
Softw Syst Model (2011) 10:441–446
DOI 10.1007/s10270-011-0207-y

EXPERT’S VOICE

UML formal semantics: lessons learned

Manfred Broy · María Victoria Cengarle

Received: 20 May 2011 / Accepted: 23 May 2011 / Published online: 23 June 2011
© Springer-Verlag 2011

Abstract The article below presents the insights gained
during a number of years of research dedicated to the for-
malisation of the Unified Modeling Language.

Keywords Formal semantics · Compositional semantics ·
Multiple system views · All-encompassing UML semantics ·
Formal model-driven system development

1 Introduction

The Unified Modeling Language (UML [1]) is a general-pur-
pose modelling language, created and managed by the Object
Management Group (OMG). UML offers elements of a
graphical concrete syntax to create visual models of software-
intensive systems. UML synthesised notations of the Booch
method [2], the Object-Modeling Technique (OMT [3]) and
Object-Oriented Software Engineering (OOSE [4]) by fusing
them into a single, common and widely usable modelling
language; several other methods have then further influ-
enced the UML, as for instance the Statecharts [5] and the
Object Constraint Language (OCL [6]). UML aims to be a
standard modelling language for concurrent and distributed

Communicated by Bernhard Rumpe.

The insights reflected in this article are the corollary of the rUML
project financed by the German Research Foundation (DFG).

M. Broy (B) · M. V. Cengarle (B)
Software and Systems Engineering,
Technische Universität München, Munich, Germany
e-mail: broy@in.tum.de

M. V. Cengarle
e-mail: cengarle@in.turn.de

systems. Though UML is not a development method by
itself, it was designed to be compatible with the leading
object-oriented software development methods of its time,
for example the already mentioned OMT and Booch method
as well as Objectory [7]. Development methods have been
created based on UML, the best known is the Rational Uni-
fied Process (RUP [8]) of IBM. To provide more specific
solutions, or achieve different objectives, further UML-based
methods have been designed such as, e.g., the Dynamic Sys-
tems Development Method [9].

The UML rapidly gained popularity in industry, as it facil-
itated the communication between most diverse stakeholders
about a system at different phases of development, on one
hand, and, on the other, several points of view onto that sys-
tem, including its context.

In contrast to its popularity, there are severe reservations
about the UML in science and various domains of applica-
tion. The most fundamental criticism of UML made by the
models-based engineering community has been its lack of
informal and formal semantics, i.e., the colloquial nature of
UML’s semantic description in natural language or in terms
of UML itself; see [10,11]. Therefore, as pointed out in [12],
multiple and potentially contradictory interpretations of one
and the same model are not excluded, and automatic interpre-
tation must be hard coded in some way or another in the tool
chain. Regarding the former issue, in [13] it is claimed that
perception and interpretation of reality is strongly shaped by
our mental, cognitive concepts and structures. In [14], it is
observed that modellers typically ignore any UML semantics
and invent their own; in [15] it is moreover emphasised that
a “cognitive” semantics of the UML, as opposed to an objec-
tivist one, ultimately has its origin in political rather than
objective considerations. Another matter is whether object-
oriented programming concepts provide the right modelling
concepts.

123



442 M. Broy, M.V. Cengarle

However, according to [16], the UML specification is
highly technical, terse, and very difficult for beginners to
understand, and the question of [17] Why are some specifi-
cations so hard to read? is therein puzzlingly answered as fol-
lows: Most OMG specifications are written for programmers
who implement compliant software products. Needless to
say, an informal description unavoidably involves ambigu-
ities and lacks rigour, and thus precludes the reasoning,
early simulation and automated analysis of a system design
expressed by a UML model. This issue was speedily tack-
led by the research community as soon as the potential
of UML as a de facto standard was recognised.1 While
(a large portion of) the static semantics of UML seems to
have promptly reached a consensus,2 the dynamic seman-
tics of the UML sub-languages, such as activities, interac-
tions and state machines, poses a major challenge. No reli-
able quality assurance can be undertaken as long as the very
language employed to describe the system under scrutiny is
deprived of a precise semantics. One consequence of these
open issues is the low level of automation in tool support for
the UML.

2 UML sublanguages

The UML sublanguages are complicated as many constructs
and features have been put at disposal without the necessary
fine tuning with each other. The Object Constraint Lan-
guage (OCL [18]), for example, is used to formulate well-
formedness rules in UML models, and is also intended
to be an adjunct to UML for modellers who wish to add
to their models more precision that cannot be otherwise
(e.g., graphically) stated. OCL can be used as a naviga-
tion language, to write class invariants and pre-/post-con-
ditions of methods within classes of a class diagram, guards
of transitions of state machines, and guards of communi-
cation between instances in a sequence diagrams, among
other uses. OCL offers (a) higher-order constructs as, e.g.,
iterate, (b) non-determinism, (c) non-termination, and
(d) a three-valued logic with truth values true, false,
and undef. These features necessarily make a semantics
for OCL intricate; see [19], where it is moreover dem-
onstrated that the changes introduced in OCL 2.x restrict
its expressivity to primitive recursion while OCL 1.4/5
was computationally complete. In the end, the decision in
favour of a three-valued logic in OCL is not state of the
art.

1 Meanwhile UML is a de jure international standard, managed by
the OMG; see also ISO/IEC 19501:2005 Information technology—
Open Distributed Processing—Unified Modeling Language (UML)
Version 1.4.2.
2 Some static issues as, e.g., links are still subject of debate.

The UML interactions describe possible message
exchanges between system instances, and make up a pow-
erful language which, besides integrating the standard oper-
ations like sequential, parallel, and iterative composition of
interactions, provide means to specify recursive behaviour
and negative behaviour, i.e., behaviour forbidden in sys-
tem implementations. Previous versions of the interaction
language did not provide for the specification of forbidden
scenarios, what had been considered a fundamental flaw.
However, it is just the operator for negation, or more precisely
its meaning informally stated, that provoked more than one
interpretation. Three possibilities are listed in [20], namely
the “loose,” the “strict” and the “flip” variants, the latter being
the chosen one although admittedly the “strict” interpretation
seems to be the closest to the intended meaning of [1].3 These
three interpretations of interaction negation are based on
manipulations of sets of event traces, such that the universe of
possible traces is partitioned into “valid,” “invalid” and “con-
tingent” traces. In [21], it is argued that the universe needs be
partitioned in four kinds of event traces, for there exist traces
that are simultaneously valid and invalid for an interaction
expression; such an expression is therefore called “overspec-
ified.” The usefulness of a construct for the description of
negative behaviour is emphasised in [22], where the focus
is on secure systems and negative traces are those for which
a negative (possibly non-continuous) subtrace exists. A fur-
ther interpretation for negation is given in [23], which treats
negation as a modality rather than an operator. UML inter-
actions also put an operator for assertion at disposal, whose
meaning is closely related to that of negation; the semantic
discussion in relation to negation also applies to assertion.

Concepts semantically difficult to treat are those of AND-
and OR-states of state machines and interlevel transitions in
combination with the mechanism of deep and shallow his-
tory; see, e.g., [24,25]. As an illustration on how possibly
desirable features may be obstructive, the combination of
interlevel transitions, state references and the history mech-
anism prevents the definition of a compositional semantics
for statecharts; see [26] and the references therein. As a mat-
ter of fact, these three features are still available in the UML
syntax for state machines. Connection point references of
UML state machines (see [1, p. 544ff]) are the present mech-
anism allowing interlevel transitions. The history mecha-
nism, in its variants deep and shallow, is also a feature of
UML state machines; see [1, p. 556ff]. State references can
be made within the guard constraint (i.e., precondition) of
a state transition as detailed in [1, p. 591]. Compositionality
amounts to the meaning of a complex expression being deter-
mined by the meanings of its constituent expressions and

3 The version of the UML referred to in [20] is older than [1], but it is
still true that both the “loose” and the “flip” interpretations of interaction
negation do not correspond to the intended meaning.

123



UML formal semantics: lessons learned 443

the rules used to combine them. But not only the respective
meanings of the parts, depending on the composition oper-
ator used, imply the meaning of the whole; also properties
locally proved of the parts may be inferred of the whole, thus
compositionality provides for modular verification moreover
accompanied by stepwise refinement.

The examples above let us identify the following prob-
lems. On the one hand, a vague description of the UML sub-
languages allows for a “free” interpretation of them (e.g.,
negation of interactions). This is in line with the observation
of [15] cited above, that modellers typically ignore any nor-
mative UML semantics and concoct a one which is consid-
ered correct in general or convenient for their own purposes.
On the other hand, the overabundance of features, termed
eclecticism in [27], results in languages that are technically
difficult to treat (e.g., OCL). It can moreover lead to a defi-
nition that contradicts common sense and possibly the inten-
tion (e.g., state machines vs. compositionality), or dualities
of intent (e.g., interactions switching between a dataflow and
a method invocation perspective).

These foundational results show how important it is to
carefully design a modelling language to avoid problems
regarding its expressivity as well as its interpretation, prob-
lems which strongly impact on practical applicability. Much
of the complexity of UML arises from lack of insight into
experiences collected over years of research concerning those
features.

3 UML as a whole

Perforce, complicated languages combined give rise to a very
complicated modelling language when it comes to their inte-
gration and the definition of an integrative semantics. Aware
of this situation, the OMG made a request for proposal in
order to enable a chain of tools that support the construction,
verification, translation, and execution of computationally
complete executable models expressed in a subset of UML;
see [28].4 The current draft version of the official adopted
specification is called Foundational UML (fUML [29]). The
semantics of fUML is defined in fUML itself and using a
base UML (bUML) in order to break circularity. A base
semantics provides an interpretation of bUML as a set of first-
order axioms over possible execution traces; the base seman-
tics specifies when particular executions conform to a model
defined in bUML, it does not generate executions. The subset
addressed by this proposal most noteworthy disregards state
machines and interactions (i.e., sequence diagrams).

Nevertheless, an all-encompassing formal semantics for
the UML can be devised. We have approached this undertak-
ing from two sides. On the one hand, a semantic core denom-
inated the System Model theory was defined. This theory

4 Emphasis added.

defines transition systems that, though complex, constitute
a semantic domain suitable for sophisticated modelling lan-
guages and not just for UML 2. In general, the System Model
forms a foundation for structure, behaviour and interaction
of object-oriented, possibly distributed systems. The Sys-
tem Model is abstract enough to be of general value, but
also sufficiently detailed to allow simulation and execution
of UML models. Among others, central concepts of the UML
have been formalized as theories of the “System Model;”
see [30–33].

On the other hand, a heterogeneous approach to the seman-
tics of UML is proposed where the semantics of each sub-
language is described in its natural mathematical domain
(e.g., sequence diagrams define sets of positive, negative, and
inconclusive traces), and where the relations between dia-
gram types are expressed by appropriate translations. More
formally, the UML family of sublanguages is represented as a
“heterogeneous institution environment;” see [34]. Roughly
speaking, an institution is a logical framework for the defini-
tion of theories (representing system designs) in which valid
theorems implied by a theory (representing properties of a
system design) remain valid even after theories are variously
combined; an heterogeneous institution environment allows
moreover the combination of theories defined over differ-
ent logical frameworks. The advantage of this heterogeneous
approach is that properties verified locally have global valid-
ity, a sine qua non for compositional verification; however,
not for all of the UML sublanguages an institution has been
devised.

What these efforts inevitably left untreated is the fact that
a particular language may have different intended seman-
tics when used at different stages of development. Indeed,
on the one hand, there are concepts (e.g., transition systems)
and description techniques (e.g., state machines) and, on the
other, there are the stages of development. For instance, inter-
actions can be used both for analysis purposes, to produce
sample scenarios, as well as for integration test, to define test
sequences. But these interaction specifications, at different
stages, may be devised with a different intended semantics
in mind: during integration test, they are (at least desirably)
exhaustive, whereas during analysis they not necessarily are
striven for exhaustiveness. Indeed, as pointed out in [27],
the claim of universality of UML, meaning that UML is a
notation suitable for analysis, design and documenting the
implementation, necessarily entails multiple interpretations.
This claim, put in perspective, could be considered an a pri-
ori reason for the failure of the UML as an Esperanto for
modelling real world as well as systems in different stages
of development. The conjecture is whether a formal seman-
tic foundation (one or more approaches, depending on the
development phase) defined beforehand for each sublan-
guage would allow a formal, universal and integrative at once,
modelling language.

123



444 M. Broy, M.V. Cengarle

4 UML in practice

The UML acceptance in industry seems circumscribed at its
use, regardless of its semantics, in very early and/or very
informal phases of development, mainly for the description
of structure and seldom for the specification of behaviour.
As surveyed in [14], the reasons for this situation are that the
notations provided by the UML for describing behaviour are
complex, poorly defined and poorly integrated, that round-
tripping between code and model is far too lossy and error
prone, and that tools in general are poor in how they inte-
grate modelling artefacts into the lifecycle. Interestingly, [27]
argues that a universal notation fosters naïve seamless devel-
opment since, as the Gestalt theory postulates, initial con-
cepts obtained by perception radically affect how subsequent
constructs are formed; there moreover is shown how this fact
unfavourably influences development, leading to overly cou-
pled system with poor modular structure.

There have been efforts within academia, besides those
at equipping UML with a formal semantics, that attempted
at alternative but in spirit equivalent definitions of a model-
ling language, which are devoid of those handicaps copiously
itemised in the literature. The proposal of [35], for instance,
after showing deficits of UML as, e.g., circular and contradic-
tory definitions, introduces an option that has an internally
consistent structure supported by Russell’s theory of types
and defines a declarative semantics à la Tarski; moreover,
the choice is justified on the basis of philosophical and natu-
ral science foundations, in contrast to UML which is a result
of tries, failures and successes that were never theoretically
justified.

However, those endeavours at either a formal semantics
for the UML or at flawless alternatives equivalent to UML
in intent, provoked desultory repercussion. First of all, the
plethora of proposals result in a combinatoric explosion of
possible combinations, of which many make simply no sense.
The formal exploration of those accomplishments appear to
be of no interest to the tool vendors possibly for political
reasons. End-users, on their side, systematically disregard
any formal semantics for UML because of the accompany-
ing intrinsic complexity and lack of proper (i.e., at industrial
scale) support. Unsurprisingly, the reaction from academia,
besides questioning model-driven development methods for
which UML was thought as a vehicle (see [36,37]), is a shift
of focus to other challenges.

5 The bottom line

One of the pioneers of modelling languages, Doug Ross,
developed the Structured Analysis and Design Technique
(SADT [38]) far ahead of his time. In his old days, Doug
spent most of his professional energy dealing with these

complex ideas, giving meaning to and extending his model-
ling concepts to a complete Technology for Understanding.
He moreover pursued the foundations for all of his technical
work since the 1950s—a scientific philosophy called Plex.
At a meeting of the IFIP Working Group 2.3 on program
methodology held in Pouilly-en-Auxois, France, in Septem-
ber 1991, the group members had an intensive discussion
with him about a formal model for SADT. Doug disap-
proved these attempts; literally, he said “You try to spoil my
approach.” He had the feeling that striving to give formal
meaning to his graphical formalisms would ruin the whole
proposal.

What do we learn from that? On the one hand, graphical
notations are undoubtedly very useful, even when they are
only informal. They allow us to sketch ideas in early stages
of development, when many details need not be considered.
Had those notations a formal meaning, many of the graphical
descriptions would be actually false at least with respect to
details in which nobody is interested at that stage of devel-
opment. Perhaps, this might be an argument for not having a
precise formal meaning.

On the other hand, a purely graphical notation with pos-
sibly many different semantic interpretations is not a good
vehicle to support communication, in particular among engi-
neers. What is needed is a robust set of concepts with unam-
biguous meaning, clearly directed towards the concepts used
in engineering systems.

However, this characterisation does not apply to the UML.
In many respects, UML is far too much triggered by specific
concepts of programming like object-oriented constructs,
which are overly close to a explicit execution model with
some express operational meaning. The UML sublanguages
are not properly related to each other and integrated, such
that many semantic questions arise that are difficult to solve.
Finally, many of the ideas expressed informally in the UML
do not call for a straightforward formalisation. In the end,
some quite unbaked ideas can be found in the UML. More-
over, some decisions like a three-valued logic for the OCL
are certainly not state-of-the-art.

So, was it a failure to formalise the UML? We do not
think so! We believe that an attempt at a formalisation is a
scientific approach that promotes a deep understanding of the
good as well as the bad aspects of the modelling language
scrutinised. Trying to do the formalisation uncovered a lot of
properties of the UML and led to considerably many fruitful
questionings.

A final conclusion could be as follows: If one is interested
in a formal modelling language, which supports the seam-
less development process including round-trip engineering
and code generation with a great deal of automation by
means of tools, a formal semantics is indispensable. Such
a modelling language is thus close to a high-level design
language and also to a programming language. For that

123



UML formal semantics: lessons learned 445

modelling language, all formal semantic questions have to
be solved in order to achieve the essential goal of portabil-
ity and independence of particular implementations of tools.
A completely different goal, in accordance with the above
mentioned Gestalt theory, is a language for sketching designs
and grasping conceptional ideas. At early stages, less details
are needed, just a simple structure is required with a basic,
plain and informal meaning. Such languages are necessary,
too. UML is none of both, unfortunately.

After all, the UML and the attempts to furnish it with a for-
mal meaning, led to invaluable insights. We have learned how
to do it better. We have understood that designing a full-blown
modelling language as an engineering tool has to be done
from foundational principles and not out of the amalgamation
of a number of not completely understood concepts. More-
over, we have seen that we also need informal languages, and
for them completely different principles have to be used.

Acknowledgments The authors would like to thank all colleagues
who contributed to the development of the rUML project, in particular
those from the Chair of Software Engineering in Aachen (formerly at
the Chair of Software Systems Engineering in Brunswick). Bernhard
Rumpe provided us with richly interesting feedback to previous draft
versions of this account. Bran Selic pointed out many inaccuracies in
particular regarding the history and evolution of the UML.

References

1. Object Management Group: OMG Unified Modeling Language
(OMG UML), Superstructure—Version 2.3. Technical Report Doc-
ument Number formal/2010-05-05, OMG. http://www.omg.org/
spec/UML/2.3/Superstructure/PDF/ (2010). Retrieved 2011-01-
18

2. Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J.,
Connallen, J., Houston, K.A.: Object-oriented analysis and design
with applications, 3rd edition. ACM SIGSOFT Software Engineer-
ing Notes, vol. 33 (2008)

3. Rumbaugh, J.E., Blaha, M.R., Premerlani, W.J., Eddy, F.,
Lorensen, W.E.: Object-Oriented Modeling and Design. Prentice-
Hall, New Jersey (1991)

4. Jacobson, I.: Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley Longman Publishing Co. Inc.,
Redwood City (2004)

5. Harel, D.: Statecharts: a visual formalism for complex systems. Sci.
Comput. Progr. 8, 231–274 (1987)

6. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Pre-
cise Modeling With UML. Object Technology Series. Addison-
Wesley Longman Publishing Co. Inc., Redwood City (1998)

7. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software
Development Process. Addison-Wesley Longman Publishing Co.
Inc., Boston (1999)

8. Gornik, D.: IBM Rational Unified Process: best practices
for software development teams. Technical Report TP026B,
Rev 11/01, IBM. ftp://ftp.software.ibm.com/software/rational/
web/whitepapers/2003/rup_bestpractices.pdf (2004). Retrieved
2010-07-01

9. Stapleton, J.: DSDM: Dynamic Systems Development Method. In:
29th International Conference on Technology of Object-Oriented

Languages and Systems (TOOLS Europe 1999), IEEE Computer
Society, vol. 406 (1999)

10. Rumpe, B.: A note on semantics (with an Emphasis on UML).
In: Kilov, H., Rumpe, B., (eds.) 2nd ECOOP Workshop on Precise
Behavioral Semantics. Technical Report TUM-I9813, Institut für
Informatik, pp. 177–197. Technische Universität München (1998)

11. Richters, M.: A Precise Approach to Validating UML Models and
OCL Constraints. PhD thesis, Universität Bremen, Logos, Berlin,
BISS Monographs, No. 14 (2002)

12. Cuccuru, A., Mraidha, C., Terrier, F., Gérard, S.: Enhancing UML
Extensions with Operational Semantics. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F., (eds.): Model Driven Engineering
Languages and Systems (MoDELS’07, Proceedings). Lecture
Notes in Computer Science, vol. 4735, pp. 271–285. Springer,
Berlin (2007)

13. Evermann, J.: A cognitive semantics for the association con-
struct. Requir. Eng. 13, 167–186 (2008)

14. Cook, S.: UML2.0—Trying to have it both ways, pp. 4–7 of [39]
15. Cook, S.: UML Semantics. Steve Cook’s WebLog. http://blogs.

msdn.com/b/stevecook/archive/2004/12/08/278507.aspx (2004).
Retrieved 2010-07-01

16. Object Management Group: Introduction to OMG’s Unified Mod-
eling Language (UML). Technical report, OMG. http://www.omg.
org/gettingstarted/what_is_uml.htm (2009). Retrieved 2010-07-01

17. Object Management Group: Getting Specifications and Prod-
ucts. Technical report, OMG. http://www.omg.org/gettingstarted/
specsandprods.htm (2009). Retrieved 2010-07-01

18. Object Management Group: Object Constraint Language. Techni-
cal Report Document Number formal/2010-02-01, OMG. http://
www.omg.org/spec/OCL/2.2/PDF (2010). Retrieved 2011-01-18

19. Cengarle, M.V., Knapp, A.: OCL 1.4/1.5 vs. OCL 2.0 expres-
sions: formal semantics and expressiveness. Softw. Syst. Model.
3, 9–30 (2004)

20. Störrle, H.: Assert, Negate and Refinement in UML-2 Interac-
tions. In: Jürjens, J., Rumpe, B., France, R., Fernandez, E.B. (eds.)
2nd International Workshop on Critical Systems Development with
UML (CSDUML’03, Proceedings). Technical Report TUM-I0323,
pp. 79–93. Institut für Informatik, Technische Universität München
(2003)

21. Cengarle, M.V., Knapp, A.: UML 2.0 Interactions: Semantics and
Refinement. In: Jürjens, J., Fernandez, E.B., France, R., Rumpe,
B. (eds.) 3rd International Workshop on Critical Systems Devel-
opment with UML (CSDUML’04, Proceedings). Technical Report
TUM-I0415, pp. 85–99. Institut für Informatik, Technische Uni-
versität München (2004)

22. Seehusen, F.: Specifying enforcable high level policies with UML
sequence diagrams. Telektronikk 105, 126–134 (2009)

23. Harel, D., Maoz, S.: Assert and negate revisited: modal seman-
tics for UML sequence diagrams. Softw. Syst. Model. 7, 237–
252 (2008)

24. von der Beeck, M.: A structured operational semantics for UML-
statecharts. Softw. Syst. Model. 1, 130–141 (2002)

25. Simons, A.J.H.: On the compositional properties of UML state-
chart diagrams. In: Rigorous Object-Oriented Methods (ROOM
2000, Proceedings). Workshops in Computing, BCS (2000)

26. von der Beeck, M.: A Comparison of Statecharts Variants. In: Lang-
maack, H., de Roever, W.P., Vytopil, J. (eds.) Formal Techniques
in Real-Time and Fault-Tolerant Systems (3rd FTRTFT, Proceed-
ings). Lecture Notes in Computer Science, vol. 863, pp. 128–148.
Springer, Berlin (1994)

27. Simons, A.J.H., Graham, I.: 30 Things that go wrong in object mod-
elling with UML 1.3. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.)
Behavioral Specifications of Businesses and Systems, pp. 237–257.
Kluwer Academic Publishers, Dordrecht, Chapter 17 (1999)

28. Object Management Group: Semantics of a Foundational Subset
for Executable UML Models—Request For Proposal. Technical

123

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/rup_bestpractices.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/rup_bestpractices.pdf
http://blogs.msdn.com/b/stevecook/archive/2004/12/08/278507.aspx
http://blogs.msdn.com/b/stevecook/archive/2004/12/08/278507.aspx
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/specsandprods.htm
http://www.omg.org/gettingstarted/specsandprods.htm
http://www.omg.org/spec/OCL/2.2/PDF
http://www.omg.org/spec/OCL/2.2/PDF


446 M. Broy, M.V. Cengarle

Report Document Number ad/2005-04-02, OMG. http://www.
omg.org/cgi-bin/doc?ad/05-04-02.pdf (2005). Retrieved 2011-
01-18

29. Object Management Group: Semantics of a Foundational Sub-
set for Executable UML Models (fUML), version 1.0. Technical
Report Document Number formal/2011-02-01, OMG. http://www.
omg.org/spec/FUML/1.0/PDF (2011). Retrieved 2011-01-18

30. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Consider-
ations and Rationale for a UML System Model. In: Lano, K. (ed.)
UML 2 Semantics and Applications, pp. 43–60. Wiley, Hoboken,
Chapter 3 (2009)

31. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition
of the System Model. In Lano, K. (ed.) UML 2 Semantics and
Applications, pp.61–93. Wiley, Hoboken, Chapter 4 (2009)

32. Cengarle, M.V., Dingel, J., Grönniger, H., Rumpe, B.: System-
model-based simulation of the UML. In: Nordic Workshop
on Model Driven Engineering (5th NW-MoDE 2007, Proceed-
ings), pp. 112–126. Blekinge Tekniska Högskola, Research
Report 2007:8. ISSN 978-91-7295-985-9. http://www.sse-tubs.de/
publications/CDGR07NWMODE.pdf (2007). Retrieved 2011-06-
14

33. Crane, M.L., Dingel, J.: Towards a formal account of a foundational
subset for executable UML models. In: Czarnecki, K., Ober, I.,
Bruel, J.M., Uhl, A., Völter, M. (eds.) 11th International Conference
Model Driven Engineering Languages and Systems (MoDELS’08,
Proceedings). Lecture Notes in Computer Science, vol. 5301,
pp. 675–689. Springer, Berlin (2008)

34. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heteroge-
neous Approach to UML Semantics. In: Degano, P., Nicola, R.D.,
Meseguer, J. (eds.) Concurrency, graphs and models: essays dedi-
cated to Ugo Montanari on the Occasion of His 65th Birthday. Lec-
ture Notes in Computer Science, vol. 5065, pp. 383–402. Springer,
Berlin (2008)

35. Naumenko, A., Wegmann, A.: Triune continuum paradigm and
problems of UML semantics. Technical Report IC/2003/44,
Swiss Federal Institute of Technology, Lausanne, Switzer-
land. http://www.triunecontinuum.com/documents/tr03_044.pdf
(2003). Retrieved 2010-07-16

36. Picek, R., Strahonja, V.: Model driven development—future or fail-
ure of software development? In: 18th International Conference
on Information and Intelligent Systems (Proceedings), Faculty of
Organization and Informatics, pp. 407–413. Varaždin (2007)

37. Kapteijns, T., Jansen, S., Brinkkemper, S., Houët, H., Barendse, R.:
A comparative case study of model-driven development vs tradi-
tional development: the tortoise or the hare. In: Bailey, T., Vogel, R.,
Mansell, J. (eds.) From code centric to model centric software
engineering: Practices, Implications and ROI (4th European C2M
Workshop, CTIT Proceedings), pp. 22–33. University of Twente
(2009)

38. Ross, D.T.: Applications and extensions of SADT. IEEE Com-
put. 18, 25–34 (1985)

39. Henderson-Sellers, B.: UML—the Good, the Bad or the Ugly?
Perspectives from a panel of experts. Softw. Syst. Model. 4(1),
4–13 (2005). doi:10.1007/s10270-004-0076-8

Author Biographies

Manfred Broy is a full professor
of computer science at the Tech-
nische Universität München. His
research interests are software
and systems engineering, com-
prising both theoretical and prac-
tical aspects. This includes sys-
tem models, specification and
refinement of system compo-
nents, specification techniques,
development methods and veri-
fication. Manfred Broy is lead-
ing a research group, working in
a number of industrial projects
that try to apply mathematically
based techniques and to combine

practical approaches to software engineering with mathematical rigour.
The main topics are ad hoc networks, software architectures, compo-
nentware, software development processes and graphical description
techniques. In his group, the CASE tool AutoFocus was developed.
Throughout his academic career, Manfred Broy has maintained strong
contacts with industry, through consultancy, teaching and collaborative
research projects. He has published more than 330 scientific publica-
tions. His main field is software and systems engineering and his current
research interests are system development processes and tool support,
system modelling, concurrent and embedded systems, theoretical foun-
dation of informatics, quality and requirements engineering.

María Victoria Cengarle stud-
ied computer science at the Uni-
versidad de Buenos Aires and the
Escuela Superior Latinoameri-
cana de Informática (ESLAI),
Argentina. She worked for the
United Nations Development
Program as a consultant and
simultaneously as assistant lec-
turer at the Computer Science
Department of the Universidad
de Buenos Aires. At the Ludwig-
Maximilians-Universität Mün-
chen, Germany, she cooperated
in the DIN-Lisp standardization
process and participated in inter-

changes with the Monash University, Melbourne, and the Pontifícia
Univeridade Católica do Rio de Janeiro. She defended her PhD thesis
entitled “Formal Specifications with Higher-Order Parameterization”.
Since then, she has worked in applied research at the Bayerische Landes-
bank and knowledge transfer at the Fraunhofer Institut Experimentelles
Software Engineering, given lectures at the Fachhochschule München,
been research assistant at the chair of Software and Systems Engineer-
ing of the Technische Universität München, and is now research fellow
at Fortiss. Her research interests include foundations of computer sci-
ence, formal systems development as well as semantics of specification
and programming languages.

123

http://www.omg.org/cgi-bin/doc?ad/05-04-02.pdf
http://www.omg.org/cgi-bin/doc?ad/05-04-02.pdf
http://www.omg.org/spec/FUML/1.0/PDF
http://www.omg.org/spec/FUML/1.0/PDF
http://www.sse-tubs.de/publications/CDGR07NWMODE.pdf
http://www.sse-tubs.de/publications/CDGR07NWMODE.pdf
http://www.triunecontinuum.com/documents/tr03_044.pdf
http://dx.doi.org/10.1007/s10270-004-0076-8

	UML formal semantics: lessons learned
	Abstract
	1 Introduction
	2 UML sublanguages
	3 UML as a whole
	4 UML in practice
	5 The bottom line
	Acknowledgments
	References


