering at
the Hasso Plattner Institute at
the University of Potsdam. He
received his Bachelor degree in
2006 and his Master degree in
2008. Currently, he is working
as a research assistant in the
System Analysis and Modeling
Group. His main area of research
is model-driven engineering, in
particular model transformation
and model synchronization.

123

Bridging the gap between formal semantics and implementation of triple graph grammars 299

Leen Lambers is a postdoc-
toral researcher working on the
DFG-project CorMoranT (Cor-
rect Model Transformations) in
the group of Prof. Holger Giese
at the Hasso Plattner Institute for
Software Systems Engineering at
the University of Potsdam since
January 2010. She received her
PhD for her dissertation “Cer-
tifying Rule-Based Models us-
ing Graph Transformation” at the
Technical University of Berlin in
December 2009, where she has
been a scientific assistant in the

group of Prof. Hartmut Ehrig from October 2003 until December 2009.
Her main research focus is formal modeling and analysis in software
engineering, in particular, using graph transformation. She has spent
research periods in the group of Prof. Mauro Pezzé at the University
of Milano Bicocca and in the group of Prof. Fernando Orejas at the
Technical University of Catalonia. She is currently the PC co-chair of
the 11th International Workshop on Graph Transformation and Visual
Modeling Techniques. She is serving as a PC member for the 5th Inter-
national Conference on Model Transformation and the 6th International
Conference on Graph Transformation.

123

	Bridging the gap between formal semantics and implementation of triple graph grammars
	Ensuring conformance of relational model transformation specifications and implementations
	Abstract
	1 Introduction
	2 Introduction to triple graph grammars and our TGG implementation
	3 Relational scheme
	4 Naive operationalization
	5 Operational scheme
	6 Deterministic operational scheme
	7 Implementation scheme
	8 Efficient implementation scheme
	9 Evaluation and tool support
	9.1 Tool support
	9.2 Checking criteria
	9.3 Checking for conflicts
	9.4 Example: block diagrams---class diagrams
	9.5 Industrial case study: SysML-AUTOSAR

	10 Conclusion
	Acknowledgments
	A Proofs
	References

