
Softw Syst Model (2013) 12:245–264
DOI 10.1007/s10270-011-0195-y

SPECIAL SECTION PAPER

Metric propositional neighborhood logics on natural numbers

Davide Bresolin · Dario Della Monica ·
Valentin Goranko · Angelo Montanari ·
Guido Sciavicco

Received: 15 June 2010 / Revised: 19 January 2011 / Accepted: 28 January 2011 / Published online: 26 February 2011
© Springer-Verlag 2011

Abstract Interval logics formalize temporal reasoning on
interval structures over linearly (or partially) ordered
domains, where time intervals are the primitive ontologi-
cal entities and truth of formulae is defined relative to time
intervals, rather than time points. In this paper, we intro-
duce and study Metric Propositional Neighborhood Logic
(MPNL) over natural numbers. MPNL features two modal-
ities referring, respectively, to an interval that is “met by”
the current one and to an interval that “meets” the current
one, plus an infinite set of length constraints, regarded as
atomic propositions, to constrain the length of intervals. We
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argue that MPNL can be successfully used in different areas
of computer science to combine qualitative and quantitative
interval temporal reasoning, thus providing a viable alter-
native to well-established logical frameworks such as Dura-
tion Calculus. We show that MPNL is decidable in double
exponential time and expressively complete with respect to
a well-defined sub-fragment of the two-variable fragment
FO2[N,=,<, s] of first-order logic for linear orders with
successor function, interpreted over natural numbers. More-
over, we show that MPNL can be extended in a natural way
to cover full FO2[N,=,<, s], but, unexpectedly, the latter
(and hence the former) turns out to be undecidable.

Keywords Metric temporal logic · Interval logic ·
Decidability · Complexity · Expressiveness

1 Introduction

Interval temporal logics provide a natural framework for tem-
poral reasoning about interval structures over linearly (or
partially) ordered domains. They take time intervals as the
primitive ontological entities and define truth of formulae rel-
ative to time intervals, rather than time points. Interval logics
feature modal operators that correspond to various relations
between pairs of intervals. In particular, the well-known logic
HS, introduced by Halpern and Shoham [24], features a set of
modal operators that makes it possible to express all Allen’s
interval relations [1].

Interval-based formalisms have been extensively used in
various areas of computer science and artificial intelligence,
such as, formal specification and verification of complex sys-
tems, temporal databases, planning and plan validation, the-
ories of action and change, natural language processing, and
constraint satisfaction problems. However, most of them are
subjected to severe syntactic and semantic restrictions that
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considerably weaken their expressive power. Interval tempo-
ral logics relax these restrictions, thus allowing one to cope
with much more complex application domains and scenarios.
Unfortunately, many of them, including HS and the majority
of its fragments, turn out to be undecidable (a comprehensive
survey can be found in [7]).

One of the few cases of decidable interval logic with a
truly interval semantics, that is, not reducible to point-based
semantics, is Propositional Neighborhood Logic (PNL),
interpreted over various classes of interval structures (all,
discrete, and dense linear orders, integers, natural numbers)
[21]. PNL is a fragment of HS with only two modalities,
corresponding to Allen’s relations meets and met by. Basic
logical properties of PNL, such as representation theorems
and axiomatic systems, have been investigated by Goranko
et al. [21]. The satisfiability problem for PNL has been
addressed by Bresolin et al. [10]. NEXPTIME-completeness
with respect to the classes of all linearly ordered domains,
well-ordered domains, finite linearly ordered domains, and
natural numbers has been proved via a reduction to the satis-
fiability problem for the two-variable fragment of first-order
logic for binary relational structures over ordered domains
[33]. Finally, a tableau system for the future fragment of
PNL, interpreted over the natural numbers, has been devel-
oped in [14]; such a system has been later extended to full
PNL over the integers [12].

Various metric extensions of point-based temporal logics
have been studied in the literature. They include Alur and
Henzinger’s Timed Propositional Temporal Logic (TPTL)
[2], two-sorted metric temporal logics, developed by Monta-
nari et al. [29,30], Quantitative Monadic Logic of Order,
proposed by Hirshfeld and Rabinovich [26], and Owakine
and Worrell’s Metric Temporal Logic [34], which refines and
extends Koymans’ Metric Temporal Logic [28]. Little work
in that respect has been done in the interval logic setting.
Among the few contributions, we mention the extension of
Allen’s Interval Algebra with a notion of distance, developed
by Kautz and Ladkin [27]. The most important quantitative
interval temporal logic is definitely Duration Calculus (DC)
[15,25], an interval logic for real-time systems devised by
Chaochen, Hoare, and Ravn [17], based on Moszkowski’s
ITL [32]. DC is quite expressive, but generally undecidable.
A number of variants and fragments of DC have been pro-
posed to model and to reason about real-time processes and
systems [5,15,16,18]. Many of them recover decidability by
imposing semantic restrictions, such as the locality princi-
ple, that essentially reduce the interval logical system to a
point-based one.

In this paper, we present a family of non-conservative met-
ric extensions of PNL, which allow one to express metric
properties of interval structures over natural numbers. We
mainly focus our attention on the most expressive language
in this class, called Metric PNL (MPNL, for short). MPNL

features a family of special atomic propositions representing
integer constraints (equalities and inequalities) on the length
of the intervals over which they are evaluated. MPNL is par-
ticularly suitable for quantitative interval reasoning, and thus
it emerges as a viable alternative to existing logical systems
for quantitative temporal reasoning. The future fragment of
MPNL has been introduced and studied in [11]. Full MPNL
has been considered in [8]—the main precursor of this paper,
which extends and strengthens it substantially.

The main contributions of the paper are:

(i) the proposal of a number of extensions of PNL with
metric modalities and with interval length constraints,
which turn out to be very useful to reason about interval
structures over natural numbers;

(ii) expressive completeness of MPNL with respect to
FO2

r [N,=,<, s], a proper fragment of the two-variable
fragment FO2[N,=,<, s] of first-order logic with
equality, order, successor, and a family of uninterpreted
binary relations, interpreted on natural numbers. We
also show how to extend MPNL to obtain an inter-
val logic MPNL+ which is expressively complete with
respect to full FO2[N,=,<, s];

(iii) decidability and complexity of the satisfiability prob-
lem for MPNL, and undecidability of the satisfiability
problem for FO2[N,=,<, s], and thus for MPNL+;

(iv) analysis and classification of all the proposed met-
ric extensions of PNL with respect to their expressive
power.

The results in this paper can be compared with analogous
results for PNL and FO2[=,<] (the two-variable fragment
of FO with equality on linear orders with a family of unin-
terpreted binary relations) [10]. Unlike FO2[=,<], which
was already known to be decidable [33], the decidability of
FO2

r [N,=,<, s] is a consequence of the decidability and
expressive completeness results for MPNL. At the best of our
knowledge, this result is new and of independent interest.

The paper is organized as follows. In Sect. 2, we first
recall the basic features of PNL, and then we present the
metric language MPNL. In Sect. 3, we illustrate various pos-
sible applications of MPNL. Next, in Sect. 4, we prove the
decidability of the logic. Expressive completeness results are
given in Sect. 5. Finally, in Sect. 6, we classify various frag-
ments of MPNL with respect to their expressive power. In
the conclusions, we provide an assessment of the work and
we mention open problems.

2 PNL and MPNL

2.1 Propositional Neighborhood Logics: PNL

The language of PNL consists of a set AP of atomic proposi-
tions, the propositional connectives ¬ and ∨, and the modal

123



Metric propositional neighborhood logics on natural numbers 247

operators ♦r and ♦l , corresponding to the Allen’s relation
meets and its inverse met by [1]. The other propositional
connectives, as well as the logical constants � (true) and
⊥ ( f alse), and the dual modal operators �r and �l , are
defined as usual. Propositional neighborhood logics have
been studied both in the so-called strict semantics, which
excludes point-intervals, and in the non-strict one, which
includes them. In the latter case, it is natural to include in
the language a special atomic proposition (modal constant),
usually denoted by π , to identify point-intervals (the nota-
tion PNLπhas been sometimes used to make the presence
of π explicit; to maintain the notation as simple as possi-
ble, in the following, we will usually omit the superscript).
The differences in expressive power in the various cases have
been systematically studied in [21]. In this paper, we focus
our attention on the non-strict semantics. Formulae of PNL,
denoted by ϕ,ψ, . . . , are generated by the following gram-
mar:

ϕ ::= π | p | ¬ϕ | ϕ ∨ ϕ | ♦rϕ | ♦lϕ.

Given a linearly ordered domain D = 〈D,<〉, a (non-
strict) interval over D is any ordered pair [i, j] with i ≤ j .
An interval structure is a pair 〈D, I(D)〉, where I(D) is the
set of all intervals over D. The semantics of PNL is given
in terms of models of the form M = 〈D, I(D), V 〉, where
〈D, I(D)〉 is an interval structure and V : AP → 2I(D) is a
valuation function assigning to every interval the set of all
atomic propositions that are true on it. We recursively define
the truth relation � as follows (the first clause is used only if
π is added to the language):

– M, [i, j] � π iff i = j ;
– M, [i, j] � p iff [i, j] ∈ V (p), for any p ∈ AP;
– M, [i, j] � ¬ϕ iff it is not the case that M, [i, j] � ϕ;
– M, [i, j] � ϕ ∨ ψ iff M, [i, j] � ϕ or M, [i, j] � ψ ;
– M, [i, j] � ♦lϕ iff there exists h ≤ i such that M, [h, i]

� ϕ;
– M, [i, j] � ♦rϕ iff there exists h ≥ j such that M, [ j, h]

� ϕ.

It is worth pointing out that the operators corresponding to
Allen’s relations before and later can be easily expressed by
the formulae ♦r (¬π∧♦rϕ) and ♦l(¬π∧♦lϕ), respectively.
We say that a PNL-formula ϕ is satisfiable if there exists a
model M and an interval [b, e] such that M, [b, e] � ϕ.

PNL logics have been investigated in [10,21], where the
decidability of their satisfiability problem has been shown.
A tableau-based method for deciding the satisfiability prob-
lem for the future fragment of PNL has been presented in
[14], and subsequently extended to the full PNL in [12]. In
this paper, we restrict our attention on PNL interpreted in the
interval structure built on the natural numbers N.

2.2 Metric PNL: MPNL

In this section, we introduce metric extensions of PNL inter-
preted over N. Depending on the choice of the metric opera-
tors, a hierarchy of languages can be built. In Sect. 6, we will
study the relative expressive power of these languages.

From now on, we denote by δ : N × N → N the dis-
tance function on N, defined as δ(i, j) = |i − j |. The results
presented here may be suitably rephrased for any function
δ satisfying the standard properties of distance over a lin-
ear order. The most expressive metric extension of PNL is
based on atomic propositions for length constraints. These
are pre-interpreted atomic propositions referring to the length
of the current interval. Such propositions can be seen as the
metric generalizations of the modal constant π . For each
∼∈ {<, ≤, =, ≥, >}, we introduce the length constraint
len∼k, with the following semantics:

M, [i, j] � len∼k iff δ(i, j) ∼ k

As a matter of fact, equality and inequality constraints are
mutually definable:

M, [i, j] � len=k ⇔ M, [i, j] � ¬len>k, for k = 0

M, [i, j] � len=k ⇔ M, [i, j] � len>k−1 ∧ ¬len>k,

for k > 0

M, [i, j] � len=k ⇔ M, [i, j] � len≥k ∧ ¬len≥k+1

M, [i, j] � len=k ⇔ M, [i, j] � len<k+1 ∧ ¬len<k

M, [i, j] � len=k ⇔ M, [i, j] � len≤k, for k = 0

M, [i, j] � len=k ⇔ M, [i, j] � len≤k ∧ ¬len≤k−1,

for k > 0

M, [i, j] � len<k ⇔ M, [i, j] � ⊥, for k = 0

M, [i, j] � len<k ⇔ M, [i, j] � len=0 ∨ . . . ∨ len=k−1,

for k > 0

M, [i, j] � len≤k ⇔ M, [i, j] � len=0 ∨ . . . ∨ len=k

M, [i, j] � len>k ⇔ M, [i, j] � ¬len≤k

M, [i, j] � len≥k ⇔ M, [i, j] � ¬len<k

In Sect. 4, we will limit ourselves to constraints of form
len=k, without taking into account the increase in length of
formulae due to the above encoding.

3 MPNL at work

Finding an optimal balance between expressive power and
computational complexity is a challenge for every knowl-
edge representation and reasoning formalism. Interval tem-
poral logics are not an exception in this respect. We believe
that MPNL offers a good compromise between these two
requirements. In Sect. 3.1, we show that MPNL makes it
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possible to encode (metric versions of) basic operators of
point-based linear temporal logic (LTL) as well as interval
modalities corresponding to Allen’s relations. In addition,
we show that it allows one to express limited forms of fuzzi-
ness. In Sect. 3.2, we show how to apply MPNL to model the
distinctive features of some well-known applications (spec-
ification of real-time systems, medical guidelines, ambient
intelligence).

3.1 Expressing basic temporal properties in MPNL

First, MPNL is expressive enough to encode the strict some-
times in the future (resp., sometimes in the past) operator of
LTL:

♦r (len>0 ∧ ♦r (len=0 ∧ p))

Moreover, length constraints allow one to define a metric
version of the until (resp., since) operator. For instance, the
condition: ‘p is true at a point in the future at distance k from
the current interval and, until that point, q is true (pointwise)’
can be expressed as follows:

♦r (len=k ∧ ♦r (len=0 ∧ p)) ∧�r (len<k → ♦r (len=0 ∧ q))

MPNL can also be used to constrain interval length and to
express metric versions of basic interval relations. First, we
can constrain the length of the intervals over which a given
property holds to be at least (resp., at most, exactly) k. As
an example, the following formula constrains p to hold only
over intervals of length l, with k ≤ l ≤ k′:

[G](p → len≥k ∧ len≤k′), (bl)

where the universal modality [G] (for all intervals) is a short-
hand for the formula:

[G]p ≡ �l�r�r p ∧ �l�l�r p

By exploiting such a capability, metric versions of almost all
Allen’s relations can be expressed (the only exception is the
during relation). As an example, we can state that: ‘p holds
only over intervals of length l, with k ≤ l ≤ k′, and any
p-interval begins a q-interval’ as follows:

(bl) ∧ [G]
k′∧

i=k

(p ∧ len=i → ♦l♦r (len>i ∧ q))

As another example, a metric version of Allen’s relation con-
tains (the inverse of the during relation) can be expressed by
pairing (bl) with:

[G]
k′∧

i=k

(p ∧ len=i →
∨

j �=0, j+ j ′<i

(♦l♦r (len=j ∧ ♦r (len=j′ ∧ q))))

The general picture is as follows. Allen’s relations meets, met
by, before, and later can be captured (in their full generality)

by PNL. Metric versions of the other relations can be given
provided that the number of possible positions of at least one
endpoint of the target interval is bounded by the length of the
current interval. This is the case of all of them but the rela-
tion during, whose left and right endpoints can be arbitrarily
located respectively before and after the current interval.

The relationships between the satisfiability problem for
PNL and the consistency problem for Allen’s Interval Net-
works have been studied in [35].1 In general, the satisfiability
problem for an expressive enough interval temporal logic is
much harder than the problem of checking the consistency
of a constraint network. The higher complexity of the former
is balanced by the expressiveness of the interval logic that
allows one to deal with, for instance, negative and disjunc-
tive constraints. As an example, in [35], the author exploits
the difference operator to simulate nominals, which are then
used to force two specific intervals to satisfy a given Allen’s
relation (the difference operator can be defined in PNL, and
thus in MPNL; its definition closely resembles that of the
universal modality). Notice that there is no contradiction
between the limits to PNL expressive power and its ability
to encode (the consistency problem for) constraint networks:
PNL allows one to capture Allen’s relations among a finite
number of intervals only (you need a nominal for each inter-
val). The addition of a metric dimension makes it possible to
avoid the use of nominals, but it forces one to assign a finite
set of possible values for the length of the involved inter-
vals (possibly infinitely many). Whenever there exist some
natural bounds for the given finite set of intervals, constraint
networks involving all but one Allen’s relations can be easily
encoded in MPNL (the resulting encoding turns out to be
much more natural than the one using nominals).

Finally, MPNL makes it possible to express some forms
of ‘fuzziness’. As an example, the condition: ‘p is true over
the current interval and q is true over some interval close to
it’, where by ‘close’ we mean that the right endpoint of the
p interval is at distance at most k from the left endpoint of
the q interval, can be expressed as follows:

p ∧ (♦r♦l(len<k ∧ ♦l♦r q) ∨ ♦r (len<k ∧ ♦r q))

3.2 Some applications of MPNL

In the following, we show that MPNL expressive power suf-
fices to capture meaningful requirements of various appli-
cation domains. To start with, we consider some basic
safety conditions that characterize the behavior of a gas-
burner. This is a classical example commonly used to illus-
trate the modeling capabilities of a specification formalism.

1 Spatial generalizations of the problem to (metric versions of) Weak
Spatial PNL and Rectangle Algebra have been investigated in [9,13].
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For instance, a formalization of such an example in Duration
Calculus can be found in [15].

Let the atomic proposition Gas (resp., Flame, Leak) be
used to state that gas is flowing (resp., burning, leaking), e.g.,
M, [i, j] � Gas means that gas is flowing over the interval
[i, j]. The formula

[G](Leak ↔ Gas ∧ ¬Flame)

states that Leak holds over an interval if and only if gas is
flowing and not burning over that interval. The condition: ‘it
never happens that gas is leaking for more than k time units’
can be expressed as:

[G](¬(len>k ∧ Leak))

Similarly, the condition: ‘the gas burner will not leak unin-
terruptedly for k time units after the last leakage’ can be
formalized as:

[G](Leak → ¬♦r (len<k ∧ ♦r Leak))

As another example, let us consider the case of a railway
signaling system. A systematic analysis of such a case study,
together with its formalization in Duration Calculus, has been
done by Veludis and Nissanke [38]. One of the distinctive fea-
tures of this system is the large set of safety requirements it
involves. Here, we choose one of them and we show how to
encode it in MPNL. Most of the other requirements can be
dealt with in a very similar way. The specification basically
constrains the relationships between the controlling system
and the controlled system, which is equipped with both sen-
sors and activators. More precisely, let the atomic propo-
sition ReqT oRedi (resp., ReqT oY ellowi , ReqT oGreeni )
denote the fact that the controlling system has sent to the
signal (semaphore) i the request to change the color to red
(resp., yellow, green). Similarly, let Signal Opi denote the
fact that the i-th signal is operative, that is, not broken. A typ-
ical (functional) requirement of the railway signaling system
imposes that, when a request to change its color is sent to
a signal, either the signal actually changes it within a fixed
amount of time or the signal is declared non-operative. Such
a requirement can be formalized in MPNL as follows:

[G]((ReqT oRedi ∧ Signal Opi )→
(♦r (len≤k∧ ¬♦r Proceed Aspecti ) ∨ ♦r♦r¬Signal Opi )),

where Proceed Aspecti denotes the fact that the signal i is
either yellow or green. Notice that MPNL allows one to pos-
sible bound the duration of the time period during which a
signal is non-operative.

Finally, let us consider the application of MPNL to the
fields of medical guidelines and ambient intelligence. In
the former (see [36]), events with duration, e.g., ‘running
a fever’, possibly paired with metric constraints, e.g., ‘if a
patient is running a fever for more than k time units, then

administrate him/her drug D’, are quite common. Medical
requirements of this kind can be easily encoded in MPNL. As
an example, the above condition can be expressed in MPNL
as follows:

[G]((Fever ∧ len>k)→ ♦r DrugD)

In general, many relevant conditions in medical guidelines
are inherently interval-based as there are no general rules
to deduce their occurrence from point-based data. The use
of temporal logic in ambient intelligence, specifically in
the area of Smart Homes [3,20], has been advocated by
Combi et al. [19]. MPNL can be successfully used to express
safety requirements referring to situations that can be prop-
erly modeled only in terms of time intervals, e.g., ‘being in
the kitchen’.

4 Decidability of MPNL

In this section, we use a model-theoretic argument to show
that the satisfiability problem for MPNL has the bounded-
model property with respect to finitely presentable ultimately
periodic models, and it is therefore decidable. From now on,
let ϕ be any MPNL-formula and let AP be the set of atomic
propositions of the language.

Definition 1 The closure of ϕ is the set C L(ϕ) of all sub-
formulae of ♦rϕ and their negations (we identify ¬¬ψ with
ψ). Let

⊙ ∈ {♦r ,♦l ,�r ,�l}. The set of temporal requests
from C L(ϕ) is the set T F(ϕ) = {⊙ψ | ⊙

ψ ∈ C L(ϕ)}.
Definition 2 A ϕ-atom is a set A ⊆ C L(ϕ) such that for
every ψ ∈ C L(ϕ), ψ ∈ A iff ¬ψ �∈ A and for every ψ1 ∨
ψ2 ∈ C L(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ . One can eas-
ily prove that |C L(ϕ)| ≤ 2(|ϕ| + 1), |T F(ϕ)| ≤ 2|ϕ|, and
|Aϕ | ≤ 2|ϕ|+1. We now introduce a suitable labeling of inter-
val structures based on ϕ-atoms.

Definition 3 A (ϕ-)labeled interval structure (LIS for short)
is a structure L = 〈D, I(D),L〉, where 〈D, I(D)〉 is the inter-
val structure over natural numbers (or over a finite subset of it)
and L : I(D)→ Aϕ is a labeling function such that for every
pair of neighboring intervals [i, j], [ j, h] ∈ I(D), if �rψ ∈
L([i, j]), then ψ ∈ L([ j, h]), and if �lψ ∈ L([ j, h]), then
ψ ∈ L([i, j]).

Notice that every interval model M induces a LIS, whose
labeling function is the valuation function:

ψ ∈ L([i, j]) iff M, [i, j] � ψ.

Thus, LIS can be thought of as quasi-models for ϕ, in
which the truth of formulae containing neither ♦r , ♦l nor
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length constraints is determined by the labeling (due to the
definitions of ϕ-atom and LIS). To obtain a model, we must
also guarantee that the truth of the other formulae is in accor-
dance with the labeling. To this end, we introduce the notion
of fulfilling LIS.

Definition 4 A LIS L = 〈D, I(D),L〉 is fulfilling iff:

– for every length constraint len=k ∈ C L(ϕ) and interval
[i, j] ∈ I(D), len=k ∈ L([i, j]) iff δ(i, j) = k;

– for every temporal formula ♦rψ (resp., ♦lψ) in T F(ϕ)
and interval [i, j] ∈ I(D), if ♦rψ (resp., ♦lψ) in L([i, j]),
then there exists h ≥ j (resp., h ≤ i) such that ψ ∈
L([ j, h]) (resp., L([h, i])).

Clearly, every interval model is a fulfilling LIS.
Conversely, every fulfilling LIS L = 〈D, I(D),L〉 can be
transformed into a model M(L) by defining the valuation in
accordance with the labeling. Then, one can prove that for
every ψ ∈ C L(ϕ) and interval [i, j] ∈ I(D),

ψ ∈ L([i, j]) iff M(L), [i, j] |� ψ

by a routine induction on ψ . Therefore, a formula ϕ is satis-
fied by a fulfilling LIS if and only if there exists an interval
such that its label contains ϕ.

Let m be |T F(ϕ)|
2 and k be the maximum among the natural

numbers occurring in the length constraints in ϕ. For exam-
ple, if ϕ = ♦r (len>3 ∧ p → ♦l(len>5 ∧ q)), then m = 2
and k = 5. We now introduce the fundamental notions of left
and right temporal requests at a given point.

Definition 5 Given a LIS L = 〈D, I(D),L〉 and a point i ∈
D, the set of left (resp., right) temporal requests at i , denoted
by RE QL(i) (resp., RE Q R(i)), is the set of pairs of the type
(τ, s), where τ is a temporal formula of the forms ♦lψ, �lψ

(resp., ♦rψ, �rψ) in T F(ϕ) belonging to the labeling of any
interval beginning (resp., ending) at i , and s = +, if there
exists an interval [ j, i] (resp., [i, j]) such that τ ∈ L([ j, i])
(resp., τ ∈ L([i, j])) and δ( j, i) > k (resp., δ(i, j) > k),
and s = − otherwise.

For any i ∈ D, we write RE Q(i) for RE QL(i)∪ RE Q R(i).
We denote by RE Q(ϕ) the set of all possible sets of temporal
requests from C L(ϕ); moreover, for the sake of brevity, we
write τ ∈ RE Q(i)when there exists a pair (τ, s) ∈ RE Q(i).
It is easy to show that |RE Q(ϕ)| = 22·m . Moreover, by
definition, any set of temporal requests RE Q R( j) (resp.,
RE QL(i)) can be entirely satisfied using at most m different
points greater than j (resp., less than i).

Now, consider any MPNL-formula ϕ such that ϕ is satis-
fiable on a finite model. We have to show that we can restrict
our attention to models with a bounded size.

Definition 6 Given any LIS L = 〈D, I(D),L〉, we say that a
k-sequence in L is a sequence of k consecutive points in D.

Given a k-sequence σ in L, its sequence of requests RE Q(σ )
is defined as the k-sequence of temporal requests at the points
in σ . We say that i ∈ D starts a k-sequence σ if the temporal
requests at i, . . . , i + k − 1 form an occurrence of RE Q(σ ).
Furthermore, the sequence of requests RE Q(σ ) is said to be
abundant in L iff it has at least 2 · (m2 +m) · |RE Q(ϕ)| + 1
disjoint occurrences in D.

Intuitively, when a model for a given formulaϕ presents an
abundant sequence, then the model can be shortened without
affecting satisfiability of ϕ.

Lemma 1 Let L = 〈D, I(D),L〉 be any LIS such that the
sequence RE Q(σ ) is abundant in it. Then, there exists an
index q such that for each element R ∈ {RE Q(d) | iq <

d < iq+1}, where iq and iq+1 begin the q-th and the q +1-th
occurrence of σ , respectively, R occurs at least m2+m times
before iq and at least m2 + m times after iq+1 + k − 1.

Proof To prove this property, we proceed by contradiction.
Suppose that RE Q(σ ) is abundant, that is, it occurs n >

2 · (m2 + m) · |RE Q(ϕ)| times in D and, for each q with
1 ≤ q ≤ n, there exists a point d(q) with iq < d(q) <
iq+1, such that RE Q(d(q)) occurs less than (m2 +m) times
before iq or less than (m2 + m) times after jq+1 + k − 1.
Let � = {d(q)|1 ≤ q ≤ n} the set of all such points. By
hypothesis, there cannot be any R ∈ RE Q(ϕ) such that
R occurs more than 2 · (m2 + m) times in �. Then |�| ≤
2 · (m2 + m) · |RE Q(ϕ)|, which is a contradiction. ��
Lemma 2 Let L = 〈D, I(D),L〉 be a fulfilling LIS that sat-
isfies ϕ. Suppose that there exists an abundant k-sequence
of requests RE Q(σ ) and let q be the index whose existence
is guaranteed by Lemma 1. Then, there exists a fulfilling
LIS L∗ = 〈D∗, I(D∗),L∗〉 that satisfies ϕ such that D∗ =
D \ {iq , . . . , iq+1 − 1}.
Proof Let us fix a fulfilling LIS L = 〈D, I(D),L〉 satisfy-
ing ϕ at some [i, j], an abundant k-sequence RE Q(σ ) in
L, and the index q identified by Lemma 1. Moreover, let
D− = {iq , . . . , iq+1 − 1} and D′ = D \ D−.

For the sake of readability, the points in D′ will be denoted
by the same numbers as in D. We now show how to suitably
redefine the evaluation of the intervals in I(D′) to preserve
satisfiability of ϕ (as a matter of fact, the temporal requests
at all points in D′ are preserved as well).

First, we consider all points d < iq and for each of them,
for all p such that 0 ≤ p ≤ k−1, we put L′([d, iq+1+ p]) =
L([d, iq+p]). Then, for all p, p′ such that 0 ≤ p ≤ p′ ≤ k−
1, we put L′([iq+1+ p, iq+1+ p′]) = L([iq + p, iq + p′]). In
such a way, we guarantee that the intervals whose length has
been shortened as an effect of the elimination of the points in
D− have a correct labeling in terms of all length constraints of
the forms len=k′ and ¬len=k′ . Moreover, since the requests
(in both directions) in L at iq+1 + p are equal to the requests
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at iq + p, this operation is safe with respect to universal and
existential requirements. Finally, since the lengths of inter-
vals beginning before iq and ending after iq+1 + k − 1 are
greater than k both in L and in L′, there is no need to change
their labeling. (Notice that, in D′, iq+1 turns out to be the
immediate successor of iq − 1.)

The structure L′ = 〈D′, I(D′),L′〉 defined so far is obvi-
ously a LIS, but it is not necessarily a fulfilling one. The
removal of the points in the set D− and the relabeling needed
to guarantee correctness with respect to the length constraints
may generate defects, that is, situations in which there exists
a point d < iq (resp., d ≥ iq+1 + k) and a formula of the
type ♦rψ (resp., ♦lψ) belonging to RE Q(d) such that ψ
was satisfied in L by some interval [d, d ′] (resp., [d ′, d]) and
it is not satisfied in L′, either because d ′ ∈ D− or because
the labeling of [d, d ′] (resp., [d ′, d]) has changed due to the
above relabeling. We have to show how to repair such defects.

First, we collect and order the set of defects (assume that
we have r of them). Suppose that the first one concerns the
existence of a point d < iq and a formula ♦rψ ∈ RE Q(d),
which is not satisfied anymore in L′ (the case in which d ≥
iq+1 + k can be dealt with in a similar way). Since L is a
fulfilling LIS, then there exists an interval [d, d ′] such that
ψ ∈ L([d, d ′]) and either d ′ ∈ D− or iq+1 ≤ d ′ < iq+1 +
k and ψ �∈ L′([d, d ′]). Moreover, for this to be the case,
δ(d ′, d) > k in L, and thus the defect necessarily involves a
pair of the form (♦rψ,+) ∈ RE Q(d). By Lemma 1, there
exist at least n = m2+m points {d̄1, . . . , d̄n} after iq+1+k−1
such that RE Q(d̄i ) = RE Q(d ′), for i = 1, . . . , n. We will
choose one of these points, say d̄i , to satisfy the request. In
general, this may require a change in the labeling of the inter-
val [d, d̄i ], and to prevent such a change to make one or more
requests in RE QL(d̄i ) no longer satisfied, we will possibly
have to redefine the labeling of more than one interval.

To start with, we take a point d ′′<iq such that RE Q(d ′′) =
RE Q(d ′) (the existence of such a point is guaranteed by
Lemma 1) and a minimal set of points Pd ′′ ⊂ D′ such that,
for each (♦lτ,+) ∈ RE QL(d ′′), there exists a point e ∈ Pd ′′

such that τ ∈ L([e, d ′′]) and δ(e, d ′′) > k. Now, for each
point e ∈ Pd ′′ , let Pd ′′

e be a minimal set of points such that,
for each ♦rξ ∈ RE Q R(e), there exists a point f ∈ Pd ′′

e
such that ξ ∈ L([e, f ]). Finally, let Q = ⋃

e∈Pd′′ Pd ′′
e . By

the minimality requirements, we have that |Q| ≤ m2, since
requests in RE QL(d ′′) need at most m points to be satisfied
and, for each e ∈ Pd ′′ , RE Q R(e) can be satisfied using at
most m points.

Consider the set H = {d̄1, . . . , d̄n} \ Q. Since, by con-
struction, |H | ≥ (m2 + m) − m2 = m, there must be some
point d̄i ∈ H such that in L′ the interval [d, d̄i ] satisfies
only those ♦r -formulae of RE Q(d), if any, that are satisfied
over some other interval beginning at d. Then, we create a
new LIS L′

1, and we put L′
1([d, d̄i ]) = L([d, d ′]). Since

RE Q R(d̄i ) = RE Q R(d ′), such a change has no impact

on the right-neighboring intervals of [d, d̄i ]. On the con-
trary, there may exist one or more ♦l -formulae in RE QL(d̄i )

which, due to the change in the labeling of [d, d̄i ], are not
satisfied anymore. In such a case, however, we can recover
satisfiability, without introducing any new defect, by putt-
ing L′

1([e, d̄i ]) = L([e, d ′′]) for all e ∈ Pd ′′ . Notice that the
intervals [e, d ′′] cannot be shorter than k by definition of Pd ′′ ,
and thus this relabeling is safe with respect to length con-
straints. The labeling of all other intervals is the one defined
by L′.

In this way, we have fixed the first defect without intro-
ducing any new defect. If we repeat the above procedure for
each of the defects, according to their ordering, we obtain a
finite sequence of LISs L′

1,L′
2, . . . ,L′

r , where the last one is
the LIS L∗ we were looking for.

To conclude the proof, we have to show that L∗ is still a
LIS for ϕ. Let [d, d ′] be the interval of L satisfying the for-
mula ϕ. Since ♦rϕ ∈ C L(ϕ), we have that ♦rϕ ∈ RE Q(d).
If d is still present in L∗, then, since the final LIS is fulfill-
ing, we have that there must exist an interval [d, d ′′] labelled
with ϕ. If d is not a point of L∗ anymore, then Lemma 1
guarantees that there exists another point d ′′ in L∗ such that
RE Q(d ′′) = RE Q(d). Again, since L∗ is fulfilling, we have
that there must exist an interval [d ′′, d ′′′] labelled with ϕ. ��

Lemma 2 guarantees that we can eliminate sequences of
requests that occur ‘sufficiently many’ times in a LIS, with-
out ‘spoiling’ the LIS. This eventually allows us to prove
the following small-model theorem for finite satisfiability of
MPNL.

Theorem 1 (Small-Model Theorem) If ϕ is any finitely sat-
isfiable formula of MPNL, then there exists a fulfilling, finite
LIS L = 〈D, I(D),L〉 that satisfies ϕ such that |D| ≤
|RE Q(ϕ)|k · (2 · (m2 + m) · |RE Q(ϕ)| + 1) · k + k − 1.

Proof Let L = 〈D, I(D),L〉 be any finite fulfilling LIS that
satisfies ϕ. If |D| ≤ |RE Q(ϕ)|k ·(2 ·(m2+m)| ·RE Q(ϕ)|+
1) · k + k − 1, then we are done. Otherwise, by an applica-
tion of the pigeonhole principle, for at least one sequence
RE Q(σ ) of length k, we have that RE Q(σ ) is abundant. In
this case, we apply Lemma 2 sufficiently many times to get
the requested maximum length. ��

To deal with formulae that are satisfiable only over infi-
nite models, we provide these models with a finite periodic
representation, and we bound the lengths of their prefix and
period.

Definition 7 A LIS L = 〈D, I(D),L〉 is ultimately periodic,
with prefix L , period P , and threshold k < P if, for every
interval [i, j],

– if i ≥ L , then L([i, j]) = L([i + P, j + P]);
– if j ≥ L and δ(i, j) > k, then L([i, j]) = L([i, j + P]).
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It is worth noticing that, in every ultimately periodic
LIS, RE Q(i) = RE Q(i + P), for i ≥ L , and that every
ultimately periodic LIS is finitely presentable: it suffices
to define its labeling only on the intervals [i, j] such that
j < L + 2 · P + k; thereafter, it can be uniquely extended
by periodicity. It can be easily shown that a finite LIS can be
recovered as a special case of ultimately periodic LIS.

Lemma 3 Let ϕ be an MPNL formula and L = 〈N, I(N),L〉
be an infinite fulfilling LIS over N that satisfies ϕ. Then,
there exists an infinite ultimately periodic fulfilling LIS L∗ =
〈N, I(N),L∗〉 over N that satisfies ϕ.

Proof First of all, let [b, e] be the interval satisfying ϕ in
L. We define the set RE Qin f (ϕ) as the subset of RE Q(ϕ)
containing all and only the sets of requests that occur infi-
nitely often in L. Let L ,M ∈ N be such that the follow-
ing conditions are met: (i) L ≥ e; (ii) for each point r ≥
L , RE Q(r) ∈ RE Qin f (ϕ); (iii) each set of requests R ∈
RE Qin f (ϕ) occurs at least m2 + m times before L and at
least m2 +m times between L + k and M ; (iv) for each point
i < L and any formula ♦rτ ∈ RE Q(i), τ is satisfied on
some interval [i, j], with j < M ; and (v) the k-sequences of
requests starting at L and at M are the same.

We put P = M − L . By condition (iii), P > k. We build
an infinite ultimately periodic structure L over the domain N

with prefix L , period P , and threshold k. As a first step, for
all points d < M , we put RE Q(d) = RE Q(d). Then, for
all points M + n, with 0 ≤ n < P , we put RE Q(M + n) =
RE Q(L + n) [by condition (v), this is already the case for
0 ≤ n < k], and, for all points M + P + n, with 0 ≤ n < k,
we put RE Q(M + P + n) = RE Q(L + n).

The labeling is defined as follows.
For all intervals [i, j] such that j < M , we put L([i, j]) =

L([i, j]). As for intervals [i, j], with M ≤ j < M + P , we
must distinguish different cases:

(a) if i ≥ M , we put L([i, j]) = L([i − P, j − P]);
(b) if i < M (and thus RE Q(i) = RE Q(i)), we must

distinguish three sub-cases:

(b1) if δ(i, j) ≤ k (and thus, by condition (v),
RE Q( j) = RE Q( j)), then we put L([i, j]) =
L([i, j]);

(b2) if k < δ(i, j) ≤ k + P , we put L([i, j]) =
L([i, h]) for some h such that RE Q( j) =
RE Q(h)(= RE Q( j − P)) and δ(i, h) > k (the
existence of such an h is guaranteed by condi-
tions (ii) and (iii); if M ≤ j < M + k, we can
take h = j);

(b3) if δ(i, j) > k + P , we put L([i, j]) = L([i, j −
P]).

As for intervals [i, j], with M + P ≤ j < M + P + k, we
must distinguish three cases:

(1) if i ≥ M , we put L([i, j]) = L([i − P, j − P]);
(2) if i < M and δ( j, i) > P+k, then L([i, j]) = L([i, j−

P])
(3) if i < M and δ( j, i) ≤ P + k, then L([i, j]) =

L([i ′, j]), for some i ′ such that i ′ < L and RE Q(i ′)(=
RE Q(i ′)) = RE Q(i) [the existence of such an i ′ is
guaranteed by condition (iii)].

The above construction labels all subintervals of [0,M+P+
k] in a way that is consistent with the definition of LIS, but
that is not necessarily fulfilling. The labels of intervals [i, j],
with j < M , remain unchanged and thus requests of points
i < L are not critical, as, by condition (iv), every request
of every such point is satisfied on some interval [i, j], with
j < M . This is not the case with L ≤ i ≤ M . Indeed,
it may happen that, for some point L ≤ i ≤ M and some
formula ♦rψ ∈ RE Q(i), there is no interval satisfying ψ
in L (the only intervals satisfying it in L being of the form
[i, j], with j > M + k). We fix such defects as follows.
Since RE Q(i) = RE Q(i), there exists a point j > i such
that ψ ∈ L([i, j]) in L. By condition (iii), there exist at least
m2 + m points between M + k and M + P with the same
set of requests as j . We proceed exactly as in the proof of
Lemma 2: we fix the defect by choosing a point d ′ in between
M +k and M + P and building a new LIS L1, which is iden-
tical to L but for the labeling of the interval [i, d ′] (we put
L1([i, d ′]) = L([i, d])). By applying such a repair procedure
to each defect in a systematic manner, e.g., starting from the
defect closest to the origin and then moving from left to right,
we generate a finite sequence of LISs L1,L2, . . . ,Lr , the last
of which is such that every request of every point i ≤ M is
fulfilled before M + P .

The ultimately periodic fulfilling LIS L∗ is obtained from
Lr by completing the specification of the labeling of the inter-
vals in I(N) in such a way that the conditions of Definition 7
for an ultimately periodic LIS with prefix L , period P , and
threshold k are satisfied. Formally, for every i ≥ M + P + k
we put RE Q∗(i) = RE Q∗(i − n · P), where n is the least
non-negative integer such that i−n·P < M+P+k. Then, for
every interval [i, j] such that j ≥ M+P+k, if δ(i, j) ≤ P+
k, then we put L∗([i, j]) = L∗([i−n·P, j−n·P]), where n is
the least non-negative integers such that j−n·P < M+P+k
(notice that, since δ(i, j) ≤ P+k, it also holds i−n ·P ≥ L);
otherwise, we put L∗([i, j]) = L∗([i−n·P, j−q ·P]), where
n and q are respectively the least non-negative integers such
that L ≤ i −n · P < M and M+k ≤ j −q · P < M+ P+k
(notice that δ([i−n · P, j−q · P]) > k). It is straightforward
to check that the labeling L∗ respects all length constraints,
and that the resulting structure L∗ = 〈N, I(N),L∗〉 is an
ultimately periodic fulfilling LIS satisfying ϕ on [b, e]. ��
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Theorem 2 (Small Periodic Model Theorem) If ϕ is any sat-
isfiable formula of MPNL, then there exists a fulfilling, ulti-
mately periodic LIS satisfying ϕ such that both the length L
of the prefix and the length P of the period are less or equal
to |RE Q(ϕ)|k · (2 · (m2 + m) · |RE Q(ϕ)| + 1) · k + k − 1.

Proof Existence of an ultimately periodic fulfilling LIS is
guaranteed by Lemma 3. The bound on the prefix and of the
period can be proved by exploiting Lemma 2. ��
Corollary 1 The satisfiability problem for MPNL, interpret-
ed over N, is decidable.

The results of this section immediately give a double
exponential time non-deterministic procedure for check-
ing the satisfiability of any MPNL-formula ϕ. Such a pro-
cedure non-deterministically checks models whose size is
in general O(2k·|ϕ|), where |ϕ| is the length of the for-
mula to be checked for satisfiability. It has been shown in
[11] that, in the case in which k is represented in binary,
the right-neighborhood fragment of MPNL is complete
for the class EXPSPACE. This means that, in the general
case, the complexity for MPNL is located somewhere in
between EXPSPACE and 2NEXPTIME (the exact com-
plexity is still an open problem). It is worth noticing that,
whenever k is a constant, it does not influence the com-
plexity class and thus, since we have a NTIME(2|ϕ|) pro-
cedure for satisfiability and a NEXPTIME-hardness result
[14], we can conclude that MPNL is NEXPTIME-complete.
Similarly, when k is expressed in unary, the value of k
increases linearly with the length of the formula and thus
NTIME(2k·|ϕ|)=NTIME(2|ϕ|2 ); therefore, as in the previous
case, MPNL is NEXPTIME-complete.

5 MPNL and two-variable fragments of first-order logic
for (N,<, s)

5.1 PNL and two-variable fragments of first-order logic

We start with a summary of results from [10], which will
then be extended to MPNL. Let us denote by FO2[=] the
fragment of first-order logic with equality whose language
contains only two distinct variables. Moreover, we denote the
formulae of FO2[=] by α, β, . . . For example, the formula
∀x(P(x) → ∀y∃x Q(x, y)) belongs to FO2, while the for-
mula∀x(P(x)→∀y∃z(Q(z, y)∧Q(z, x))) does not. We first
focus our attention on the extension FO2[=,<] of FO2[=]
over a purely relational vocabulary {=,<, P, Q, . . .} includ-
ing equality and a distinguished binary relation< interpreted
as a linear order. Since atoms in two-variable fragments may
involve at most two distinct variables, we can further assume,
without loss of generality, that the arity of every relation in
the considered vocabulary is exactly 2. Let x and y be the

two variables of the language. The formulae of FO2[=,<]
can be defined recursively as follows:

α ::= A0 | A1 | ¬α | α ∨ β | ∃xα | ∃yα

A0 ::= x = x | x = y | y = x | y = y | x < y | y < x

A1 ::= P(x, x) | P(x, y) | P(y, x) | P(y, y),

where A1 deals with (uninterpreted) binary predicates. For
technical convenience, we assume that both variables x and
y occur as (possibly vacuous) free variables in every formula
α ∈ FO2[=,<], that is, α = α(x, y).

Formulae of FO2[=,<] are interpreted over relational
models of the form M = 〈D, V 〉, where D = 〈D,<〉 is a
linearly ordered set and V is a valuation function that assigns
to every binary relation P a subset of D× D. When we eval-
uate a formula α(x, y) on a pair of elements a, b, we write
α(a, b) for α[x := a, y := b].

The decidability of the satisfiability problem for FO2 with-
out equality has been proved by Scott [37] by means of
satisfiability-preserving reduction of any FO2-formula to a

formula of the form ∀x∀yψ0 ∧
m∧

i=1
∀x∃yψi , which belongs

to the Gödel’s prefix-defined class of first-order formulae,
whose satisfiability problem was shown to be decidable by
Gödel [6].

Later on, Mortimer extended this decidability result by
including equality in the language [31]. Mortimer’s result
has been improved by Grädel, Kolaitis, and Vardi who low-
ered the complexity [23]. Finally, by building on techniques
from [23] and taking advantage of an in-depth analysis of the
basic 1-types and 2-types in FO2[=,<]-models, Otto proved
the decidability of FO2[=,<] over various classes of orders,
including N. In [10], Bresolin et al. show that FO2[=,<] is
expressively complete with respect to PNLπ . In the follow-
ing, we extend this expressive completeness result (in the
case of natural numbers) to MPNL.

5.2 Comparing the expressive power of interval and
first-order logics

There are various ways to compare the expressive power of
different logics. The one we use in this paper is comparing
logics with respect to properties they can express. In doing
this, we distinguish two different cases: the case in which
we compare two interval logics on the same class of models,
e.g., different fragments of MPNL, and the case in which we
compare an interval logic with a first-order logic, e.g., MPNL
and a suitable extension of FO2[=,<].

Given two interval logics L and L’ interpreted in the same
class of models C, we say that L’ is at least as expressive as
L (with respect to C), denoted by L�CL’, if there exists an
effective translation τ from L to L’ (inductively defined on
the structure of formulae) such that for every model M in
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C, any interval [i, j] in the model, and any formula ϕ of L,
M, [i, j] � ϕ if and only if M, [i, j] � τ(ϕ). Furthermore,
we say that L’ is as expressive as L, denoted by L’≡CL, if
both L’�CL and L�CL’, and we say that L’ is strictly more
expressive than L, denoted by L ≺CL’, if L �CL’ and L’ ��CL.
Finally, we say that two logics are incomparable if no one of
the above cases applies. In the following, we will omit the C
subscript when it will be clear from the context.

When we compare interval logics with first-order logics
interpreted in relational models, the above criteria are no
longer adequate, since we need to compare logics which are
interpreted in different types of model (interval models and
relational models). We deal with this complication by fol-
lowing the approach outlined by Venema in [39]. We first
define suitable model transformations (from interval models
to relational models and vice versa) and then we compare
the expressiveness of interval and first-order logics modulo
these transformations. In order to define the mapping from
interval models to relational models, we associate a binary
relation P with every propositional variable p ∈ AP of the
considered interval logic, as in the following definition.

Definition 8 [10] Let M = 〈D, I(D), VM 〉 be an interval
model. The corresponding relational model η(M) is a pair
of the type 〈D, Vη(M)〉, where for all p ∈ AP, Vη(M)(P) =
{(i, j) ∈ D × D : [i, j] ∈ VM (p)}.

To define the mapping from relational models to interval
ones, we have to solve a technical problem: the truth of for-
mulae in interval models is evaluated only on ordered pairs
[i, j], with i ≤ j , while in relational models there is no
such constraint. To deal with this problem, we associate two
atomic propositions p≤ and p≥ of the interval logic with
every binary relation P .

Definition 9 [10] Let M = 〈D, VM〉 be a relational model.
The corresponding interval model ζ(M) is a triple 〈D, I(D),
Vζ(M)〉 such that for any binary relation P and any interval
[i, j], we have that [i, j] ∈ Vζ(M)(p≤) iff (i, j) ∈ VM(P)
and that [i, j] ∈ Vζ(M)(p≥) iff ( j, i) ∈ VM(P).

Therefore, given an interval logic LI and a first-order logic
LF O , we say that LF O is at least as expressive as LI , denoted
by LI � LF O , if there exists an effective translation τ from
LI to LF O such that for any interval model M , any interval
[i, j], and any formula ϕ of LI , M, [i, j] � ϕ if and only if
η(M) |� τ(ϕ)(i, j). Conversely, we say that LI is at least as
expressive as LF O , denoted by LF O � LI , if there exists an
effective translation τ ′ from LF O to LI such that for any rela-
tional model M, any pair (i, j) of elements, and any formula
ϕ of LF O , M |� ϕ(i, j) if and only if ζ(M), [i, j] � τ ′(ϕ)
if i ≤ j or ζ(M), [ j, i] � τ ′(ϕ) otherwise. We say that LI is
as expressive as LF O , denoted by LI ≡ LF O , if LI � LF O

and LF O � LI . LI ≺ LF O and LF O ≺ LI are defined as
expected.

It should be clear from the context which one of the above
notions we use each time: in the rest of this section, we
will compare first-order logics with interval ones, while, in
Sect. 6, we will compare different interval logics to each
other.

5.3 The logic FO2[N,=,<, s]

As we already pointed out, the relationships between PNLπ

and FO2[=,<]have been investigated by Bresolin et al. [10].

Theorem 3 PNLπ ≡ FO2[=,<], when interpreted over any
class of linearly ordered sets.

We consider now the extension of FO2[=,<]over N

with the successor function s, denoted by FO2[N,=,<, s].
The terms of the language FO2[N,=,<, s] are of the
type sk(z), where z ∈ {x, y} and sk(z) denotes z when
k=0 and s(s(. . . s︸ ︷︷ ︸

k

(z) . . .)) when k > 0. Formulae of

FO2[N,=,<, s] can be defined as in the case of the logic
FO2[=,<], mutatis mutandis. Using 2-pebble games and a
standard model-theoretic argument, it is possible to prove that
FO2[N,=,<, s] is strictly more expressive than FO2[=,<].
That result, however, is also a direct consequence of the
decidability and expressive completeness results given in
[10] and in this paper.

Theorem 4 The satisfiability problem for FO2[N,=,<, s]
is undecidable.

Proof Let O = {(i, j) : i, j ∈ N∧0 ≤ i ≤ j} be the second
octant of the integer plane Z×Z. The tiling problem for O is
the problem of establishing whether a given finite set of tile
types T = {t1, . . . , tk} can tile O. For every tile type ti ∈ T ,
let right (ti ), le f t (ti ), up(ti ), and down(ti ) be the colors of
the corresponding sides of ti . To solve the problem, one must
find a function f : O → T such that

right ( f (n,m)) = le f t ( f (n + 1,m)),with n < m,

and up( f (n,m)) = down( f (n,m + 1)).

Using König’s lemma, one can prove that a tiling system
tiles O if and only if it tiles arbitrarily large squares if and
only if it tiles N × N if and only if it tiles Z × Z. The unde-
cidability of the first of these tiling problems immediately
follows from that of the last one [6].

The reduction from the tiling problem for O to the sat-
isfiability problem for FO2[N,=,<, s] takes advantage of
some special relational symbols, namely, those in the set
Let = {∗, T ile, I d, I de, I db, I dd ,Corr, T1, T2, . . . , Tk}.
The reduction consists of three main steps: (i) the encod-
ing of an infinite chain that will be used to represent the tiles,
(ii) the encoding of the above-neighbor relation by means of
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(a)

(b)

Fig. 1 The encoding of the Octant Tiling Problem: a cartesian repre-
sentation, b interval representation

the relation Corr , and (iii) the encoding of the right-neighbor
relation, which will make use of the successor function. The
resulting schema is shown in Fig. 1. Pairs of successive points
(unit intervals) are used as cells to arrange the tiling, while
the relation I d is exploited to represent a row of the octant.
Any I d consists of a sequence of unit intervals, each one of
which is used either to represent a point of the plane or to
separate two I ds. In the former case, it is labeled with the
relation T ile, while, in the latter case, it is labeled with the
relation ∗. Consider now the following formulae:

y = s(x) ∧ ∗(x, y) (1)

∀x, y
∧

P∈Let

(P(x, y)→ x < y) (2)

∀x, y(y = s(x)↔ ∗(x, y) ∨ T ile(x, y)) (3)

∀x, y(∗(x, y)→ ¬T ile(x, y)) (4)

∃x(x = s(y) ∧ T ile(y, x) ∧ ∗(x, s(x))) (5)

The conjunction α1 of formulae (1), …, (5) guarantees
that there exists an infinite sequence of consecutive points
x0, x1, x2 . . .. Formula (1) is used to start the chain: it is eval-
uated over two free variables x and y, that must correspond
to two consecutive points, and it forces the predicate ∗ to be
true when evaluated over the pair (x, y).

Formula (2) forces the relational symbols in Let to hold
only over ordered pairs (x, y) such that x < y. Formu-
lae (3) and (4) guarantee that each pair xi , xi+1 is labeled
either by ∗ or by T ile. Finally, formula (5) states that
∗(x0, x1), T ile(x1, x2), and ∗(x2, x3). Now, consider the
conjunction α2 of α1 and the following formulae:

∃y(y = s2(x) ∧ I d(x, y)) (6)

∀x, y(I d(x, y)→ ∗(y, s(y))) (7)

∀x, y(I d(x, y)→ ∗(x, s(x))) (8)

∀x, y(∗(x, y)→ ∃y(s(x) < y ∧ I d(x, y))) (9)

∀x, y(I d(x, y)→ I de(s(x), y)) (10)

∀x, y(I de(x, y) ∧ s(x) < y → I de(s(x), y)) (11)

∀x, y(I d(x, s(y))→ I db(x, y)) (12)

∀x, y(I db(x, s(y)) ∧ x < y → I db(x, y)) (13)

∀x, y((I de(x, s(y)) ∨ I dd (x, s(y))) ∧ x < y → I dd (x, y))

(14)

∀x, y((I db(x, y) ∨ I de(x, y) ∨ I dd (x, y))→ ¬I d(x, y)) (15)

∀x, y
∧

ν,μ∈{b,d,e},ν �=μ
(I dν(x, y)→ ¬I dμ(x, y)). (16)

The formula α2 builds a chain of I d, in such a way that
(i) I d(x0, x2) holds, (ii) each I d is followed by another I d,
(iii) for each pair xi < x j , if I d(xi , x j ), then ∗(xi , xi+1), (iv)
if I d(xi , x j ) then ¬I d(xh, xk), for all xi ≤ xh ≤ xk ≤ x j ,
with (xi , x j ) �= (xh, xk), and (v) no pair of points is labeled
by both I dν and I dμ, with ν, μ ∈ {e, b, d} and ν �= μ. For
any pair xi , x j such that I d(xi , x j ), the relation I de (resp.,
I db, I dd ) holds over all pairs xk, x j , with xi < xk < x j

(resp., xi , xk , with xi < xk < x j , xh, xk , with xi < xh <

xk < x j ). Condition (iv) prevents two I ds from holding
over two pairs of points xi , x j and xh, xk such that either
xi < xh < xk = x j ((xh, xk) ends (xi , x j )) or xi = xh <

xk < x j ((xh, xk) begins (xi , x j )) or xi < xh < xk < x j

((xh, xk) is included in (xi , x j )). Condition (v) excludes the
existence of two pairs of points xi , x j and xh, xk such that
xh < xi < xk < x j ((xh, xk) overlaps (xi , x j )) and both
I d(xi , x j ) and I d(xh, xk) hold. Suppose, by contradiction,
that there exist two pairs of points xi , x j and xh, xk such that
(xh, xk) overlaps (xi , x j ) and both I d(xi , x j ) and I d(xh, xk)

hold. By (10) and (11), we have that I de(xi , xk) holds. More-
over, by (12) and (13), we have that I db(xi , xk) holds as
well. Thus, formula (16) is not satisfied (contradiction). As a
third step, let α3 be the conjunction of α2 with the following
formulae:

∀x, y(I d(x, y)→ Corr(s(x), s(y))) (17)

∀x, y(Corr(x, y)→ T ile(x, s(x)) ∧ T ile(y, s(y))) (18)

∀x, y(Corr(x, y) ∧ ∗(s(x), s2(x))→
T ile(y, s(y)) ∧ T ile(s(y), s2(y)) ∧ ∗(s2(y), s3(y))) (19)

∀x, y(Corr(x, y) ∧ ¬ ∗ (s(x), s2(x))→ Corr(s(x), s(y)))

(20)

∀x, y(I d(x, y)→ ¬Corr(x, y)). (21)

Let T ile(xi , x j ) and T ile(xh, xk) hold, and let x j < xh .
We say that the two tiles are above connected if and only if
Corr(xi , xh). From α3, it follows that the first tile of each
I d is above connected to the first tile of the successive I d
(formula (17)). Moreover, by taking advantage of the suc-
cessor function, we extend such a property to the other tiles
of any I d, that is, the i-th tile of an I d is above connected
to the i-th tile of the successive I d (formula (20)). Finally,
formulas (18) and (19) force each I d to have exactly one
tile less than the next one. It can be easily shown that if α3

holds, then the j-th I d provides an encoding of the j-th layer
of the octant. Now, let αT be the conjunction of α3 and the

123



256 D. Bresolin et al.

Table 1 Translation clauses from FO2
r [N,=,<, s] to MPNL

τ [x, y](sk(z) = sm(z)) = � (z ∈ {x, y}), if k = m
= ⊥ (z ∈ {x, y}), if k �= m

τ [x, y](sk(z) < sm(z)) = ⊥ (z ∈ {x, y}), if k ≥ m
= � (z ∈ {x, y}), if k < m

τ [x, y](sk(x) = sm(y))= ⊥, if k < m
= len=k−m, if k ≥ m

τ [x, y](sk(x) < sm(y))= �, if k < m
= len>k−m, if k ≥ m

τ [x, y](sm(y) < sk(x))= ⊥, if k < m
= len<k−m, if k ≥ m

τ [x, y](¬α) = ¬τ [x, y](α)

τ [x, y](α ∨ β) = τ [x, y](α) ∨ τ [x, y](β),
τ [x, y](∃xβ) = ♦r (τ [y, x](β)) ∨ �r ♦l (τ [x, y](β)),
τ [x, y](∃yβ) = ♦l (τ [y, x](β)) ∨ �l♦r (τ [x, y](β)),
τ [x, y](P(sk(x), sm(x))) = ♦l♦r (len=k ∧ ♦r (len=m−k ∧ p≤)), if k < m

= ♦l♦r (len=k ∧ ♦r (len=0 ∧ p≤ ∧ p≥)), if k = m
= ♦l♦r (len=m ∧ ♦r (len=k−m ∧ p≥)), if k > m

τ [x, y](P(sk(y), sm(y))) = ♦r (len=k ∧ ♦r (len=m−k ∧ p≤)), if k < m
= ♦r (len=k ∧ ♦r (len=0 ∧ p≤ ∧ p≥)), if k = m
= ♦r (len=m ∧ ♦r (len=k−m ∧ p≥)), if k > m

τ [x, y](P(x, y)) = p≤,
τ [x, y](P(y, x)) = p≥

following formulae:

∀x, y(T ile(x, y)→
∨

T∈T
T (x, y) ∧

∧

T,T ′∈T , T �=T ′
¬(T (x, y) ∧ T ′(x, y)) (22)

∀x, y(T (x, y) ∧ T ile(s(x), s(y))→
∨

T ′∈T , right (T )=le f t (T ′)
T ′(s(x), s(y))) (23)

∀x, y(Corr(x, y) ∧ T (x, s(x)))→
∨

T ′∈T , up(T )=down(T ′)
T ′(y, s(y))). (24)

In view of the above steps, it is straightforward to check that,
given any set of tile types T , the formula αT is satisfiable if
and only if T can tile O. Thus, the satisfiability problem of
FO2[N,=,<, s] is undecidable. ��

5.4 Expressive completeness of MPNL for a fragment
of FO2[N,=,<, s]

Let FO2
r [N,=,<, s] be the fragment of FO2[N,=,<, s]

obtained by imposing the following restriction: if both vari-
ables x and y occur in the scope of (an occurrence of) a binary
relation other than = and <, then the successor function s
cannot occur in the scope of that occurrence. As an exam-
ple, each of the formulae P(sk(x), sm(x)), P(x, y), sk(x) =
sm(y), and sk(x) < sm(y) belongs to FO2

r [N,=,<, s], but
none of P(x, s(y)), P(s(x), y), and, in general, P(sn(x),
sm(y)) and P(sn(y), sm(x)), with n + m > 0, does.
It is easy to check that the encoding used to show that
FO2[N,=,<, s] is undecidable makes an essential use of for-
mulae of the type that we have excluded from the fragment
FO2

r [N,=,<, s](e.g., see formula 10). By using 2-pebble
games and a standard model-theoretic argument, one can
show that:

FO2[=,<] ≺ FO2
r [N,=,<, s] ≺ FO2[N,=,<, s].

To prove that MPNL and FO2
r [N,=,<, s]are expressively

equivalent, we first define the standard translation STx,y of

the former into the latter as

STx,y(ϕ) = x ≤ y ∧ ST ′
x,y(ϕ),

where x, y are the two first-order variables in
FO2

r [N,=,<, s], and

ST ′
x,y(p) = P(x, y);

ST ′
x,y(len=k)− sk(x) = y;

ST ′
x,y(ϕ ∨ ψ)− ST ′

x,y(ϕ) ∨ ST ′
x,y(ψ);

ST ′
x,y(¬ϕ)−¬ST ′

x,y(ϕ);
ST ′

x,y(♦lϕ)− ∃y(y ≤ x ∧ ST ′
y,x (ϕ));

ST ′
x,y(♦rϕ)− ∃x(y ≤ x ∧ ST ′

y,x (ϕ)).

Lemma 4 For any MPNL-formula ϕ, any interval model
M = 〈N, I(N), V 〉, and any interval [a, b] in M:

M, [a, b] � ϕ iff η(M) |� STx,y(ϕ)[x := a, y := b].

Proof Routine structural induction on ϕ. ��
It is worth noticing that, given an MPNL-formula ϕ, the

length of the standard translation STx,y(ϕ) depends not only
on |ϕ|, but also on the maximum constant k appearing in
length constraints, as atomic propositions of the form len=k
are translated by nesting k-times the successor function s.
Hence, the exact complexity of the translation depends on
how metric constraints are encoded. When k is constant or
encoded in unary, the standard translation is polynomial in
the length of |ϕ|; when k is encoded in binary, we have that
k = O(2|ϕ|), and thus the standard translation is exponential
in |ϕ|.

The inverse translation τ from FO2
r [N,=,<, s] to MPNL

is given in Table 1. In this case, the choice on the way in which
metric constraints are encoded does not affect the complex-
ity: the translation is always exponential in the size of the
input formula, due to the clauses for the existential quanti-
fier. The following lemma proves that it is correct.

Lemma 5 For any formula α(x, y) of FO2
r [N,=,<, s], any

FO2
r [N,=,<, s]-model M = 〈N, VM〉 and any pair i, j ∈ N,

with i ≤ j :
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(i) M |� α(i, j) if and only if ζ(M), [i, j] � τ [x, y](α),
and

(i i) M |� α( j, i) if and only if ζ(M), [i, j] � τ [y, x](α).

Proof The proof is by induction on the structural complexity
of α (for the sake of simplicity, we only prove claim (i); claim
(ii) can be proved similarly):

– α = (sk(x) = sm(x)). If k = m, then both α and its
translation τ [x, y](α) = � are true, while if k �= m, then
α and τ [x, y](α) = ⊥ are both false; the same applies
when y is used instead of x ;

– α = (sk(x) < sm(x)). If k ≥ m, then bothα and its trans-
lation τ [x, y](α) = ⊥ are false, while if k < m, then α
and τ [x, y](α) = � are both true; the same applies when
y is used instead of x ;

– α = (sk(x) = sm(y)). Let i < j . If k < m, then sk(i) <
sm( j), and, since M |� α(i, j) if and only if sk(i) =
sm( j), we have that M �|� α(i, j). On the other hand, it is
immediate to see that τ [x, y](α) = ⊥. If m ≤ k, sk(i) =
sm( j) if and only if j − i = k − m, that is, M |� α(i, j)
if and only if ζ(M), [i, j] |� len=k−m. Likewise for the
cases α = (sm(y) = sk(x)), α = (sk(x) < sm(y)), and
α = (sm(y) < sk(x));

– α = (P(sk(x), sm(x))). Let i < j . If k < m, then
sm(i) − sk(i) = m − k and sk(i) − i = k. Thus,
M |� α(i, j) if and only if P is true over the pair
(sk(i), sm−k(sk(i))), that is, M |� α(i, j) if and only
if ζ(M), [i, j] � ♦l♦r (len=k ∧ ♦r (len=m−k ∧ p≤)). A
similar reasoning path can be followed for the case of
m < k. If k = m, then sk(i) = sm(i), and thus P must
be true over a point-interval, specifically, identified by
the pair (sk(i), sk(i)). Hence, we have that M |� α(i, j)
if and only if ζ(M), [i, j] � ♦l♦r (len=k ∧ ♦r (len=0 ∧
p≤ ∧ p≥)). Likewise, when y substitutes x ;

– α = P(x, y) or α = P(y, x). The claim follows from
the valuation of p≤ and p≥;

– The Boolean cases are straightforward;
– α = ∃xβ. Suppose that M |� α(i, j). Then, there is

l ∈ M such that M |� β(l, j). There are two (non-
exclusive) cases: j ≤ l and l ≤ j . If j ≤ l, by
the inductive hypothesis, we have that ζ(M), [ j, l] �
τ [y, x](β) and thus ζ(M), [i, j] � ♦r (τ [y, x](β)). Like-
wise, if l ≤ j , by the inductive hypothesis, we have
that ζ(M), [l, j] � τ [x, y](β) and thus for every r
such that j ≤ r, ζ(M), [ j, r ] � ♦l(τ [x, y](β)), that is,
ζ(M), [i, j] � �r♦l(τ [x, y](β)). Hence we have that
ζ(M), [i, j] � ♦r (τ [y, x](β)) ∨ �r♦l(τ [x, y](β)), that
is, ζ(M), [i, j] � τ [x, y](α). For the converse direction,
it suffices to note that the interval [i, j] has at least one
right neighbor, viz. [ j, j], and thus the above argument
can be reversed;

– α = ∃yβ. Analogous to the previous case. ��

Theorem 5 For any formulaα(x, y) of FO2
r [N,=,<, s] and

any FO2
r [N,=,<, s]-model M = 〈N, VM〉, M |� ∀x∀y

α(x, y) if and only if ζ(M) � τ [x, y](α) ∧ τ [y, x](α). As a
consequence, FO2

r [N,=,<, s]≡ MPNL.

From Theorem 5, decidability of FO2
r [N,=,<, s]imme-

diately follows. A decision procedure for it can be obtained by
first translating the input formula to MPNLand then apply-
ing the decision procedure for MPNLdescribed in Sect. 4.
Since the length of the translated formula is exponential,
no matter how we encode the metric constants in MPNL,
the lowest complexity of the procedure is obtained when
we choose to use the unary encoding: the satisfiability prob-
lem for FO2

r [N,=,<, s] is thus in 2NEXPTIME. A lower
bound on the complexity can be given by observing that
FO2[=,<] is NEXPTIME-hard (the EXPSPACE-hardness
result given for MPNLin Sect. 4 cannot be transferred to
FO2

r [N,=,<, s], since it relies on the binary encoding).

5.5 Extension of MPNL expressively complete
for FO2[N,=,<, s]

To cover full FO2[N,=,<, s], MPNL can be extended with
additional diamond modalities that shift respectively the
beginning, the end, and both endpoints of the current interval
to the right by a prescribed distance:

– M, [i, j] � ♦+k
e ψ iff M, [i, j + k] � ψ ;

– M, [i, j] � ♦+k
b ψ iff (i + k ≤ j and M, [i + k, j] � ψ)

or (i + k > j and M, [ j, i + k] � ψ);
– M, [i, j] � ♦+k

be ψ iff M, [i + k, j + k] � ψ .

Let MPNL+ be the resulting language. The standard trans-
lation ST ′

x,y of MPNL-formulae into FO2[N,=,<, s] can be
extended to MPNL+ as follows:

ST ′
x,y(♦+k

e ψ) = ST ′
x,y(ψ)[sk(y)/y];

ST ′
x,y(♦+k

b ψ) = ST ′
x,y(ψ)[sk(x)/x];

ST ′
x,y(♦+k

be ψ) = ST ′
x,y(ψ)[sk(x)/x, sk(y)/y],

where α[t/z] denotes the result of the simultaneous substi-
tution of the term t for all free occurrences of z in α.

It is immediate to see that if ST ′
x,y(ψ)∈FO2[N,=,<, s],

then ST ′
x,y(ψ)[sk(x)/x, sm(y)/y] ∈ FO2[N,=,<, s] for

any k, m ∈ N, and thus the translation of all formulae of
MPNL+ remains within FO2[N,=,<, s]. Conversely, we
can extend the translation τ from FO2

r [N,=,<, s] to MPNL
to a translation from FO2[N,=,<, s] to MPNL+ by adding
the clauses for the atomic formulae in Table 2. The extensions
of the expressive completeness results are routine.

To conclude this subsection, we recall that Venema [39]
has shown in a similar way that the interval temporal logic
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Table 2 The translation from FO2[N,=,<, s] to MPNL+: the addi-
tional clause for τ [x, y](P(sk(x), sm(y)))

τ [x, y](P(sk(x), sm(y))) =

♦+k
be ♦+(m−k)

e p≤, if k < m

(len>0 ∧ ♦+k
be p≤) ∨ (len=0 ∧ ♦+k

be (p
≤ ∧ p≥)), if k = m

(len>k−m ∧ ♦+m
be ♦+(k−m)

b p≤)∨
(len=k−m ∧ ♦+m

be ♦+(k−m)
b (p≤ ∧ p≥))∨

(len<k−m ∧ ♦+m
be ♦+(k−m)

b p≥), if k > m

Fig. 2 Expressive completeness results for interval logics

CDT, involving binary modalities based on the ternary inter-
val relation ‘chop’ and its residuals (denoted respectively by
C, D, and T) is expressively complete for the fragment of
first-order logic with equality with three variables of which
at most two are free, denoted by FO3

2[=,<]. Note that, when
interpreted in N, the successor function is definable in this
fragment, which therefore strictly extends FO2[N,=,<, s].
The resulting hierarchy of expressive completeness results
is depicted in Fig. 2. Notice also that all the proposed trans-
lations from the first-order languages into interval ones are
exponential in the size of the input formula.2

6 Classifying the expressive power of MPNL

In the previous sections, we have studied the expressiveness
and the computational properties of MPNL. A natural ques-
tion is whether there exist other interesting variants of PNL
that deserve to be analyzed. In this section, we define a family
of metric languages, and we compare their expressive power.
As it will be proved in the following, MPNL is able to encode
all the languages in the family, thus being the most expressive
metric extension of PNL.

Let ∼∈ {<,≤,=,≥,>}, k ∈ N, and k′ ∈ N ∪
{∞}. We consider a set of metric modalities of the form
♦∼k

r , ♦[k,k′]
r , ♦(k,k

′)
r , ♦[k,k′)

r , and ♦(k,k
′]

r , as well as their

inverses ♦∼k
l , ♦[k,k′]

l , ♦(k,k
′)

l , ♦[k,k′)
l , and ♦(k,k

′]
l , with the

following semantics:

2 At present, we do not know whether a polynomial translation for any
of these cases exists.

– M, [i, j] � ♦∼k
r ψ iff there exists m ≥ j such that

δ( j,m) ∼ k and M, [ j,m] � ψ ;
– M, [i, j] � ♦[k,k′]

r ψ iff there exists m ≥ j such that
k ≤ δ( j,m) ≤ k′ and M, [ j,m] � ψ ;

– M, [i, j] � ♦(k,k
′)

r ψ iff there exists m ≥ j such that
k < δ( j,m) < k′ and M, [ j,m] � ψ .

The semantic clauses for♦[k,k′)
r and♦[k,k′)

r , as well as those
for the inverse modalities, are defined likewise. It is easy to
show that all metric modalities are definable by exploiting
the length constraints, e.g.:

♦∼k
r ψ := ♦r (ψ ∧ len∼k),

and thus that all languages in the family are fragments of
MPNL. Let κ ∈ { < k,≤ k,= k,≥ k,> k, [k, k′], (k, k′),
[k, k′), (k, k′]}, and let ♦κo be any of the two modal operators
♦κl and ♦κr . The dual modalities are defined as usual, that
is, �κ

oψ = ¬♦κo¬ψ . Let ε be a special symbol such that
♦εk

r = ♦r and ♦εk
l = ♦l , for any k, and let S⊆{ε,<,≤,=,

≥,>, [], (), [), (]}. We will denote by MPNLS the language
that features:

(i) the modal operators ♦∼k
l and ♦∼k

r for each k ∈ N and
∼∈ S ∩ {ε,<,≤,=,≥,>};

(ii) the modal operators ♦[k,k′]
l and ♦[k,k′]

r (resp., ♦(k,k
′)

l

and ♦(k,k
′)

r , ♦[k,k′)
l and ♦[k,k′)

r , ♦(k,k
′]

l and ♦(k,k
′]

r ), for
each k ∈ N, k′ ∈ N ∪ {∞}, if [] ∈ S (resp., () ∈
S, [) ∈ S, (] ∈ S).

We will denote by MPNLS
l the extension of MPNLS with

the length constraints (this means that MPNLεl is exactly the
language MPNL of the previous sections). For the sake of
simplicity, we will omit the curly brackets in the superscript;
for example, if S = {<,>}, we will write simply MPNL<,>

instead of MPNL{<,>}. Thus, we have that MPNLε ≡ PNL
and MPNLεl ≡ MPNL. Moreover, by the following lemma,
we can reduce the number of interesting fragments:

Lemma 6 If o ∈ {r, l}, whenever ♦<k
o (resp., ♦[k,k′]

o ,♦(k,k
′]

o )

is included in the language, then ♦≤k
o (resp., ♦[k,k′)

o ,♦(k,k
′)

o )
can be defined, and the other way around.

Proof See Table 3, left column. ��
Thus, without loss of generality, from now on we can focus

our attention on languages characterized by subsets of the
set {ε,<,=,>,≥, [], ()}. As we will see, some languages
will be expressive enough to embed non-metric PNL, while
some others will not. We will use the expression weak Metric
Propositional Neighborhood Logics (wMPNL) to denote the
latter.

In order to compare the expressive power of interval lan-
guages, we use two standard techniques in modal logic, based
on bisimulation [4] and bisimulation games [22].
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Table 3 Equivalences between metric operators, where o ∈ {r, l}

♦<k
o ψ ⇔ ⊥ (k = 0) ♦oψ ⇔ ♦≥0

o ψ

♦≤k−1
o ψ (k > 0) ♦[0,∞]

o ψ

♦[k,k′]
o ψ ⇔ ♦[k,k′)

o ψ (k′ = ∞) ♦<k
o ψ ⇔ ♦=0

o ψ ∨ . . . ∨ ♦=k−1
o ψ

♦[k,k′+1)
o ψ (k′ �= ∞) ♦=k

o ψ ⇔ ♦[k,k]
o ψ

♦[k,k′)
o ψ ⇔ ⊥ (k′ = 0) ♦>k

o ψ ⇔ ♦≥k+1
o ψ

♦[k,k′−1]
o (k′ > 0) ♦(k,∞)

o ψ

♦[k,k′]
o ψ (k′ = ∞) ♦≥k

o ψ ⇔ ♦[k,∞]
o ψ

♦(k,k′]o ψ ⇔ ♦(k,k′+1)
o ψ (k′ �= ∞) ♦(k,k′)o ψ ⇔ ⊥ (k′ ≤ 1)

♦(k,k′)o ψ (k′ = ∞) ♦[k+1,k′−1]
o ψ (k′ > 1)

♦(k,k′)o ψ ⇔ ⊥ (k′ ≤ 1) ♦[k+1,k′]
o ψ (k′ = ∞)

♦(k,k′−1]
o ( k′ > 1)

♦(k,k′]o ψ (k′ = ∞)

Given an interval logic L, for each modality ♦ in the lan-
guage of L, we denote by R♦ the (interval) relation on which
♦ is based. Now, given a pair of L-models M,M ′, with M =
〈D, I(D), V 〉 and M ′ = 〈D′, I(D′), V ′〉, we say that a relation
Z ⊆ I(D) × I(D′) is a bisimulation if ([a, b], [a′, b′]) ∈ Z
implies that (i) [a, b] and [a′, b′] satisfy the same atomic
propositions, (ii) for every relation R♦ and every interval
[c, d] such that [a, b] R♦ [c, d], there exists an interval [c′, d ′]
such that [a′, b′] R♦ [c′, d ′] and [c, d], [c′, d ′] ∈ Z , and (iii)
for every relation R♦ and every interval [c′, d ′] such that
[a′, b′] R♦ [c′, d ′], there exists an interval [c, d] such that
[a, b] R♦ [c, d] and [c, d], [c′, d ′] ∈ Z . Interval logics are
invariant under bisimulation, as it is the case with modal logic
[4].

Proposition 1 Let L be a language for interval logics, M
and M ′ two L-models, and Z ⊆ I(D)× I(D′) be a bisimula-
tion. Then, every pair ([a, b], [a′, b′]) ∈ Z is such that [a, b]
and [a′, b′] satisfy the same L-formulae.

The above proposition can be proved by induction on the
structural complexity of formulae.

The notion of bisimulation game can be viewed as a gen-
eralization of the notion of bisimulation. In the context of
interval logics, we define the notion of a N -moves bisimu-
lation game (for the interval logic L) to be played by two
players, Player I and Player II, on a pair of L-models M,M ′,
with M = 〈D, I(D), V 〉 and M ′ = 〈D′, I(D′), V ′〉. The game
starts from a given initial configuration, where a configu-
ration is a pair of intervals ([a, b], [a′, b′]), with [a, b] ∈
I(D) and [a′, b′] ∈ I(D′). A configuration ([a, b], [a′, b′]) is
matching if [a, b] and [a′, b′] satisfy the same atomic prop-
ositions in their respective models. The moves of the game
depend on the modal operators of L: for each modality ♦
in the language of L, Player I can play the corresponding

move: choose M (resp., M ′), and an interval [c, d] (resp.,
[c′, d ′]) such that [a, b] R♦ [c, d] (resp., [a′, b′] R♦ [c′, d ′]).
Player II must reply by choosing an interval [c′, d ′] (resp.,
[c, d]) in M ′ (resp., M), which leads to the new configuration
([c, d], [c′, d ′]). If after any given round the current config-
uration is not matching, Player I wins the game; otherwise,
after N rounds, Player II wins the game. Intuitively, Player
II has a winning strategy in the N -moves bisimulation game
on the models M and M ′ with a given initial configuration
if she can win regardless of the moves played by Player I;
otherwise, Player I has a winning strategy. A formal defini-
tion of winning strategy can be found in [22]. The following
key property of N -move bisimulation games can be proved
routinely, in analogy with similar results about bisimulation
games in modal logic [22].3

Proposition 2 Let L be a language for interval logics with
finitely many atomic propositions. For all N ≥ 0, Player II
has a winning strategy in the N-move L-bisimulation game
on M and M ′ with initial configuration ([a, b], [a′, b′]) if
and only if [a, b] and [a′, b′] satisfy the same L-formulae
with modal depth at most N .

In order to prove that a modal operator © is not defin-
able in L, it suffices to construct a pair of interval models M
and M ′ and a bisimulation (resp., a bisimulation game such
that Player II has a winning strategy) between them, relating
a pair of intervals [a, b] ∈ M and [a′, b′] ∈ M ′, such that
M, [a, b] � ©p, but M ′, [a′, b′] �� ©p.

3 In Proposition 2, we make use of the notion of modal depth of an L-
formula ϕ. Let us denote the modal depth of ϕ by mdepth(ϕ). As usual,
mdepth(ϕ) can be inductively defined as follows: (i) mdepth(p) = 0,
for each p ∈ AP; (ii) mdepth(¬ϕ) = mdepth(ϕ),mdepth(ϕ∨ψ) =
max{mdepth(ϕ),mdepth(ψ)},mdepth(♦ϕ) = mdepth(ϕ) + 1, for
each modality ♦ of the language.
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6.1 The class of wMPNL

Here, we analyze the set of languages in wMPNL. Formally,
wMPNL is the subset of MPNL defined as follows:

wMPNL = {L | L ∈ MPNL and PNL �� L}.
The following lemma states some basic results that we

will use to classify languages in wMPNL.

Lemma 7 If o ∈ {r, l}, whenever any of the modalities in

{♦≥k
o ,♦[k,k′]

o } (resp., {♦=k
o ,♦[k,k′]

o }, {♦≥k
o ,♦(k,k

′)
o ,♦[k,k′]

o }) is
included in the language, then ♦o (resp., ♦<k

o , ♦>k
o ) can

be defined. Similarly, whenever ♦[k,k′]
o is included, then

♦=k
o , ♦≥k

o , and ♦(k,k
′)

o can be defined.

Proof See Table 3, right column. ��
Theorem 6 Let Sw = {{<}, {>}, {=}, {()}, {<,=}, {>, ()}}.
We have that wMPNL = {MPNLS,MPNLS

l | S ∈ Sw}.
Proof As a preliminary step, notice that, by Lemma 7, it
immediately follows MPNL= ≡ MPNL<,= and MPNL() ≡
MPNL>,(). Thus, we can disregard the logics MPNL<,= and
MPNL>,(). Next, we show that both MPNL and MPNLS .
First, we show that both MPNLS and MPNLS

� belong to
wMPNL for each S ∈ Sw. To this end, we prove that
PNL �� MPNLS

l , for each S ∈ Sw. From this, it immedi-
ately follows that, for each S ∈ Sw, PNL �� MPNLS as well.
Moreover, by Lemma 7, we have that MPNL<l � MPNL=

l

and MPNL>l � MPNL()l , and thus it suffices to show that

PNL �� MPNL=
l and PNL �� MPNL()l .

PNL ��MPNL=
l . It is easy to show that classical, non-met-

ric modal operators of PNL can be expressed using formulae
of MPNL=

l of infinite length. For example, it is possible to
express the formula ♦r p of PNL by means the infinite for-
mulae ♦=0

r p ∨ ♦=1
r p ∨ . . .♦=i

r p ∨ . . . Nevertheless, sup-
pose, by contradiction, that there exists a finite formula ϕ ∈
MPNL=

l such that ϕ ≡ ♦r p. This means that ϕ contains
a finite number of modal operators. Let t ∈ N be the larg-
est number such that ♦=t

r or ♦=t
l occurs in ϕ, and, for any

t ∈ N, define t MPNL=
l as the restriction of MPNL=

l to the
set of modalities {♦=k

r ,♦=k
l | 0 ≤ k ≤ t}. Now, let M =

〈D = N, I(D), V 〉 and M ′ = 〈D′ = N, I(D′), V ′〉, AP =
{p}, V (p) = {[1, t+2]}, V ′(p) = ∅, and Z ⊂ I(D)×I(D′)
defined as Z = {([i, j], [i ′, j ′]) | δ(i, j) ≤ t}. It is possi-
ble to show that Z is a bisimulation for t MPNL=

l . Since
M, [1, 1] � ♦r p, M ′, [1′, 1′] �� ♦r p, and [1, 1] is Z -related
with [1′, 1′], we have a contradiction.

PNL �� MPNL()l . Again, suppose that for some ϕ ∈
MPNL()l it is the case that ϕ ≡ ♦r p. Consider M =
〈D = N, I(D), V 〉, M ′ = 〈D′ = N, I(D′), V ′〉, AP =
{p}, V (p) = {[1, 1]}, V ′(p) = ∅, and Z ⊂ I(D) ×
I(D′) defined as Z = {([i, j], [i ′, j ′]) | i �= j}. As

Fig. 3 Relative expressive power of the metric languages belonging to
wMPNL. An arrow going from L to L′ denotes that L′ is strictly more
expressive than L. Logics which are not connected through any path are
incomparable

before, Z is a bisimulation for MPNL()l . Since M, [0, 1] �
♦r p, M ′, [0′, 1′] �� ♦r p, and [0, 1] is Z -related with [0′, 1′],
we have a contradiction.

To complete the proof, we show that no other language
belongs to wMPNL, that is, neither MPNLS nor MPNLS

l
belongs to wMPNL for any S �∈ Sw. Let S⊆{ε,<,=,>,≥,
[], ()} such that S �∈ Sw. We must show that PNL � MPNLS

and PNL � MPNLS
l . Since MPNLS � MPNLS

l , it suffices
to show that PNL � MPNLS . If ε ∈ S, then clearly PNL �
MPNLS , since PNL ≡ MPNLε . If ≥∈ S or [] ∈ S, then the
result immediately follows from Lemma 7. If {<,>} ⊆ S,
then the thesis immediately follows by the fact that ♦oψ is
defined by ♦<1

o ψ ∨ ♦>0
o ψ for each o ∈ {r, l}. The rest of

the cases are consequences of the considered ones and of
previous lemmas. ��

We now establish how the various languages of wMPNL
relate to each other in terms of expressive power.

Theorem 7 The relative expressive power of the languages
of the class wMPNL is as depicted in Fig. 3, where each arrow
means that the language at the top is strictly more expressive
than the one at the bottom.

Proof By Lemma 7, we already know that MPNL< �
MPNL=, MPNL<l � MPNL=

l , MPNL> � MPNL(), and

that MPNL>l � MPNL()l . To complete the proof, it remains
to show that MPNL= �� MPNL<, MPNL=

l � MPNL<l ,

MPNL() �� MPNL>, and MPNL()l � MPNL>l . MPNL= ��
MPNL<. It suffices to show that ♦=k

r cannot be defined
in MPNL<. Suppose the contrary, and let M = 〈D =
N, I(D), V 〉, M ′ = 〈D′ = {0′}, I(D′), V ′〉, AP = {p},
V (p) = I(D), V ′(p) = I(D′) = {[0′, 0′]}, and Z =
I(D) × I(D′). It is possible to show that Z is a bi-
simulation for MPNL<. Since it holds that M, [0, 0] �
♦=1

r p, M ′, [0′, 0′] �� ♦=1
r p, and [0, 0] is Z -related to

[0′, 0′], we have a contradiction.
MPNL() �� MPNL>. For any t ∈ N, consider the lan-

guage t MPNL>, that is, as before, the restriction of MPNL>

to the set of modalities {♦>k
r ,♦>k

l | 0≤ k ≤ t}. Let N ∈N.
Moreover, let M = 〈D = N, I(D), V 〉, M ′ = 〈D′ =
N, I(D′), V ′〉, AP={p}, V (p)={[i, j] | δ(i, j) is odd and
δ(i, j) ≤ t + 1}, V ′(p) = {[i ′, j ′] | δ(i, j) is odd,
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Fig. 4 Relative expressive
power of the metric languages
belonging to MPNL. Fragments
inside the boxes belong to
wMPNL (see Fig. 3)

δ(i, j) ≤ t+1, and [i ′, j ′] �= [(a−1)′, a′]}, where a = (N−
1)·(t+1)+3, and consider the relation Z = {([i, j], [k′, l ′]) |
δ(i, j) = δ(k, l) ≤ t + 1 and [k′, l ′] �= [(a − 1)′, a′]} ∪
{([i, j], [i ′, k′]) | δ(i, j) > t + N + 1 and δ(i, k) > t +
1} ∪ {([a − 1, a], [(a − 3)′, a′]), ([a − 1, a], [(a − 1)′, (a +
2)′])} ∪ {([i, j], [(a − 1)′, a′]) | δ(i, j) = 2}. It is possi-
ble to show that Z represents a winning strategy for Player
II with initial configuration ([a, b], [a′, b′]) (for any b) in
the N -moves bisimulation game for t MPNL>. However, we
have that M, [a, b] � ♦(0,2)l p and M ′, [a′, b′] �� ♦(0,2)l p,

which means that the formula ♦(0,2)l p cannot be expressed
in the language t MPNL> for any t, N ∈ N. Thus, we have
the result.

MPNL=
l � MPNL<l , MPNL()l � MPNL>l . This is

immediate by observing that, for each o ∈ {r, l}, ♦=k
o ψ is

defined by ♦<k+1
o (len=k ∧ ψ), and that ♦(k,k

′)
o ψ is defined

by ♦>k
o (len<k′ ∧ ψ) (if k′ �= ∞) or by ♦>k

o ψ (if k′ = ∞).
From the above results, we have that MPNL< ≺ MPNL=,

MPNL<l ≡ MPNL=
l , MPNL> ≺ MPNL(), and MPNL>l ≡

MPNL()l . We show that each language in the set {MPNL<,
MPNL=,MPNL=

l } is incomparable with any language in the

set {MPNL>, MPNL(), MPNL()l }. To this end, it suffices to

show that MPNL< �� MPNL()l and MPNL> �� MPNL=
l ,

which can be done as in Theorem 6. Finally, we must show
that MPNL= ≺ MPNL=

l and MPNL() ≺ MPNL()l . It is easy

to see that MPNL= � MPNL=
l and MPNL() � MPNL()l .

To show that MPNL=
l �� MPNL=, for any t ∈ N, con-

sider the language t MPNL=, defined as before. Let N ∈ N.
Moreover, let M = 〈D = N, I(D), V 〉, M ′ = 〈D′ =
N, I(D′), V ′〉, AP = ∅, V (p) = V ′(p) = ∅, and let Z
be the relation {([i, j], [i ′, j ′]) | i, j ∈ N} ∪ {([a, a +

1], [a′, (a + 2)′])} ∪ {([i, j], [(i + 1)′, ( j + 1)′]) | i, j ∈ N},
where a = (N −1) · (t +1). It is possible to show that Z rep-
resents a winning strategy for Player II with initial configura-
tion ([a, a + 1], [a′, (a + 2)′]) in the N -moves bisimulation
game for t MPNL=. However, M, [a, a + 1] � len=1 and
M ′, [a′, (a + 2)′] �� len=1, which means that the formula
len=1 cannot be expressed in the language t MPNL= for any
t, N ∈ N. Thus, we have the result. By exploiting a very sim-
ilar argument, it is possible to show that MPNL()l �� MPNL().

��

6.2 Expressive power of languages in the class MPNL

In this section, we deal with the problem of classifying all the
fragments of the class MPNL with respect to their relative
expressive power. Figure 4 shows how the various languages
are related to each other.

Lemma 8 The following equivalences hold:

1. MPNL<,> ≡ MPNL<,≥;
2. MPNL<,() ≡ MPNL=,() ≡ MPNL=,> ≡ MPNL=,≥ ≡

MPNL[];
3. MPNL>,ε ≡ MPNL≥;
4. MPNL≥,() ≡ MPNL(),ε .

Proof It suffices to use Lemma 7 and the equivalences in
Table 4 (left column). ��
Corollary 2 If S = {ε,<,=,>,≥, (), []}, then we have that
MPNLS ≡ MPNL[] and MPNLS

l ≡ MPNL[]l .

Theorem 8 The relative expressive power of the languages
in the class MPNL is as depicted in Fig. 4, where each arrow
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Table 4 Additional equivalences between metric operators, with o ∈ {r, l}

♦≥k
o ψ ⇔ ♦<1

o ψ ∨ ♦>0
o ψ k = 0 ♦<k

o ψ ⇔ ♦[0,k−1]
o ψ k > 0

♦>k−1
o ψ k > 0 ⊥ k = 0

♦(k,k′)o ψ ⇔ ♦=k+1
o ψ ∨ . . . ∨ ♦=k′−1

o ψ ∨ ⊥ k′ �= ∞ ♦>k
o ψ ⇔ ♦[k+1,∞]

o ψ

♦>k
o ψ k′ = ∞ ♦[k,k′]

o ψ ⇔ ♦o(len≥k ∧ len≤k′ ∧ ψ) k′ �= ∞
♦[k,k′]

o ψ ⇔ ♦(k−1,k′+1)
o ψ k > 0, k′ �= ∞ ♦o(len≥k ∧ ψ) k′ = ∞

♦<k′+1
o ψ k = 0, k′ �= ∞ ♦=k

o ψ ⇔ ♦o(len=k ∧ ψ)
♦(k−1,k′)

o ψ k > 0, k′ = ∞ ♦(k,k′)o ψ ⇔ ♦o(len>k ∧ len<k′ ∧ ψ) k′ �= ∞
♦(k,k′)o ψ ∨ ♦<1

o ψ k = 0, k′ = ∞ ♦o(len>k ∧ ψ) k′ = ∞
♦≥k

o ψ ⇔ ♦oψ k = 0

♦>k−1
o ψ k > 0

means that the language at the top is strictly more expressive
than the one at the bottom.

Proof To prove this result, one can exploit bisimulations
(and bisimulation games), as in the previous theorems, plus
the equivalences in Table 4, right column, and all the above
results. For this reason, we only detail the proof of one case,
namely, MPNL< �� MPNL(),ε (the proofs of the other cases
are very similar).

For any t ∈ N, let us define the language t MPNL(),ε the
same way we did before. Let N ∈ N. Moreover, let M =
〈D = N, I(D), V 〉, M ′ = 〈D′ = N, I(D′), V ′〉, AP =
{p}, V (p) = {[i, i], [i, i + 1] | i ∈ N}, V ′(p) = {[i ′, i ′],
[i ′, (i + 1)′] | i ∈ N} \ {[a′, a′]}, where a = (N − 1) ·
(t + 1)+ 2, and consider the relation Z = {([i, j], [k′, l ′]) |
δ(i, j) = δ(k, l) and [k′, l ′] �= [a′, a′]} ∪ {([a, a], [a′, (a +
1)′]), ([a, a], [(a − 1)′, a′])} ∪ {([i, i + 2], [a′, a′]) | i ∈ N}.
It is possible to show that Z represents a winning strategy for
Player II with initial configuration ([a, b], [a′, b′]) (for any b)
in the N -moves bisimulation game for t MPNL(),ε . However,
we have that M, [a, b] � ♦<1

l p and M ′, [a′, b′] �� ♦<1
l p,

which means that the formula ♦<1
l p cannot be expressed in

t MPNL(),ε for any t, N ∈ N. Thus, we have the result. ��

7 Concluding remarks

In this paper, we have proposed and studied metric exten-
sions of Propositional Neighborhood Logic over the inter-
val structure of natural numbers N. We have demonstrated
that these are expressive and natural languages to reason
about that structure by proving the complexity and expressive
completeness results summarized in Table 5. First, we have
considered a very expressive language in this class, called
MPNL, and shown the decidability of its satisfiability prob-
lem. Then, we have identified an appropriate fragment called
FO2

r [N,=,<, s] of FO2[N,=,<, s] (the two-variable frag-
ment of first-order logic with equality, order, successor, and

Table 5 Complexity and expressive completeness results

PNLπ NEXPTIME FO2[=,<] [10] NEXPTIME

complete complete [33]

MPNL 2NEXPTIME, FO2
r [N,=,<, s] 2NEXPTIME,

EXPSPACE NEXPTIME

hard hard

MPNL+ Undecidable FO2[N,=,<, s] Undecidable

any family of binary relations, interpreted on the structure
of natural numbers), denoted by FO2

r [N,=,<, s], and we
have proved that MPNL is expressively complete for such a
fragment. Decidability of FO2

r [N,=,<, s] immediately fol-
lows. Then, we have shown how to extend MPNL in order
to obtain an interval logic that is expressively complete for
full FO2[N,=,<, s], which we have proved to be undecid-
able. Finally, we have discussed the variety of fragments of
MPNL and studied their expressiveness.

The results obtained here are amenable to some fairly
straightforward generalizations, e.g., from N to Z. An impor-
tant open problem is to find the exact complexity of the satisfi-
ability problem for MPNL, when constraints are represented
in binary, and the identification of the fragment(s) of MPNL
where the complexity jumps occur. Another interesting open
problem is to determine more precisely the (un)decidabil-
ity border in the family of metric propositional neighbor-
hood logics by identifying maximal decidable extensions of
MPNL.

From a more practical point of view, we plan to implement
the decision procedure for MPNL presented in this paper,
and to study the application of the logic in the modeling and
verification of reactive systems.
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