Softw Syst Model (2012) 11:7-10
DOI 10.1007/s10270-010-0184-6

GUEST EDITORIAL

Editorial for the theme issue on model-based interoperability

Tony Clark - Jorn Bettin

Published online: 4 February 2011
© Springer-Verlag 2011

1 Introduction

The commercial benefits claimed for software based on
visual and graphical modeling languages are well docu-
mented. Many domain specific modeling tools exist and
are being used as point solutions. Tailoring of notations
to the specific application domain and combined use of
several languages define the nature of the approach, and
constitute the source of the achievable benefits. Unfortu-
nately, data representations and the mechanisms used to inte-
grate modeling languages tend to be highly tool specific.
This compromises the use of modeling languages in build-
ing tool chains that may contain components from several
suppliers.

The main motivation for the use of domain-specific mod-
els is the desire to express problems in a compact form that
reflects the natural terminology of human domain experts,
and that is easily accessible to software tools. In short,
domain-specific models are raising the level of abstraction
of software specifications and of knowledge representation
in general. When models are used to formalize the results
of domain analysis, the outcome is a clean separation of
concerns in the problem space. This is a major advance
over aspect oriented programming, where separation of con-
cerns is only achieved in the solution space. The value of a

T. Clark ()

School of Engineering and Information Sciences,
Middlesex University, The Burroughs, Hendon,
London NW4 4BT, UK

e-mail: t.n.clark@mdx.ac.uk

J. Bettin
Sofismo AG, Saegestrasse 50, 5600 Lenzburg, Switzerland
e-mail: jbe@sofismo.ch

model increases with the intuitiveness of the concrete syn-
tax. Graphical elements may be needed to increase usability,
and often such languages are referred to as domain specific
modelling languages (DSML).

To extend the reach of DSML-based approaches, signif-
icant improvements in the level of interoperability between
DSML tools are required. Software development has become
highly decentralized, and an assumption that all parties in a
global software supply chain will use identical tooling is sim-
ply not realistic. Today’s software supply chains are much
less automated than supply chains in other, more mature
industries.

For example, the typical outsourcing relationship between
two software manufacturers is based on informal specifica-
tions. Either the tooling used by the outsourcer is unknown
to the customer, or if the customer is more discerning,
the outsourcer sets up an environment that matches the
one of the customer, usually at a substantial cost (licenses,
staff training, etc.). The inefficiencies are such that it is
not uncommon to set up mixed teams with staff from
both organisations, and to rely heavily on extensive travel
and face-to-face collaboration to achieve the desired out-
come.

The challenge lies in identifying the ingredients needed
to create highly automated software supply chains that
minimise the effort to integrate new suppliers of special-
ized software artefacts. Meeting this challenge requires
a significant increase in the use of formal (yet highly
compact) specifications, and advanced tooling for creat-
ing, managing, and exploiting formal specifications to the
fullest.

Ideally, supply chain participants would be able to
exchange formal language definitions and models, and
would rely on a shared implementation of basic services for
managing such model-based artefacts.

@ Springer

T. Clark, J. Bettin

2 History

Technologies for generating domain specific language (DSL)
based tools and tool-chains date back to meta Computer
Aided Software Engineering tools in the 1980s (even earlier
if textual DSLs are taken into account e.g. Lisp). These tools
are representative of a class of tools that allow the user to
construct meta-models of languages and development pro-
cesses. The models are then instantiated to produce tools
that support the language and the process in terms of editors,
code generators and wizards. Many of the meta-tools that
support this technology suffer from bespoke data represen-
tations which makes interoperability via third party develop-
ers difficult. Such tools are usually capable of participating
in tool-chains, however there is currently little guidance on
how the tools can be adapted in order to fit in.

The Unified Modeling Language (UML) was developed to
address the issues of non-standard model representation. The
UML definition is written with respect to a meta-language
MOF that aims to provide a basis for standard model inter-
change and for standard language extensions. There are sev-
eral reasons why UML can be argued as unsuitable as a basis
for DSL tool-chains. Firstly, its relationship with MOF is
weak: UML is an instance of MOF, but not an extension of it;
therefore MOF-UML does not implement a so-called golden
braid. UML extensions are not written using meta-language
extensions, they are written using a restricted form of meta-
access via profiles and stereotypes. Secondly, UML aims to
be a general purpose modelling language which means that it
provides alarge array of general purpose features, leading to a
comprehensive language for expressing application domains
rather than languages. Thirdly, the UML interchange tech-
nology, XMI, is generally considered to be difficult to imple-
ment completely. Few (if any) UML tools achieve complete
interoperability.

3 The future of software system interoperability

Imagine a world where software systems are created by com-
posing models and tools that operate on these models. Each
tool covers a specific aspect of the problem space or the
solution space. Each tool is a component that may have orig-
inated from a different supplier, some open-source and some
proprietary.

So there are tool developers and there are tool-chain com-
positors. There is a requirement on developers to provide
sufficient information for the compositors to be able to their
job. This amounts to the compositor being able to tell what
the tool does and what data it supplies and consumes.

Imagine a tool framework that supports tool interopera-
bility and the construction of tool-chains. In order to specify
such a framework it must be possible to manipulate tools

@ Springer

as first class citizens and to access the key tool-features that
contribute to the construction of a tool-chain.

The key to interoperability is that data and interface
descriptions are in a format that other tools can use. This is
achievable through the use of a tool description that provide
three components:

1. Data models (meta-models) describe the externally vis-
ible data provided and consumed by the tool.

2. Interfaces describe the functionality offered by the tool.

3. A model of the tool behaviour.

The use of behaviour models is a key feature in achieving
interoperability. The behaviour models may arise in different
ways. For example, an open-source reference implemen-
tation of a new category of tool is an attractive way of
achieving consensus. The open nature of the process removes
technical obstacles imposed by proprietary interests and is
likely to attract the best development talent. In addition,
making the process open fosters a Darwinian approach that
makes the selection of the best technical solutions more
likely.

An open-source behavioural model may be used as-is
or may just define sufficient behaviour to standardize other
implementations. Behavioural models do not restrict other
implementations from extending the behaviour and thereby
adding proprietary commercial value to the tool, however the
additional functionality will achieve lower levels of interop-
erability.

Given tool models including behavioural descriptions, it
is possible to develop a notion of tool equivalence. There
are various levels of equivalence from very weak to very
strong. For example, equivalence based on interfaces tends
to be quite weak, data equivalence is much stronger and
finally behavioural equivalence is the strongest. Whilst in
theory behavioural equivalence is undecidable, it is practical
in terms of a collection of specific test-cases that is incre-
mentally built-up over time by the tool user community.

Anequivalence based on data or behaviour requires a com-
mon representation of the information in tools. In turn, this
requires acommon language to express the equivalence rules,
i.e. a common meta-language—a language for describing
languages.

A number of candidate meta-languages exist, includ-
ing MOF from the Object Management Group, Ecore—the
meta-model for the EMF language, as well as XMF-Mosaic
and Gmodel—simple meta-languages that implement a
golden braid architecture.

A key differentiator between meta-languages such as
MOF or Ecore and meta-languages based on a golden braid
architecture is the ability of the latter to provide a recursively
defined universal model artefact concept, which is available

Editorial for the theme issue on model-based interoperability

for use and possible extension in all artefacts expressed in
the meta-language.

4 Current state of the art and the challenges

Today, the most widely meta-language is the XML schema
language, which provides a means for defining the structure,
content and semantics of XML documents. However, schema
conformance of an XML document is often not enough for
useful interoperability. The XMI standard for exchange of
UML model data is good example of the limitations and typ-
ical problems.

In the same way that XML schemas are formal lan-
guage definitions, relational database table definitions are
formal language definitions. Hence the title of second most
popular meta-language arguably belongs to SQL DDL. By
providing the rules for verifying the well-formedness of
textual program source code, even programming language
definitions can be interpreted as meta-languages. Program
source code in turn may consist of object oriented class
definitions that describe the structure and semantics of
instances pertaining to a particular application. Given that
SQL provides no mechanism for interoperability across SQL
schema boundaries, and given that each programming lan-
guage relies on idiosyncratic tooling, achieving interopera-
bility at the level of traditional source code remains to be a
challenge.

MOF is a simple meta-language used to define UML and
other languages. Therefore, MOF is a suitable candidate as
a basis for tool interoperability. However, MOF tends to be
instantiated to produce languages (e.g. UML); any seman-
tic definitions in MOF are weakly connected to models
expressed in modelling languages defined with MOF.

The Eclipse Modelling Project provides a collection of
open-source technologies that can be used to develop mod-
elling tools. These include EMF and GMF. EMF is a tech-
nology that can be used to develop data definitions against a
common meta-language called Ecore. Ecore provides reflec-
tion and can be used to raise events when Ecore-based data
changes. The original aim of Ecore was to provide a basis for
Java tool chains via data interchange and listening for data
change events. EMF is a collection of Ecore-based tools for
simple editor generation. GMF is a collection of EMF-based
tools that supports graphical editor generation.

Ecore is a good candidate as a basis for tool interoper-
ability. Its strength is that it has a clear pragmatic seman-
tics: its implementation in Java. Its weakness is that some
of the features are based on implementation concerns and it
is incomplete. Both EMF and GMF are very useful and are
good examples of the kinds of technologies required when
processing meta-models; however, they are only part of the
solution.

The Visualization and Modeling SDK (DSL Tools) initia-
tive at Microsoft aims to allow tool-chains to be developed
using Visual Studio. The DSLs are mixtures of graphical and
textual languages developed using a bespoke meta-language
and specifically aimed at generating code into Microsoft
solution architectures. Like the Eclipse/EMF/GMF tech-
nology described above, this is one part of the tool-chain
solution. Unfortunately, the languages and technologies are
bespoke and therefore not an open solution for building tool-
chains. However, Microsoft has emphasized its commitment
to interoperability and has recently engaged with the Object
Management Group stating that it hopes to influence meta-
technologies.

Many existing tools for DSMLs are closed in the sense
that it is difficult to access and manipulate the languages and
models in ways that were unforeseen by the tool developers.
A tool-centric view of languages does not readily support
interoperability since the use-cases for languages become
fixed and difficult to extend. Interoperability would be facil-
itated by taking a more independent user-centric view of
languages where each tool contributes part of the language
semantics. In this way, no tool could claim exclusive owner-
ship of a language and would be forced to make allowances
for other use-cases and extensions to its own use-case via
interoperability.

In conclusion, many technologies exist that support work-
ing with DSMLs. Some have bespoke notations and oth-
ers are standard but are suboptimal for a variety of reasons.
Lessons can be learned from looking at the process of stan-
dardisation from a wider angle, and from considering the
practical realities of lock-in as experienced by software users.

We believe that the time is right to consolidate the experi-
ences of the last 10 years in terms of modelling, tool-chains
and DSML development. In 2009, the KISS initiative made
the first steps by reaching a consensus on fundamental val-
ues and principles for designing and using domain-specific
languages. The big remaining challenge relates to the second
objective of the KISS initiative: progress towards interopera-
bility between tools; creating open technologies that interpret
the agreed principles in a way that enables interoperability
between different DSML tool ecosystems.

5 In this issue

The previous sections have established the need for model-
based interoperability, in terms of standard notations such
as UML, DSMLs, and tools to support these technologies.
Interoperability poses a huge challenge, but is essential to the
use of heterogeneous model driven approaches to the design
and development of industrial scale systems. This issue of
SoSym contains a collection of papers that address aspects
of the interoperability challenge.

@ Springer

10

T. Clark, J. Bettin

Interoperability requires a technology infrastructure that
allows multiple concurrent access using a variety of client
platforms. One solution to this issue is the use of cloud com-
puting and in Supporting the Internet-Based Evaluation of
Research Software with Cloud Infrastructure Pieter Van Gorp
and Paul Frefen discuss a cloud-based case study that is moti-
vated by reviewing software modelling research submissions.

Interoperability requires multiple views of a system to be
synchronized. There are several ways to achieve this includ-
ing change propagation and model transformation. The arti-
cle A model-driven approach to automate the propagation
of changes among Architecture Description Languages by
Romina Eramo, Ivano Malavolta, Henry Muccini, Patrizio
Pelliccione, and Alfonso Pierantonio describes a system that
has been implemented to support interoperability and syn-
chronization in the ADL domain based on the DUALLYy, ATL,
AMW, TCS, and ASP frameworks in Eclipse.

A key feature of model driven development is the con-
struction of model transformation chains (MTCs) that take
high-level descriptions of systems and produce low-level
implementations as target platform code. MTCs for real-
world systems become large and complex, therefore it is
attractive to decompose them into smaller chains. However,
as described in Realizing Model Transformation Chain Inter-
operability by Andres Yie, Rubby Casallas, Dirk Deridder
and Dennis Wagelaar, interoperability problems arise when
large MTCs are composed from smaller units. This article
describes the problems and proposes a solution based on
representation and resolution of correspondences between
MTCs.

Interoperability issues can arise at all levels of system
descriptions and modelling can help at each level. Execution
traces are an example of low-level run-time system informa-
tion where interoperability issues arise due to the multiple
tools available for trace analysis. The article A Metamodel
for the Compact but Lossless Exchange of Execution Traces
by Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge,
addresses these interopability issues by proposing a single
Compact Trace Format that is universal and solves scalabil-
ity issues using a graph-based approach.

Industrial scale models tend to be very large and pose
interesting challenges for model-based technologies such as
interopability. This issue is addressed by the article Model
Interoperability in Building Information Modelling by Jim
Steel, Robin Drogemuller and Bianca Toth, where the authors
have direct experience of handling semantically rich three-
dimensional models of buildings where collaboration is a
vital part of the business. The authors reflect on their experi-
ences building tools to process such models and outline the
challenges that need to be addressed.

@ Springer

Model transformations tend to be developed for a use with
a single source meta-model. However, often meta-models
are very similar, for example there are a huge number of
class-association based meta-models. The article Reusable
Model Transformations by Sagar Sen, Naouel Moha, Vincent
Mabhe, Olivier Barais, Benoit Baudry and Jean-Marc Jezequel
addresses the issue of allowing a single model transfroma-
tion to interoperate across a family of similar meta-models
by identifying the effective input meta-model of a transfor-
mation and providing a mechanism to mark-up similar meta-
models so that the transformation can apply to them.

Acknowledgments The editors would like to thank Martin Schindler
and Geri Georg for their help in putting this theme issue together. We
are indebted to the reviewers for their timely efforts and their comments
which led to improvements in many of the articles. We would also like
to thank the authors for submitting their work and for addressing com-
ments and suggestions.

6 About the editors

Tony Clark is a Professor and Head of Department of
Business Information Systems at Middlesex University,
London. Tony’s research background is in programming lan-
guage design and development, and in software modeling.
He worked as a research scientist with Marconi Ltd. where
he developed many Lisp-based systems for Al applications.
After becoming a lecturer, he worked on executable ver-
sions of meta-languages as a basis for UML and contrib-
uted to the OMG UML 2.0 revision. This latter work led to
the development of the XMF-Mosaic meta-modelling tool-
kit and associated company that Tony co-founded in 2003.
Tony has worked as a consultant with many companies and
is the co-author of Applied Metamodelling: A Foundation for
Language Driven Development.

Jorn Bettin is a co-founder of Sofismo in Switzerland and of
SoftMetaWare in New Zealand. He leads the development
of the Gmodel meta-language and repository technology,
and has co-authored three books that cover the technology,
engineering, and management aspects of domain engineer-
ing. Jorn is convinced that model oriented domain analysis
techniques and domain-specific models are the only viable
mechanism to capture deep domain expertise in a form that
is accessible to future generations of software professionals
and software tools. Jorn has worked in methodology leader-
ship roles in an IBM product development lab, initiated the
Eclipse Generative Modeling Tools project, and—back in
1994/5—1ed the development of LANSA /RUOM, a widely
used model driven CASE tool for the IBM iSeries platform.

	Editorial for the theme issue on model-based interoperability
	1 Introduction
	2 History
	3 The future of software system interoperability
	4 Current state of the art and the challenges
	5 In this issue
	Acknowledgments
	6 About the editors

