
Softw Syst Model (2013) 12:285–306
DOI 10.1007/s10270-012-0230-7

SPECIAL SECTION PAPER

Relational interprocedural verification of concurrent programs

Bertrand Jeannet

Received: 17 June 2010 / Revised: 14 December 2011 / Accepted: 12 January 2012 / Published online: 10 March 2012
© Springer-Verlag 2012

Abstract We propose a general analysis method for recur-
sive, concurrent programs that track effectively procedure
calls and return in a concurrent context, even in the pres-
ence of unbounded recursion and infinite-state variables like
integers. This method generalizes the relational interproce-
dural analysis of sequential programs to the concurrent case,
and extends it to backward or coreachability analysis. We
implemented it for programs with scalar variables and exper-
imented with several classical synchronization protocols in
order to illustrate the precision of our technique and also to
analyze the approximations it performs.

Keywords Concurrent program analysis · Interprocedural
analysis · Abstract interpretation · Numerical abstract
domains · Forward and backward analysis

1 Introduction

Interprocedural analysis of sequential programs is well
understood in its principles [5,27,38] and more recent contri-
butions concern mainly algorithmic techniques and/or alter-
native views [8,26,35,36]. However, the interprocedural
analysis of concurrent programs is much harder: it is known
to be undecidable, even when all data variables are finite [34],
unlike in the sequential case [3].

Communicated by Prof. Krishnan, Dr. Cerone, and Dr. Van Hung.

This work has been supported by the Conseil Général de l’Isère and
the Région Rhône-Alpes as part of the OpenTLM project (pôle de
compétitivité Minalogic).

B. Jeannet (B)
INRIA, Grenoble, France
e-mail: bertrand.jeannet@inrialpes.fr

We consider in this article the reachable-state analysis of
concurrent programs with a fixed number of threads, recur-
sive procedures and shared memory. The applications of such
an analysis are numerous: deadlock detection, detecting data
races, …This considered program model is rather general;
it includes or can encode several models addressed in the
literature, such as those considered in [33,34,40]. The main
challenges in the analysis of such programs is to model the
procedure call and return semantics in each thread, and to
take into account the modification of global variables made
by the other threads during the execution of the procedure of
the current thread.

It is indeed the combination of recursion and concur-
rency which is difficult to tackle: in the case where the other
threads do not modify shared variables, classical interproce-
dural techniques apply [5,27]; in the case where no thread
performs procedure calls, one can reduce the concurrent pro-
gram to a sequential one by considering the product of the
control flow graphs (CFG) of all threads, as done in model
checking. But the combination of the two features makes the
reachability problem undecidable [34].

Look for instance at the program of Fig. 1, in which two
threads synchronize by calling the procedure barrier imple-
menting a synchronization barrier algorithm found in [40].
We would like to prove that the fail instruction of thread T1
is unreachable, because this would require that the thread T0
calls at least 503 times procedure barrier, whereas it calls
it at most 502 times: there are 501 iterations in its loop, and
there is a last call just after the loop. The challenge we want to
tackle is to prove this unreachability property without inlin-
ing the procedure barrier, which may be called from several
call sites in the program. Observe that this requires the anal-
ysis of the possible values of numerical variables. We need
to prove that when each thread is at its loop head, we have
p0= p1. For discovering such properties, we plan to resort to

123

286 B. Jeannet

Fig. 1 Two threads synchronizing through a synchronization barrier procedure called inside counting loops

symbolic abstract interpretation techniques like convex poly-
hedra [7] and not to state-space enumeration techniques, the
complexity of which depends on the magnitude of numerical
constants.

Various approaches have been recently explored. A first
approach is thread-modular analysis, in which one considers
a thread interacting with a context that abstracts the pos-
sible steps of other threads [12]. Another option is to be
less general on the class of the considered program: in [33]
the authors define a notion of transactional procedures for
which they succeed in summarizing the procedures. Another
recently explored approach consists in focusing only on exe-
cutions with a bounded number of context switches [28]. This
restriction basically allows reducing the concurrent program
to a sequential one, but the inferred invariants are not sound
for any execution: they allow to discover bugs but they cannot
prove a property.

We propose a method that analyzes all threads in parallel
and tracks effectively procedure calls and returns in a concur-
rent context, even in the presence of unbounded recursion and
infinite-state variables like integers. It is based on a gener-
alization of relational interprocedural analysis of sequential
programs. Relational interprocedural analysis is a technique
for analyzing recursive programs in which the semantics of
procedures are approximated by input/output relations that
are characterized by fixpoint equations that are solved iter-
atively. In [26] we revisited this interprocedural analysis as
an abstraction of the operational semantics of sequential pro-
grams. Technically, this abstraction consists mainly in col-
lapsing call stacks into sets, in order to get rid of the source
of infinity due to unbounded stacks, but only after having
appropriately instrumented the original semantics.

We generalize this method to concurrent programs, in
which each thread has it own call stack. After a suitable
instrumentation, which defines the call context used to match
procedure calls and returns, we apply to call stacks an abstrac-
tion which collapses separately the stack tail of each thread,
but which takes the product of their stack tops, to relate the
local environments of the different threads. This method can
also be applied to backward or coreachability analysis, which
is seldom mentioned for concurrent or interprocedural anal-
ysis.

The advantage of our method compared to the above-men-
tioned approaches is better precision w.r.t. thread-modular
techniques [12], insofar as we can represent properties like
p0 = p1 relating local environments of different threads,
generality (termination is guaranteed on any program with
unbounded recursion, unlike [33]), and soundness (all pos-
sible executions are taken into account, unlike [28] which is
sound only w.r.t. the considered bound on context switches).
In our method, termination and soundness follows from the
abstract interpretation approach we adopt.

Besides the theoretical motivation, an important applica-
tion we have in mind is the verification of SystemC/TLM
(transaction-level-modeling) models of systems-on-chips
(SoCs) [13], which are multithreaded C++ programs using a
cooperative scheduling policy. Such an application requires
in addition the resolution of virtual method invocation. This
is not discussed in this paper, where we assume that the called
procedure at a call site is statically known.

Contributions Our first contribution is to show that it is pos-
sible to analyze concurrent, recursive programs using rela-
tional techniques in the sense of [5,27], and to efficiently

123

Relational interprocedural verification of concurrent programs 287

tackle unbounded recursion, unlike most other techniques.
Our second contribution is methodological: we use instru-
mentation to define how procedure calls and returns are mat-
ched; we then collapse unbounded stacks into sets to make the
control finite, and we resort to data abstraction to deal with the
remaining source of infinity. We apply this approach not only
to forward analysis, but also to backward analysis, which we
define precisely for recursive and concurrent programs, for
the first time to our knowledge.

Our third contribution is experimental: We implemented
our technique for programs with finite-type and numerical
variables, and we experimented with several classical syn-
chronization protocols that allow us to illustrate the precision
of our technique and also to illustrate the approximations it
performs.

Compared to our previously published conference paper
[21], we considerably improved our notations; we added run-
ning examples and generalized our technique to backward
analysis in an unified way.1

Outline Section 2 defines the program model we consider
and its semantics, and Sect. 3 reminds some basics about
abstract interpretation that are needed in the sequel.

In Sect. 4 we instrument the standard semantics for for-
ward analysis, with information that will be exploited in the
stack abstraction. Section 5 motivates and defines our concur-
rent stack abstraction, describes the induced forward abstract
semantics and discusses optimality results. Section 6 defines
an instrumented semantics for backward analysis and the
backward analysis induced by the stack abstraction applied
on it. We pinpoint in this section the partial duality between
the forward and backward analyses.

We combine in Sect. 7 the stack abstraction with a data
abstraction, to obtain an implementable analysis, and discuss
its complexity. We eventually describe in Sect. 8 the experi-
ments that we performed with our implementation. In Sect. 9,
we discuss two improvements of our abstraction. Section 10
concludes and discusses related work.

2 Program model and standard semantics

2.1 Program model

We consider a simple concurrent imperative programming
language with the following features:

(i) a program is composed of a fixed number of threads,
interacting by the mean of shared global variables, and

1 Concerning notations, we put inside environments “program counter”
variables, which allowed us to simplify a lot of the notations (standard
and instrumented semantics, abstract postconditions), to clarify the dif-
ferent points and to show the duality between forward and backward
analysis.

Fig. 2 Syntactic domains and notations

a set of non-nested procedures with a value parameter
passing policy (as in Java or Ml).

(ii) each procedure has its own set of local variables, and
formal input and output parameters.

We rely on shared global variables for communication and
synchronization between threads. Figures 1 and 16, 17 and
18 give examples of such programs. The main restrictions are
thus the absence of exceptions or non-local jumps, variable
aliasing on the stack (as it happens with reference parameter
passing), pointers to procedures and procedural parameters.

The syntactic and semantic domains we use are summa-
rized in Figs. 2 and 5. Each thread T t is defined by its main
procedure, denoted as Pt

0 . Each procedure Pi = 〈fpi , fri , li ,
Gi 〉 is defined by its vector of formal input parameters fpi ,
output parameters fri and local variables li (that include for-
mal parameters), and by its intraprocedural CFG (control
flow graph) Gi .

The intraprocedural CFG of a procedure Pi is a graph
G = 〈K , I 〉 where

– K is the set of control points of Pi , containing unique
entry and exit control points si and ei ;

– and I : K × K → Inst labels edges of the graph with
two kinds of instructions:

1. intraprocedural instructions 〈R〉, specified as a rela-
tion R between unprimed and primed variables that
allow expressing tests and assignments;

2. procedure calls 〈y := Pj (x)〉, where x and y are the
vectors of actual input and output parameters; for the
sake of simplicity and w.l.o.g., we assume that x and y
are local variables (unlike in [20,21]), so that these
operations do not modify the value of global vari-
ables.

We assume that there are no two procedure call edges from
the same point in G, that is, non-deterministic choices should
be made before the call point. This allows us to define the
functions call and ret recording matching call and return-
site nodes: if I (c, c′)= 〈y := Pj (x)〉, then call(c)= c′ and
ret(c′)=c. proc(c) denotes the index i of the procedure Pi

that contains c.

123

288 B. Jeannet

Fig. 3 A single-thread program
and its (global) CFG

Fig. 4 Program state in standard semantics

The global CFG G (see Fig. 3) is constructed as the union
of intraprocedural CFG Gi s, further modified by replacing
edges labeled by procedure calls by a call-to-start edge (con-
necting the call site to the entry point of the callee) and an
exit-to-return edge (connecting the exit point of the callee
to the return site). Thus there are three kinds of instructions
in global CFGs: intraprocedural instructions 〈R〉, procedure
calls 〈call y := Pj (x)〉 and procedure returns 〈ret y :=
Pj (x)〉.

2.2 Operational semantics

Without loss of generality, from now on we assume a program
with only two threads (the general case being a bounded num-
ber N of threads). The semantic domains are summarized in
Figs. 4 and 5.

A state s = (σ, �1, �2) is defined by a global environ-
ment σ and the stacks �t of local environments of the two
threads. An environment maps variables to their values. We
assume that local environments also contain the value of the
program counter variable, denoted as pc and taking its val-
ues in the set of control points K .2 In this respect, we merge

2 pc is effectively a local variable, as its value is pushed and popped
from the stack during procedure calls and returns, unlike global vari-
ables.

the notions of environments and activation records. In the
sequence � ·εt

nt
, εt

nt
denotes the current or top local environ-

ment of the thread T t . Environments can be updated with
the notation ε[x �→ v]. If v, v′ are vectors of variables, ε(v)

denotes the corresponding vector of values, and v\v′ denotes
the sub-vector of v that does not contain any variable in v′.

Figure 6 first defines the semantics of one thread in isola-
tion (transition relation→t) for the three kind of instructions
of a global CFG:

(Intra) An intraprocedural instruction, which is a guard or
an assignment modeled by a relation R, acts only
on the global environment and the top local envi-
ronment.

(Call) A procedure call pushes a new local environment on
the stack and initializes it according to the param-
eter passing policy. We use the auxiliary function
R+ defined by Eq. (R+) to model this initialization,
in which uninitialized variables are given arbitrary
values.

(Ret) Similarly, a procedure return pops from the stack
the top local environment and modifies the new
top local environment according to the parameter
passing convention, modeled by the function R−
defined by Eq. (R−).

The transition relation→ ⊆ S × S induced by the full pro-
gram is then defined by the rules (Conc1) and (Conc2) as a
special asynchronous product of the two transition relations
→1 and→2 that share the global environment. We define the
initial set of states as S0 = {〈σ, ε1, ε2〉 | init(σ) ∧ ε1(pc)=
s1

0∧ε2(pc)=s2
0}where st

0 denotes the start point of the main
procedure of thread T t , and init an initial condition on global
variables.

2.3 Collecting semantics and analysis goal

The forward collecting semantics induced by a transition
system (S,→) characterizes the set of reachable states of

123

Relational interprocedural verification of concurrent programs 289

Fig. 5 Semantic domains

Fig. 6 Standard Operational Semantics: transition relation→t of the thread T t and transition relation→ of the full program. The relations R+
and R− on environments define parameter passing mechanisms

a program from a set of initial states S0 ⊆ S. We first define
the postcondition operator post(X) which we decompose
according to the interprocedural CFG and the thread T t per-
forming an instruction:

post(X) = {s′ | ∃s ∈ X : s → s′}
=

⋃

(c,c′)∈K×K

⋃

t

post t (c
I (c,c′)−−−→ c′︸ ︷︷ ︸

τ

)(X) (1)

post t (τ)(X) is deduced from the semantic rules of Fig. 6.
For instance:

post1(c
〈call y:=Pj (x)〉−−−−−−−−−−→ s j)

=
{
〈σ, �1 ·ε ·ε j , �

2〉
∣∣∣∣∣
〈σ, �1 ·ε, �2〉 ∈ X
R+y:=Pj (x)(c)(ε, ε j)

}

The set reach(S0) of reachable states from initial states
S0 ⊆ S corresponds to the smallest solution of X = S0 ∪
post(X): a state is reachable if it is either initial or the suc-
cessor of some reachable state. Since the forward transfer
function F[S0](X) = S0 ∪ post (X) is monotone and con-
tinuous, according to Kleene’s theorem the set of reachable
states may be defined as

reach(S0) = lfp(F[S0]) = ⋃
n≥0

(F[S0])n(∅) (2)

By duality, the backward collecting semantics character-
izes the set coreach(S1) of states coreachable from (i.e.

leading to) a set of final states S1. It is the natural choice
for inferring or checking a necessary condition on a program
state to reach a final, typically erroneous configuration. As
for reachable states, a state is coreachable if it is either final
or the predecessor of some coreachable state. We get thus a
least fixpoint characterization similar to Eq. (2):

coreach(S1) = lfp(G[S1]) (3)

with G[S1](X) = S1 ∪ pre(X)

pre(X) = {s | ∃s′ ∈ X : s → s′}

3 Abstract interpretation

Our analysis will be formalized and proved sound using
the abstract interpretation framework. We thus remind some
definitions and properties about abstract interpretation and
refer to [6] for a more detailed presentation. We reminded
in Sect. 2.3 that reachability analysis reduces to solving the
fixpoint Eq. (2) in the complete lattice L = ℘(S) ordered
by set inclusion. The idea of abstract interpretation is to
transpose such an equation to a simpler abstract lattice L�,
such that the two lattices forms a Galois connection denoted
as (L ,�) −−→←−−α

γ
(L�,��), meaning that ∀x ∈ L ,∀y ∈

L� : α(x) �� y ⇔ x � γ (y). Such a Galois connection
between two complete lattices induces the following proper-
ties on abstraction and concretization functions:

123

290 B. Jeannet

(i) α and γ are monotone (increasing);
(ii) α is distributive for the least upper bound

(iii) α ◦ γ is retractive (α ◦ γ � id);
(iv) γ ◦ α is extensive (γ ◦ α � id).

Given a continuous function F : L → L , the standard fix-
point transfer theorem says that if one take a correct approx-
imation F� �� α ◦ F ◦ γ of F in L�, then

lfp(F�)�α(lfp(F)) or equivalently γ (lfp(F�)) � lfp(F)

Considering for F the forward transfer function F[S0](X)

introduced in Sect. 2.3 with L = ℘(S), this theorem allows
computing an overapproximation of reachable states in a sim-
pler lattice L�, using a correct approximation of F[S0](X)

in L�.
If we consider the stronger hypothesis F� ◦ α = α ◦ F ,

which implies the previous one, we get the stronger result

lfp(F�) = α(lfp(F)) (4)

When designing an abstract interpretation, it is highly desir-
able (but not always possible) to satisfy such a hypothesis for
abstract transfer functions.

In practice, one does not abstract the “global” trans-
fer function F[S0]; instead, one exploits the decomposition
shown in Eq. (1) to abstract separately the semantics of each

instruction in the CFG of the thread T t post t (c
I (c,c′)−−−→ c′) :

℘(S) → ℘(S) with a function post�t (c
I (c,c′)−−−→ c′) : L� →

L�.

4 Instrumenting the standard semantics for forward
analysis

In this section, we instrument the operational semantics for
forward analysis. The idea is to tag local environments of
procedures with information about their call context, and to
use such tags to match procedure calls and returns.

If we consider a procedure P in thread 1 of a two-thread
program, its call context is defined by

1. The global variable and formal parameters at its start
point in thread 1;

2. The full call stack of thread 2: During the execution of
P in thread 1, thread 2 can indeed perform several pro-
cedure returns and then calls again new procedures, with

execution steps modifying the global variables and inter-
acting with P . This dependency on the full call stack of
the other thread(s) is the intuitive reason why the com-
bination of concurrency and recursion makes the reach-
ability analysis undecidable even for Boolean programs.

We choose here to take into account only part (1) of the call
context, and we delay alternative choices to Sect. 9. Because
P may modify the global variables and formal parameters
g, fp during its execution, we introduce in local environments
copies g0, fp0 that contain at any point of P the value of g
and fp at its start point.

The second orthogonal point of our instrumentation is to
push global variables into call stacks.

In the instrumented semantics, the new environments ε ∈
Env are thus defined on variables g0, fp0, g, l, where the val-
ues of g0, fp0 keep track of the call context at start point of
the current procedure. The new state-space is

S f = Env+ × Env+ (5)

Figure 7 defines the new semantic rules induced by the
standard semantics modified by pushing global variables on
stacks (relations (R), (R+), (R−)) and adding auxiliary vari-
ables (relations (Rf), (Rf+), (Rf−)). Rules (IntraF), (CallF)
and (RetF) have the same structure as in Fig. 6, whereas
rules (Conc1F) and (Conc2F) have now to update the modi-
fication of global variables induced by one thread to the other
thread, so that the top environments of the concurrent stacks
always agree on the current value of global variables. This
is needed only after intraprocedural instructions, because of
the assumption that input and output parameters are local
variables; see Sect. 2.1 and Fig. 6.

In this semantics, reachable call stacks are necessarily well
formed in the following sense.

Definition 1 (Well-formed stacks and states) A stack � =
ε0 . . . εn ∈ Env+ is well formed if, for any i < n:

(i) ci = εi (pc) is a call site for the procedure Pj , with
j = proc(ci+1), ci+1 = εi+1(pc) and I (ci , s j) =
〈call y := Pj (x)〉;

(ii) equality between actual and formal input parameters
holds at call sites: ε(ci+1) = sj ⇒ εi (g, x) = εi+1

(g, fp j).
(iii) equality between actual and copies of formal input

parameters holds at any point: εi (g, x)=εi+1(g0, fp j
0).

A state 〈�1, �2〉 ∈ S f is well formed if �1 and �2 are well
formed, and if the top environments ε1, ε2 of �1, �2 satisfies
ε1(g) = ε2(g).

For instance, if one considers the prog. of Fig. 3, a stack
of the form [4] (pc=c1∧ i=30) ·(pc=ssucc∧ x0= x=30)

is well formed (although not reachable), but a stack of the

123

Relational interprocedural verification of concurrent programs 291

Fig. 7 Instrumented semantics
for forward analysis: transition
relation→t

f of the thread T t

and transition relation→ f of
the full program

form (pc=c1∧ i=3) · (pc=esucc∧ x0=4) is not, because
it violates condition (i i i): actual parameter i does not match
formal parameter x0.

Proposition 1 If s ∈ S f is a well-formed state, then any
s′ ∈ S f such that s →∗f s′ is a well-formed state.

Proof (i) and (ii) are satisfied in the standard semantics. For
(iii) the only rule defining the value of g0, fp0 in an environ-
ment is the rule (CallF), using the relation (Rf+). (iii) is thus
satisfied just after a procedure call by the two top environ-
ments εtl ·ε. Later in the execution, as long as ε is not popped
from the stack, neither the value of x in εtl nor the value of
g0, fp0 in ε can change, so (iii) is preserved. ��

With this notion of well-formed state, we get a strong con-
ditions for an environment to lie below another environment
in reachable call stacks. Indeed, initial states with stacks of
height 1 are always well formed, thus Proposition 1 applies
to reachability analysis from such initial states.

5 Forward analysis

In this section, we present our reachability analysis for con-
current and recursive programs. We start by discussing the
classical techniques that inspired us for analyzing programs
that are either recursive or concurrent. We then give in
Sect. 5.2 an axiomatic presentation of our analysis, before
formalizing it and proving its soundness by abstract inter-
pretation in Sect. 5.3.

5.1 Two sources of inspiration

5.1.1 Relational interprocedural analysis of sequential
programs

In interprocedural analysis, the operation that is difficult to
model in the analysis is the procedure return operation. Con-
sider the program in Fig. 8. Inferring the invariant at the
start of the procedure succ from the invariants at the call
sites, or propagating the invariant from its start to its exit

123

292 B. Jeannet

Fig. 8 Interprocedural analysis of the program of Fig. 3

point are rather easy. But for the procedure return, one has
to combine two important information: y= x + 1 at the exit
point of succ, and 0 ≤ i ≤ 10 or i = 20 at the call sites.
This combination is basically a relation composition, but it
is complexified by details related to the parameter passing
policy.

The first technique that inspired us is thus the functional
or relational approach described in [5,27], in which one asso-
ciates at each control point a relation between the input state
and the current state of the enclosing procedure, so that at
the exit point of a procedure P one obtains its input/output
summary capturing the effect of a call to P . If we describe
this technique with our notations, it manipulates predicates
of the form Y (g0, fp0, g, l), relating the reachable input state
of a procedure (variables g0, fp0 introduced in Sect. 4) and
the reachable current state (variables g, l). The rule for the
procedure return operation is:

(6)

(Remember that the relation R f−
y:=Pj (x) constrains the value

of the pc variable contained in l, l′ and l′′, hence the different
instances of the Y predicate in Eq. (6) are associated with the
mentioned control points.)

This rule implements the above-mentioned relation com-
position between Y at the call site and Y at the exit site, by
unifying the actual (g, x) and formal (g0, fp j

0) parameters,
and eliminating them in Y at the return site. Coming back to
the example of Fig. 8, which does not contain global vari-
ables, for the first call to succ, we have

0≤ i≤10 ∧ j= i
(call site)

(0≤ x0≤10 ∨ x0=20) ∧ y′ = x0 + 1
(exit-site)

i = x0

(unification of actual and formal parameters)
i ′′ = i ∧ j ′′ = y′

(output parameter passing)

0≤ i ′′ ≤10 ∧ j ′′ = i ′′+1 (return-site)

Jeannet and Serwe [26] formalize this approach by stack
abstraction: starting from the instrumented semantics of

Sect. 4, it defines the Galois connection ℘(Env+) −−−→←−−−α f

γ f

℘(Env) with 3

α f : {� = ε0 . . . εn} �→ {εi |0≤ i≤n}
γ f : Y �→

{
�=ε0 . . . εn

∣∣∣∣
∀ 0≤ i≤n : εi ∈ Y
� is a well-formed stack

}
(7)

In the induced abstract semantics, when computing the effect
of a procedure return, rule (RetF) of Fig. 7, the well-formed-
ness condition in the definition of γ f allows to match pairs of
tail and top environments with the condition (iii) of Defini-
tion 1, so as to implement the relation composition of Eq. (6).

5.1.2 Analysis of concurrent systems with an interleaving
semantics

The second technique which inspired us is the classical met-
hod used for the analysis of non-recursive concurrent sys-
tems. Such systems have a state-space of the form S =
GEnv×LEnv1×LEnv2 � (K 1×K 2)×Env, if one partitions
the state-space according to the value of the pc variables. The
usual technique for verifying such systems is to consider the
product of the CFGs by observing that

℘(S) � K 1×K 2 → ℘(Env) (8)

The ability to relate the local environments of concurrent
threads is fundamental:

1. There is a technical reason. Consider the program of
Fig. 9 in which the threads synchronize their parallel exe-
cution by rendez-vous on a channel a (this can be imple-
mented using global shared variables). We want to prove
that the fail instruction in thread T2 is not reachable.
Assume that we maintain separate predicates Y 1(g, l1)

and Y 2(g, l2) for each pair of control points. Just after
the first synchronization, we have Y 1(g, l1) = (g= l1)

and Y 2(g, l2) = (g= l2−1). Now the only possible step
is that thread 1 executes the instruction g := g + l1.
It is easy to compute its effect on the predicate Y 1 (one
obtains g=2l1), but less so on the predicate Y 2. The only
way to perform this is actually to build Y = Y 1 ∧ Y 2 =

3 Jeannet and Serwe [26] actually distinguishes stack tops and stack
tails, whereas we do not here.

123

Relational interprocedural verification of concurrent programs 293

Fig. 9 Example illustrating the problem of maintaining relations
between global and local variables in each thread

(g= l1∧ l1= l2−1), to compute the effect of the instruc-
tion on Y , and then to forget the variable l1: One obtains
g=2l2−2 before the second synchronization, hence fail
will not be executed.
The conclusion is that when a global variable is assigned
in one thread, one needs to relate the local environments
of different threads, at least temporarily, to maintain the
relation between global and local variables in the other
threads.

2. There is also a precision reason. Consider now the pro-
gram of Fig. 10. In order to establish that the loop of the
thread T2 does not terminate (the rendez-vous induces a
deadlock when j = 11), we need to infer the invariant
i = j when each thread is at the control point just after
the synchronization instruction. If the possible environ-
ments of each thread are inferred separately, the non-ter-
mination of the thread T2 cannot be proved.

5.2 Forward analysis: an axiomatic presentation and
analysis example

The technique we propose in this paper for reachability anal-
ysis combines the two techniques presented above. It starts
from the instrumented semantics of Sect. 4 and can be defined
in an axiomatic way similar to Eq. (6) using three predicates:

– Yhd(ε1, ε2) that represents the set of reachable valuations
for the product of the two threads. We point out that we
will always have ε1(g) = ε2(g), because in the instru-
mented semantics any update of a global variable by one
thread is propagated to the other thread (see Fig. 7), and
because our abstraction will maintain this property.
If ε1(pc) = e j is the exit point of procedure Pj , Yhd

(ε1, ε2) � Yhd(g1
0, fp1

0, l1, g2
0, fp2

0, l2, g) can be seen
as a relation between the input (g1

0, fp1
0) and the out-

put (g, l1) of Pj in thread 1, which depends also on the
local state g2

0, fp2
0, l2 of thread 2. This relation takes into

account the moves that thread 2 may have performed since
thread 1 started the execution of Pj .

– For t = 1, 2, an auxiliary predicate Y t
tl(ε

t), which gives
set of reachable valuations for thread t . We will have in
this section

Fig. 10 Example illustrating the need of relating local variables of
different threads

Y 1
tl (ε

1) = ∃ε2 : Yhd(ε1, ε2)

and conversely for Y 2
tl (this will not hold any more for

backward analysis in Sect. 6).

The explanation of the indices hd and tl will be made explicit
in Sect. 5.3.

If we focus on the transitions performed by thread 1, the
abstract procedure return corresponding to Eq. (6) becomes:

I (e j , ret(c)) = 〈ret y := Pj (x)〉
Y 1

tl (εtl) Yhd(ε, ε2) εtl(g, x) = ε(g0, fp0)

(call-site) (exit-site) (unification of parameters)

R f−
y:=Pj (x)(c)(εtl, ε, ε

′)
(output parameter passing)

Yhd(ε′, ε2) (return-site for thread 1)

(9)

The rules for procedure calls and intraprocedural instructions
are simpler and reflect the instrumented semantics of Fig. 7.

I (c, s j)=〈call y := Pj (x)〉
Yhd(ε, ε2)

R f+
y:=Pj (x)(c)(ε, ε

′)

Y 1
tl (ε) Yhd(ε′, ε2)

I (c, c′)=〈R〉
Yhd(ε, ε2)

R f (c, c′)(ε, ε′)
(ε2)′ =ε2[g �→ ε′(g)]

Yhd
(
ε′, (ε2)′

)

(10)

It should be clear that this analysis extends both the rela-
tional interprocedural analysis described in Sect. 5.1.1, by the
way it defines the effect of a procedure return, and the anal-
ysis of concurrent systems described in Sect. 5.1.2, because
it manipulates the product Yhd of the two threads.

As an example, we shall analyze the program of Fig. 11.
For the sake of simplicity, we assume that the execution
starts in thread 1, and that context switches can occur only
in control point marked with the symbol “*”. For readabil-
ity purpose, we will partition Y according to the value of
local program counter variables pc1 and pc2. The induced
dependency graph between the Y (pc1, pc2)’s is depicted on
Fig. 11. Dashed lines indicate call-to-start edges, and dotted
lines exit-to-return edges.

123

294 B. Jeannet

Fig. 11 Program analyzed with concurrent relational analysis and the dependency graph between abstract invariants. Dashed and dotted arrows
correspond resp. to call-to-start and exit-to-return edges. Vertical arrows correspond to steps performed by thread 1, horizontal arrows to steps
performed by thread 2

We detail below the iterative solving of the induced fix-
point equations. We write Y (. . .) = Y (. . .)k when the value
Y (. . .)k at the kth iteration is equal to the least fixpoint value
Y (. . .).

The first iteration produces the following results:

Yhd(s1, s2)=Yhd(s1, s2)1 = g=0 ∧ 0≤ i1≤10
Yhd(s, s2)1 = g1

0=0 ∧ g=g1
0 ∧ 0≤ x1

0≤10
Yhd(e, s2)1 = g1

0=0 ∧ g=g0+1 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1
Yhd(s1, e2)=Yhd(s1, e2)1 = g=1 ∧ 0≤ i1≤10

Yhd(s, e2)1 = g1
0=0 ∧ g=g1

0+1 ∧ 0≤ x1
0≤10 (image of Yhd(s, s2)1)

∨ g1
0=1 ∧ g=g1

0 ∧ 0≤ x1
0≤10 (image of Yhd(s1, e2))

= 0≤g1
0≤1 ∧ g=1 ∧ 0≤ x1

0≤10
Yhd(e, e2)1 = 0≤g1

0≤1 ∧ g=2 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1
Y 1

tl (s
1) = Yhd(s1, s2) ∨ Yhd(s1, e2) = 0≤g≤1 ∧ 0≤ i1≤10

For Yhd(c1, s2)1, we instantiate Eq. (9) as follows:

Y 1
tl (s

1)
︷ ︸︸ ︷
0≤ i1

tl≤10 ∧ 0≤gtl≤1

Yhd(e,s2)1︷ ︸︸ ︷
g1

0=0 ∧ g=g0+1 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1
(call-site) (exit-site)

gtl=g1
0 ∧ i1

tl= x1
0 g′ =g ∧ (i1)′ = i1

tl ∧ (j1)′ = y1

(unification of input parameters) (output parameter passing)

Yhd(c1, s2)1 = g=1 ∧ 0≤ i1≤10 ∧ j1= i1+1 (return-site)

For Yhd(c1, e2)1, we also instantiate Eq. (9):

Y 1
tl (s

1)
︷ ︸︸ ︷
0≤ i1

tl≤10 ∧ 0≤gtl≤1

Yhd(e,e2)1︷ ︸︸ ︷
0≤g1

0≤1 ∧ g=2 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1
(call-site) (exit-site)

gtl=g1
0 ∧ i1

tl= x1
0 g′ =g ∧ (i1)′ = i1

tl ∧ (j1)′ = y1

(unification of input parameters) (output parameter passing)

Yhd(c1, e2)1 ⊇ g=2 ∧ 0≤ i1≤10 ∧ j1= i1+1 (return-site)

Taking the union with the image of Yhd(c1, s2)1, we obtain
Yhd(c1, e2)1 = g=2 ∧ 0≤ i1≤10 ∧ j1= i1+1.

123

Relational interprocedural verification of concurrent programs 295

The second iteration produces the following results:

Yhd(s, s2)2 = 0≤g1
0≤1 ∧ g=g1

0 ∧ 0≤ x1
0≤10

Yhd(e, s2)2 = 0≤g1
0≤1 ∧ g=g0+1 ∧ 0≤ x1

0≤10 ∧ y1= x1
0+1

Yhd(s, e2)2 = 0≤g1
0≤1 ∧ g=g1

0+1 ∧ 0≤ x1
0≤10 (image of Yhd(s, s2)2)

∨ g1
0=1 ∧ g=g1

0 ∧ 0≤ x1
0≤10 (image of Yhd(s1, e2))

∨ g1
0=2 ∧ g=g1

0 ∧ 0≤ x1
0≤10 (image of Yhd(c1, e2)1)

= g1
0≤g≤g1

0+1 ∧ 1≤g≤2 ∧ 0≤ x1
0≤10

Yhd(e, e2)2 = g1
0+1≤g≤g1

0+2 ∧ 2≤g≤3 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1

For Yhd(c1, s2)1, we instantiate Eq. (9) as follows:

Y 1
tl (s

1)
︷ ︸︸ ︷
0≤ i1

tl≤10 ∧ 0≤gtl≤1

Yhd(e,s2)2︷ ︸︸ ︷
0≤g1

0≤1 ∧ g=g0+1 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1
(call-site) (exit-site)

gtl=g1
0 ∧ i1

tl= x1
0 g′ =g ∧ (i1)′ = i1

tl ∧ (j1)′ = y1

(unification of input parameters) (output parameter passing)

Yhd(c1, s2)=Yhd(c1, s2)2 = 1≤g≤2 ∧ 0≤ i1≤10 ∧ j1= i1+1 (return-site)

Similarly, Yhd(c1, e2)=Yhd(c1, e2)2 = 2≤g≤3∧ 0≤ i1≤10∧ j1=
i1+1.

Observe that Yhd(c1, s2) is an overapproximation of the
exact result, for which g=1 (procedure succ has been called
once, and thread T2 has not moved yet). The explanation is
as follows:

– Observe first that in Y (s, s2) and thus in Y (e, s2) we have
0≤ g1

0 ≤ 1: This is because we have merged at the start
point of succ the possible values of effective parameters
at the two call sites (dashed line in Fig. 11). These two
predicates are, however, still exact.

– Now Y (e, s2), which defines the summary function of
succ when T2 is located at point s2, is combined with
Y 1

tl (s
1), which does not contain any information about

T2. In particular, Y 1
tl (s

1) includes the case where T2 is
located at e2 and g=1.

Hence the approximation corresponds precisely to the choice
made in Sect. 4: when a thread performs a procedure call, we
do not save in the variables memorizing the call context of the
procedure the local state of the other threads, and in particular
their pc variable.

Another related observation is that the value of Yhd(e, e2)2

satisfies only g1
0+1≤g≤g1

0+2. This corresponds to the join
of two different situations: the partial summary Yhd(e, e2)2

does not record whether

1. thread T2 was already located at e2 upon procedure call
(in which case g has been incremented only once during
the execution of succ), or if

2. it was located at point s2 and a context switch has
occurred during the execution of succ, so that g has been
incremented as second time by T2 during the execution
of succ.

The third and last iteration gives:

Yhd(s, s2)=Yhd(s, s2)3 = 0≤g1
0≤2 ∧ g=g1

0 ∧ 0≤ x1
0≤10

Yhd(e, s2)=Yhd(e, s2)3 = 0≤g1
0≤2 ∧ g=g0+1 ∧ 0≤ x1

0≤10 ∧ y1= x1
0+1

Yhd(s, e2)=Yhd(s, e2)3 = 0≤g1
0≤2 ∧ g=g1

0+1 ∧ 0≤ x1
0≤10

(image of Yhd(s, s2))

∨ g1
0=1 ∧ g=g1

0 ∧ 0≤ x1
0≤10

(image of Yhd(s1, e2))

∨ 2≤g1
0≤3 ∧ g=g1

0 ∧ 0≤ x1
0≤10

(image of Yhd(c1, e2))

= g1
0≤g≤g1

0+1 ∧ 1≤g≤3 ∧ 0≤ x1
0≤10

Yhd(e, e2)=Yhd(e, e2)3 = g1
0+1≤g≤g1

0+2 ∧ 2≤g≤4 ∧ 0≤ x1
0≤10 ∧ y1= x1

0+1

Ytl1(c1) = 1≤g≤3 ∧ 0≤ i1≤10 ∧ j1= i1+1

123

296 B. Jeannet

At last, by applying rule (9) at call site c1 of thread T1, we
obtain

Yhd(e1, s2) = 2≤g≤3 ∧ 0≤ i1≤10 ∧ j1= i1+1
Yhd(e1, e2) = 2≤g≤4 ∧ 0≤ i1≤10 ∧ j1= i1+1

The invariant Yhd(e1, e2) is to be compared with the exact
result, in which g=3. Observe however that the value of j is
exact, because in this example the local variables (including
the pc variables) do not interact with the global variable g.
Hence, the approximation performed on g is not propagated.

This example illustrates the kind of approximation our
forward analysis may perform. We will show in Sect. 8 that
it is still able to analyze with enough precision subtle syn-
chronization protocols. Another concern is the soundness of
this analysis. In order to prove it, we formalize it by abstract
interpretation of the instrumented semantics, by generalizing
the Galois connection of Eq. (7).

5.3 Formalization as a concurrent stack abstraction

We prove now the soundness of the analysis method defined
by Eqs. (9)–(10) using an abstract interpretation approach.

We use the following functions on stacks: for any stack
� = ε0 . . . εn ∈ Env+ and set of stacks X ∈ ℘(Env+):

hd(�) = {εn} hd(X) =⋃
�∈X

tl(�) = {εi | 0≤ i <n} tl(X) =⋃
�∈X tl(�)

elts(�) = hd(�) ∪ tl(�) elts(X) =⋃
�∈X elts(�)

Starting from the instrumented semantics of Sect. 4, we
define the Galois connection

℘(S f) = ℘(Env+×Env+)

−−−→←−−−αc

γc
Ac = ℘(Env×Env)× ℘(Env)× ℘(Env)

(11)

αc

({〈
�1

︷ ︸︸ ︷
ε1

0 . . . ε1
n1

,

�2

︷ ︸︸ ︷
ε2

0 . . . ε2
n2
〉}

)
=

〈hd(�1, �2),

tl(�1),

tl(�2)

〉

=
〈 {〈ε1

n1
, ε2

n2
〉},{

ε1
i1
| 0≤ i1 <n1

}
,{

ε2
i2
| 0≤ i2 <n2

}

〉

αc(X) =
⊔

〈�1,�2〉∈X

αc(〈�1, �2〉)

γc
(〈Yhd, Y 1

tl , Y 2
tl 〉

) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈
�1

︷ ︸︸ ︷
ε1

0 . . . ε1
n1

,

�2

︷ ︸︸ ︷
ε2

0 . . . ε2
n2
〉

∣∣∣∣∣∣∣∣∣∣∣

〈ε1
n1

, ε2
n2
〉 ∈ Yhd

∀0≤ i1 <n1 : ε1
i1
∈ Y 1

tl

∀0≤ i2 <n2 : ε2
i2
∈ Y 2

tl

〈�1, �2〉
is a well-formed state

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

The indices hd and tl we used in the previous sections are
now more understandable: they represent resp. products of
stacks heads and stack tails.

As an example, consider the set X of two reachable states
of the prog. of Fig. 11 previously analyzed:

X =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
(pc1=s1 ∧ g1=1 ∧ i1=0)·

(pc1=e ∧ g1
0=1 ∧ x1

0=0 ∧ y1=1 ∧ g1=2),

(pc2=e2 ∧ g2=2)

〉
,

〈
(pc1=c1 ∧ g1=1 ∧ i1=0)·

(pc1=e ∧ g1
0=1 ∧ x1

0=0 ∧ y1=1 ∧ g1=3),

(pc2=e2 ∧ g2=3)

〉

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The first state is reachable by an execution where thread 2
moves before the first call to succ, and the second by an exe-
cution where thread 2 moves during the second call to succ.
We compute γ ◦α(X), which captures the loss of information
performed by the abstraction of X .

α(X)=
〈{(

pc1=e∧pc2=e2∧g1
0=1∧ x1

0=0∧y1=1∧2≤g1=g2≤3
)}

,{(
pc1 ∈ {s1, c1} ∧ g1=1 ∧ i1=0

)}
, ∅

〉

γ ◦ α(X)=

⎧
⎪⎨

⎪⎩

〈(pc1∈{s1, c1} ∧ g1=1 ∧ i1=0) ·
(pc1=e ∧ g1

0=1 ∧ x1
0=0∧y1=1∧2≤g1≤3),

(pc2=e2∧g2=g1)

〉⎫⎪⎬

⎪⎭

Compared to X that contains two states, γ ◦α(X) contains
two additional states, in particular one which is not reachable:
〈(pc1 = s1 . . .) · (pc1 = e . . . g1 = 3), (pc2 = e2∧g2=3)〉.
This approximation will be propagated by the procedure
return operation to the pair of control point (c1, e2), where
g may be equal to 3 in the abstract semantics, unlike in the
concrete one (see the complete analysis in Sect. 5.2).

The abstract domain Ac defines an abstract semantics that
is simpler than the concrete semantics (the control is now
finite) and that can be seen as an analysis method that can be
further combined with a data abstraction as shown in Sect. 7.
The abstraction function α is never applied, but allows to
relate the abstract transfer functions to the concrete ones.

Figure 12 defines the abstract postcondition operator
apost1

c : Ac → Ac induced by the concrete postcondition
post1 : S f → S f , which just reformulates Eqs. (9), (10)
with a set-theoretic notation. We detail only the steps per-
formed by thread 1.

The case of intraprocedural instruction (Eq. (12)) is sim-
ple: The top environment of thread 1 is modified according
to the relation R, and the top environment of thread 2 is mod-
ified to reflect the new values of global variables. The sets
of tail environments are not modified. For procedure call,
Eq. (13), the new top environment of thread 1 is initialized
using the relation R f+ defined in Fig. 7. The set of tail activa-
tion records of thread 1 is extended by projecting the former
top environment on thread 1. The case of procedure return,
Eq. (14) has already been discussed in Sect. 5.2. We select a
global top environment in 〈ε, ε2〉 ∈ Yhd and a tail environ-
ment εtl ∈ Y 1

tl for thread 1, so that actual parameters in εtl

123

Relational interprocedural verification of concurrent programs 297

Fig. 12 Abstract postcondition
apost1

c : Ac → Ac, using the

relations R f• defined in Fig. 7

match frozen copy of formal parameters in ε. The new top
environment is then obtained using the relation R f− defined
in Fig. 7.

Proposition 2 (apost1
c is a correct approximation of post1)

For any set X ⊆ S f of well-formed states, apost1
c ◦αc(X) �

αc ◦ post1(X). More precisely:

(i) if τ is an intraprocedural or a call instruction, apost1
c

(τ) ◦ αc(X) = αc ◦ post1(τ)(X);
(ii) if τ is a return instruction, apost1

c(τ) ◦ αc(X) � αc ◦
post1(τ)(X)

apost2
c is defined in a symmetric way and is similarly a cor-

rect approximation of post2 (apost is decomposed as post is
in Eq. (1)). As a corollary, for any set S0 ∈ S f of well-formed
states, lfp(Fc[S0]) � αc(lfp(F[S0])), where Fc[S0](Y) =
αc(S0)�apost(Y) is the abstract transfer function and F[S0]
has been defined in Sect. 2.3.

Not surprisingly, the abstract semantics is less precise for
return instructions, because they implicitly need to rebuild
the stacks. The example of Sect. 5.2 illustrated this point.

Proof First, observe that for any τ , the function αc◦post(τ) :
℘(S f)→ Ac is distributive, as a composition of distributive
functions.

1. Let τ = c
〈R〉−−→ c′. Observe that the function apostc(τ)

defined by Eq. (12) is distributive, hence apostc(τ) ◦ αc

is distributive. We can thus compare the two distributive
functions apostc(τ) ◦ αc and αc ◦ post(τ) on singleton
sets.
From Eq. (IntraF) of Fig. 7, we have

αc ◦ post(τ)
({〈

�1 ·ε, �2 ·ε2
〉})

= αc

({〈
�1 ·ε′, �2 ·(ε2)′

〉 ∣∣∣∣
R f (c, c′)(ε, ε′)∧
(ε2)′ = ε2[g �→ ε′(g)]

})

=
〈{〈

ε′, (ε2)′
〉 ∣∣∣∣

R f (c, c′)(ε, ε′)∧
(ε2)′ = ε2[g �→ ε′(g)]

}
,

elts(�1), elts(�2)

〉

On the other hand, from Eq. (12),

apostc(τ) ◦ αc

({〈
�1 ·ε, �2 ·ε2

〉})

= apostc(τ)
({〈{
〈ε, ε2〉

}
, elts(�1), elts(�2)

〉})

=
〈{〈

ε′, (ε2)′
〉 ∣∣∣∣

R f (c, c′)(ε, ε′)∧
(ε2)′ = ε2[g �→ ε′(g)]

}
,

elts(�1), elts(�2)

〉

The two expressions are equal.

2. Let τ = c
call y:=Pj (x)−−−−−−−−−→ s j . Observe that the func-

tion apostc(τ) defined by Eq. (12) is distributive, hence
apostc(τ) ◦ αc is distributive. We can thus compare the
two distributive functions apostc(τ)◦αc andαc◦post(τ)

on singleton sets.
From Eq. (IntraF) of Fig. 7, we have

αc ◦ post(τ)
({〈

�1 ·ε, �2 ·ε2
〉})

=αc

({〈
�1 ·ε ·ε′, �2 ·〈c2, ε2〉

〉
| R f+

y:=Pj (x)(c)(ε, ε
′)
})

=
〈{
〈ε′, ε2〉 | R f+

y:=Pj (x)(c)(ε, ε
′)
}

, elts(�1) ∪ {ε}, elts(�2)
〉

On the other hand, from Eq. (13),

apostc(τ) ◦ αc

({
〈�1 ·ε, �2 ·ε2〉

})

=apostc(τ)
({〈
{〈ε, ε2〉}, elts(�1), elts(�2)

〉})

=
〈{
〈ε′, ε2〉 | R f+

y:=Pj (x)
(c, c′)(ε, ε′)

}
, elts(�1)∪{〈c, ε〉}, elts(�2)

〉

The two expressions are equal.

123

298 B. Jeannet

3. Let τ=e j
ret y:=Pj (x)−−−−−−−−−−−−−→ ret(c). Here aposthd(τ),

hence apost(τ), is not distributive, unlike αc ◦ post(τ).
Thus we cannot obtain an equality, but just a soundness
inclusion. From Eq. (RetF) of Fig. 7 we have for Y a set
of well-formed states:

post(τ)(Y)

=
{〈

�1 ·ε′, �2 ·ε2
〉 ∣∣∣∣∣

〈
�1 ·εtl ·ε, �2 ·ε2

〉 ∈ Y

R f−
y:=Pj (x)(c)(εtl, ε, ε

′)

}

Thus, exploiting the well-formedness of stacks in Y and
decomposing αc as 〈αhd, α1

tl, α
2
tl〉,

αhd ◦ post(τ)(Y)=

⎧
⎪⎪⎨

⎪⎪⎩
〈ε′, ε2〉

∣∣∣∣∣∣∣∣

〈
�1 ·εtl ·ε, �2 ·ε2

〉 ∈ Y

εtl(g, x) = ε(g0, fp0)

R f−
y:=Pj (x)(c)(εtl, ε, ε

′)

⎫
⎪⎪⎬

⎪⎪⎭

α1
tl ◦ post(τ)(Y)=

⋃{
elts(�1) | 〈�1 ·εtl ·ε, �2〉∈Y

}

α2
tl ◦ post(τ)(Y) = α2

tl(Y)

On the other hand, from Eq. (14):

aposthd(τ) ◦ αc(Y) = aposthd(τ)(〈Yhd , Y 1
tl , Y 2

tl 〉)

=

⎧
⎪⎪⎨

⎪⎪⎩
〈ε′, ε2〉

∣∣∣∣∣∣∣∣

〈ε, ε2〉 ∈ Yhd ∧ εtl ∈ Y 1
tl

εtl(g, x) = ε(g0, fp0)

R f−
y:=Pj (x)(c)(εtl, ε, ε

′)

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩
〈ε′, ε2〉

∣∣∣∣∣∣∣∣

〈�1 ·ε, �2 ·ε2〉 ∈ Y ∧ 〈
1
0 ·εtl ·
1

1,
2〉 ∈ Y

ε(g, x) = ε(g0, fp0)

R f−
y:=Pj (x)(εtl, ε, ε

′)

⎫
⎪⎪⎬

⎪⎪⎭

� αhd ◦ post(τ)(Y)

apost1
tl(τ) ◦ αc(Y) = α1

tl(Y) � α1
tl ◦ post(τ)(Y)

apost2
tl(τ) ◦ αc(Y) = α2

tl(Y) = α2
tl ◦ post(τ)(Y)

��
Completeness results The first trivial result we have is that in
the case of multithreaded programs without procedure calls,
our technique is exact, as the abstraction function becomes
the identity. Observing now that the stack abstraction falls
back to the functional abstraction defined in [26] for single-
thread program, we inherit from the following theorem:

Theorem 1 ([26]) For single-thread programs, and for ini-
tial sets of states X0 composed only of one-element stacks,
the abstract reachability analysis is optimal: areachc(X0) =
αc(reach(X0))

This implies that the set of top environments of reachable
stacks is computed exactly, so that the invariants inferred at
each control point are the exact ones.

6 Backward analysis

6.1 Instrumenting the standard semantics for backward
analysis

Whereas forward analysis aims at inferring invariants, back-
ward analysis aims at inferring necessary conditions to reach
a final, typically erroneous configuration. Figure 15 gives an
example of backward analysis from control point (e), which
shows for instance that x = 0 at point (s′) is a necessary
condition to reach (e).

The key ideas of our forward analysis is located in
the instrumentation of the standard semantics described in
Sect. 4, which puts the global store in the stacks and aug-
ments resulting environments with information about the call
context of procedures, and in the concurrent stack abstraction
of Sect. 5.3. The same principle can be applied to backward
analysis. However, the duality between the two analyses is
not total:

1. Assignments and substitutions of a variable by an expre-
ssion are inverse of each other only when the assignment
is invertible (like x=2x+1 and unlike x=y). The assign-
ments involved in the (forward) semantics of procedure
returns are not invertible.

2. In the forward semantics, a new element is pushed on the
stack when executing a procedure call; in this case the
former top element remains unchanged (see Eq. (Call) of
Fig. 6). In the backward semantics, the dual operation is
the procedure return. However, when a procedure return
is executed in a backward way, not only is a new element
pushed on the stack, but one has to consider the prede-
cessor of the former top element, for which the previous
point (1) applies.

This explains that the instrumentation for backward anal-
ysis is only partially symmetric to the instrumentation for
forward analysis. In this instrumented semantics:

– Global variables are pushed on stacks as in Sect. 4, so
that the state-space becomes Sb = Env+ × Env+.

– Environments are defined on variables g, l, g1, fr1, where
the values of the auxiliary variables g1, fr1 keep track of
the “return” context at exit point of the current procedure.

– Environments ε associated with a call site with the associ-
ated instruction y := Pj (x) define in addition the values
of auxiliary variables gt , yt , that store the values of g and
y at the return site, which are made undefined by the rela-
tion R−y:=Pj (x)(c)(ε, ε j , ε′) defined in Fig. 7 when taken
backward.

The semantic rules are given on Fig. 13. s ← s′ means that
s is a predecessor (in the standard semantics) of s′.

123

Relational interprocedural verification of concurrent programs 299

Fig. 13 Instrumented
semantics for backward
analysis: transition relation←t

b
of the thread T t and transition
relation←b of the full program,
using the relations R• defined in
Fig. 7

For procedure calls, as mentioned in the point (2) above,
the rules (CallB)–(Rb+) consist basically in popping the top
environment from the stack, whereas the rules (RetF)–(Rf−)
for procedure returns in the instrumented forward semantics
of Fig. 7 is more complex. Notice also that equality between
formal and actual input parameters is checked only at this
point by the relation R+y:=Pj (x)(c)(ε

′, ε′j), which acts as a fil-

ter. For instance in Fig. 15, at point (e′) of procedure succ,
the value of formal input parameter x is unknown, although
the corresponding actual parameter i satisfies i ≥ 0 at the
two return sites.4

For procedure returns, notice that in rules (RetB)–(Rb−)
the values of g and y is undefined in ε, because in the stan-
dard forward semantics these values are defined in ε′ by non-
invertible assignments; see rule (R−) of Fig. 6.

In this semantics, coreachable call stacks are necessarily
backward well formed in the following sense.

Definition 2 (Backward well-formed stacks and states) A
stack � = ε0 . . . εn ∈ Env+ is backward well formed, if for
any i < n:

(i) ci = εi (pc) is a call site for the procedure Pj , with
j = proc(ci+1), ci+1 = εi+1(pc) and I (ci , s j) =
〈call y := Pj (x)〉;

4 If one detects that x is not modified in succ, one could match the
effective parameter i at return site with the formal parameter x at exit
site.

(ii) equality between copies of actual and formal output
parameters holds: εi (gt , yt) = εi+1(g1, fr j

1).

A state 〈�1, �2〉 ∈ Sb is backward well formed if �1 and �2

are well formed, and if top environments agree on the current
value of global variables.

Proposition 3 If s′ ∈ Sb is a well-formed state, then any
s ∈ S f such that s ←∗b s′ is a backward well-formed state.

Proof It is similar to the proof of Proposition 1. (i) is trivial,
(ii) follows from the fact that the only rule defining gt , yt in
the “tail” environment and g1, fr1 in the top environment is
the rule (RetB), relation (Rb−). ��
Final states with stacks of height 1 are always backward well
formed. However, if the set of final states is specified as an
invariant on the top environments in some callee procedure,
one has to rebuild all the tail environments that makes the
resulting stacks backward well formed.

6.2 Backward analysis

In this section, we define a method for coreachability analysis
for concurrent and recursive programs, following the same
ideas as those for the forward analysis.

Axiomatic presentation We define in Fig. 14 our backward
analysis in an axiomatic way as in Sect. 5.2, using the three
same predicates Yhd(ε1, ε2), Y 1

tl (ε
1) and Y 2

tl (ε
2), which now

123

300 B. Jeannet

Fig. 14 Backward analysis
based on the instrumented
semantics of Fig. 13

Fig. 15 Backward
interprocedural analysis of a
sequential program, starting
from the exit point e

represent resp. coreachable stack tops and coreachable stack
tails.

The main difference is that in backward analysis, a stack
� · ε · ε′ can be coreachable while � · ε is not coreachable.
This is the case in the program of Fig. 15, in which the set
of stacks (pc = c ∧ jt = 0) · (pc = e′ ∧ y1 = 1 ∧ y = yt)

is coreachable from control point (e), but no stack of height
1 satisfying pc= c is coreachable. This motivates the clear
separation between stacks tails (predicates Y t

tl) and stack tops
(predicate Yhd) in the stack abstraction, whereas in the case of
forward analysis it can be derived by projection of stack tops.

Formalization as a concurrent stack abstraction We can for-
malize the backward analysis using the Galois connection
defined in Sect. 5.3 with Eq. (5.3), by substituting

(i) S f by Sb;
(ii) the notion of well-formed state of Definition 1 by the

notion of backward well-formed states of Definition 3.

The abstract precondition operator aprec :Ac→Ac induced
by the concrete precondition

pre : Sb → Sb

X �→
{

s | ∃s′
{

s ←b s′ ∧ s′ ∈ X
s and s′ are backward well formed

}

is defined by reformulating the rules of Fig. 14 with a set-
theoretic notation, as we did from the Eqs. (9), (10) to the
definitions of Fig. 12. We have the following result.

Proposition 4 (aprec is a correct approximation of pre) For
any set X ⊆ Sb of well-formed states, aprec ◦α(X) � αc ◦
post(X). More precisely:

(i) if τ is an intraprocedural or a return instruction,
apostc(τ) ◦ αc(X) = αc ◦ post(τ)(X);

(ii) if τ is a call instruction, apostc(τ) ◦ αc(X) � αc ◦
post(τ)(X)

As a corollary, for any set S1 ∈ Sb of well-formed states,
lfp(Gc[S1]) � αc(lfp(G[S1])), where Gc[S1](Y) = αc(S1)�
aprec(Y) is the abstract transfer function and G[S0] has been
defined in Sect. 2.3.

Proof Similar to the proof of Proposition 2. We obtain only
an inclusion for procedure calls because the abstract precon-
dition is not distributive. ��

Combining forward and backward analysis Backward anal-
ysis alone does not deliver precise information, because the
standard semantics taken backward has a high degree of non-
determinism. It is really useful when it is intersected with the

123

Relational interprocedural verification of concurrent programs 301

result of a forward analysis. It allows to select among reach-
able states those leading to a final states. As our abstract
precondition operator is not distributive, focusing on reach-
able states during the backward analysis also enables a better
precision.

As the two analyses are based on different instrumenta-
tion, two solutions are possible for intersecting a backward
analysis with the results of a forward analysis:

– either one first projects the results of the forward analysis
by existentially quantifying the instrumentation variables
g0, fp0;

– or one can add the variables g0, fp0 in the instrumented
backward semantics; this enables a matching between
actual and (copies of) formal input parameters in the
procedure return operation; for instance in point (e′) of
Fig. 15, we would add the invariant x0 ≥ 0, see the dis-
cussion referencing the footnote 4.

7 Combining stack and data abstractions

In the previous sections, we embedded the control encoded
by the pc variables in the environments in order to simplify
the notations, but in practice we manipulate explicit CFGs.
If we do this, the concurrent stack abstract domain Ac of
Eq. (5.3) can be rewritten as
(

K 1×K 2→℘(Env1×Env2)
)
×

(
(K 1→℘(Env1)

)

×
(
(K 2→℘(Env2)

)

in which environments define the values of ordinary data vari-
ables. Any abstraction for environments ℘(Env) −→←− Env�

can now be applied to Ac in order to obtain an implementable
domain

A�
c = (K 1×K 2→Env�)× (K 1→Env�)× (K 2→Env�)

Provided that the lattice Env� is equipped with meet and
join operators, an abstract equality constraint between vari-
ables/dimensions, an abstract existential quantification, and
an abstract operator R� for intraprocedural instructions R, the
predicate formulation of apost and apre given in Eqs. (9)–
(10) and in Fig. 14 can be implemented. Observe that the
ability to represent accurately equality constraints implies
that the abstract domain is a relational one, in the sense that
it can represent properties linking the values of different vari-
ables, unlike, for instance, the interval abstract domain [4].

Literature offers several example of suitable abstractions
for environments, as shown by the following three examples:

1. when all variables are Booleans, Env � B
n, Ac is finite,

and properties can be represented exactly with BDDs [2];

2. when all variables are of numerical types, Env � R
n ,

and properties in ℘(Env) can be abstracted by octagons
[31], convex polyhedra [7], etc… In this case, only in-
traprocedural instructions R and logical disjunction will
induce a further approximation in apost�c : A�

c → A�
c

w.r.t. apostc : Ac → Ac.
The example of Sect. 5.2 was analyzed without abstract-
ing numerical variables. Applying on it the octagon or
convex polyhedra abstract domain would actually lead
to the same result (unless widening is applied).

3. when variables are either Boolean or pointers to
memory cells, [37] proposes an abstraction in which
Boolean variables, pointers and memory configura-
tions are represented and abstracted using 3-valued
logical structures: ℘(Env) � ℘(2− STRUCT) −→←−
℘(3− BSTRUCT). All the needed operations for our
concurrent analysis method have actually already been
implemented in the TVLA tool [29], in the context of
interprocedural shape analysis of sequential programs,
as described in [23,24].
These papers show indeed how to represent input/output
relations between shape graphs seen as 2-valued logi-
cal structures, by using 2-valued logical structure on a
duplicated vocabulary, and resorts to the method of [37]
to abstract such relations with 3-valued logical struc-
tures. This approach enabled the relational interproce-
dural shape analysis of sequential programs reminded in
Sect. 5.1.1: The memory configuration is seen there as
a (rather special) global variable, and parameter passing
is encoded with 3-valued logical formula.
Thus, in the same way that [24] implements the sequen-
tial procedure return operation defined by rule (6) in
the 3-valued logic abstract domain, it is also possible
to implement the concurrent procedure return operation
defined by rule (9).

Complexity analysis We analyze here the space (resp. com-
putational) worst-case complexity of the domain A�

c, by con-
sidering the size of the representation of abstract values (resp.
the cost of operations on them). We assume that ϕ(d) denotes
the space/computational (worst-case) complexity of abstract
environments Env� of dimension d. For instance, the space
complexity ϕ(d) is 2d for BDDs and d3 for octagons.

Table 1 (left part) gives the complexity results in func-
tion of recursion and concurrency features. If we assume that
ϕ(d) is bounded by 2d (case of Boolean programs without
data abstraction) the complexity is

1. polynomial in the size k of the CFGs,
2. exponential in the number n of threads,
3. in O(ϕ(nd)) if d = g + l is the number of visible vari-

ables in each thread: we inherit the complexity of the
data abstraction modulo a factor n.

123

302 B. Jeannet

Table 1 Complexity comparison

(1) and (2) correspond to the complexity of model-checking,
which is not surprising as our technique reduces to it in the
single-procedure case. (3) shows that the complexity of our
method is higher than for the concurrent, non-recursive case
due to the (expensive) duplication of variables performed by
the instrumentation of Sect. 4.

We discussed here the worst-case complexity. It is impor-
tant to observe that most techniques aimed at reducing the
practical complexity can be reused, like Cartesian product
and/or variables packing for the number of variables [16],
which applies on the data abstraction regardless on the con-
text in which it is used, or partial order reduction for concur-
rency [15], which explores dynamically the product CFGs
of the different threads and prunes useless transitions. In our
case, the addition by our interprocedural technique of the Y 1

tl
and Y 2

tl components (that are not products) should not break
the pruning heuristics.

8 Implementation and experiments

We implemented our analysis for programs manipulating
finite-type and numerical variables. The applied data abstrac-
tion abstracts ℘(Env) = ℘(Bn ×R

p) with functions B
n →

Pol(Rp) associating to Boolean variables convex polyhe-
dra. These functions are implemented as MTBDDs [2] in
the BddApron logico-numerical domain library[17], which
relies on the Cudd BDD library [39] and the Apron numer-
ical abstract domain library [25].

Our ConcurInterproc analyzer [18,21], which can be
tried online, takes as input a concurrent program, performs
forward and/or backward analysis by solving Eqs. (2) or (3)
on the above-described abstract domain using Kleene iter-
ation and possibly widening, and then displays the results
using various options. It follows the architecture we discuss
in [22]. During the fixpoint analysis, the global equation sys-
tem is actually built dynamically from the product of initial
control points, using the CFG of each thread, in order to avoid
building a huge product CFG with only a small reachable
part. This is done in the Fixpoint library [19] by alternat-
ing propagation phases that discover newly reachable control

points, and fixpoint computation phases, in the spirit of the
guided analysis technique of [14].

We experimented a number of synchronization algorithms
to illustrate the precision of our method, but also in order to
analyze some of the approximations it induces. These pro-
grams can be analyzed online [18].

Mutual exclusion algorithms We first analyzed a few mutual
exclusion algorithms, in which code to acquire and to release
the critical section is delegated to two procedures acquire
and release, as done for the Peterson algorithm depicted
on Fig. 16. A forward analysis (3.5 s on a 2 GHz Pentium M
laptop) succeeds in showing that at most one thread can be in
a critical section C1 or C2. Notice that this simple example
already contains unbounded recursion (without correlation
between threads), and several return sites for most proce-
dures. We also tried the program of Fig. 17, on which the
analysis of [33] does not terminate, whereas ours terminates
(in 8s) and proves that the mutual exclusion is ensured at the
two sites and that the fail instruction is not reachable in
any thread.

Notice that these two small examples are demanding, in
the sense that synchronization algorithms are very subtle and
ask for precise analysis. Concerning running times, the size
of the reachable part of the equation graph remains quite high:
(217, 486) and (438, 800) for the two examples (in terms of
nb. of locations and transitions).

Barrier synchronization algorithms We now experiment a
synchronization barrier algorithm from [40], Fig. 1. Our met-
hod proves (in 4 s) that thread T1 cannot reach the fail
instruction (provided that we use several descending iteration
steps to recover the loss of information due to the widening
on convex polyhedra).

But if we make the counters p0, p1 local to the main pro-
cedure of each thread, our method fails to infer that p0 = p1

when the control is at the head of the two loops, because they
become uncorrelated when both threads are in the proce-
dure barrier. In this case, neither the tail environments of
thread t nor the top environments contain both counters: the
relation between these counters is lost and cannot be recov-
ered on procedure return. This is a typical case where the call
context taken into account, as discussed in Sect. 4, is not suf-
ficient; here, one should add the stack top of the other thread.

This phenomenon can be limited if local variables are
related to global variables. In the example of Fig. 18, which
is the skeleton of a timed SystemC/TLM model with coop-
erative scheduling, the counters p0 and p1 are local, but
remain correlated by the two global clocks T0 and T1. Thus,
we can prove that the writer cannot terminate its loop (it is too
slow). This example also illustrate the usefulness of reduction
techniques. Here, because context switches can occur only in
thewait procedure, only 32 locations are explored (in 0.4 s).

123

Relational interprocedural verification of concurrent programs 303

Fig. 16 The Peterson algorithm

9 Variations around the stack abstraction

Reducing the complexity by projection In the abstract domain
Ac defined by Eq. (5.3), an abstract value is a triplet
〈Yhd, Y 1

tl , Y 2
tl 〉, the complexity of which is dominated by Yhd

and which can be viewed as a predicate Yhd(g1
0, fp1

0, g2
0,

Fig. 17 The example of [33], on which our analysis terminates

fp2
0, g, l1, l2). Now, for the analysis to be relational, it is

necessary:

1. in terms of concurrency, to relate the variables g, l1, l2,
as discussed in Sect. 5.1.2;

2. in terms of procedure call/return, to relate the call con-
text g0, fp0 to the current value of variables, in order to
perform the relation composition of Eq. (9).

Fig. 18 Producer and consumer with wrong time synchronization, analyzed with a cooperative scheduling policy (use of yield instructions)

123

304 B. Jeannet

Table 2 Complexity comparison for concurrent and recursive programs

However, there is no strong intuition for correlating the vari-
ables g1

0, fp1
0 and g2

0, fp2
0. We could thus approximate Yhd

with the conjunction

Y 1
hd(g1

0, fp1
0, g, l1, l2)︸ ︷︷ ︸

=∃(g2
0,fp2

0) Yhd

∧ Y 2
hd(g2

0, fp2
0, g, l1, l2)︸ ︷︷ ︸

=∃(g1
0,fp1

0) Yhd

The new complexity of abstract values, which is given in
Table 2, col. “variation 1”, is lower due to the reduction of
the number of (global) variables to be related in the same
predicate. It is all the more interesting that the global store is
likely to be more complex than the local store (for instance
when it includes a model of the memory as in shape analysis
[23]). We have not implemented this technique yet, but we
conjecture that the negative impact on precision should be
very minor in practice.

Improving the precision by extending the call context In
Sect. 4, we explained that the call context of a procedure in
a thread includes the full call stacks of the other threads, and
we made the explicit choice to abstract away this aspect in the
analysis. A refinement would be to consider the top environ-
ments of the other threads, which is a less rough abstraction
of their call stacks. Combined with the previous technique,
for the thread 1 we would have tail and head environments
of the form:

Y 1
tl (g

1
0, fp1

0, g, l1, l20 , l2)

Y 1
hd(g1

0, fp1
0, g, l1, l2, l20)

where the framed variables are the additional auxiliary vari-
ables, and the (solid) arrows indicate the additional match-
ing performed when unifying tail and head environments
during procedure returns. The complexity of the resulting
abstract values is given in Table 1, column “variation 2”,
is of course higher. Intuitively, extending the call context
mechanically makes the analysis less modular and more
precise.

In particular, this solution solves the precision problems
raised by the example of Fig. 1 when the counters p0 and
p1 are local variables.

10 Related work and conclusion

Our first contribution is an existence proof that it is possible
to analyze concurrent, recursive programs using relational
techniques. Our approach unifies the relational approach to
interprocedural analysis of sequential programs, and the anal-
ysis technique for concurrent, non-recursive systems based
on the product of their CFGs.

We also think that our method is conceptually elegant,
based on a simple instrumentation of the concrete seman-
tics, followed by a control abstraction that collapses stacks
into sets and from which we derive mechanically an abstract
semantics. Sections 6 and 9 shows that the approach is gen-
eral enough to define a precise backward analysis or various
alternatives to the abstraction of Sect. 5.

We showed that this method can be implemented using
a non-trivial combination of BDDs and convex polyhedra,
which allowed us to experiment with small (but demand-
ing) examples combining concurrency, unbounded recursion
and infinite-state variables, and to illustrate its practical rel-
evance. More experimental results are available at [18].

We did not address here the well-known efficiency
problem raised by concurrency and interleaving semantics.
However most techniques attacking this problem, like identi-
fication of atomic blocks [10] and partial order reduction [15],
are fully applicable in our context and can be very efficient.
Moreover, as mentioned in introduction, our target applica-
tion is the analysis of SystemC/TLM models of SoCs [13],
which follows a cooperative scheduling policy, thus making
this problem less severe.

Our plan for the future is to apply our ConcurInter-
proc tool to SystemC/TLM models and also to analyze
concurrent data-structure algorithms using a suitable shape
abstraction.

Related work We focus on general techniques dealing with a
combination of recursion and concurrency. The SPADE tool
[32] analyzes concurrent programs with dynamic threads and
recursion by representing the program state by terms and
by using rewriting techniques on sets of terms. Their run-
ning times are much higher than ours. [9] was a first step
in this direction, but considers only unsynchronized con-
currency. Works like [1] exploits the principles of regular
model-checking, with each thread being represented with a

123

Relational interprocedural verification of concurrent programs 305

pushdown system communicating by rendez-vous. Com-
pared to our method, those techniques cannot be combined
easily with infinite data-abstractions such as convex polyhe-
dra, but most of them can handle dynamic thread creation.

Thread-modular techniques like [12] are more efficient but
inherently less precise than our method w.r.t. concurrency:
they never relate the local store of the different threads and
they do not track the order of the updates of the global store
performed by the environment of a thread (i.e., the other
threads). Malkis et al. [30] shows in the non-recursive case
that such a thread-modular approach is an abstraction of
the interleaving semantics. Flanagan and Qadeer [12] use
explicit stacks and cannot tackle unbounded recursion (they
can thus be more precise than us w.r.t. recursion). The advan-
tage of this approach is of course efficiency and the ability
to handle dynamic thread creation as in [11].

Qadeer et al. [33] is close to us in the ambition of extend-
ing relational analysis to concurrent programs. However their
method is based on the notion of transactional procedures and
requires the accesses to global variables to be protected by
mutex, which makes it less general than ours. It is also guar-
anteed to terminate only for an identified class of programs,
but in this case it seems that the analysis is exact, which is
the good side of this approach.

According to our first experiments and our intuition, our
approach should be especially efficient for the cases where
the local environments of the different threads must be related
(as in timed TLM models), because our analysis effectively
relates them, but where synchronization mechanisms do not
involve several local stores at different recursion depths. Oth-
erwise an accurate analysis requires to put in the call con-
text of procedures several stack elements of the concurrent
threads.

Acknowledgments We thank the anonymous referees for their con-
structive suggestions that helped to largely improve the initial version
of the paper.

References

1. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic anal-
ysis of dynamic networks of pushdown systems. In: Concurrency
Theory, CONCUR’05. LNCS, vol. 3653 (2005)

2. Bryant, R.E.: Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Comput. 35(8), 377 (1986)

3. Caucal, D.: On the regular structure of prefix rewriting. Theor.
Comput. Sci. 106(1), 61 (1992)

4. Cousot, P., Cousot, R.: Static determination of dynamic properties
of programs. In: 2nd Int. Symp. on Programming, Dunod, Paris
(1976)

5. Cousot, P., Cousot, R.: Static determination of dynamic properties
of recursive procedures. In: IFIP Conf. on Formal Description of
Programming Concepts (1977)

6. Cousot, P., Cousot, R.: Abstract interpretation and application to
logic programs. J. Logic Program. 13(2–3), 103 (1992)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints
among variables of a program. In: Principles of Prog. Languages,
POPL’78. ACM, New York (1978)

8. Esparza, J., Knoop, J.: An automata-theoretic approach to inter-
procedural data-flow analysis. In: Foundations of Software Science
and Computation Structure, FoSSaCS ’99. LNCS, vol. 1578 (1999)

9. Esparza, J., Podelski, A.: Efficient algorithms for pre∗ and post∗ on
interprocedural parallel flow graphs. In: Principles of Prog. Lan-
guages, POPL’00. ACM, New York (2000)

10. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for atom-
icity: static checking and inference for java. ACM Trans. Program.
Lang. Syst. 30(4) (2008)

11. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular veri-
fication of multithreaded programs. Theor. Comput. Sci. 338(1–3),
153–183 (2005)

12. Flanagan, C., Qadeer, S.: Thread-modular model checking. In:
SPIN’03: Workshop on Model Checking Software. LNCS, vol.
2648 (2003)

13. Ghenassia, F. (ed.): Transaction-Level Modeling with SystemC.
TLM Concepts and Applications for Embedded Systems. Springer,
Berlin (2005)

14. Gopan, D., Reps, T.W.: Guided static analysis. In: Static Analysis
Symposium, SAS’07. LNCS, vol. 4634 (Aug 2007)

15. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-
order reduction. In: SPIN’07: Model Checking Software. LNCS,
vol. 4595 (2007)

16. Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce
the space dimension in polyhedra computations. Formal Methods
Syst. Des. 29(1), 79–95 (2006)

17. Jeannet, B.: The BDDAPRON logico-numerical abstract domains
library. http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-
forge/bddapron/

18. Jeannet, B.: The ConcurInterproc interprocedural analyzer
for concurrent programs. http://pop-art.inrialpes.fr/interproc/
concurinterprocweb.cgi

19. Jeannet, B.: The Fixpoint equation solver http://www.inrialpes.fr/
pop-art/people/bjeannet/bjeannet-forge/fixpoint/

20. Jeannet, B.: Relational interprocedural analysis of concurrent pro-
grams. Technical Report 6671, INRIA (Oct 2008)

21. Jeannet, B.: Relational interprocedural verification of concur-
rent programs. In: Software Engineering and Formal Methods,
SEFM’09. IEEE (Nov 2009)

22. Jeannet, B.: Some experience on the software engineering of
abstract interpretation tools. In: Int. Workshop on Tools for Auto-
matic Program AnalysiS, TAPAS’2010. ENTCS, vol. 267, pp. 29–
42. Elsevier, Amsterdam (2010)

23. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach
to interprocedural shape analysis. In: Static Analysis Symposium,
SAS’04. LNCS, vol. 3148 (2004)

24. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach
to interprocedural shape analysis. ACM Trans. Program. Lang.
Syst. (TOPLAS), 32(2), Article 5 (2010)

25. Jeannet, B., Miné, A.: APRON: A library of numerical abstract
domains for static analysis. In: Computer Aided Verification,
CAV’2009. LNCS, vol. 5643, pp. 661–667 (2009). http://apron.
cri.ensmp.fr/library/

26. Jeannet, B., Serwe, W.: Abstracting call stacks for interprocedur-
al verification of imperative programs. In: Int. Conf. on Algebraic
Methodology and Software Technology, AMAST’04. LNCS, vol.
3116 (2004)

27. Knoop, J., Steffen, B.: The interprocedural coincidence theorem.
In: Compiler Construction, CC’92. LNCS, vol. 641 (1992)

28. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis
of concurrent programs under a context bound. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS’08.
LNCS (2008)

123

http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron/
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron/
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/fixpoint/
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/fixpoint/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/

306 B. Jeannet

29. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static
analyses. In: Static Analysis Symposium, SAS’00, pp. 280–301
(2000)

30. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular veri-
fication is cartesian abstract interpretation. In: Int. Colloquium on
Theoretical Aspects of Computing (ICTAC’06). LNCS, vol. 4281
(2006)

31. Miné, A.: The octagon abstract domain. Higher-Order Symb. Com-
put. 19(1), 31–100 (2006)

32. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of mul-
tithreaded dynamic and recursive programs. In: Computer Aided
Verification, CAV’07. LNCS, vol. 4590 (2007)

33. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in
concurrent programs. In: Principles of Programming Languages,
POPL’04. ACM, New York (2004)

34. Ramalingam, G.: Context-sensitive synchronization-sensitive anal-
ysis is undecidable. ACM Trans. Program. Lang. Syst. 22(2), 416–
430 (2000)

35. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow
analysis via graph reachability. In: Principles of Prog. Languages,
POPL’95. ACM, New York (1995)

36. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown
systems and their application to interprocedural dataflow analysis.
Sci. Comput. Program. 58(1–2), 206–263 (2005)

37. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-
valued logic. ACM Trans. Prog. Lang. Syst. 24(3), 217–298 (2002)

38. Sharir, M., Pnueli, A. : Semantic foundations of program analy-
sis. In: Muchnick, S., Jones, N. (eds.) Program Flow Analysis:
Theory and Applications, chap. 7, pp. . Prentice Hall, Upper Sad-
dle River (1981)

39. Somenzi, F.: Cudd: Colorado University Decision Diagram Pack-
age. ftp://vlsi.colorado.edu/pub

40. Taubenfeld, G.: Synchronization Algorithms and Concurrent Pro-
gramming. Prentice Hall, Upper Saddle River (2006)

Author Biography

Bertrand Jeannet is a research
scientist at INRIA. He received
his PhD in computer science
from Institut National Polytech-
nique de Grenoble (INPG) in
2000. He worked as a post-
doctoral researcher at University
of Aalborg (Denmark), before
joining INRIA-Rennes in 2001
and moving to INRIA-Grenoble
in 2007. His research inter-
ests include program verifica-
tion, abtsract interpretation, in
particular of numerical variables,
shape analysis, interprocedural

and concurrent program analysis, and applications to program testing.
He is the co-author of the APRON library for numerical abstract
domain, as well as other tools and libraries dedicated to static analysis.

123

ftp://vlsi.colorado.edu/pub

	Relational interprocedural verification of concurrent programs
	Abstract
	1 Introduction
	2 Program model and standard semantics
	2.1 Program model
	2.2 Operational semantics
	2.3 Collecting semantics and analysis goal

	3 Abstract interpretation
	4 Instrumenting the standard semantics for forward analysis
	5 Forward analysis
	5.1 Two sources of inspiration
	5.1.1 Relational interprocedural analysis of sequential programs
	5.1.2 Analysis of concurrent systems with an interleaving semantics

	5.2 Forward analysis: an axiomatic presentation and analysis example
	5.3 Formalization as a concurrent stack abstraction

	6 Backward analysis
	6.1 Instrumenting the standard semantics for backward analysis
	6.2 Backward analysis

	7 Combining stack and data abstractions
	8 Implementation and experiments
	9 Variations around the stack abstraction
	10 Related work and conclusion
	Acknowledgments
	References

