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Abstract Models are the core assets in model-driven engi-
neering, and are therefore subject to all kind of manip-
ulations, such as refactorings, animations, transformations
into other languages, comparisons and merging. This set
of model-related activities is known as model management.
Even though many languages and approaches have been pro-
posed for model management, most of them are type-centric,
specific to concrete meta-models, and hence leading to spec-
ifications with a low level of abstraction and difficult to be
reused in practice. In this paper, we introduce ideas from
generic programming into model management to raise the
level of abstraction of the specifications of model manip-
ulations and facilitate their reuse. In particular we adopt
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generic meta-model concepts as an intermediate, abstract
meta-model over which model management specifications
are defined. Such meta-model concepts are mapped to con-
crete meta-models, so that specifications can be applied to
families of meta-models satisfying the concept requirements.
As a proof of concept, we show the implementation of these
ideas using the Eclipse Modeling Framework and the Epsilon
family of languages for model management.

Keywords Model management - Genericity -
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1 Introduction

Model-driven engineering (MDE) promotes models as the
principal assets in the development process. During a typical
MDE process, models are subjected to all kind of manipula-
tions such as refactorings, animations or simulations, trans-
formations into other modelling languages, comparisons,
merging, and code for all or part of the final application is
generated from models as well. This set of operations on
models is referred to as model management [1].

In MDE, the syntax of models is usually defined through
a meta-model that specifies the linguistic concepts offered
to the users. Hence, a meta-model describes a set of valid
models, and we say that a model in such set conforms to its
meta-model. In this way, a model may use and instantiate the
types (i.e. meta-classes and meta-associations) defined in the
meta-model.

Typically, model management operations [1,3,6] are
defined in terms of specific types from a particular meta-
model, and are then applied to some model conformant to
this meta-model. This situation is far from ideal because the
defined operations are tightly tied to a concrete meta-model,
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inhibiting their reuse with other, potentially similar
meta-models. For example, an operation that calculates the
transitive closure of a relation usually has to be defined
for each different meta-model and relation. In the con-
text of a particular meta-model, a single operation can be
used to compute the transitive closure of different relations
by, for instance, defining a more abstract operation using
inheritance. However, no such re-use is typically possible
for relations belonging to different meta-models. Hence,
nowadays there is a general lack of powerful abstraction
mechanisms in model management, probably caused by the
inherent type-centric nature of meta-modelling. Our goal
in this paper is to advance towards the solution of this
problem.

Generic programming [26] allows the specification of
algorithms and data structures to abstract away from con-
crete types. Generic algorithms are defined over generic types
for which certain requirements may be demanded, like the
definition of a certain method or their applicability as argu-
ments for a certain operation. These requirements for types
are known as concepts [27,48]. Generic programming has
been successfully used for creating libraries of highly reus-
able, flexible, extensible and efficient algorithms, like those
of the Standard Template Library (STL) [47] and Boost [5]
for C++.

In this paper we bring elements from generic program-
ming into MDE with the purpose of increasing the level of
abstraction and improving the reusability of model manage-
ment operations. For this purpose we propose meta-model
concepts (sometimes called just concepts) for describing the
requirements needed by a certain model operation. Concepts
can be mapped or bound to concrete meta-models. In this
way, the original operation can be executed on instances of
any of the bound meta-models, hence improving its general-
ity. We also report on an implementation of these ideas using
Epsilon [23], a family of languages for model management
that allows the specification of: model-to-model transforma-
tions with Epsilon Transformation Language (ETL) [36],
arbitrary in-place operations with Epsilon Object Language
(EOL) [33], user-directed refactorings with Epsilon Wiz-
ard Language (EWL) [37], code generators with Epsilon
Generation Language (EGL) [43], comparison of models
with ECL [32], model merging with EML [34], and model
migration with Flock [42]. Through a number of examples
we will demonstrate the benefits and potential that generici-
ty brings into model management and MDE. Although these
examples rely on our particular implementation on top of
the Eclipse Modeling Framework (EMF) [46] and Epsilon,
the approach is easily applicable to other model management
languages and environments as well [3,6,31].

The rest of the paper is organized as follows. Section 2
recalls the main elements of genericity in modelling and
programming, especially the so-called generic concepts.
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Section 3 introduces the Epsilon languages for model man-
agement. Section 4 introduces our approach, based on
concepts, to genericity in MDE. Section 5 presents tool sup-
port for generic model management using Epsilon, which
is illustrated in Sect. 6 through a series of examples. Sec-
tion 7 compares with related research and Sect. 8 con-
cludes.

2 Genericity in modelling and programming

In this section we review the main elements of genericity
in both programming and modelling, in the former paying
attention to so-called concepts, and in the latter as realized
in the UML standard [41].

2.1 Generic programming

Genericity [26] is a programming paradigm found in many
languages like C++, Haskell, Eiffel or Java. Its goal is to
express algorithms and data structures in a broadly adaptable,
interoperable form that allows their direct use in software
construction. It involves expressing algorithms with mini-
mal assumptions about data abstractions, as well as gener-
alizing concrete algorithms without losing efficiency [26].
It promotes a paradigm shift from types to algorithms’
requirements, so that even unrelated types may fulfill those
requirements, hence making algorithms more general and
reusable [27,48].

Genericity is realized through function or class templates
in many programming languages, like C++ or Java. Tem-
plates declare a number of type parameters for the given code
snippet, and later can be instantiated with concrete types.
They can also define requirements on the type parameters,
so that only those concrete types fulfilling the requirements
are considered valid. The set of requirements to be fulfilled
by a type is termed a concept [27] in the generic program-
ming community. Concepts usually declare the signature of
the operations a given type needs to support to be acceptable
in a template. Hence, templates refer to concepts to declare
the requirements of their type parameters.

As an example, Listing 1 shows a C++ template function
min that returns the minimum of two elements of a paramet-
ric type T. The requirement for the type T is to define the
“<” operator, specified by concept LessThanComp'.

Taking as inspiration concepts as defined in generic pro-
gramming, in Sect. 4 we introduce meta-model concepts that
will be used by model management operations enabling their
application to any meta-model satisfying the concepts. Next,
we review the approach to genericity taken in modelling,
especially in the UML.

! Concepts have been postponed from C++0x, the last revision of
C++ [49].
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template <typename T> requires LessThanComp<T>
T min(T x, T vy) {
return y < x ? y : X;

}

concept LessThanComp <typename T> {
bool operator<(T, T);
}

Listing 1 A template and a concept example in C++

1
2
3
4
5
6
7
8

Stack :_ _-[: QI_E"_s?_ _E
contents: T[*] State
name: String
1 ((bind)) T->State initial: Boolean
L final: Boolean

StateStack
deter: Boolean

Fig. 1 A UML class template example

2.2 Generic modelling

Genericity has also been adopted in modelling, most nota-
bly in the UML 2 standard [41], in the form of classifier
(e.g., class, component), package, collaboration and opera-
tion templates. These templates are provided with a list of
formal parameters representing classifiers, values or features
(i.e., properties and operations). Then, a template binding
specifies the substitution of actual parameters for the formal
parameters of the template. The presence of a template bind-
ing relationship has the same semantics as if the contents of
the template were copied into the bound element, substituting
the formal template parameters by the corresponding actual
parameters in the binding [41].

For instance, Fig. 1 shows an example of a UML class
template. The template is named Stack and receives a class
parameter 7. The parameter is instantiated by class State-
Stack, binding the parameter 7T to class State, which in addi-
tion declares additional features.

While UML 2 provides genericity elements that extend
and adapt those found in programming languages like Java
or C++ 2, it still lacks support to express requirements for
the formal parameters in a non-intrusive way, as supported
by the notion of concept presented in the previous section. In
the context of UML 2, concepts would be a valuable means to
express the requirements that parameter instantiations should
fulfill in order for a template binding to be correct. Cur-
rently, this can be achieved only by requiring that some for-
mal parameter conforms to a specific class, in a similar way
as in Java, where a parameter may be required to imple-
ment a certain interface. However, if the template has several

2 1t is an extension in the sense that, e.g., in C++ a template instanti-
ation cannot define extra elements or have an operation as the actual
parameter of a template.

parameters, it is often not sufficient to demand requirements
for each one of them in isolation, but for the set of parameters
as a whole. As we will see, this is of crucial importance in
our approach, as we need to express requirements of meta-
models made of interrelated meta-classes.

Whereas the genericity provided by UML is mainly
directed to generic models, in the sense that we obtain generic
models by means of generic classifiers or packages, we are
more interested in defining generic behaviours. In the context
of meta-modelling, this means obtaining behaviours appli-
cable to different meta-models, and therefore providing a
means to support generic model management operations. The
sequel introduces Epsilon, an extensible platform and family
of languages for model management, which we will extend
with genericity in Sects. 4 and 5.

3 Model management with Epsilon

Epsilon [23] (Extensible Platform for Specification of Inte-
grated Languages for mOdel maNagement) is a family of
consistent and interoperable task-specific languages, which
can be used to perform common MDE tasks such as code gen-
eration, model-to-model transformation, model validation,
comparison, migration, merging and refactoring. Epsilon is
modelling technology agnostic; though it is typically used to
manage models represented using EMEF, it can be used with
alternative modelling technologies via its model connectiv-
ity framework, EMC. Developers can extend Epsilon with
support for other modelling technologies by implementing
a driver for EMC. Presently, Epsilon provides drivers for
managing MDR models (Netbeans’s metadata repository, an
implementation of the JMI [50]), Z specifications, XML files
and the METADEPTH [16] framework.

3.1 The Epsilon Object Language

The EOL [33] is at the core of Epsilon. It reuses the nav-
igational mechanisms of OCL while adding support for
other language features like multiple model access, state-
ment sequencing, conditional and loop statements, and model
modification capabilities. Similar to OCL, EOL permits the
definition of operations for particular meta-classes. It can
be used both as a stand-alone general model management
language and as infrastructure on which one can build task-
specific languages. Every other Epsilon language is built atop
EOL.

As an example, Listing 2 shows the specification of some
EOL operations to calculate the transitive closure of the
inheritance relation, in the context of a particular object-ori-
ented modelling language. While the operation closure on
line 1 is defined globally, the other two operations are defined
in the context of the Class meta-class, which has a reference
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operation closure() {
for (n in Class.all) {
var newCls : Set(Class) := n.closure();
if (newCls.size()>0)
for (m in newCls)
if (n.ancestors.excludes (m))
n.ancestors.add (m) ;

© N U R W —

}

9 1}

10

11  operation Class closure() : Set(Class) {

12 return self.closure(new Set(Class));

13 }

14

15 operation Class closure(set:Set(Class)):Set(Class) {

16 var reachable: Set(Class) := new Set(Class);
17 for (x in self.ancestors)

18 if (set.excludes (x)) {

19 reachable.add (x) ;

20 set.add(x) ;

21 }

22 for (y in reachable)

23 v.closure(set) ;

24 return set;

25}

Listing 2 Transitive closure of the inheritance relation

ancestors to its direct parents in the hierarchy (see lines 6
and 7). The closure method on line 15 calculates recursively
the set of reachable Class instances through the ancestor ref-
erence. The global operation closure on line 1 iterates on all
Class instances, invoking the auxiliary closure operation on
line 11, which in turn calls the operation on line 15.

Even though the calculation of the transitive closure of
an association is a common task occurring in the context of
many meta-models, Listing 2 is tied to a specific meta-model
and meta-class. Therefore, a mechanism to decouple opera-
tions from concrete meta-models and types would increase
the reusability of model management operations and enable
the construction of libraries of generic model management
operations.

3.2 Further Epsilon languages

As stated earlier, while EOL can be used as a stand-alone
language, it is also re-used in every task-specific language
provided by Epsilon. For example, the ETL [36] is a rule-
based model-to-model transformation language that re-uses
EOL to specify guard statements, the body of transformation
rules and user-defined operations. ETL supports transform-
ing many input to many output models, rule inheritance, lazy
and greedy rules, and the ability to query and modify both
input and output models.

Listing 3 shows an exemplar transformation comprising
one rule, which transforms a tree structure into a graph. ETL
creates traces between source and target elements, which
can be implicitly navigated using the ‘::=" operator. For
example, in line 8, the operator assigns to e.source the Node
in which t.parent has been transformed. Hence, this operator

@ Springer

rule Tree2Node
transform t : Tree!Tree
to n : Graph!Node {

n.name := t.label;
if (t.parent.isDefined()) {
var e : new Graph!Edge;
e.source ::= t.parent;
e.target := n;
}
}

Listing 3 Transforming a tree into a graph with ETL

Z 30 ®auowmh W —

1
1

traverses the traces created when transforming source ele-
ments, or triggers the execution of suitable rules to create the
target element if the trace is not already created. The excla-
mation marks in lines 2 and 3 are used to separate a type
name (e.g., Node) from the model name where its instances
are to be sought (e.g., Graph).

Developers of model-to-model transformations could
benefit from libraries of generic transformation patterns,
which could be reused to build new transformations. How-
ever, again, the transformation of Listing 3 makes use of
particular meta-models and types, which hinders its direct
reuse.

Other languages of the Epsilon family that could benefit
from genericity mechanisms include:

e The Epsilon Validation Language (EVL) [35], a model
validation language that supports intra- and inter-model
consistency checking, constraint dependency manage-
ment and recovery actions. The availability of genericity
mechanisms would enable the definition of libraries of
common constraints (e.g., to check the absence of loops
through a given type of link) which could be directly
reused for varying meta-models.

e The EGL [43], a template-based model-to-text language
for generating code, documentation and other textual arte-
facts from models. As we will see, generic code genera-
tors facilitate text generation from meta-models that share
characteristics.

e The EWL [37], alanguage tailored to interactive in-place
model transformations on model elements selected by
the user. Decoupling EWL transformations from concrete
meta-models would enable, e.g., the creation and appli-
cation of libraries of generic refactorings.

Based on the notion of generic concept presented in
Sect. 2.1, the remainder of this article presents a mechanism
to increase the abstraction of model management operations,
making them highly reusable.
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4 Generic model management operations model generic

through meta-model concepts management definition

operation
4.1 Meta-model concepts
. . binding

A meta-model concept is a meta-model that includes the
structural elements needed by some model management
operation (like an in-place model transformation or a model- _ run-time
to-text transformation), so that the operation can be defined applicable to My ‘ My; ‘ M ‘ k || execution

over the concept and use its types. Concepts can be mapped
to any meta-model that satisfies its requirements, therefore
operations defined over concepts become generic and highly
reusable even across unrelated meta-models.

This approach is shown in Fig. 2: a concept C may be
bound to several meta-models, and a generic operation using
the concept is applicable to any instance of the bound meta-
models, hence improving its reusability. Indeed, we support
a more general situation than the depicted one, as a generic
operation may use several concepts, and the same concept
may be used by different operations. This reusability of con-
cepts is one of the key points and advantages of our approach.

Even though there are many ways to specify requirements
for meta-models [20,27], the simplest and more uniform way
is to model such requirements as meta-models as well. Thus,
in our approach, a concept is a meta-model C of which its ele-
ments (meta-classes, meta-associations and attributes®) are
to be interpreted as variables to be mapped to elements of a
given particular meta-model.

4.2 Binding concepts

Mapping or binding a concept C to a specific meta-
model MM is conceptually similar to defining a function
bind: C — MM from the concept to the meta-model. This
function establishes a correspondence between:

1. Each meta-class ¢ € C and some meta-class ¢/ =
bind(c) e MM,

2. Eachmeta-associationa € C and some meta-association
a' = bind(a) € MM,

3. Each attribute f of meta-class ¢ € C and some attri-
bute f’ = bind(f) of meta-class b € MM, where b €
ancestors(bind(c)).

We have used a function ancestors that returns the set of
ancestors of an element (with respect to inheritance) includ-
ing the element itself. In a similar way, we will refer to
the set of descendants of a meta-class ¢ (including itself)
as descendants(c). The condition for attributes allows an
attribute of a meta-class in the concept to be mapped to attri-
butes of parent meta-classes of the bound meta-class in the

3 We refer to attributes with primitive data types, like integer and string.

Fig. 2 Defining generic operations over concepts

meta-model. This situation is illustrated in Fig. 3, where we
bind attribute f2 to an attribute of ¢/, and f1 to an attribute
of the parent meta-class of ¢’.

Our binding function does not require mapping the inheri-
tance relations in the concept with other inheritance relations
in the meta-model. In this sense, our notion of binding is
semantic and not purely syntactic, as it interprets the mean-
ing of inheritance relations.

4.3 Compatibility conditions for the binding

In addition to establishing a correspondence between meta-
classes, meta-associations and attributes of the concept and
the specific meta-model, the binding function demands addi-
tional conditions. These ensure compatibility of the source
and target of the mapped meta-associations, the type of attri-
butes, and cardinalities as follows:

1. The source and target of meta-associations should be
compatible: Ya € C, bind(src(a)) € descendants
(src(bind(a))) and bind(tar(a)) € descendants
(tar(bind(a))), where src and tar are functions return-
ing the source and target meta-classes of association
a. For simplicity we assume binary associations. We
use functions src¢ and tar to return the two connected
meta-classes, but despite their name, they make no
assumptions on navigability or direction. With respect
to decorations of association ends:

(a) If the association end of src(a) is navigable, then
so must be src(bind(a)) (and similar for tar). On
the contrary, if the association end of src(a) is not
navigable, then src(bind(a)) can be navigable or
not (and similar for tar).

(b) If the association end of src(a) is a composition,
then it should be mapped to a composition in the
meta-model. Conversely, if the association end of
src(a) is not a composition, then the mapped end
in the meta-model should not be a composition.
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Meta-model MM

Concept C
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bind | §f1int
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-+ f2’: Strin
f2: String 9
) «

Fig. 3 Example of valid binding for attributes

(c) Ifthe association end of src(a) is not required to be
ordered, then it can be mapped to an ordered asso-
ciation end in the meta-model or not. If src(a) is
required to be ordered, then bind(src(a)) should
be ordered as well. This restriction also applies to
multi-valued attributes.

(d) If the association end of src(a) is labelled as
unique, then bind(src(a)) should be unique as
well. If src(a) is not demanded to be unique, then
bind(src(a)) cannot be unique. This restriction
also applies to multi-valued attributes.

2. The type of attributes should be compatible: Vf € C,
type(bind(f)) < type(f), where type is a function
returning the type of an attribute, and < is the subtype
relationship. If f is not mandatory in C, then bind(f)
cannot be mandatory in MM. If f is mandatory in C,
then bind(f) has to be mandatory in M M.

3. The cardinality of association ends and multi-valued
attributes should be preserved.

The first condition checks that, in the concept, an associ-
ation a stemming from (or ending at) a certain meta-class ¢
can be bound to an association bind (a) in any ancestor of the
meta-class to which c is bound. This situation is illustrated in
Fig. 4. Moreover, if a concept does not require navigability
for some association end, then the mapped association end
can be navigable or not. This is so as our concepts are meant
to define the requirements that need to be fulfilled by a meta-
model to be accepted by a generic operation that uses the
concept. The meta-model can incorporate additional proper-
ties to the ones defined by the concept, but it cannot be more
restrictive than this. In this way, the binding ensures that any
operation that can be performed on a hypothetical instance
of the concept can be performed on any instance of a valid
bound meta-model as well.* This issue is illustrated in Fig. 4,
where one association end in the meta-model is navigable but
it is not in the concept. The contrary would not be allowed.

4 We will see in a moment that this condition is actually too demanding
to be useful in practice.
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Fig. 4 Example of valid binding for an association

With respect to composition, its semantics prevent map-
ping a composition to a non-composition and vice-versa. The
reason is that deleting the source of a composition deletes
the connected children as well, which can cause unexpected
situations. On the contrary, children are not deleted for sim-
ple references. The binding should preserve uniqueness con-
straints. In particular, if an association end is not required to
be unique in the concept, we cannot bind it to an associa-
tion end labelled as unique in the meta-model. This is so, as
some operation specified at the concept level may fail when
applied to meta-model instances. Finally, regarding order
constraints, if we do not require order for an association end
in the concept, we may have it or not in the meta-model, as
this does not affect the execution of operations.

For the same reason, condition 2 demands the type of a
mapped attribute (assuming primitive data types) to be a sub-
type of the type of the attribute in the concept.

The third condition on multiplicities of association ends
and multi-valued attributes is required for the stricter case,
which guarantees that any operation that can be applied on
a concept, can also be applied in a meta-model bound to the
concept. Otherwise we could have undesired situations. For
instance, suppose we permit mappings to collections with a
wider interval, and thus we map an association end e with
cardinality 3..6 to an association end bind (e) with cardinal-
ity 1..7. In this case, an initial model with seven elements in
bind(e) would be problematic, as the operation would not
be able to determine which six elements among the seven
to choose. Similarly, an initial model with one element may
be an incorrect initial state for the operation. Conversely,
suppose we permit mappings to collections with a narrower
interval, and thus we map an association end with cardi-
nality 3..6 to another with cardinality 4..5. In this case, the
binding would not respect the basic condition that operations
which are applicable to the concept should be applicable to
the mapped meta-models. The reason is that a set with four
elements could be added two elements in the concept but not
in the mapped set, as this latter would admit five elements
at most. Similarly, a set with four elements could be deleted
one element in the concept but not in the mapped set.
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Concept C Meta-model MM

Fig. 5 A binding that does not respect subtyping

However, demanding the meta-models to define the same
cardinalities for association ends and attributes as the con-
cepts may be too strict. For this reason, in practice, we relax
this third condition as follows:

1. We permit mapping collections in a concept to collec-
tions with a different interval, if the cardinality in the
initial run-time model is within the bounds specified by
the concept.

2. We permit mapping collections in a concept to collec-
tions with a higher lower bound, if the generic operation
does not delete elements from the collection.

3. We permit mapping collections in a concept to collec-
tions with a lower upper bound, if the generic operation
does not add elements to the collection.

Finally, we allow the binding function to be non-injec-
tive, obtaining additional flexibility. Hence, two elements a
and b of the concept C can be mapped to the same element
¢ = bind(a) = bind(b) € MM whenever the compatibil-
ity conditions are satisfied. Practical implementations of the
binding can control whether such non-injectivity is allowed
or not.

This binding process is in line with the classical alge-
braic specification approach of representing models and
meta-models as algebraic structures, and defining relations
between them as homomorphisms (functions between alge-
braic structures that preserve certain aspects, structural in our
case) [22], called clan-morphisms in [15,28]. Further formal
treatment of concepts and bindings is out of the scope of this

paper.

4.4 Controlling the binding context: expressing
concept usage

The binding induces a kind of subtyping relationship between
the concept (supertype) and the bound meta-model (subtype)
[38,45]. Subtyping implies safe substitution of a supertype
by a subtype: any operation that is applicable to a super-
type model should be applicable to the subtype model. How-
ever, this condition is very strong and often too restrictive,
as the previous discussion on collections showed, and the
next scenario will illustrate.

Figure 5 shows a valid binding according to our previ-
ous definition, which, however, does not respect subtyping.

The reason is that one could specify a generic operation that
creates instances of a. This operation is allowed at the con-
cept level and always succeeds. However, when applied to an
instance of the bound meta-model, it will always fail (in the
sense that it will lead to an incorrect model not conformant to
meta-model M M). This is so, as each time the generic oper-
ation creates an a object, an a’ is created instead, leading
to an inconsistent model, as each a’ instance should be con-
nected to a b instance according to the meta-model. On the
contrary, if the generic operation does not create a instances,
the binding should be allowed. Similarly, if the association in
the meta-model MM would have one to the side of meta-class
a, then deleting an a instance would be problematic because
some b object would be left without connected as, breaking
the cardinality constraint.

There are several ways to address this problem. For
example, similar to [17], we could provide the concept
with OCL constraints to be evaluated on the particular
meta-model when the binding is established, in a similar
way as OCL is defined on meta-models and evaluated on
models. This provides fine control on the binding, but it
makes the definition of concepts more complex. Another
possibility is to provide bindings with negative graphi-
cal patterns which cannot be found on the bound meta-
model. This is higher level, but again requires defining such
patterns each time a concept is developed. Instead, we
provide a simpler, higher level, pragmatic solution. Our
proposal is to decorate each concept element with the opera-
tions (create or delete) that the generic management oper-
ation requires. We call these usage decorations, and are
easily realized through stereotypes or annotations. In this
way, if in the previous example of Fig. 5 the operation
creates instances of a, the a meta-class in the concept
should be decorated with create. This has the effect to auto-
matically restrict the binding function in such a way to
prohibit the mapping depicted in Fig. 5. Multi-valued attri-
butes can also be decorated with usage contexts, hence
allowing a finer control of the bindings of the multiplic-
ity intervals, as discussed in previous section. Please note
that usage decorations have the effect of forbidding cer-
tain bindings, as we assume that the generic operations are
used as they are provided. Another, less restrictive possibil-
ity is to permit such binding, but request the user to extend
the operation with appropriate actions (e.g., connect each
created a’ instance with a b instance). In any case, this
possibility can be realized by not decorating the concept
elements.

Altogether, usage decorations have the following effects
on the binding function bind:

1. A meta-class ¢ € C decorated with create cannot be

bound to a meta-class d = bind(c) € MM if d (or any
direct or indirect ancestor) is connected with some other
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meta-class e € M M through an association a with car-
dinality 1 or higher to the side of e such that fia’ € C
with bind(a') = a.

2. A meta-class ¢ € C decorated with delete cannot be
bound to a meta-class d = bind(c) € MM if d (or any
direct or indirect ancestor or descendant) is connected
with some other meta-class e € M M through an associ-
ation a with cardinality 1 or higher to the side of d such
that #a’ € C with bind(a’) = a.

3. A multi-valued attribute f that is decorated with delete
in a concept cannot be mapped to another multi-valued
attribute f' = bind(f) with higher lower bound in the
meta-model.

4. A multi-valued attribute f that is decorated with create
in a concept cannot be mapped to another multi-valued
attribute f" = bind( f) with a lower upper bound in the
meta-model.

Regarding the decorations for meta-classes (first two con-
ditions), we only forbid the connection of d = bind(c)
with other meta-classes through meta-associations that are
not bound from a meta-association in the concept. This is so
because, if they are bound, the generic operation has to take
care of adding/deleting such associations (and the objects
they connect) when adding or deleting c’s. Otherwise, the
operation would be incorrect for the very concept. Regard-
ing deletions, we adopt a conservative approach and permit
deleting d instances only if they are not connected to any
e instance. A meta-model with a mandatory connection to
the side of d allows unconnected d instances, which may be
deleted without problems. However, as this depends on the
initial model, the simplest solution is to forbid such binding
for the meta-model. Finally, in line with the UML and EMF
conventions, we assume that if an instance is deleted, all its
references are deleted as well.

Please note that concepts are manually built by the design-
ers of the generic operations. The designer includes in the
concept all elements (meta-classes, meta-associations, attri-
butes) that he considers essential for an operation to be exe-
cutable. However, the designer may make mistakes, e.g.,
by forgetting a usage decoration, or by not including some
necessary association. This incorrect concept may allow
a binding, which may make the operation fail when exe-
cuted on a concrete meta-model instance. Therefore we have
type-safety only up to the correctness of the concept. An
automatic formal check of the correctness of a concept given
an operation, or an automatic derivation of the usage indi-
cations given an operation could be done if we use a formal
language to express the operations, like graph transforma-
tions. As we will see in the following, we use the Epsilon
languages to express the model-management operations, so
this issue is left for future work.
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5 Tool support

A reference implementation of the proposal outlined above
has been constructed atop the EMF and the Epsilon plat-
form. The former is arguably the most widely used MDE
modelling framework today, while the latter contributes a
family of model management languages, and was described
in Sect. 3. In particular, for this implementation we have
profited from the EMC layer, which underpins the Epsilon
languages, decoupling them from the specifics of a particular
modelling technology.

In Epsilon, when executing a concrete (non-generic)
model management operation, the user selects one model to
fulfill each of the roles specified by the operation. A model-
to-model transformation, e.g., might specify two roles, a
source and a target. The model management operation spec-
ifies a set of types that each role must provide, typically by
specifying a concrete meta-model to which each role con-
forms.

When executing a generic model management operation,
the user must provide a binding for each meta-model concept
used by the operation. Meta-model concepts are represented
using a meta-model, possibly annotated with usage indica-
tions (create, delete). The user provides a binding between
the concepts and the concrete meta-models when selecting a
model to fulfil a particular role. The execution of a generic
model management operation uses the binding to access con-
crete model elements via conceptual types. This process is
depicted in Fig. 6.

The implementation described in this section contributes
structures for performing the binding process and for access-
ing bound models in model management operations speci-
fied with Epsilon. The latter is achieved with an additional

generic
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| requires Generic
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Fig. 6 Using generic operations
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Fig. 7 Meta-model for specifying bindings

driver for the EMC layer, and uses a binding model to resolve
requests for conceptual types.

5.1 Binding meta-model and tools

The first phase of implementation involved the provision of
a binding tool, allowing users to bind conceptual and con-
crete types. To facilitate interoperability between the bind-
ing tool and model management platforms such as Epsilon,
we designed the binding meta-model shown in Fig. 7. The
binding tool would produce models conforming to the bind-
ing meta-model, which would later be used during the exe-
cution of generic operations. Note how this meta-model is a
simplification of the one provided in the UML 2 specification
for template bindings [9,41], but where meta-class and fea-
ture bindings are distinguished to facilitate type resolution in
an efficient manner.

We envisaged constructing a tool that implemented the
bind function described in Sect. 4. However, EMF already
provides a tool, which we term Ecore2Ecore, for creating
mappings between two meta-models. Ecore2Ecore is typ-
ically used to support meta-model evolution, but here we
re-purpose it for specifying bindings between a concept and
a concrete meta-model. Ecore2Ecore is based on a simple
mapping meta-model, which is similar to the one shown
in Fig. 7. As an example, Fig. 8 shows the binding from
Fig. 3 in Ecore2Ecore. A binding is saved as a model which
is used during the execution of a generic model management
operation.

Ecore2Ecore does not prevent from specifying mappings
that are not valid bindings. To assist users in constructing
valid bindings, we have provided a validation mechanism
for checking the integrity of binding models. The validation
is invoked using a toolbar item (shown in the top left-hand
corner of Fig. 8) and checks, e.g., that the binding respects
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Fig. 8 Development tool for specifying bindings

the create and delete usage annotations described in Sect. 4.4.
The validation is specified with the EVL, and is executed on
binding models. One of the constraints is shown in Listing 4
and checks condition 1 in Sect. 4.4 (all mandatory, concrete
features must be bound when their containing type is bound
to a conceptual type annotated with the create usage).

5.2 Accessing bound models with Epsilon

When executing a generic model management operation,
bindings are used to determine concrete types from generic
types. We term this process resolution. The way in which the
resolution of generic types was implemented for Epsilon is
now discussed.

The EMC layer is responsible for accessing and
manipulating models. EMC provides an interface (IMod-
el)—which is used by Epsilon languages to interact with
models—and several drivers, each of which provides an
implementation of the IModel interface for a particular
modelling technology, such as EMF, MDR or XML. As such,
an EMC driver is responsible for the way in which values are
read from and written to a model, and for the way in which
type information is used to access model elements.

For executing generic model management operations in
Epsilon, we extended EMC with an additional driver that
accesses EMF models using a binding model. The driver
uses the binding to resolve types before accessing model
elements. Listing 5 shows an extract from the code of the
bound model driver. The classForName method is used
to identify a meta-model type from a string, and is used by
Epsilon programs to, for instance, access all instances of a
particular meta-model type. In Listing 5, the classFor-
Name method uses an instance of Bindings (shown in
Fig. 7) to attempt to resolve the type name. If there is no
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context TypeBinding {

1

2 constraint

3 CreateImpliesThatAllMandatoryFeatsAreBound{

4 guard: self.conceptualType.usage() == ’‘create’

5 check: self.concreteType.unboundMandatoryFeats () .isEmpty () ;
6 message: "The conceptual type " +

7 self.conceptualType.name + " " +

8 "is annotated with ’‘create’ so " +

9 "the following features must be bound: " +

10 self.concreteType.unboundMandatoryFeats () .

11 collect(sf\sf.name).concat(’ ")

12 }
13}

15 operation EClass unboundMandatoryFeats() {

16 return self.eAllStructuralFeatures

17 .select (sf|sf.lowerbound <> 0 and
18 sf.isUnbound()) ;

9}

21 operation EStructuralFeature isUnbound() :Boolean{

22 return FeatureBinding.all.forAll (m|m.concreteFeature<>self);

23 }

Listing 4 One constraint used to validate binding models

public class BoundEmfModel extends EmfModel implements IModel {

1

2

3 private Bindings bindings = Bindings.NULL;

4

5 @Override

6 public EClass classForName (String rawType) throws EolModelElementTypeNotFoundException {
7 String resolvedType=bindings.resolveType (rawType) ;

8

9 return super.classForName (resolvedType == null ? rawType resolvedType) ;

10 }
11 }

Listing 5 Type resolution with the bound model driver

EClass type = instance.eClass();

String resolvedProperty;

Iterator<EClass> supertypes = getAllSuperTypes (type) ;

private String resolveProperty (EObject instance, String rawProperty) {

do {
resolvedProperty = bindings.resolveFeature (type.getName (), rawProperty);
type = supertypes.hasNext () ? supertypes.next(): null;
} while (resolvedProperty==null && type!= null);
10
11 return resolvedProperty==null ? rawProperty : resolvedProperty;

12 }

Listing 6 Property resolution with the bound model driver

binding for this type name, the call to resolve returns null,
and the raw type name is used instead. This allows generic
and concrete types to be mixed in the same model manage-
ment operation.

The IModel interface provides methods for accessing the
properties of a type, which the Epsilon language uses to read
and write model values. The resolveProperty method
shown in Listing 6 is part of the BoundEmfModel class,
and is used to resolve generic property names using a bind-
ing model. Notice that resolution continues by navigating up
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the type hierarchy until a binding is found (using the loop
on lines 6-9), allowing property bindings to be inherited as
described in Sect. 4.

The resolveFeature method—used on line 7 of List-
ing 6—takes as arguments the names of a concrete type
and a generic property. The former is required because,
at present, Epsilon cannot store generic type information
for model elements. Consequently, the resolveFeature
method uses the inverse of the bind function to determine a
generic type from the concrete type, and, subsequently, the
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generic type and the generic property are used to resolve
a concrete property. Because the inverse of the bind func-
tion is required to resolve properties, the current implemen-
tation prohibits non-injective mappings for generic proper-
ties.

The structures described in this section are used together
to execute generic model management operations in Epsilon.
First, the user binds their modelling concept (a meta-model)
to a concrete meta-model using the Ecore2Ecore tools. The
resulting binding model is used by Epsilon via the additional
EMC driver, which performs resolution of generic types and
properties. EMC decouples the Epsilon languages from the
way in which models are accessed, and hence genericity
could be added to all of the Epsilon languages with the addi-
tion of a single EMC driver.

6 Examples

In this section we illustrate our approach and supporting tool
through several examples that demonstrate the benefits of
genericity when applied to model management.

6.1 Generic behaviours

In our first example, we will assume that we would like to
define a simulator for Petri nets [40]. Petri nets are a kind of
automata that can be represented as a bipartite graph made of
places and transitions. Places contain zero or more fokens,
and can be connected to transitions and vice versa. A Petri net
is simulated by firing enabled transitions, which delete and
create tokens in the connected places. A transition is enabled
if all its input places have at least one token each. An enabled
transition may fire, and when it does, it removes one token
from each input place and adds one token to each output
place. In addition to execution, Petri nets have a large body
of theoretical results enabling the analysis and verification of
systems behaviour [40].

Many languages behave as Petri nets. For example, the
semantics of workflow languages [8] and UML activity dia-
grams [41] are defined in terms of the token game. Also,
domain specific languages like production systems [19]
(where parts are consumed and produced by machines),
communication systems [7] (where messages are sent and
received by nodes), and data-flow languages [18] (where data
are consumed and produced by processors) also share seman-
tics with Petri nets.

For this reason, instead of defining a simulator for the
concrete meta-model of Petri nets, we will build an abstract,
generic simulator for its token-based semantics. For this pur-
pose the first step will be to define a concept with all the
requirements needed by the simulator. Afterwards, we will
bind the concept to the meta-models of different languages

0.* =
] -] Process
& Holder inHolders
0.2
' outHolders
0..* | tokens i
{i= usage

| Token
(&4 actions : create, delete

Fig. 9 TokenHolder concept

(among them the Petri nets meta-model), hence being able
to apply the same simulator to a family of unrelated lan-
guages. This use of concepts permits classifying and defin-
ing in a uniform way the most typical semantics of modelling
languages [7].

Fig. 9 shows the modelling concept that we use to define
the semantics of languages similar to Petri nets, which we
call TokenHolder semantics. The concept defines three meta-
classes: Process (to model the active elements of the system,
e.g., transitions in Petri nets), Holder (to model state ele-
ments, e.g., places in Petri nets), and 7oken (to model marks
on holder elements, e.g., tokens in Petri nets). The input and
output holders of a process, as well as the tokens of a holder,
are modelled as associations. The TokenHolder semantics
need the deletion and creation of tokens, and hence this meta-
class is annotated with both create and delete.

Once the concept has been defined, we construct a generic
EOL simulator that uses it. Listing 7 shows an excerpt of it.
Lines 3—14 define the operation main, which is the entry point

main() ;

operation main() {
var maxStep : Integer := 100;
var numStep : Integer := 0;
var enabled : Set (Process) := getEnabled();

while (enabled.size()>0 and numStep<maxStep) {

© N U AW —

var t := enabled.random() ;
9 t.fire();
10 writeState (numStep) ;
11 numStep := numStep+1;
12 enabled := getEnabled();
13 }
4}
15
16 operation writeState(step: Integer) {...}

17

18 operation getEnabled() : Set (Process) {

19 var en : Set(Process);

20 for (t in Process.allInstances())
21 if (t.enabled()) en.add(t);

22 return en;

23 }
24

25 operation Process enabled()
26 return

27 self.inHolders—>forAll(h|h.tokens.size()>0);
28 }

29

30 operation Process fire()

: Boolean {

: Boolean {...}

Listing 7 Generic TokenHolder simulator (excerpt)
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Fig. 10 A meta-model for production systems

of the simulation. Line 6 obtains the set of enabled processes,
and then a loop iterates while there are enabled processes
and up to a maximum number of iterations. Line 8 takes one
enabled process and fires it. The listing also shows some aux-
iliary operations defined on the context of Process, such as
enabled and fire. When the concept is bound, these opera-
tions will be added to the meta-class Process is bound to. In
this way, the simulator provides these operations which do
not need to be defined by the meta-models that will use the
simulator.

Fig. 10 shows a meta-model for production systems. This
is a domain specific modelling language to design factories
made of different kinds of machines that consume and pro-
duce parts in input and output conveyors. Conveyors can hold
arbitrary numbers of parts. The generator machines model a
process that puts parts in the factory, in the connected con-
veyor. Assembler machines process the parts, and packaging
machines take the parts out of the factory.

To use the generic simulator with our language for pro-
duction systems, we bind the TokenHolder concept to the lan-
guage meta-model of Fig. 10 as follows: Conveyors play the
role of Holders, Parts play the role of Tokens, and Machines
of Processes. With respect to the associations, the inHold-
ers association end is bound to inConv, outHolders is bound
to outConv, and tokens to parts. Figure 11 shows how this
binding is specified using the Ecore2Ecore tool.

Once the binding has been established, we can execute the
simulator on instances of the production system meta-model.
Figure 12 shows the first steps in the simulation of a factory
model made of one generator, connected to a conveyor, con-
nected to an assembler machine, connected to another con-
veyor, connected to a packaging machine. The trace shows
the states (number of parts in each conveyor) as well as the
machine that produces each state change.

Altogether, this example showed us that by generalizing
a simulator for Petri nets and defining it over a suitable con-
cept, we were able to reuse the simulator with a different
unrelated modelling language for production systems. Cur-
rently, we have reused this simulator also with a meta-model
for Petri nets and another for communication systems.
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Fig. 12 Some steps in the simulation of a production system

6.2 Generic code generators

Once we have defined our TokenHolder concept, we can build
many different model management operations which make
use of it. Hence, concepts are also subjected to reuse. For
instance, next we show the definition of a generic code gen-
erator built over the TokenHolder concept, and hence appli-
cable to any meta-model for which we bind the concept. The
generator synthesizes code for an external Petri net tool, so
that we can reuse the existing tools and analysis methods of
Petri nets to verify models of languages satisfying the Token-
Holder concept.

Listing 8 shows an excerpt of this generic code generator,
which has been written using EGL. The generator produces
code in PNML format [29], which can be read by many tools
like CPNTools [12] or PIPE [4].

Lines 1-3 of the listing print the XML file header. Then,
lines 4-8 contain some EOL code, which is delimited by ‘[%’
and ‘%]’. In particular, line 6 iterates over all of the instances
of the type to which Holder is bound, and line 7 assigns them
an auxiliary attribute holdrID made of the concatenation of
the type name and an index. Then, the holder instance is
written as a place (lines 9-16), together with its marking
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<?xml version="1.0" encoding="iso-8859-1"7?>
<pnml>

<net id="Net-One" type="P/T net">

[%

© N U R W —

var i : Integer := 0;
for (h in Holder.allInstances()) {
h.~holdrID := h.type() .name.toString()+1;
%]
9 <place id="[%=h.~holdrID%]">
10 <name>
11 <value>[%=h.~holdrID%]</value>
12 </name>
13 <initialMarking>
14 <value>[%=h.tokens.size()%]</value>
15 </initialMarking>
16 </place>
17 [%
18 i = i+1;
19 }

20 %]
2 .

Listing 8 Code generator for the TokenHolder concept (excerpt)

(i.e. the number of tokens it contains, line 14). Although not
shown, the generator continues by writing the transitions and
arcs.

Binding the TokenHolder concept to the production sys-
tems meta-model facilitates the application of the code gen-
erator to the factory example model described in the previous
section. As aresult, we obtain an XML file which we can load
in PIPE for analysis. Figure 13 shows a snapshot of the tool
being used to animate the model, as well as the reachabili-
ty graph computed by the tool. The reachability graph is a
graphical representation of the set of all reachable states of
the net [40].

Fig. 13 Analysis of a
production system model using
PIPE
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Altogether, this example showed us that the use of con-
cepts enables writing generic code generators applicable to
families of meta-models satisfying the given concept. We
also learnt that the same concept can be used by different
model management operations, enabling the development
of libraries of concepts together with useful operations for
them.

6.3 Generic refactorings

Using concepts, it is possible to define refactorings in a
generic way. For example, for the purpose of analysis, there
are a number of simplifications for Petri nets [40] which pre-
serve some semantic properties (liveness, safety and bound-
edness). The simplified net has the advantage of being easier
to analyse, as its set of reachable states is smaller. It is hence
a common technique to apply these refactorings before the
analysis is performed.

Using the TokenHolder concept, we can define such sim-
plifications in a generic way, so that they become appli-
cable for a family of meta-models. Listing 9 shows one
such simplification. The refactoring, implemented by the
generic EOL operation FusionParallelProcess on lines 1—
8, merges two parallel processes if they have the same
set of input and output holders (checked by operation
checkFPP on lines 10—15). The operation could be exe-
cuted as long as possible, to merge all possible parallel
holders.
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operation FusionParallelProcess (pl:Process,

1

2 p2:Process): Boolean {

3 -- Merges two parallel processes, 1f both have the
4 -- same input and output holders

5 if (not checkFPP(pl, p2)) return false;

6 delete pl;

7 return true;

8}

9

10 operation checkFPP(pl: Process,

11 p2: Process): Boolean {

12 -- Precondition for FusionParallelProcess

13 return equalSets(pl.inHolders, p2.inHolders) and
14 equalSets (pl.outHolders, p2.outHolders);

15}

17 operation equalSets(sl: Set, s2: Set) : Boolean {

18 -- checks if sets sl and s2 have the same elements
19 if (sl.size()<>s2.size()) return false;
20 return sl.includesAll(s2);

21}

Listing 9 Generic refactoring for the TokenHolder concept

Using EWL, refactorings can be invoked by the user from
graphical and tree-based model editors. Listing 10 shows a
generic EWL wizard used to merge two selected processes.
The guard section in lines 2—-16 checks whether the refac-
toring can be applied. In particular, line 5 checks that the
selection of the user is actually a collection, and subsequent
lines that it has size 2 (line 6), that it contains two pro-
cesses (lines 7 and 8), and that they are parallel because
they have the same input and output places and, therefore,
can be merged (line 12). Then, the do section in line 20
performs the action of the refactoring. Please note that this
refactoring requires a different set of usage annotations over
the TokenHolder concept, as in this case processes can be
deleted.

Hence, we have shown how generic concepts allow the
definition of collections of refactorings in a meta-model
independent way, hence becoming reusable. It is therefore
feasible, e.g., to specify the well-known object-oriented re-
factorings of [25] in a generic way for their use with different
meta-models.

wizard mergeParallel {

1

2 guard {

3 var ml Process;

4 var m2 Process;

5 if (self.isKindOf (Collection)) {

6 if (self.size()<>2) return false;

7 if (not self.first().isKindOf (Process) or
8 not self.last().1isKindOf (Process))
9 return false;

10 ml := self.first();

11 m2 := self.last();

12 if (not checkFPP(ml, m2)) return false;
13 return true;

14 }

15 return false;

16 }

17

18 title : "Merges "+ml+" and "+m2

20 do { delete ml; }
21 }

Listing 10 Generic user-directed refactoring with EWL
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6.4 Generic constraints and operations

As discussed in previous sections, genericity facilitates
the construction of libraries of common operations in
MDE, although not necessarily defined over the same con-
cept. For instance, a very common operation in many
model management tasks is calculating the transitive
closure of a given relation. This operation is frequently
performed as a pre-processing step in some model trans-
formations where, e.g., inheritance hierarchies are flat-
tened.

Listing 11 shows a generic operation closure defined over
a concept made of a meta-class A and a reference a to itself.
This operation iterates on all instances of the type A is bound
to, adding the reachable instances to role a by calling the
operation closure (line 10).

Compared with Listing 2—which implemented the same
operations over a concrete meta-model—we can see that both
listings are actually very similar, save for the different name
of the meta-class and reference, and for the fact that List-
ing 2 can be executed only on instances of a particular meta-
model, whereas Listing 11 is defined over a generic concept.
In this way, this is an example of how operations for con-
crete meta-models can be generalized. Firstly, the designer
builds concrete operations over concrete meta-models. Once
he detects that it is useful to generalize them, he prunes the
concrete meta-model, removing any accidental element that
is not necessary for the given operation. The resulting pruned
meta-model is hence the concept, which may have to be cre-
ated anew, or reused if it is already available (e.g., like the
TokenHolder concept).

In addition to generic operations, it is also possible to
define libraries of generic constraints to be checked against
specific meta-models. As an example, Listing 12 shows a

I operation closure() {

2 for (n in A.allInstances()) {

3 var newAs : Set(A) := n.closure();
4 if (newAs.size()>0)

5 for (m in newAs)

6 if (not n.a.includes(m)) n.a.add(m);
7 }

8 )

9

10 operation A closure() : Set(A) {
11 return self.closure(new Set(A));
12 }

14 operation A closure(set : Set(A)): Set(A) {
15 var reachable: Set(A) := new Set(A);

16 for (x in self.a)

17 if (not set.includes(x)) {

18 reachable.add (x) ;

19 set.add(x) ;

20 }

21 for (v in reachable)

22 v.closure(set) ;

23 return set;

24 }

Listing 11 Generic operations to calculate the transitive closure of an
association
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I import 'transitiveClosure.eol’;

2 context A {

3 constraint isAcyclic {

4 check : not self.closure().includes (self)
5 }

6 )

Listing 12 Generic EVL constraint to check acyclicity of an association
in a model

generic constraint defined on the same concept as Listing 11,
and written using EVL. The constraint checks if there are
cycles of a given association type, and is defined on the con-
text of the type A is bound to.

6.5 Generic transformations and transformation patterns

Concepts may also be used to define transformations in a
generic way. In this case we can use concepts either for the
source meta-model, for the target, or for both.

As an example, Listing 13 shows part of a generic ETL
transformation that transforms a model whose meta-model
is bound to the TokenHolder concept into a system of equa-
tions which can be used for analysing the net using algebraic
techniques [40].

The target meta-model Matrices allows for the formula-
tion of systems of equation in terms of matrices and vectors,
where a matrix is a list of vector columns, and each vector is
made of alist of cells storing a number. The pre section (lines
1-4) is executed before the transformation starts and creates
two variables to store the matrix and vector, to be populated
by the transformation. While the matrix is used to store the

pre {
var matrix :
var vector :

}

new Matrices!Matrix;
new Matrices!Vector;

-- transforms a process into a column of the matrix
rule process2column

transform process :

1
2
3
4
5
6
7
8 TokenHolder ! Process

9 to vector : Matrices!Vector {

10 for (holder in TokenHolder!Holder.all) {

11 var cell := new Matrices!Cell;

12 cell.number := process.outHolders.count (holder)
13 - process.inHolders.count (holder) ;
14 vector.cells.add(cell) ;

15 }

16 matrix.rowsize := matrix.rowsize + 1;

17 matrix.colsize := vector.size();

18 matrix.columns.add (vector) ;

19 3}

20

21 -- transforms a holder into a cell of the vector
22 rule holder2cell

23 transform holder : TokenHolder!Holder

24 to cell : Matrices!Cell {

25 cell.number := holder.tokens.size();

26 vector.rowsize := vector.rowsize + 1;

27 vector.cells.add(cell) ;

28 }

Listing 13 Generic ETL transformation

model topology (connections between holders and pro-
cesses), the vector stores the number of tokens each holder
contains.

The listing shows two rules of the transformation. The first
one (lines 6-19) is used to populate the matrix representing
the model topology. The rule is applied to each process, and
adds a column to the matrix, representing the connectivity of
the process and each holder. Hence, the column has as many
cells as holders. Each cell stores the connectivity between
the given process and a holder, so that if a process and the
holder are not connected, or if the holder is both input and
output of the process, the cell stores a 0. If a holder is just
output to a process, it stores a 1, while if it is only input it
stores a —1.%> The second rule (line 19) is used to generate a
vector with the net marking. It is applied to each holder, for
which it generates a cell storing the number of tokens of the
holder. Then, the cell is added to the output vector.

Once a TokenHolder model is transformed into a matrix
representation, we can use a mathematical software to, e.g.,
checkif a given state is not reachable.® or to calculate all place
and transition invariants of the original model by solving two
homogeneous matrix equations [40]. Hence, our generic ETL
transformation allows applying such analysis techniques on
any meta-model for which we can bound the TokenHolder
concept.

11n this example, the source domain is bound to a generic
concept (so that it can be applied to several meta-models),
while the target domain uses a specific meta-model (Matri-
ces). Itis sensible to lift a specific transformation to a generic
one only if it can be reused, that is, if the concepts on which it
relies can be bound to several concrete meta-models. We have
identified the following useful scenarios for generic transfor-
mations:

e The transformation implements a complete functionality,
so that we do not need to extend the transformation with
other rules dealing with specific concerns not present in
the transformation. Listing 13 is an example of this sce-
nario.

e The transformation implements a complete functionality,
but the binding of the concept into a meta-model does not
cover all the types that we need to transform. In this case,
we say that the generic transformation is localized [24],
and we need to extend it with additional rules to han-
dle the transformation of the unbound types. Sometimes
the additional rules only perform a copy of the instances
of those types. A mechanism of implicit copy [24] or

5 Actually, the transformation is more general, as it calculates w (¢, p) —
w(p, t), where w(t, p) is the weight, or number of times that transition
t is connected to place p.

6 If state vector’ is reachable from vector, then there exists a valid
firing vector w that is a solution to the equation vector’ = vector +
matrix X w.
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conservative copy [42] can then be used to realize local-
ized transformation, automatically copying the elements
not covered by the generic transformation.

e The generic transformations implement small, common
transformation patterns [2]. The final transformation is
built by combining several of such patterns, and possibly
with further rules, manually written, which use types from
specific meta-models (not generic types). This scenario
realizes the idea of reusable design patterns, but applied
to model transformations.

7 Related work

The generic programming community [26] has proposed
concepts [20,27,48] as a mechanism to make templates more
understandable and safe, allowing for static type-checking of
templates. In this way, more errors can be given in a meaning-
ful way at the template definition level, as a common problem
has been the often difficult to understand errors given when
instantiating a template. Concepts can themselves be reused
by several generic algorithms, and efforts are currently being
spent on developing libraries of meaningful concepts for dif-
ferent programming domains [48].

We have adapted generic programming concepts to MDE
yielding meta-model concepts. In both cases, concepts act as
a support for type-checking of operations. However, while
programming concepts usually give the requirements for
one type (one meta-class), meta-model concepts gather the
requirements for a collection of related meta-classes. While
programming concepts usually require the definition of oper-
ations, meta-model concepts demand certain structure in
meta-models, and can be annotated with the actions per-
formed by the generic operation.

Our concepts and their binding are related to the notion
of model subtyping developed in [45]. That work establishes
the requirements for a subtype of relation between two meta-
models. Such relation opens the possibility of safe substitu-
tion of instances of the supertype by instances of the subtype.
That is, every operation that can be executed at the supertype
should be executable at the subtype. Our binding between a
concept and a specific meta-model can be seen as establishing
a subtype relation between the concept (supertype) and the
meta-model (subtype). However, the subtyping relationship
is too demanding for our purposes, and therefore we relax it
specifying concept usages. These are realized as decorations
on the different meta-classes of the concept specifying which
operation (create, delete) the generic program performs. In
this way, not every operation should be type-safe, but only
those specified by the decorations, hence widening the appli-
cability of meta-model concepts. Kiihne [38] studies different
variations of model subtyping and also recognizes that pure
subtyping is often too restrictive in practice. He proposes

@ Springer

observers that define custom relaxation criteria for special-
ization relationships, allowing weaker forms of subtyping.
Interestingly, [38] also proposes contexts, which restrict the
possible operations to be performed to the supertypes. Our
concept usages are a way of specifying such contexts, which
can be practically used when explicitly defining specializa-
tion relations between two meta-models.

Our binding is also related to the notion of clan-morphism
developedin [15,28]. Clan-morphisms were originally devel-
oped in [15], to take into consideration inheritance in meta-
models, and to permit the application of graph transformation
rules to objects with more specific type. In [28] they were
used with the purpose of modifying meta-models by means
of rules. Our notion of binding considers more elements
(attributes, multiplicities, uniqueness constraints, composi-
tion, usage contexts, etc.), and is used for a different purpose,
however, it is not formalized, which is left for future work.

Regarding practical implementations, Kermeta [31]
includes the aforementioned facilities for model typing [45].
Hence, generic behaviours can be defined in a generic meta-
model and applied to any subtype meta-model. This approach
has been applied to generic refactorings [39]. We believe that
our concept usages could be adopted by this approach to relax
the requirements of pure subtyping, and making generic oper-
ations more applicable. On the other hand, we could also use
Kermeta’s approach to meta-model pruning [44] to automati-
cally derive concepts given a concrete operation that we want
to make generic.

With respect to model management frameworks, some
of the tools developed by the MDE community include the
AmmA toolbox [3] as well as the MOMENT tool [6]. Even
though both tools offer comprehensive support for different
model management tasks, they could benefit from our meta-
model concepts to obtain generic and reusable specifications.

The data-base community faces similar needs with respect
to model management [1]. In the context of data-bases,
some model-management operations are schema indepen-
dent (like, e.g., differencing or schema matching for approx-
imate data integration), while others (like data transforma-
tion) have to be specifically designed for concrete schemas.
Therefore, the techniques we have presented here are also
valuable in that context. There are some works directed to
promote reusability of operations, e.g., the GeRoMe [30]
model management tool offers a common meta-model—
based on role classes—so that models in different technolog-
ical spaces (like XML or OWL) can be expressed in it. This
has the advantage that the same model management opera-
tors can be applied to these heterogeneous models, but there
is a explicit phase—implemented as a bidirectional model
transformation—of import/export between the specific tech-
nology and the common meta-model. In our approach, there
is no need for such transformation, as this is done with the
binding.
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In [17], modelling concepts were first proposed, with an
application to the definition of generic simulators. As the
framework supports an arbitrary number of meta-levels, con-
cepts can be defined not only for meta-models, but for models
as well. The approach was combined with model and meta-
model templates, enhancing the abstraction and reusability
of models and meta-models. In the present work, we continue
that line of research by a complete and more refined notion of
binding, the specification of concept usages, an implementa-
tion on top of EMF and the Epsilon family of languages, and
its application to a range of model management operations
(and not just simulation).

Finally, some works [10,13,14,21] deal with genericity
in meta-modelling. While our approach deals with generic
behavior for MDE, these works are directed to genericity
in data (i.e., models). Catalysis’ model frameworks [21] are
parameterized packages that can be instantiated by name sub-
stitution. The package templates of [ 10] are based on those of
Catalysis, and are used to define languages in a modular way.
They are based on string substitution, as the parameters of
the templates are strings that are substituted in the template
definition. This approach is realized in the XMF tool [11].

As we discussed in Sect. 2.2, templates are present in
the UML 2 specification too. In particular, several elements
like classifiers, packages, collaborations and operations can
be turned into templates. UML templates declare a signature,
which is a list of formal parameters to be substituted by actual
parameters in a binding. Hence, UML only permits a simple
way of expressing constraints for each parameter in isolation.
Thus, even though powerful, we believe that the genericity
in UML can be improved by allowing concepts (instead of
simply a list of formal parameters). This is so as concepts
also allow expressing required relations between the param-
eters, and can be reused by different templates. In addition,
the standard UML binding could be refined if concepts were
provided with context usages.

Some works have addressed current drawbacks of UML
2 templates. For example, [9] formalizes template binding
using OCL. The work in [13,14] is directed to genericity
in modelling by extending the UML 2 package templates
with contracts. With a similar purpose to meta-model con-
cepts, these contracts specify the allowed substitution of type
parameters by concrete types. Note again that the work we
present here is directed to genericity of the associated model
management operations, but does not consider genericity of
meta-models and models.

8 Conclusions and future work
The successful application of MDE techniques in industry

necessitates improved support for abstraction, reusability and
extendibility of all kinds of model management operations.

In this paper we have proposed an approach directed to this
goal, inspired by techniques already proven in the generic
programming community.

We propose meta-model concepts for specifying the struc-
tural requirements needed by model management operations.
In this way, the operations use the types defined in the con-
cept rather than in a particular meta-model, making the oper-
ations more general and abstract. A binding process maps a
concept to a particular meta-model, so that the operations can
be executed on instances of this meta-model. Some concept
elements—meta-classes and multi-valued attributes—can be
decorated with usages (creation or deletion), as mandated by
the generic specification. Usage contexts permit finer con-
trol of the binding and widen the applicability of concepts to
cases in which a simple subtyping relationship would be too
restrictive. Decoupling operations from concrete meta-model
types increases the potential for re-use and their applicabil-
ity to different unrelated meta-models. Indeed our approach
shows the usefulness of an extra level of indirection, used so
many times in computer science.

The paper also reported on a practical implementation of
these ideas on top of the EMF and the Epsilon family of
languages for model management. Different examples of the
definition of generic simulators for models, code generators,
refactorings, transformations, and generic libraries of opera-
tions and constraints showed the versatility of the proposal.

In the future, we plan to investigate ways to add more flex-
ibility to the concepts and binding function. This might be
useful as, in some situations, a concept may simply reflect a
particular way of structuring the elements of a meta-model,
whereas other meta-modelling solutions would be possible as
well. We are also considering relationships between concepts
(like extension or inheritance), and building libraries of con-
cepts and generic operations. We are also developing a formal
theory for genericity over transformations defined with graph
transformations. Finally, the inclusion of arbitrary OCL con-
ditions in the concept and the target meta-model and their
implications for the binding are also under consideration.
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