
Softw Syst Model (2011) 10:337–367
DOI 10.1007/s10270-010-0164-x

THEME SECTION

Modeling safety and airworthiness (RTCA DO-178B) information:
conceptual model and UML profile

Gregory Zoughbi · Lionel Briand · Yvan Labiche

Received: 15 January 2009 / Revised: 16 April 2010 / Accepted: 17 May 2010 / Published online: 19 June 2010
© Springer-Verlag 2010

Abstract Several safety-related standards exist for devel-
oping and certifying safety-critical systems. System safety
assessments are common practice and system certification
according to a standard requires submitting relevant sys-
tem safety information to appropriate authorities. The RTCA
DO-178B standard is a software quality assurance, safety-
related standard for the development of software aspects
of aerospace systems. This research introduces an approach
to improve communication and collaboration among safety
engineers, software engineers, and certification authorities in
the context of RTCA DO-178B. This is achieved by utilizing
a Unified Modeling Language (UML) profile that allows soft-
ware engineers to model safety-related concepts and prop-
erties in UML, the de facto software modeling standard. A
conceptual meta-model is defined based on RTCA DO-178B,
and then a corresponding UML profile, which we call Safe-
UML, is designed to enable its precise modeling. We show
how SafeUML improves communication by, for example,
allowing monitoring implementation of safety requirements
during the development process, and supporting system certi-
fication per RTCA DO-178B. This is enabled through
automatic generation of safety and certification-related

Communicated by Marko Boškovic, Bernhard Schätz, Claus Pahl, and
Dragan Gasevic.

G. Zoughbi · Y. Labiche (B)
Carleton University, 1125 Colonel By Drive,
Ottawa, ON K1S5B6, Canada
e-mail: labiche@sce.carleton.ca

G. Zoughbi
e-mail: greg@zoughbi.com

L. Briand
Simula Research Laboratory and University of Oslo,
P.O. Box 134, 1325 Lysaker, Norway
e-mail: briand@simula.no

information from UML models. We validate this approach
through a case study on developing an aircraft’s navigation
controller subsystem.

Keywords UML · UML profile · Conceptual model ·
Meta-model · Airworthiness · RTCA DO-178B · Safety ·
Safety-critical · Safety assessment · Certification

1 Introduction

Safety-critical systems must exhibit safe behavior that does
not contribute to hazards within the environment and context
in which they are used. For example, an aircraft must allow
the pilot to lift up the landing gears only if it is airborne. If the
landing gears were lifted while the aircraft is on ground, then
there would be a hazard, which is likely to result in damaging
the aircraft and hurting its occupants. A hazard is a state of
the system that could ultimately lead to an accident that may
result in an injury or loss in human life.

Many standards require that a safety assessment be per-
formed when developing or modifying a safety-critical sys-
tem. Safety assessments, which have some similarities with
risk assessments [16] and are performed using similar
methods, produce a list of safety requirements and constraints
that the system (including its software part) must fulfill.
RTCA DO-178B [30] is the de facto safety-related standard
for developing software in civil and military airborne systems
[7]. It provides guidance on how to achieve assurance levels
that the software will not impact the continued safe flight
of the aircraft. To certify an airborne system, certification
authorities require proof that the RTCA DO-178B [30] stan-
dard was adequately followed during system development.

Due to its impact on safety, and the need for safety assess-
ments and thorough analysis, developing software for safety-
critical systems is more expensive than developing software

123

338 G. Zoughbi et al.

for non-safety-critical systems (some claim that to be in the
order of 20 to 30 times more expensive [20]). One of the chal-
lenges, besides actually designing and implementing safety
requirements allocated to software, is to be able to accurately
communicate safety aspects among the different stakehold-
ers involved in software development. This has already been
documented in [7], where the authors reported on an exten-
sive survey focused on DO-178B. That was performed by
the NASA Langley Research Center (in collaboration with
the Federal Aviation Administration (FAA)), to identify the
challenges in developing software for safety-critical airborne
systems. The authors claimed that correctly communicat-
ing requirements between different groups of people is the
cause for many issues and difficulties encountered during the
development and certification of software intensive systems.
They classified these difficulties in two major categories: (a)
communication difficulties between regulatory people (e.g.,
certification authorities) and systems people (e.g., systems
engineers and safety engineers), and (b) communication dif-
ficulties between systems people and software people (e.g.,
software engineers). The authors also found out that defining
requirements is not an easy task—requirements can be com-
plex and are usually inter dependent. This certainly makes
it even more difficult for different groups of people to com-
municate requirements accurately and effectively. For exam-
ple, safety engineers, who rarely are software engineers, may
define safety requirements that software engineers find infea-
sible or expensive to implement. Further, software engineers
may sometimes misinterpret the requirements due to their
lack of experience in safety engineering and the application
domain. However, if software engineers better understand
the needs behind the requirements, then they may be able to
propose solutions that are more practical and cost effective.

In this paper, we report on an approach to address these
communication challenges in the context of DO-178B [30].
This approach is an open framework that may be tailored
to other industries, standards, organizations, and projects. In
addition, we show how it helps verify and illustrate that the
DO-178B [30] standard was followed in the development
process to support system certification.

The Unified Modeling Language (UML) [27,28] is now
the de facto standard for modeling (object-oriented) software
[29], and is increasingly used in the aerospace industry (e.g.,
[1,5,8,19,21]). Therefore, we aim at extending the UML
notation with concepts inspired from DO-178B by defining a
new profile that we call SafeUML. Because we focus on soft-
ware for airborne systems in this research, the DO-178B stan-
dard [30] is analyzed to extract a list of key concepts that are
of interest to both safety engineers, software engineers, and
certification authorities. We show that if those concepts are
properly represented in UML models of software, then soft-
ware engineers can more formally document safety-relevant
and certification-relevant information and decisions. A tool

can then automatically generate reports containing safety and
certification information to be used within the context of DO-
178B [30]. This provides safety engineers with better insight
into the software compliance with safety and certification
requirements, which they can easily track during the software
development life cycle. Those reports could also be used for
safety cases and/or evidence of software compliance with the
safety requirements, which can then be presented to external
certification authorities. Using a UML profile is expected to
increase the software engineers’ awareness of safety-related
issues, which should enable them to better develop software
for safety-critical systems, have a higher confidence in the
developed software, better communicate with safety engi-
neers, and provide proof that they followed safety-related
standard requirements. Following a process similar to the
two-staged approach proposed in [15], we define a concep-
tual model for our UML profile, explaining each concept,
its attributes, and its relationships with other concepts. This
approach mirrors the one used by the Object Management
Group (OMG) to define its profiles such as Quality of Ser-
vice (QoS) for high-quality and Fault-Tolerant (FT) systems
[25], Schedulability, Performance, and Time (SPT) [23], and
Modeling and Analysis of Real-Time Embedded (MARTE)
systems [26]. Based on the conceptual model requirements,
we design a UML profile, with stereotypes and their attributes
(tagged values), to model safety and certification information
in the context of DO-178B [30]. We focus on class diagrams
because they are the most commonly used diagram type, but
future work will tailor the proposed stereotypes and their
attributes to other diagrams such as sequence diagrams and
state machines.

In an earlier paper [34], we explained the need for a UML
profile for software development in the context of DO-178B
[30], and then presented design examples that were modeled
using our SafeUML profile. We now introduce the conceptual
model of this UML profile in detail, explaining and justifying
all the concepts, and then define the attributes of each concept
as well as the relationships between the concepts. According
to Lagarde et al. [15], the conceptual model is a key element
in the design of UML profiles. Several UML profile designs
can satisfy any given conceptual model, and we provide one
carefully thought out design in this paper. In addition, we
show how the SafeUML profile can help the development of
software for safety-critical systems using DO-178B guide-
lines. For example, we discuss how certification information
can be generated from models based on SafeUML to support
various activities of safety engineers, software engineers, and
certification authorities.

The remainder of the paper is structured as follows. We
discuss system safety and certification per DO-178B in
Sect. 2. In Sect. 3, we discuss the requirements that a UML
profile should have to adequately facilitate the definition
and use of safety information in software models within the

123

Modeling safety and airworthiness information 339

context of DO-178B, and then we identify and evaluate exist-
ing UML-based techniques for safety-critical systems in light
of these requirements. We then present and explain our con-
ceptual model in Sect. 4, and present the SafeUML profile in
Sect. 5, while continuously validating the results with respect
to development and certification per the DO-178B standard.
A case study in Sect. 6 presents a number of illustrating
examples that show how SafeUML helps address DO-178B
certification and communication challenges reported in [7].
Conclusions are drawn in Sect. 7.

2 System safety and certification per DO-178B

In this section, we first present a short introduction to DO-
178B (Sect. 2.1). We then present, based on the communica-
tion challenges reported in [7] and our own experience, how
safety information is communicated between different stake-
holders involved in the development of software-intensive
systems (Sect. 2.2). Then, we argue that embedding safety
information into software engineering UML models facili-
tates the exchange of safety information between safety and
software engineers (Sect. 2.3).

2.1 Introduction to DO-178B

Many industrial standards exist to help develop safety-critical
systems. Herrmann summarizes them in [9], and we discuss
many of them in [33]. Generally speaking, some standards
are common to all industry sectors (e.g., IEC 61508-3 [13])
whereas others are industry specific (e.g., CENELEC 50128
for Railway applications [2]). Within the aerospace industry,
there are various safety-related standards owned by different
bodies such as the Radio Technical Commission for Aeronau-
tics (RTCA), European Space Agency (ESA), National Aero-
nautics and Space Administration (NASA), and American
Institute of Aeronautics and Astronautics (AIAA). Our
research scope primarily focused on airworthiness, and there-
fore our choice of standard was RTCA DO-178B [30] because
it is the de facto safety-related standard for developing soft-
ware aspects of aerospace systems [7]. This quality standard
outlines requirements on many aspects of software develop-
ment for airborne systems.

The DO-178B’s requirements focus on the impact of soft-
ware failure on safety, i.e., how critical is the failure of each
component and what does that mean for the system safety as a
whole. This impact is classified into five categories, namely:
Catastrophic, Hazardous/Severe-Major, Major, Minor, and
No Effect. Different certification or assurance levels exist for
each failure category, namely, level A, level B, level C, level
D and level E, respectively. Level A certification is the most
rigorous and requires the submission of the largest number
of documents and proof of compliance with DO-178B. Level

B is less rigid, followed by level C and then level D. Level E
indicates that there is No Effect on flight safety and DO-178B
requirements do not apply to it. As a result, the higher the
certification level pursued, the more expensive it is to develop
software in order to ensure higher confidence in the software
quality and system safety.

The DO-178B standard defines failure condition catego-
ries and software levels based on the “severity of failure con-
ditions on the aircraft and its occupants” [30]. This focuses
on the aircraft’s ability to undertake safe flights and excludes
the safety impact on the environment outside the aircraft. The
term “airworthiness” is therefore used, and indicates whether
an aircraft is worthy of a safe flight. This is more specific
than Leveson’s definition of safety, which was stated as “the
freedom from accidents or losses” [16] without restriction to
where the accidents or losses occur—even if they are outside
the aircraft. Therefore, there exists a difference between the
concepts of “airworthiness” and “safety”. Airworthiness is
concerned with accidents or losses on the aircraft and its
occupants and is therefore a subset of safety: a safe system
is airworthy but an airworthy system is not necessarily safe.

DO-178B requirements on software aspects of system cer-
tification include:

• Objectives of software life cycle processes;
• Design and activity considerations to achieve those pro-

cess objectives;
• Evidence consideration to prove that those process objec-

tives are satisfied.

Examples of the DO-178B objectives and considerations
include:

• Traceability of requirements for instance through design
elements, implementation code, and object code (e.g.,
executable file generated by compiler). The depth of the
traceability depends on the software’s required assurance
level;

• Software design and implementation techniques, e.g., the
use of software partitions, replication, formal methods,
configurable/loadable software, and the absence of recur-
sive software.

2.2 Safety information stakeholders and usage scenarios

To date, studies have been performed on the current practices
for documenting and communicating safety-related informa-
tion among stakeholders, in order to find ways to improve the
safety of software-based systems (e.g., [7,16,17]). One study
found out that communication challenges are the root cause
of many problems [7]. Another one found out that this is
mostly document-based, and such documentation tends to
become large, ambiguous, inconsistent, and often lack clear

123

340 G. Zoughbi et al.

structure [17]. A third one found out that limited communi-
cation channels and poor information flow can prevent safety
engineers from interacting with software engineers to ensure
system safety [16].

The National Aeronautics and Space Administration
(NASA) Langley Research Center has long cooperated with
the Federal Aviation Administration (FAA) on research about
software engineering methods for aerospace applications.
They conducted a research program called Streamlining
Software Aspects of Certification (SSAC), which included
an extensive survey that identified the challenges in devel-
oping safety-critical software for aerospace systems using
DO-178B. The research found out that communication
between different groups of people was the root cause of
many common challenges in safety [7]. The authors clas-
sified those communication challenges into two categories,
between regulatory/certification authorities and systems/
safety engineers, and between systems/safety engineers and
software engineers. Those findings are consistent with our
own experience.

To understand and present the challenges, we analyzed
what activities are performed by different stakeholders of the
software development of safety-critical systems. We found
that those activities concerned the storage, retrieval or anal-
ysis of safety-relevant information, which is continuously
communicated across different stakeholder groups with dif-
ferent experience and skill sets. The use case diagram in Fig. 1
summarizes these results, which we describe below:

Usage 1 Provide Safety Requirements: Safety engineers
perform a safety assessment of the system being
developed. This results in safety requirements for
the system, a subset of which is allocated to soft-
ware and communicated to software engineers;

Usage 2 Embed Safety Requirements in the Design Phase
of Software System Development: Software engi-
neers design the software system per the safety
requirements allocated to software;

Usage 3 Record and Justify Design Decisions: Software
engineers record and justify their design decisions.
Traditionally, architectural and major design deci-
sions have been recorded in documents separate
from the software model and detailed design deci-
sions often appear as plain text comments in the
source code, if at all. In practice, this makes it hard
to ensure this information is systematically and
precisely collected and documented and to auto-
matically retrieve justifications for design deci-
sions;

Usage 4 Monitor Safety: Safety engineers continuously
monitor the software system development activ-
ities with regards to the safety requirements they
provided (Usage 1) during the software develop-

ment lifecycle. To do so, they need to investi-
gate how software engineers design the software
(Usage 2), and why it is effective (Usage 3) to
address the safety requirements they were pro-
vided with (Usage 1). Safety engineers can then
analyze this information and discuss any issues
with software engineers, thus ensuring that system
safety is continuously improving during the devel-
opment lifecycle so that it meets its final safety
objectives;

Usage 5 Get Safety Information: Safety-relevant informa-
tion, such as DO-178B-relevant information, is
submitted to the appropriate authorities for cer-
tification, which usually occurs towards the end
of the system development lifecycle. This infor-
mation includes the safety requirements (Usage
1), the software design (Usage 2), the justification
of the software design (Usage 3) given the safety
requirements of the software (Usage 1), and the
process used to continuously monitor the system
safety during the development lifecycle (Usage 4).

2.3 A case for a UML-based communication between
stakeholders

The authors of [17] discuss the benefits of modeling informa-
tion for safety-case development, including leveraging mod-
eling tool features such as model validation and querying of
models to retrieve safety-relevant information. In our work,
the basic assumption is that our Usage scenarios (Sect. 2.2)
would be greatly facilitated if relevant safety information
were captured and integrated in design models already in
use for development. In other words, such augmented design
model could play a central role in the precise communica-
tion of safety-related information across stakeholders. Soft-
ware engineers could thus record such information in models,
safety engineers could monitor it by querying the models for
relevant safety information using appropriate tools, and certi-
fication authorities could get reports directly generated from
the models as Fig. 2 illustrates.

Our work proposes to express these models using an exten-
sion (profile) of the Unified Modeling Language (UML) that
we specifically define to address the needs of DO-178B.
Languages other than UML could have been considered for
this work. However, there are many benefits [33] justifying
the use of UML, a common standard for modeling software,
including:

1. Many development environments and methodologies
support the use of UML;

2. It is possible to extend the UML language while being
able to use existing modeling environments. Such exten-
sion mechanisms, known as UML profiles [27,28], allow

123

Modeling safety and airworthiness information 341

Fig. 1 Usage scenarios of safety information

Fig. 2 Modeling-enabled proper communication between stakehold-
ers

the specialization of UML constructs to model context
and industry-specific properties. This can be applied to
model safety information as relevant in the aerospace
industry;

3. UML is known in the aerospace industry, thus lowering
the cost of training and adoption. Knowledge of UML is
also required for the OMG recommended, Model-Driven
Architecture (MDA), which is popular in the develop-
ment of airborne systems (e.g., [1,5,8,19,21]).

While modeling requires knowledge of UML, generating and
understanding safety reports from the model does not. This
is because any tool that extracts information by querying the
model can present the information in a model-independent
format. This means that monitoring safety and certifying the
system can be performed in a UML-independent manner, and
hence relieving safety engineers and certification authori-
ties from having to understand UML terminology. Gener-
ated reports would be produced in a format that properly
enables safety monitoring (Usage 4) and submission of rele-
vant information (e.g., in DO-178B specific terminology) to
the certification authorities (Usage 5).

To illustrate this further, Table 1 explains how our usage
scenarios and SafeUML integrate into and apply to each typ-
ical system and software development process phase.

UML is now a mature standard and, therefore, it is
supported by a wide variety of tools. In fact, many UML
tool vendors are OMG members, and therefore participate in
maintaining the UML standard and its related profiles. Exam-
ples of popular UML tools that can be used to utilize
SafeUML in the development process are: IBM Rational

Rhapsody [10], IBM Rational Software Architect [11], ARTi-
SAN Studio [12], and Sparx Systems Enterprise Architect
[31]. IBM, ARTiSAN, and Sparx Systems are all OMG mem-
bers.

The key features required out of those UML tools are the
ability to define SafeUML as a custom profile, the ability to
model the system and software using SafeUML, and the abil-
ity to query those SafeUML models according to the needs of
the safety engineers and certification authorities. Some of the
options available to query UML models and generate reports
are:

• Standard tool reporting facilities that are built in the UML
modeling tool. For example, tools generally allow search-
ing UML models for locations where a specific stereotype
is used;

• Custom, user-defined, reporting capabilities. Tools gener-
ally allow modelers to define their own custom reporting
mechanisms. For example, modelers can specify model
queries interpreted by query engines based on the Object
Constraint Language (OCL) [22] such as the Model
Development Tools (MDT)-OCL engine working on
Ecore models in the Eclipse Modeling Framework (EMF)
[3]. As another example, IBM Rhapsody [10] provides
a Visual Basic for Applications (VBA) library that can
be used in VBA scripts to navigate models and perform
model validation and generate custom reports as neces-
sary. Sparx Systems Enterprise Architect [31] also
supports scripting capabilities through an Automation
Interface to navigate UML models. Model validation can
be used to check model compliance with safety best prac-
tices thus warning safety engineers and software engi-
neers about safety risks;

• Exporting UML models using XML Metadata
Interchange (XMI) [24], which is an OMG standard for
representing and exchanging models and metadata in an
XML-based language. UML tools generally support
exporting UML models as XMI files. Once exported, it
can be easily parsed and searched, potentially using the
Extensible Stylesheet Language (XSL) [32] and a sup-
porting engine.

123

342 G. Zoughbi et al.

Table 1 Usage scenarios and SafeUML in the system development process

Phase Applicable usage scenarios and SafeUML activities

Analysis During the Analysis phase, which typically includes system requirements gathering, a system
safety analysis is performed. Safety analysis aims at identifying safety hazards through the
application of various methods [16], e.g., an aircraft’s pilot attempts to lift the landing gear when
the aircraft is on the ground. By the end of this phase, safety hazards are identified and analysed
by safety engineers.

Requirements specification During the Requirements Specification phase, which typically includes specifying the system
requirements as analysed, the set of safety requirements are identified. Safety requirements aim
to mitigate the safety hazards identified in the Analysis phase, e.g., the system shall not lift the
landing gear if the aircraft is on the ground even if the pilot requests so. This requirement is said
to be allocated to software if it is to be implemented in software. By the end of this phase, safety
requirements are specified and a subset of them is allocated to software. Safety engineers then
perform Usage scenario 1 (Provide Safety Requirements) to software engineers.

Architecture During the Architecture phase, the system and software architecture is further defined in a UML
model utilizing SafeUML. SafeUML stereotypes and their attributes are used by software
engineers to document safety requirements in the model and to relate them to specific software
elements. They also explain their architectural decisions based on safety requirements, e.g., why
and how partitions were set, in the model. In essence, they perform a high-level Usage scenario 2
(Embed Safety Requirements in the Design Phase of Software System Development) and Usage
scenario 3 (Record and Justify Design Decisions). Safety engineers now start performing Usage
scenario 4 (Monitor Safety) by querying the UML model using the same modeling tool used by
the software engineers. Based on such information, they can understand the status of the software
development progress with respect to designing the safety requirements into the system.

Design During the Design phase, the software system is further designed with additional details at the
subsystem, component, and class levels. Software engineers apply Usage scenario 2 and Usage
scenario 3 as in the Architecture phase. Here, they are likely to use a larger set of SafeUML
stereotypes than in the Architecture phase because many stereotypes are able to capture detailed
design decisions and their justifications as illustrated later in this paper. Safety engineers are also
involved in Usage scenario 4 to keep monitoring the design of system safety requirements in
software.

Implementation During the Implementation phase, the software system’s design, modeled using SafeUML is
implemented by writing the source code. The code is directly traceable to the design and hence to
safety requirements. Thus, safety engineers can continue to monitor system safety (Usage
scenario 4) by extracting safety information from the UML model, similarly to the Design phase.
At this stage, however, they will get additional information regarding whether safety
requirements are actually implemented or are still in the design phase, and which part(s) of the
code implement which safety requirement.

Test and integration During the test and integration phase, the coded system is tested and integrated per its specified
requirements. The requirements also include the safety requirements, which were communicated
by the Safety engineers (Usage scenario 1). Software engineers can verify the design and
implementation compliance to these safety requirements and constraints that are traced to the
UML model elements using SafeUML stereotypes, e.g., timing constraints for real-time systems
and/or active objects. Safety engineers continue to monitor safety (Usage scenario 4) and can
now tell which safety requirements are tested and integrated. During this phase, preparation for
certification is already ongoing and the UML models would have sufficient safety information to
generate customized reports for the certification authorities (Usage scenario 5).

Operation and maintenance During the operation and maintenance phase, the software system is functional and operating in its
target environment. As part of maintenance, it may be modified to fix any identified bugs or as a
result of functional change requests. Before changing software, safety engineers may query the
UML model (Usage scenario 4) to assess the impact of change on system safety since safety
requirements are documented (Usage scenario 2) as are design decisions (Usage scenario 3). By
now, design and code changes are directly traceable to model elements that include safety
information as a result of using SafeUML.

Here is a summary of the practical benefits we expect for
each usage scenario in Fig. 1, which will become clearer
when going through our case study in Sect. 6:

• Safety engineers will better communicate require-
ments to software engineers (Usage 1). This is because
SafeUML formalizes a safety language for software

123

Modeling safety and airworthiness information 343

engineers, which will raise their safety awareness when
they model and can then better communicate with safety
engineers;

• Software engineers will better indicate how their design
decisions relate to safety and certification aspects (Usage
2 and Usage 3);

• Safety engineers will monitor system safety throughout
the system development by easily and quickly gener-
ating reports from UML models. Such reports would
explain how and why software engineers designed the
safety requirements in the system (Usage 4);

• Safety engineers will easily and quickly generate cer-
tification-required information at any point during the
system development lifecycle (Usage 5). This becomes
an automated process and reduces efforts of safety engi-
neers to collect safety information. As a result, they are
now more available to focus on safety-added activities,
as opposed to administrative ones, such as safety and cer-
tification requirements and strategies.

3 Assessment of UML-based solutions

In this section, we first present a set of information require-
ments for a UML-based solution, which we derived by ana-
lyzing the DO-178B standard (Sect. 3.1). Then, we present
existing UML-based solutions that allow modeling safety
aspects and discuss their evaluation with respect to the infor-
mation requirements (Sect. 3.2).

3.1 Safety-related information requirements

We performed a careful analysis of the DO-178B [30] stan-
dard, which led us to identify relevant DO-178B-related con-
cepts. A suitable UML-based solution should be able to
model those concepts. Since airworthiness is a subset of
safety (see Sect. 2), all of the airworthiness-related concepts
we identified are also safety-related concepts and are referred
to as such in the remainder of this document.

A careful analysis of the DO-178B [30] standard led us
to identify safety-related concepts that were found relevant
to consider when developing software for airborne systems.
Such concepts are not all directly related to safety, hence the
use of the term “safety-related concepts” rather than simply
“safety concepts”. Examples include concepts related to reli-
ability (e.g., fault-tolerance), performance, and certification.
Those safety-related concepts were refined into a smaller
set of safety-related concepts that capture the same informa-
tion in a more concise manner. Though this is discussed in
detail in Sect. 4.1, it should be noted that those refined con-
cepts became the basis for the information requirements that a
suitable UML-based solution must satisfy. The safety-related
concepts and conceptual model are presented in Sect. 4.2 and
Appendix A.

Based on the safety-related concepts, we carefully pro-
duced 54 information requirements that identified the infor-
mation that a suitable solution must be able to model in UML.
Therefore, they became the basis upon which solutions to
model safety-related concepts in UML were assessed. Com-
plete information requirements are found in [33] and exam-
ples are provided below:

IREQ 1 The solution shall be able to identify a safety-
related context under which safety information,
possibly specified through other means, is valid;

IREQ 9 The solution shall be able to specify software
requirements, including safety-related and certi-
fication-related requirements;

IREQ 11 The solution shall be able to model a software
model’s deviation from a plan, requirement, or a
standard;

IREQ 12 The solution shall be able to model specific soft-
ware implementation styles of interest to DO-
178B-related software such as recursion, dynamic
memory, compacted expressions, and data aliases;

IREQ 15 The solution shall be able to model COTS soft-
ware, including the rationale for using it;

IREQ 20 The solution shall be able to model software
events;

IREQ 21 The solution shall be able to specify how a partic-
ular event affects system safety;

IREQ 22 The solution shall be able to model software reac-
tions, or responses, to software events;

IREQ 25 The solution shall be able to model safety-critical
elements;

IREQ 26 The solution shall be able to specify the criticality
level of safety-critical elements, or the element’s
contributions to failure conditions;

IREQ 27 The solution shall be able to model a software par-
tition;

IREQ 30 The solution shall be able to model safety moni-
toring software;

IREQ 39 The solution shall be able to model hardware/soft-
ware interfaces;

IREQ 52 The solution shall be able to model multiple-
version dissimilar software;

IREQ 53 The solution shall be able to model software com-
parators, or voters, for multiple version dissimilar
software;

IREQ 54 The solution shall be able to specify the voting pol-
icy parameters for software comparators or voters.

3.2 Existing UML-based solutions

There exist several UML-based solutions that may capture
safety-related information in UML models.

123

344 G. Zoughbi et al.

The Object Management Group (OMG) adopted a pro-
file to model Quality of Service (QoS) for high-quality and
Fault-Tolerant (FT) systems [25]. It includes frameworks to
describe quality of service, risk assessment, and fault tol-
erance. The quality of service part can be used to model
safety. The risk assessment part provides mechanisms for
modeling risk contexts, stakeholders, strengths, weaknesses,
opportunities and threats, unwanted incidents, risk quantifi-
cation, risk mitigation and treatments. The fault tolerance part
includes mechanisms for describing fault-tolerant software
architectures in general as a technical solution to reliability
requirements, and focuses on modeling software redundancy,
or software replication.

The Schedulability, Performance, and Time (SPT) profile
[23], which provides mechanisms to model concepts of
importance to real-time systems was also adopted by the
OMG. It includes frameworks to model resources, time,
concurrency, schedulability, and performance, and allows
developers to perform model-based performance analysis.
However, safety is not its primary focus. More recently, OMG
adopted the Modeling and Analysis of Real-Time Embedded
(MARTE) systems profile [26]. The MARTE profile super-
sedes the SPT profile, but SPT was the official UML profile
for schedulability, performance, and time when this research
was performed and hence we used the SPT profile in our
evaluation.

The High Integrity Distributed Object-Oriented Real-
Time Systems (HIDOORS) was a European project [18].
One of its goals was to introduce SPT profile-compliant
mechanisms for modeling safety-critical and embedded real-
time applications. Although aimed at safety-critical applica-
tions, it specialized SPT concepts such as triggers, actions,
resources, and scheduling jobs by focusing on concurrency,
performance, and schedulability. However, it did not spe-
cifically focus on safety—the freedom from accidents and
losses.

Jan Jürjens presented a UML profile [14] that aimed at
modeling reliability aspects regarding transmitting messages
(e.g., maximum failure rates for message communication).
Jürjens argued that since failures related to lost, delayed, or
corrupted messages have an impact on safety in safety-critical
applications, the profile can be used for developing safety-
critical applications. It included mechanisms to model risks,
crashes, guarantees, redundancy, safe links, safe dependen-
cies, safety critical elements, safe behaviors, containment,
and error handling.

Based on the IEC 61508 standard [13], Hansen and
Gullesen presented a series of UML patterns that can be used
to model some aspects of safety-critical systems [6]. The pat-
terns allowed modeling the safety quality of service, software
diversity and voting, partial diversity with built-in diagnostic
or monitoring, “safe” communication protocols, testing, haz-
ard analysis and quality development. They include mecha-

nisms to model, in use cases, redundancy, monitoring, and
voting based on multiple output comparisons.

We evaluated how the UML-based solutions discussed
above score with respect to satisfying the information require-
ments discussed in Sect. 3.1—the full list of information
requirements is available in [33]. Each profile’s score was
calculated based on how many information requirements it
met. We observed (see details in [33]) that none of the exist-
ing solutions that we evaluated achieved more than 31% of
the maximum score. In fact, all of the solutions combined
only met 44% of the information requirements. For instance:
events and reactions can be modeled in HIDOORS [18] and
SPT [23], but not in the other three solutions; monitors can
only be modeled in [14,23]; a model element’s contribution
to failure conditions (i.e., criticality levels in the DO-178B
standard) is only handled in [6,14,23]; the implementation
style (e.g., recursion, dynamic memory allocation), hard-
ware/software interfaces, and configurable components can-
not be modeled by any of the existing solutions, and those
are all information requirements that were identified in [33].
Therefore, we decided to develop our own UML profile, Saf-
eUML, as a solution for airworthiness.

4 Safety-related conceptual model for airborne systems

In this section, we present the conceptual model SafeUML
uses to describe software considerations for airborne sys-
tems. We first describe the process we followed (Sect. 4.1)
and then the conceptual model we defined (Sect. 4.2). The
conceptual model is a general data model for information
needed to develop software in compliance with the DO-178B
standard [30], and it can be reused in approaches other than
a UML profile, e.g., DOORS or Oracle databases.

4.1 Design process

Our conceptual model design approach is consistent with the
approach devised by Lagarde et al. [15]. Consistent with step
1 of their process, we reviewed the DO-178B standard [30]
and identified the raw list of concepts (see Section 3.1 in [33]
for further details). Consistent with step 2 of their process,
we refined the concepts by reducing the problem space—we
removed irrelevant concepts and redundancies, as detailed in
[33]. Consistent with step 4 of their process, we also went
through an iterative optimization process to:

1. Remove duplicate concepts: Seemingly different con-
cepts sometimes appear in the DO-178B standard where,
in reality, they represent the same idea. For instance,
multiple-version dissimilar software and software redun-
dancy describe the same idea of using multiple software
components that have the same functionality but differ-
ent implementations;

123

Modeling safety and airworthiness information 345

2. Group concepts: Some concepts are in fact examples of
a more general concept. For instance, safety monitoring,
fault detection, integrity check are applications of a sin-
gle concept that is “monitor”, which monitors the activity
of other components to detect unusual, potentially haz-
ardous, events or behaviors. Thus, they are grouped as a
single concept, and they are differentiated via attributes,
e.g., a “monitor” concept with a “kind” attribute that
is “safety” for safety monitoring, “reliability” for fault
detection, and “integrity” for integrity check;

3. Precisely define concepts: We elaborated and clearly
defined each concept, with attributes each describing a
single aspect of the concept. For instance, when defin-
ing the “requirement” concept, we give it an attribute
called “specification” that can be used to specify what the
requirement is, e.g., “Speed > 20 m/s”) We use a consis-
tent approach for concept definition, adapting
approaches used in existing UML profiles (e.g., [23,25,
26]). For each concept, we provide: concept definition,
attribute definition, relations to other concepts, and ref-
erence to the original DO-178B concept(s).

This activity resulted in the definition of 26 safety-related
concepts, 48 attributes, and 35 inter-concept relationships.
Their various combinations can represent all of the origi-
nal safety-related concepts obtained from DO-178B, and sat-
isfy all information requirements. These refined concepts and
their relationships were defined and then grouped according
to their purpose, and finally formalized under the form of a
conceptual model represented as a UML class diagram.

4.2 Conceptual model

The refined concepts were grouped into five different cat-
egories depending on their purpose. The categories were
determined after an analysis of all final concepts obtained
as described in Sect. 4.1:

1. Requirements: This category contains concepts to model
requirements, deviation from requirements, implemen-
tation styles, behavioral styles, source of the design (e.g.,
COTS, previously developed, … etc), requirements
traceability through design and code, and partitioning
decisions;

2. Characteristics: This category contains concepts to des-
ignate safety-critical elements and identify their soft-
ware levels or failure condition categories, simulators
to model elements, design strategies (e.g., round-robin,
FIFO, … etc), measures such as complexity and cou-
pling, and hardware/software interfaces;

3. Event Management: This category contains concepts to
model events and actions that may impact system safety,
responses to such events or actions, where they are

detected, and where they are handled to ensure safety.
It also includes concepts to designate inputs defended
against using defensive programming and identifies
active and passive elements;

4. Configuration: This category contains concepts to model
software configurations and user-modifiable software,
including which design elements are configurable, which
ones can be loaded on platforms to change configura-
tions, and where in the design such changes are initiated
and controlled;

5. Replication: This category contains concepts to model
software redundancy, e.g., using multiple-version dis-
similar software, and allowing the modeler to designate
redundant elements and voting elements.

Each concept, along with its attributes and its relationships to
other concepts, are discussed in detail in Appendix A. How-
ever, we concisely introduce each concept in Table 2: they
are all numbered C1 to C26. The conceptual model, i.e., the
concepts, their relationships and the five groups discussed
above, is represented as a class diagram (with components
for the groups), as illustrated in Fig. 3.

Table 3 identifies examples of the original DO-178B [30]
concepts, the DO-178B Section numbers in which they
appear, and where such information is captured in our con-
ceptual model. This validates that our conceptual model is in
fact designed to model concepts relevant to DO-178B [30].

5 SafeUML: safety-related UML profile for airborne
systems

This section introduces SafeUML, a UML profile that sat-
isfies the information requirements discussed in Sect. 3.1,
and which is based on the conceptual model described in
Sect. 4.2. Since we did not find an existing UML solution
that met more than one third of the information requirements
[33], we proceed by designing one, specifically a UML pro-
file, to satisfy all of them (Sect. 5.1). The UML profile we
design, called SafeUML, may be seen as one possible imple-
mentation of the defined conceptual model according to the
process described in [15]. In Sect. 5.2, we present the value
of the profile in the context of DO-178B [30], and in Sect. 5.3
we discuss SafeUML’s applicability to other standards.

5.1 Profile design

SafeUML, which implements the conceptual model pre-
sented in Sect. 4.2, resulted in 31 stereotypes with 79 stereo-
type attributes. We explained in Sect. 1 that we first focused
on class diagrams because they are the most commonly used
diagram type. Stereotypes and their associated attributes will
apply to several meta-model elements of the class diagram
including classes, operations, and relationships, but also to

123

346 G. Zoughbi et al.

Table 2 Concepts of our conceptual model (short descriptions)

Category Concept

Requirements Requirement (C.1): specifies a requirement, safety or not, that must be met, and it may be derived
and/or traceable to a higher-level requirement

Deviation (C.2): identifies a design deviation from a plan, standard, or Requirement (C.1)

Style (C.3): an abstract concept indicating an implementation or a behavioural style

Implementation Style (C.4): identifies a style that is used to implement a design

Behavioural Style (C.5): identifies and describes a behavioural style of a design

Nature (C.6): describes the source for the design (e.g., COTS, previously developed)

Rationale (C.7): describes the reason of existence (e.g., requirement) of a particular design

Partition (C.8): identifies a design partitioned from another for safety purposes

Characteristics Safety Critical (C.9): a design element that impacts system safety

Environmental Model (C.10): models/simulates behaviour of Safety-Critical (C.9) element

Strategy (C.11): describes strategy (e.g., safety, reliability, scheduling) used in design

Measure (C.12): quantifies a characteristic of a design element, including complexity

Interface (C.13): describes an interface, e.g., hardware/software interface

Event Management Event (C.14): describes safety-relevant event or action that may occur

Reaction (C.15): describes a response to one or more Events (C.14)

Handler (C.16): receives Events (C.14) and performs relevant Reactions (C.15)

Monitor (C.17): monitors Safety-Critical (C.9) elements, detects Events (C.14), and notifies a Handler
(C.16)

Concurrent (C.18): specifies active/passive modes with respect to triggering Events (C.14)

Defensive (C.19): identifies inputs defended against and corresponding Reactions (C.15)

Configuration Configuration (C.20): represents a software/hardware configuration (e.g., lookup tables)

Configurable (C.21): identifies an element that is altered to produce a Configuration (C.21)

Loadable (C.22): identifies an element that can be loaded to produce a Configuration (C.21)

Configurator (C.23): identifies an element that changes Configurations (C.21)

Replication Replicated (C.24): identifies an element that participates in a Replication Group (C.26)

Comparator (C.25): compares outputs of Replicated (C.24) elements in a Replication Group (C.26)
and determines a suitable output (e.g., based on a majority voting scheme)

Replication Group (C.26): identifies a group of redundant/Replicated (C.24) elements for reliability
(e.g., voting-based redundancy group of similar elements developed separately)

packages as certain properties can apply to a group of ele-
ments (e.g., subsystem). Therefore, we apply each of our
stereotypes on instances of the following UML meta-classes
[27,28]:

1. Kernel::Package, or simply Package;
2. Kernel::Class, or simply Class;
3. Kernel::Operation, or simply Operation;
4. Kernel::Relationship, or simply Relationship.

The SafeUML profile package is composed of six sub-pack-
ages as described below (Fig. 4 illustrates naming conven-
tions used for visual simplicity):

1. ContextStereotypes: This package (Fig. 5a) con-
tains stereotypes to indicate that packages or diagrams,
generally containing several closely-related design ele-
ments, contain information relevant to a specific context,
e.g., safety context or reliability context;

2. ReplicationStereotypes: This package (Fig. 5b)
contains stereotypes to model concepts specified in cat-
egory Replication (see Sect. 4.2);

3. ConfigurationStereotypes: This package
(Fig. 6) contains stereotypes to model concepts speci-
fied in category Configuration (see Sect. 4.2);

4. RequirementsStereotypes: This package
(Fig. 7) contains stereotypes to model concepts speci-
fied in category Requirements (see Sect. 4.2);

5. CharacteristicsStereotypes: This package
(Fig. 8) contains stereotypes to model concepts speci-
fied in category Characteristics (see Sect. 4.2);

6. EventManagementStereotypes: This package
(Fig. 9) contains stereotypes to model concepts speci-
fied in category Event Management (see Sect. 4.2).

Table 4 describes each stereotype.
In the SafeUML profile, we model enumerations as clas-

ses. Sometimes, there are more than one set of enumerations

123

Modeling safety and airworthiness information 347

Fig. 3 Conceptual model for safety-related concepts

that can be applied. For example the level of safety-critical
model elements can depend on the applicable safety-related
standard. The DO-178B standard [30] uses (A, B, C, D, E)
whereas IEC 61508 [13] uses (SIL1, SIL2, SIL3, SIL4). That
is why class SafetyLevel has two possible sub-classes,
one for each standard. We provided this example to illustrate
that additional enumerations can be added by introducing
new subclasses for project-specific requirements.

Recall that our profile design is consistent with the
approach devised by Lagarde et al. [15]. Per steps 3 and
4 of their process, we transformed the conceptual model
elements into potential stereotypes. Each stereotype inher-
its from UML meta-classes to indicate which kinds of model
elements it can be applied on (Package, Class, Oper-
ation, Relationship). Then, the resulting stereotypes
were optimized to remove relationships that violated meta-
relationships in the UML meta-model among the four base
classes listed above (Package, Class, Operation,
Relationship), and the relationships were replaced with
attributes. As a consequence, some concept relations (from
Fig. 3), and therefore stereotypes relations, do not explicitly
appear in the packages. For instance, a Reaction (C.15)
reacts to an Event (C.14) (or another reaction) and there is a
relationship between them in the conceptual model. However,
there is no association between stereotype «Reaction»
(S.22) and stereotype «Event» (S.21) (Fig. 9) since
there is no association between the meta-classes those two
stereotypes inherit from in the UML 2.0 metamodel. Instead,

there is an attribute consequenceOf in stereotype
«Reaction» (S.22) that lists the event names (or reac-
tion names) that Reaction (S.22) reacts to. Hence,
SafeUML remains consistent with the UML meta-model.

The model can be queried through OCL [22] expressions
using one of the existing OCL [22] engines, for example the
MDT-OCL engine working on the Ecore models in the EMF
framework [3]. For instance, a «Reaction» (S.22) is
a Class or Operation that implements a reaction ste-
reotyped with «Event» (S.21) (or its subclass «Reac-
tion» (S.22)), and this is modeled using the conse-
quenceOf attribute value in the SafeUML profile. This
information can be retrieved by executing the following OCL
query, in the context ofReaction (S.22), on an instance
model of the SafeUML profile:

self.consequenceOf− > forAll(s : String|
Event.allInstances− >

including(Reaction.allInstances)− >

exists(name = s))

5.2 Value of information captured by SafeUML

This section discusses the value of information that can be
generated from SafeUML models as related to the usage sce-
narios defined in Sect. 2.2 for safety engineers, certification
authorities, and software engineers. SafeUML is designed to

123

348 G. Zoughbi et al.

Table 3 Concepts are tied to DO-178B (samples)

SafeUML concept DO-178B concept (and Section number)

Requirement (C.1) Safety Objective (4.1), Safety Requirement (2.1.1, 5.1), Certification Requirement
(2.1.1), Derived Requirement (5.1.1)

Deviation (C.2) Deviation (8.2), Accuracy (11.9)

Style (C.3) Implementation Style, Time-Related (6.4.2.1), State-Related (6.4.2.1)

Implementation Style (C.4) Recursion (6.3.3, 11.7), Compacted Expression (11.7), Dynamic Memory (11.7), Data
Alias (11.7), Discontinuity (6.3.2)

Behavioural Style (C.5) Time-Related (6.4.2.1), State-Related (6.4.2.1)

Nature (C.6) COTS Software (2.4, 11.1), Deactivated Code (4.2, 5.4.3, 11.10), Previously Developed
Software (11.1, 11.3, 12.1)

Rationale (C.7) Traceability (5.3.1, 5.5)

Partition (C.8) Partitioning (2.1.1, 2.3.1, 5.2.2, 6.3.3, 11.3, 11.9, 11.10)

Safety Critical (C.9) Software Level (2.2, 2.2.2), Level of Confidence (4.1, 6.4), Failure Condition Category
(2.2, 2.2.1)

Environmental Model (C.10) Simulator (12.3.3.5)

Strategy (C.11) Safety Strategy (2.1.1), Scheduling Strategy (11.1), Formal Method (12.3.1)

Measure (C.12) Complexity (5.2.2, 6.3.4, 11.7), Coupling (11.8)

Interface (C.13) Hardware / Software Interface (6.4.3, 11.1, 11.9)

Event (C.14) Unsafe Action, Failure (2.2), Failure Condition (2.2), Fault (2.1.1), Error (4.2), Integrity
Check (11.16)

Reaction (C.15) Safety Response (2.1.1)

Handler (C.16) Exception Handling (11.7), Fault Containment (2.1.2), Software Protector (2.4), Safety
Feature, Fault Tolerance (2.1.1, 4.4, 11.1), Immunity (2.1.1)

Monitor (C.17) Safety Monitoring (2.1.1, 2.3.2, 11.9), Error Detection (4.2), Fault Detection (2.1.1,
11.9), Fault Containment (2.1.2), Error Prevention (4.2, 4.4), Integrity Check (11.16),
Software Protector (2.4), Loadable Software Indicator (2.5), Safeguard (7.2.8, 11.4),
Safety Feature (4.4, 11.1)

Concurrent (C.18) Active (12.3.3), Passive (11.7, 12.3.3), Shared Resource (11.1), Multi-Tasking (11.7)

Defensive (C.19) Defensive Programming (4.5)

Configuration (C.20) Configuration (5.4.3)

Configurable (C.21) User Modifiable Software (2.4, 4.2, 5.2.3, 11.1), Option Selectable Software (2.4, 11.1)

Loadable (C.22) Field Loadable Software (2.5, 6.4.3, 11.1), Software Patch (5.4.3)

Configurator (C.23) Loader (2.5), Loadable Software Indicator (2.5)

Replicated (C.24) Multiple-Version Dissimilar Software (2.1.1, 2.3.2, 11.1, 11.3), Software Redundancy
(2.1.1, 11.1)

Comparator (C.25) Comparator/Voter (2.3.2)

Replication Group (C.26) Multiple-Version Dissimilar Software (2.1.1, 2.3.2, 11.1, 11.3), Software Redundancy
(2.1.1, 11.1)

enable modeling information relevant to DO-178B [30]. As
Fig. 10 illustrates, DO-178B contains various concepts of
importance. These concepts were identified and captured in
a conceptual model (see Sect. 4.2, which includes a mapping
from the conceptual model to the original DO-178B con-
cepts). In turn, the conceptual model was then implemented
by the SafeUML profile (see Sect. 5.1, which includes a map-
ping from each SafeUML stereotype to the corresponding
concept from the conceptual model). It then follows that Saf-
eUML captures all DO-178B-relevant information.

Usage 1–Usage 3 illustrate that safety-related informa-
tion is communicated and documented. Next, Usage 4 illus-

trates the need for continuous monitoring of safety and cer-
tification aspects during the development life cycle: Usages
1-3 are prerequisites to Usage 4. Critical to this is achieving
effective communication between safety engineers and soft-
ware engineers. Since SafeUML captures DO-178B-relevant
information, SafeUML models can be used as a repository for
these two groups to exchange precise, unambiguous infor-
mation regarding software-based system safety. By simply
performing their regular design modeling duties, software
engineers will collect and formulate safety and certification
information in their designs. Once captured by the modeling
tool, this information can be easily generated anytime during

123

Modeling safety and airworthiness information 349

Fig. 4 Meta-classes used for visual simplicity of profile diagrams

(a) (b)

Fig. 5 Packages ContextStereotypes (a) and ReplicationStereotypes (b)

Fig. 6 Package ConfigurationStereotypes

the development lifecycle using simple tool support to query
the models and generate customized reports. Safety engi-
neers can thus obtain regular reports, monitor the progress of
implementing safety requirements, and promptly address any
concerns. This will put them in position to be better prepared
to defend the system’s compliance with DO-178B. For exam-
ple, they can use this approach to assess the availability of
certification-related information.

Usage 5 in Sect. 2.2 illustrates the need to obtain valuable
information from the model that can be submitted to certi-
fication authorities. Since the SafeUML conceptual model
was based on the DO-178B standard and its requirements,
the information captured in SafeUML models should fully
address the need to demonstrate compliance with the stan-
dard. For example, Section 11 and annex A in the DO-178B

[30] standard list the information required for submission to
the certification authorities for each software level. This was
accounted for and included in the information requirements
in Sect. 3.1 and therefore captured in the conceptual model
in Sect. 4.

For example, the notions of requirements refinement and
derived requirements are very important to DO-178B [30].
Safety requirements are assigned at a system functional level
and then they are refined or decomposed into more detailed
requirements, some of which are then assigned to software
design elements. Such requirements refinement is an impor-
tant aspect of requirements engineering. In addition, the sys-
tem development team may introduce new requirements or
derive them from the customer requirements and, because
they are not explicitly specified by the customer, they are

123

350 G. Zoughbi et al.

Fig. 7 Package RequirementsStereotypes

Fig. 8 Package CharacteristicsStereotypes

called derived requirements [30]. Such derived requirements
often result from environmental conditions, standards, or
development processes. SafeUML supports such decompo-
sition and the modeling of derived requirements through its
stereotypes and their attributes. SafeUML has a«Require-
ment» stereotype, which is used to identify a requirement.
This stereotype has an attribute called ofRequirement,
which identifies its parent requirement (refinement relation).
It also has an attribute called isDerived, which identifies
whether the requirement is a derived one or not. At any point
in the requirements hierarchy, refined or derived require-
ments may be traced to higher-level requirements (through
the ofRequirement relationship). For example, Fig. 11
shows three safety requirements for an aircraft’s payload
release system and their relationships. SREQ 1 specifies that
the software system shall safely release payloads from the air-

craft. This requirement is refined in SREQ 1.1, which states
that the payload released from the aircraft bay shall not hit
the aircraft’s body while being released: SREQ 1.1 is linked
to SREQ 1 by aofRequirement link. Then, through anal-
ysis of the weight of payloads and aircraft, safety engineers
use the physics laws of free fall and determine the maximum
speed an aircraft may be flying such that the released pay-
load does not hit the body. This leads to derived requirement
SREQ 1.1.1: Payload shall not be released from the aircraft if
its speed is greater than 300 knots; as illustrated by the is-
Derived=true attribute of SREQ 1.1.1. Notice that the
derived requirement appears in the form of a constraint (on
the speed), which is common in practice.

It should be noted that Appendix A contains the defi-
nitions of concepts, their attributes, and their relationships.
Since stereotypes and their attributes correspond to concepts,

123

Modeling safety and airworthiness information 351

Fig. 9 Package EventManagementStereotypes

Fig. 10 SafeUML Relation to DO-178B

Fig. 11 Decomposing/refining
safety requirement and derived
requirements

their relations, and their attributes, the reader should refer to
Appendix A for more detailed descriptions.

Table 5 provides examples of SafeUML stereotypes and
their attributes that can be used to capture information valu-
able for DO-178B. The value of information is evaluated in
regards to how it supports verification of compliance with
DO-178B requirements. Section 6.5 in the case study pro-
vides example uses of the stereotypes in Table 5.

Finally, it is worth mentioning that reports from model
queries do not need to refer to UML terminology and Saf-
eUML stereotypes, but can instead be translated into DO-
178B specific terminology since SafeUML stereotypes are
traceable to DO-178B concepts. This allows the generated
reports to be available in the language and style that safety
engineers or certification authorities are used to. This is
important because the SafeUML approach should not require
them to be experienced in UML, UML extension mecha-
nisms, object-orientation, or programming.

5.3 Application of SafeUML to other safety standards

Although SafeUML is intended to be primarily used in the
context of DO-178B certification, we made an effort to define
a profile as generic as possible by defining the conceptual
model and profile on abstract safety concepts instead of DO-
178B specific safety concepts wherever possible. This is an
attempt to simplify reusing and tailoring SafeUML to other
safety-related standards that are used in other safety-critical
industries including health care, transportation, and nuclear
energy.

For example, we chose the “Requirement” (C.1) concept,
and its corresponding «Requirement» (S.9) stereo-
type, with their attributes, all described in general terms, to
represent the following concepts as they appeared in DO-
178B [30]: Safety Objective (Section 4.1 of [30]), Safety
Requirement (Sections 2.1.1 and 5.1 of [30]), Certification
Requirement (Section 2.1.1 of [30]), and Derived

123

352 G. Zoughbi et al.

Table 4 Description of stereotypes in SafeUML

Package Stereotype

Context Stereotypes «SafetyContext» (S.1): identifies a safety-related information context

«ReliabilityContext» (S.2): identifies a reliability-related information
context, e.g., it can be used to describe or identify a specific replication group (see
related concept). Also, same as “Replication Group” (C.26) concept

«IntegrityContext» (S.3): identifies an integrity-related information context

«PerformanceContext» (S.4): identifies a performance-related information
context

«ConcurrencyContext» (S.5): identifies a concurrency-related information context

«CertificationContext» (S.6): identifies a certification-related information
context

«DesignContext» (S.7): identifies a specific design-related information context

«ConfigurationContext» (S.8): identifies a configuration-related information
context, e.g., it can be used to describe or identify a specific configuration. Also, same
as “Configuration” (C.20) concept

Requirements Stereotypes «Requirement» (S.9): same as “Requirement” (C.1) concept

«Deviation» (S.10): same as “Deviation” (C.2) concept

«ImplementationStyle» (S.11): same as “Implementation Style” (C.4) concept

«BehaviouralStyle» (S.12): same as “Behavioural Style” (C.5) concept

«Nature» (S.13): same as “Nature” (C.6) concept

«Rationale» (S.14): same as “Rationale” (C.7) concept

«Partition» (S.15): same as “Partition” (C.8) concept

Characteristics Stereotypes «SafetyCritical» (S.16): same as “Safety Critical” (C.9) concept

«EnvironmentalModel» (S.17): same as “EnvironmentalModel” (C.10) concept

«Strategy» (S.18): same as “Strategy” (C.11) concept

«Measure» (S.19): same as “Measure” (C.12) concept

«Interface» (S.20): same as “Interface” (C.13) concept

EventManagement Stereotypes «Event» (S.21): same as “Event” (C.14) concept

«Reaction» (S.22): same as “Reaction” (C.15) concept

«Handler» (S.23): same as “Handler” (C.16) concept

«Monitor» (S.24): same as “Monitor” (C.17) concept

«Concurrent» (S.25): same as “Concurrent” (C.18) concept

«Defensive» (S.26): same as “Defensive” (C.19) concept

Configuration Stereotypes «Configurable» (S.27): same as “Configurable” (C.21) concept

«Loadable» (S.28): same as “Loadable” (C.22) concept

«Configurator» (S.29): same as “Configurator” (C.23) concept

Replication Stereotypes «Replicated» (S.30): same as “Replicated” (C.24) concept

«Comparator» (S.31): same as “Comparator” (C.25) concept

Requirement (Section 5.1.1 of [30]). See Table 3 in Sect. 4.2
for other examples.

Further, the values of the concepts’ attributes are not fixed
and can be standard specific. For example, the «Safety-
Critical» (S.16) stereotype has a Criticality-
Level attribute that can refer to standard-specific definitions
such as Software Levels in DO-178B [30] and System
Integrity Levels (SIL) in IEC 61508 [13] (see classes Saf-
etyLevel, Do178BSafetyLevel, and Iec61508-
SafetyLevel in Fig. 8 in Sect. 5.1).

Additionally, the values of the concepts’ attributes are
not fixed and can be tailored further as required to fit other
standards (or even organizations or projects). For example,
the values for attribute confidenceLevel of stereotype
«SafetyCritical» (S.16) may be qualitative such
as the “High”, “Medium” and “Low” or quantitative such
as “50%” and “80%” (see corresponding “SafetyCritical”
(C.9) concept in Table 11 in Appendix A). This enables
a flexible UML profile, with customizable stereotype
attributes.

123

Modeling safety and airworthiness information 353

Table 5 Examples of SafeUML stereotypes and their relations to DO-178B requirements

DO-178B Section 11.1 bullet c: Project’s Plan for Software Aspects of Certification (PSAC) to include a description of software’s contributions
to failure conditions

SafeUML: Use stereotype «SafetyCritical» to identify software that can contribute to failure conditions, its criticalityLevel
attribute to identify the failure condition level, and its triggersEvent attribute to identify events that software triggers that may lead to
failures

DO-178B Section 11.1 bullet a & Section 11.9 bullet f: Project’s PSAC to include description of hardware/software interfaces in the system,
including the requirements of their protocols, frequency of input, and frequency of outputs

SafeUML: Use stereotype «Interface» to identify interfaces, its isBetweenHardwareAndSoftware attribute to determine whether it
is a hardware/software interface or not, its ProtocolID attribute to identify the protocol used, its InputFunctionParameter attribute
to identify frequency of inputs, and its OutputFunctionParameter attribute to identify frequency of outputs

DO-178B Section 11.3 bullet f & Section 11.9 bullet h: Project to specify which methods are used to verify the integrity of partitions performed.
Partitioning requirements to be allocated to software, as well as the software level(s) for each partition, be specified

SafeUML: Use «Partition» stereotype and its attributes to identify a partition including the partitioning rationale and details,
«SafetyCritical» stereotype and its attributes to identify the software level for each partition, and the «Requirement» stereotype and
its attribute to identify any partitioning requirements and methods used to verify the integrity of partitions

DO-178B Section 11.1 bullet g: Project’s PSAC to include a description of COTS software used

SafeUML: Use «Nature» stereotype with its kind attribute set to COTS, and its reference and explanation attributes for information
and description about the COTS software used

DO-178B Section 11.1 bullet g & Section 11.3 bullet j: Project’s PSAC to include a description of the multiple-version dissimilar software used.
A description of the software verification process activities used to verify multiple-version dissimilar software be presented

SafeUML: Use «Replicated» stereotype and its id attribute to identify a version with a group of multiple-version dissimilar software, and its
replicatedGroupId attribute to identify the group of multiple-version dissimilar software. Further, use «Comparator» stereotype and its
attribute to determine voting parameters. The «ReliabilityContext» stereotype is used to identify a group of multiple-version dissimilar
software

DO-178B Section 11.7 bullet e: Software design standards to specify which constraints on the software design exist, e.g., recursive software

SafeUML: Use stereotype «ImplementationStyle» stereotype with its kind attribute set to Recursive to identify recursive software,
and «Deviation» stereotype with its kind attribute set to UsingRecursive to identify recursive software that deviate from design
decisions including the rationale

DO-178B Section 11.9: Software requirements to be documented, software design (e.g., UML model) be traced to the software requirements for
software assigned level D or above, source code be traceable to the requirements for software assigned level C or above, and design decisions

SafeUML: Use «Requirement» stereotype and its attributes to identify and describe a requirement, specifically its isDerived attribute to
indicate whether it is derived or not, and its ofRequirement attribute to specify the parent requirement to which it traces. The
«Rationale» stereotype and its attributes can indicate the rationale for this traceability

DO-178B Section 11.9 & Section 2.3.3: Specifying safety monitoring requirements, and indication of use as a mechanism for protecting against
specific failure conditions by monitoring functions or components

SafeUML: Use «Event», «Reaction», «Handler», and «Monitor» stereotypes and their attributes to identify safety monitoring
techniques, events that can impact safety and how they are handled, safety-monitoring software that can identify relevant events, and
safety-critical entities that can handle events properly

As a result, the terminology and concepts we use in our
conceptual model and profile are not specific to DO-178B.

Despite this effort to be as generic as possible, we did not
evaluate whether our generalization efforts were sufficient to
allow SafeUML to be used in the context of a standard other
than DO-178B. This would require experimentation and val-
idation with other safety standards such as IEC 61508 [13].
Such an activity is outside of the scope of this paper, and will
be the studied in future work.

6 Case study

In this section, we provide an example of a safety-critical sys-
tem and illustrate how SafeUML can be used to model it. The

goal is to demonstrate, through a realistic case study and a
number of representative modeling examples, the usefulness
of the SafeUML profile in the context of the identified usage
scenarios (see Sect. 2.2) and DO-178B requirements. Stereo-
types and their attributes are shown in a number of class dia-
grams to support the discussion. Some diagrams may appear
cluttered here, but a UML modeling tool generally allows the
modeler to filter this information on diagrams for better clar-
ify and readability. The system architecture is introduced in
Sect. 6.1, and the requirements of subsystem covered in this
case study are presented in Sect. 6.2. Section 6.3 describes
the safety-relevant events and reactions. Sections 6.4 and 6.5
show the value of SafeUML for the Usage scenarios pre-
sented in Sect. 2.2.

123

354 G. Zoughbi et al.

Fig. 12 Software architecture for the aircraft navigation system

6.1 System overview

We considered, as a safety-critical system, the Navigation
Controller (NC) subsystem of an aircraft’s navigation system
(see Fig. 12). This case study was developed only to illustrate
the UML profile and, due to confidentiality requirements and
for keeping complexity within reasonable bounds, it does not
exactly correspond to an actual, certified (e.g., by the FAA)
system. However, the first author was involved in the devel-
opment of similar systems, on which this case study is based,
and we followed standard design practices.

The NC subsystem is used to control the aircraft’s flight
paths through both automatic pilot and manual input from
the pilots. In autopilot mode, the subsystem can choose an
appropriate flight path based on the source and destination
of the aircraft, and guide the aircraft by generating appropri-
ate commands to the aircraft’s ailerons and spoilers (on the
wings), rudder (on the vertical tail), and engines to change
the speed and heading (i.e., direction) as required. In custom
Fly-To-Point (FTP) mode, the subsystem can accept com-
mands from the pilots such as a destination’s specific lati-
tude and longitude. It then controls the aircraft’s speed and
heading to get to the requested destination.

In order to perform such functionality, the NC subsystem
needs to have continuous input from the aircraft’s navigation
system, which reports the current position and altitude of the
aircraft at all times. In addition, it needs to be able to com-
mand the aircraft’s ailerons, spoilers, rudders, and engines to
change the speed and heading.

To develop the subsystem, we first identified five high-
level functional requirements (main functionalities) for the
subsystem, referred to as FREQ 1 to FREQ 5. We then per-
formed a safety assessment, using four standard, complemen-
tary methods (namely, action error analysis, failure modes
and effects analysis, hazards and operability analysis, and
interface analysis [16]). This generated 11 safety require-
ments, referred to as SREQ 1 to SREQ 7 (SREQ 6 is further

decomposed into SREQ 6.1 to SREQ 6.5). We then designed
the subsystem while recording design decisions (in particular
safety-related ones) using our profile. Lastly, we evaluated
the resulting design documents with respect to the usage sce-
narios discussed in Sect. 2.2.

Below we detail the development of the NC subsystem
in four steps. We first identify and list the functional and
safety requirements of the NC subsystem in Sect. 6.2. Sec-
ond, we identify the events the controller subsystem has to
handle, and the reactions it has to take, according to the func-
tional and safety requirements (Sect. 6.3). Third, we discuss
the design of the subsystem itself (Sect. 6.4) and we record
design decisions using the SafeUML profile. Last, we show
how safety engineers and third party certification authorities
can use this information (Sect. 6.5).

6.2 Functional and safety requirements

The subsystem’s functional and safety requirements are
described in Table 6. We list here the requirements assuming
that they have already gone through sufficient refinement and
decomposition, and that derived requirements have already
been identified and added. In Sect. 5.2 we showed how doc-
umenting them is possible using SafeUML.

6.3 Identification of events and reactions

A standard practice is to identify all the events the NC subsys-
tem receives, and the reactions it performs, which could have
safety implications. This advocates an Event-Driven Archi-
tecture (EDA). To identify the events, one needs to determine
which inputs to the system, or changes in its state, may impact
its safety. To identify the reactions, one needs to determine
how the system should behave to ensure safety when any of
the identified events occurs.

Safety requirements can be used to identify such safety-
related events and reactions. For example, one can identify at

123

Modeling safety and airworthiness information 355

Table 6 Functional and safety requirements for the Navigation Controller (NC) subsystem

Number Requirement

FREQ 1 NavigationControllerSubsystem shall be able to list pre-determined flight paths for a requested
source/destination pair.

FREQ 2 NavigationControllerSubsystem shall provide an autopilot feature where it flies the aircraft
through a requested flight path.

FREQ 3 NavigationControllerSubsystem shall be able to fly the aircraft to a requested Fly-To-Point
(FTP).

FREQ 4 NavigationControllerSubsystem shall provide the capability to guide the pilots through a
requested flight path when the pilot is controlling the aircraft through
MechanicalSteeringStickSubsystem.

FREQ 5 NavigationControllerSubsystem shall be able to provide navigation information received from
NavigationSubsystem.

SREQ 1 NavigationControllerSubsystem shall disable autopilot and FTP features when the pilot is
using MechanicalSteeringStickSubsystem, and re-enable them when the pilot stops using
MechanicalSteeringStickSubsystem.

SREQ 2 NavigationControllerSubsystem shall be able to identify whether a specific LAT/LONG
position is in a safe area or not, and not fly the aircraft to unsafe positions unless explicitly confirmed by
the pilot.

SREQ 3 NavigationControllerSubsystem shall be able to determine whether flying to a specific
LAT/LONG position requires flying through unsafe areas or not, and not fly the aircraft through unsafe
areas unless explicitly confirmed by the pilot.

SREQ 4 NavigationControllerSubsystem shall alert the pilot when the next FTP cannot be reached
without having to refuel the aircraft.

SREQ 5 When NavigationControllerSubsystem fails, an alert shall be raised and, until
NavigationControllerSubsystem is operational again, the pilot shall be required to manually
fly the aircraft using MechanicalSteeringStickSubsystem.

SREQ 6 NavigationControllerSubsystem shall ensure that the autopilot and FTP features are enabled
only when all of the following conditions hold.

SREQ 6.1 WingsAndEnginesSubsystemis functional.

SREQ 6.2 NavigationDatabaseSubsystem is functional.

SREQ 6.3 NavigationSubsystem is functional.

SREQ 6.4 NavigationControllerSubsystem is able to communicate with
WingsAndEnginesSubsystem.

SREQ 6.5 NavigationControllerSubsystem is able to communicate with NavigationSubsystem.

SREQ 7 NavigationControllerSubsystem shall require explicit confirmation to continue autopilot or
FTP flight modes every 5 minutes until NavigationSubsystem indicates that the GPS feature is
functional again. If the confirmation is not performed for a period of 7 consecutive minutes, then
NavigationControllerSubsystem shall signal an emergency to the pilots.

least two events of interest from safety requirement
SREQ 1 above: (1) The event when the pilot starts using
subsystem MechanicalSteeringStickSubsystem;
(2) The event when the pilot stops using this subsystem.
Also from this requirement, one can identify at least the fol-
lowing reactions: (1) Disabling the autopilot when the pilot
starts using the mechanical and steering stick subsystem;
(2) Enabling the autopilot when the pilot stops using this
subsystem.

Such analysis led to the identification of an inheritance
hierarchy of event classes (stereotyped«Event» (S.21))
and an inheritance hierarchy of reaction classes (stereotyped
«Reaction» (S.22)). Excerpts of the two hierarchies

appear in Fig. 13, showing the events and reactions identified
from SREQ 1, and the complete hierarchies can be found in
[33]. The «Event» (S.21) hierarchy shows two concrete
classes, namely, HeadingAndSpeedControlled-
ByOtherSubsystem (raised when pilot starts using
subsystem MechanicalSteeringStickSubsystem)
and HeadingAndSpeedNotControlledByOther-
Subsystem (raised when pilot stops using subsys-
tem MechanicalSteeringStickSubsystem). The
«Event» (S.21) stereotype has two attributes: one provides
information on the impact of system safety due to the
subsystem’s receipt of the event (EffectOnSafety-
Direction), and the other provides some context under

123

356 G. Zoughbi et al.

Fig. 13 Excerpt of the
«Event» and «Reaction»
hierarchies

which the event can be raised (EffectOnSafetyCon-
text).

The diagram also shows two concrete reaction classes,
namely, DisableController and EnableControl-
ler, which are stereotyped with «Reaction» (S.22).
The «Reaction» (S.22) stereotype has a number of
attributes to: refer to the event(s) that the reaction is a conse-
quence of (ConsequenceOf), whether it increases (Pos-
itive) or decreases (Negative) the level of software sys-
tem safety (EffectOnSafetyDirection), and indicate
the condition(s) under which the reaction occurs (When).
For example, when connections to the relevant subsystems
are restored, the NavigationControllerSubsystem
is re-enabled and it resumes controlling them. This is docu-
mented in Fig. 13 through the EnableController reac-
tion, which can be triggered by the HeadingAndSpeed-
NotControlledByOtherSubsystems event (tag
ConsequenceOf) when connections are available to func-
tional subsystem (tag When), and this has a positive effect
on system safety (tag EffectOnSafetyDirection) (in
addition, it is possible to use theEffectOnSafetyValue
tag to quantify the change in safety). Fig. 13 also illustrates
that reactions DisableController and EnableCon-
troller are also consequences of events other than the
one previously mentioned (e.g.,HeadingAndSpeedCon-
nectionEstablished).

The two «Reaction» (S.22) classes are also
stereotyped «Rationale» (S.14) to record the design
decisions for including them. The«Rationale» (S.14)
stereotype has an attribute, namely Reference, to refer to
the requirements that justify the existence of the reactions
(here, safety requirements SREQ 1 and SREQ 6).

6.4 Navigation Controller subsystem design: usage
scenarios 1, 2, 3

The NC subsystem design (class diagram) appears in the
NavigationControllerSubsystem package in
Fig. 14, and selected stereotypes are applied to the model
for illustrative purposes. The diagram (i.e., package) itself is
stereotyped «SafetyContext» (S.16) to specify that
it contains information that is relevant to system safety. It
is also stereotyped «Requirement» (S.9) to indicate
the functional and safety requirements that are relevant to
the diagram (attributes Kind and Specification). In
this case, the stereotypes indicate that the design fulfills all
requirements.

Class Controller is also stereotyped with
«Handler» (S.23) with attribute Handleable-
Event equal to PilotInputEvent to indicate that it
handles all concrete events that are subclasses of class
PilotInputEvent (stereotyped«Event» (S.21), but
not shown in Fig. 13). In addition to functional features (e.g.,
changing the flight path in response to a ChangeFlight-
Path input event), Controller is also responsible for
safety features such as executing the InvestigateFu-
elShortage reaction (attribute of «Handler») to deter-
mine whether the changes requested by the pilots may result
in a fuel shortage or not.

Class Controller is also stereotyped «state
dependent control», indicating it is a control class
with a state-dependent behavior. This stereotype, as well as
«algorithm», «coordinator», and «system
interface» are not part of the SafeUML profile. They
were defined by the Concurrent Object Modeling and

123

Modeling safety and airworthiness information 357

Fig. 14 Controller subsystem design

Table 7 Software levels of
components and the components
that depend on them

Safety-Critical Element (Level) Elements Dependent on It (Level) Notes

HeadingAndSpeedSubsystem (A) MechanicalSteeringStickSubsystem (B) A ≥ B

NavigationControllerSubsystem (C) A ≥ C

NavigationDatabaseSubsystem (C) NavigationControllerSubsystem (C) C ≥ C

NavigationSubsystem (B) NavigationControllerSubsystem (C) B ≥ C

LEDDisplaySubsystem (D) B ≥ D

NavigationControllerSubsystem (C) NavigationUserInterfaceSubsystem (D) C ≥ D

architectural design mEThod (COMET) methodology for
real-time systems [4] as a strategy to distribute responsibility
across classes.

The NC subsystem (NavigationControllerSub-
system) interacts with the HeadingAndSpeedSub-
system, the NavigationDatabaseSubsystem, and

the NavigationSubsystem (Fig. 14). Therefore, the
Controller class is associated with three «system-
interface» classes (following COMET recommenda-
tions [4]), namely, HeadingAndSpeedInterface,
NavigationDatabaseInterface, and Navigat-
ionInterface. These interface classes are stereotyped

123

358 G. Zoughbi et al.

Table 8 Examples of
component interfaces (including
hardware/software ones)

Interface To Entity Between hardware and software

ControllerInterface NavigationControllerSubsystem No

HeadingAndSpeedInterface HeadingAndSpeedSubsystem Yes

NavigationDatabaseInterface NavigationDatabaseSubsystem No

NavigationInterace NavigationSubsystem Yes

with «Rationale» (S.14), thereby justifying the
design decision to include them by relating them to func-
tional and safety requirements. They are also stereotyped
«Interface» (S.20) to indicate the kind of interface
they correspond to (i.e., software-software, or software-hard-
ware). (Note that identifying the software-hardware inter-
faces is a requirement of the DO-178B [30].)

Class Controller can receive events from those sub-
systems (through the corresponding interface classes). These
events are monitored by three «Monitor» (S.24) clas-
ses (i.e., HeadingAndSpeedMonitor, Navigation-
DatabaseMonitor, NavigationMonitor), which
all interact with one handler to trigger the required reac-
tions, namely ExternalSubsystemsEventHandler
(bottom of Fig. 14). The «Monitor» (S.24)stereotype
indicates that those monitors are safety monitors (Kind attri-
bute is set to Safety). It also specifies the monitored entity
(attribute MonitoredEntity), the detectable event from
this entity (attribute DetectableEvent), and the handler
for those events (attribute EventHandler). In particular,
referring to the already discussed safety requirement SREQ
1, class HeadingAndSpeedMonitor monitors class
HeadingAndSpeedInterface to detect Heading-
AndSpeedEvent (attribute DetectableEvent), and
therefore its event subclasses HeadingAndSpeed-
ControlledByOtherSubsystem andHeadingAnd-
SpeedNotControlledByOtherSubsystem events
(Fig. 9), and then notifies ExternalSubsystems-
EventHandler that triggers the DisableController
or EnableController reactions accordingly. (The
PerformedReaction attribute of the «Handler»
(S.23)’s stereotype indicates ReactionToDepen-
dentSubsystemEvent, whichDisableController
and EnableController inherit from— Fig. 13.) Clas-
ses HeadingAndSpeedMonitor and ExternalSub-
systemsEventHandler are therefore stereotyped
«Rationale» (S.14), and the Reference attribute
shows SREQ 1.

While explaining the subsystem design in this section,
we provided numerous examples of using SafeUML to com-
municate safety requirements (Usage 1), embedding safety
requirements into the software design (Usage 2), and docu-
menting justifications for design decisions (Usage 3). This is
apparent through the use of SafeUML stereotypes in Figs. 13

and 14, and the extensive explanation provided here. The
next section will illustrate how such a SafeUML design model
in this case study can support safety engineering and certi-
fication by providing case study examples on information
required for safety monitoring (Usage 4) and certification
(Usage 5), thus also illustrating SafeUML benefits to safety
engineers.

6.5 Safety analysis and certification based on design
models: usage scenarios 4, 5

In this section, we illustrate, using the NC subsystem case
study, how Usage 4 and Usage 5 discussed in Sect. 2.2 (Fig. 1)
can be facilitated through the use of SafeUML models. In
Sect. 5.2, we extensively discussed the benefits of modeling
using SafeUML for DO-178B and safety monitoring, and we
presented several examples of DO-178B guidelines and how
using SafeUML helps engineers satisfy them. In the previous
section, we presented concrete examples from the SafeUML
model in this case study (Figs. 13, 14) to illustrate the ben-
efits for Usage 1, Usage 2, and Usage 3. In this section, we
provide examples on the benefits for Usage 4 and Usage 5.

Recall that a project’s PSAC (Plan for Software Aspects
of Certification) is required to include a description of soft-
ware’s contributions to failure conditions (see Sect. 5.2). This
is in essence software levels, which can be obtained by que-
rying the model for all the model elements with the «Saf-
etyCritical» stereotype and reading their Critical-
ityLevel attribute.

Further, the software level for each component or ele-
ment must be as high as the highest level for all elements
that depend on it. From Fig. 13, we can extract a list of
safety-critical elements and failure condition category level
(using stereotype «SafetyCritical»). Notice that the
software level for each element is at least equal to the high-
est level for all elements that depend on it. This is summa-
rized in Table 7. This allows safety engineers and certification
authorities (Usage 4 and Usage 5) to ensure that DO-178B
guidelines with respect to software level design rules were
followed in Usage 2 and Usage 3. For example (Table 7),
NavigationSubsystem has level B, which is higher
than the levels for both elements that depend on it, namely,

123

Modeling safety and airworthiness information 359

Ta
bl

e
9

T
ra

ce
ab

ili
ty

be
tw

ee
n

re
qu

ir
em

en
ts

an
d

de
si

gn

D
es

ig
n

el
em

en
t

FR
E

Q
→

Fu
nc

tio
na

l;
SR

E
Q

→
Sa

fe
ty

FR
E

Q
1

FR
E

Q
2

FR
E

Q
3

FR
E

Q
4

FR
E

Q
5

SR
E

Q
1

SR
E

Q
2

SR
E

Q
3

SR
E

Q
4

SR
E

Q
5

SR
E

Q
6.

1
SR

E
Q

6.
2

SR
E

Q
6.

3
SR

E
Q

6.
4

SR
E

Q
6.

5
SR

E
Q

7

E
nt

ir
e

di
ag

ra
m

√
√

√
√

√
√

√
√

√
√

√
√

√
√

√
√

C
on

tr
ol

le
rM

on
ito

rA
nd

H
an

dl
er

√
√

√
C

on
tr

ol
le

r
√

√
√

√
√

√
√

√
Sa

fe
Po

in
tD

et
er

m
in

at
or

√
√

Pa
th

Pr
oj

ec
to

r
√

√
√

H
ea

di
ng

A
nd

Sp
ee

dI
nt

er
fa

ce
√

√
N

av
ig

at
io

nD
at

ab
as

eI
nt

er
fa

ce
√

N
av

ig
at

io
nI

nt
er

fa
ce

√
√

√
√

√
H

ea
di

ng
A

nd
Sp

ee
dM

on
ito

r
√

√
√

N
av

ig
at

io
nD

at
ab

as
eM

on
ito

r
√

N
av

ig
at

io
nM

on
ito

r
√

√
√

E
xt

er
na

lS
ub

sy
st

em
sE

ve
nt

H
an

dl
er

√
√

√
√

√
√

√

NavigationControllerSubsystem (level C) and
LEDDisplaySubsystem (level D).

Recall that a project’s PSAC is required to include a
description of the hardware/software interfaces in the system
(Sect. 5.2): DO-178B places special emphasis on this, espe-
cially on interfaces between hardware and software. From
Fig. 14, we can extract such a list, using stereotype«Inter-
face», to support Usage 4 and Usage 5, and identify hard-
ware/software interfaces if they were documented in Usage
3 (Table 8). NavigationInterface, for examples, is a
software class to interface with theNavigationSubsys-
tem hardware subsystem (Table 8).

Recall that a project’s PSAC is required to include a doc-
umentation of requirements and their traceability through
design (Sect. 5.2). From Fig. 14, we can extract such a list.
This will help ensure that all safety requirements are
designed through the software (through stereotypes
«Requirement», «Rationale»). Table 9, generated
from the model, helps the safety engineer conclude that all
safety requirements are addressed by some design while mon-
itoring safety (Usage 4). Further, this traceability informa-
tion can be submitted to certification authorities (Usage 5)
to illustrate requirements traceability from requirements to
design (i.e., which design elements, with their correspond-
ing implementation code, trace to which requirements). For
example, from Table 9 we can conclude thatHeadingAnd-
SpeedMonitor and ExternalSubsystemsEvent-
Handler implement SREQ 1 and that all functional and
safety requirements are designed into the system. If some
requirements were not designed into any design element, then
safety engineers can raise a flag and software engineers can
further investigate to resolve this.

To help safety engineers monitor safety (Usage 4), it
is possible to extract a list of safety-critical events and how
they will be handled (using stereotypes «Event»,
«Reaction», «Monitor», «Handler»). This informa-
tion can be extracted from Fig. 14, as summarized in Table 10
that lists events, reactions, monitors, handlers, and classes
that raise events. Notice that Table 10 does not specify which
design elements raise and detect the PilotInputEvent
event (empty cells), which suggests that software engineers
did not record and justify some relevant decisions for the cor-
responding safety requirements or reactions (missing activity
in Usage 3). This may be because software engineers did not
embed safety requirements in the design (missing activity in
Usage 2).

7 Conclusion

Communication and collaboration among safety stakehold-
ers, namely safety engineers, software engineers, and certi-
fication authorities, was found to be a major challenge when

123

360 G. Zoughbi et al.

Table 10 Safety critical events and handling mechanisms

Event Raised By Detected By Handled By Reaction

IndependentSubsystemEvent Controller ControllerMonitor-
AndHandler

ControllerMonitor-
AndHandler

ReactionToIndependent-
SubsystemEvent

PilotInputEvent – – Controller InvestigateFuelShortage

HeadingAndSpeedEvent HeadingAnd-
SpeedInterface

HeadingAnd-
SpeedMonitor

ExternalSubsystem-
EventHandler

ReactionToDependent-
SubsystemEvent

NavigationDatabaseEvent Navigation-
DatabaseInterface

NavigationDatabase-
Monitor

ExternalSubsystem-
EventHandler

ReactionToDependent-
SubsystemEvent

NavigationEvent NavigationInterface NavigationMonitor ExternalSubsystem-
EventHandler

ReactionToDependent-
SubsystemEvent

developing software for safety-critical systems such as air-
borne systems [7]. In addition, communication with certifica-
tion authorities with regards to system certification requires
providing proof that appropriate standards were followed
during the development process. To help resolve those chal-
lenges, we focused our research on the civil and military
aerospace systems development using RTCA DO-178B [30].
We first identified and modeled, from the DO-178B [30]
standard, the information that both engineering groups have
to exchange and how they would use such information in
practice (usage scenarios): safety engineers communicate
safety requirements to software engineers, software engi-
neers design software with system safety in mind and record
design decisions, safety engineers monitor system safety dur-
ing design and prepare reports for certification. We modeled
this information as a conceptual model with 26 safety-related
concepts, 48 attributes, and 35 relationships between con-
cepts. Although primarily focusing on developing software
for the aerospace industry, those concepts would also be reus-
able for other safety-critical industries.

To embed safety information in UML models, the de facto
standard for modeling object-oriented software, we defined
information requirements from the conceptual model. We
then evaluated the suitability of existing UML-based solu-
tions (e.g., existing profiles). Our conclusion was that exist-
ing UML-based solutions are far from being adequate for our
purpose, as they only capture a small portion of the safety
concepts in our conceptual model. We therefore defined our
own UML profile, SafeUML, composed of 31 stereotypes
and 79 attributes, focusing first on adding safety information
to class diagrams.

SafeUML was applied on a realistic case study, an air-
craft’s navigation controller subsystem that can control the
aircraft’s flight paths through both automatic pilot and man-
ual input from the pilots. This showed how SafeUML is used

within the usage scenarios for safety information that we
identified. We designed the controller subsystem using the
SafeUML profile, i.e., embedding safety information in the
model, following guidance specified in the DO-178B stan-
dard (e.g., we performed a safety analysis of the control-
ler subsystem). We then showed that the SafeUML profile
can indeed facilitate communication among software engi-
neers, safety engineers, and certification authorities. Com-
munication with certification authorities is further supported
by SafeUML’s ability to provide reports proving that DO-
178B requirements were followed during the development
process.

Future work should first focus on (1) providing full auto-
mation for the profile including defining a list of common
model queries required for certification under the DO-178B
standard, (2) extending it to other diagrams such as sequence
diagrams and state machines to help analyze the safety behav-
ioral aspects of the systems (e.g., sequences of events and
reactions), (3) further evaluating its cost and effectiveness in
practice through additional case studies, and (4) evaluation of
SafeUML profile suitability to other safety-related standards
such as in IEC 61508 [13].

Acknowledgments This work was performed within the framework
of Gregory Zoughbi’s Master’s thesis. Gregory Zoughbi was partly
supported by General Dynamics Canada employee educational tuition
assistance. This work was partly supported by a Canada Research Chair
(CRC) grant. Lionel Briand and Yvan Labiche were further supported
by NSERC discovery grants.

Appendix A: Safety conceptual model

Table 11 lists and explains each safety-related concept in
Fig. 3, while Table 12 lists and explains the relationships
across those safety-related concepts.

123

Modeling safety and airworthiness information 361

Table 11 Safety-related concepts—definitions

(C.1) Requirement: specifies a requirement that must be met. The requirement need not necessarily be a safety requirement – it can be any
functional or non-functional requirements. It may be traceable to another requirement, which is often a higher level one. This enables the
concept of requirements traceability, which is a key element in the software development process

id: a unique ID for this requirement. Examples: “REQ 1”, “REQ 2”, “FREQ 1”, “SREQ 10”, … etc

is derived: indicates this requirement is derived from another one or not. Examples: “True”, “False”

kind: the kind of this requirement. Examples: “Functional”, “Safety”, “Reliability”, “Integrity”, “Performance”, “Concurrency”,
“Certification”, “Design”, “Configuration”, … etc

specification: the actual requirement’s specification. Examples: “Radar Output is Poisson with Lambda = 20 ms”, “Levels of Code Nesting <
5”, … etc

(C.2) Deviation: identifies a design deviation from a plan, standard, or Requirement (C.1). Deviations are important to note as they must be
submitted to the certification authorities according to the DO-178B standard [30].

kind: the kind of this deviation. This generally specifies the deviation action or decision. Examples: “Using Recursive Algorithm”, “Using
Dynamic Memory”, … etc

explanation: specifies how and why, this is a deviation from the reference requirements (see relationships to other concepts). Examples:
“Kalman filter is recursive so using recursive algorithm for the implementation”, … etc

(C.3) Style: an abstract concept indicating an implementation or a behavioural style. It does not capture any information, but it serves as a
base class for other concepts

(C.4) ImplementationStyle: identifies a style that is used to implement a design. A development standard should define which styles are
permitted and which ones are not, and this concept identifies conformance or deviation from the standard’s requirements

kind: the kind of this implementation style. Examples: “Recursive”, “Unbounded Loop”, “Compacted Expression”, “Dynamic Memory”,
“Data Alias”, … etc

parameters: describes additional details of the implementation style. It is generally an expression whose meaning is dependent on the Kind of
the implementation style. Examples: “Dynamic memory allocation frequency = Poisson with Lambda = 15 seconds”, … etc

explanation: specifies how this implementation style conforms to, or deviates from, the reference requirements (see relationships to other
concepts). Examples: “Using dynamic memory here because static because 90% of the time only 10% of the maximum memory space will
be needed (which would be required if static memory is used). This improves performance”, … etc

(C.5) BehaviouralStyle: identifies and describes a behavioural style of a design. A development standard should define which styles are
permitted and which ones or not, and this concept identifies conformance or deviation from the standard’s requirements

kind: The kind of this behavioural style. Examples: “Time-Related”, “State-Related”, … etc

parameters: describes additional details of the behavioural style. It is generally an expression whose meaning is dependent on the Kind of the
behavioural style. Examples: “Number of state machine states = 10”, “Number of state transitions = 20”, “Frequency of state changes =
Periodic every 1 minute”, … etc

explanation: specifies how this behavioural style conforms to, or deviates from, the reference requirements (see relationships to other
concepts). Examples: “Frequency of state changes is less than the maximum value permitted by REQ 23”, … etc

(C.6) Nature: describes the source for the design such as whether the actual software is purchased to meet the requirements, whether it was
previously developed as part of another project or software system, or whether it is deactivated and does not get executed

kind: the kind of the software’s nature. It is the primary attribute that describes the actual software represented by this concept. Examples:
“COTS”, “Deactivated”, “Previously Developed”, … etc

explanation: specifies how the referenced requirements are met by the nature of this design (see relationships to other concepts). Examples:
“This is a COTS software component purchased according to document number 1234567 to meet requirements REQ 1 – REQ 10”, … etc

(C.7) Rationale: specifies that a specific design exists to support another design element, or to fulfill specific requirements. It explicitly
allows modelers to trace the design to specific Requirements (C.1)

explanation: specifies how the design decision is a solution for the referenced requirements. Examples: “This class lists safe flight paths for
an aircraft, which is used to satisfy safety requirements SREQ 1, SREQ 2, and SREQ 3”, … etc

(C.14) Event: describes an event or action that may occur. An event may impact system safety by either causing or removing hazards. It may
also be caused internally by the system or it may be an external event. It does not need another event to trigger it

kind: the kind of this event. Examples: “External”, “Internal”,… etc

when: describes the conditions under which this event occurs. This may be specified in a formal language. Examples: “Event occurs when a
sonobuoy is released from the aircraft”, … etc

effect on safety direction: specifies the direction of its impact on system safety, i.e., whether it removes some hazards, does not impact safety,
or causes additional hazards to occur. Therefore, this attribute provides qualitative information. Examples: “Positive”, “Neutral”,
“Negative”, …etc

123

362 G. Zoughbi et al.

Table 11 continued

effect on safety value: specifies the severity of its impact on system safety. This is also used to quantify the impact on safety, possibly be
identifying the effect of the event on the number of hazards in the system. Therefore, this attribute provides quantitative information.
Examples: “+5”, “0”, “-5”, …, etc

effect on safety context: identifies the context within which the “Effect On Safety Direction” and “Effect On Safety Value” attributes are
valid. This attribute is necessary because understanding the context is essential to safety [2]. Examples: “Aircraft is flying above water”,
“Aircraft is on the ground”, “Aircraft is in autopilot mode”, …etc

(C.15) Reaction: describes a response/reaction to one or more Events (C.14) that may occur. A reaction may impact system safety by either
causing or removing hazards. It is an Event (C.14) in itself, but it always occurs in response to other Events (C.14). It is a subclass of the
Event (C.14) concept to allow the possibility of chain reactions (i.e., there could be a reaction for a reaction)

kind: inherited from “Event” (C.14)

when: inherited from “Event” (C.14). In effect, this attribute filters out situations when the reaction will not be performed as a result of the
Event (C.14) occurrence. This may be specified in a formal language

effect on safety direction: inherited from “Event” (C.14)

effect on safety value: inherited from “Event” (C.14)

effect on safety context: inherited from “Event” (C.14)

(C.9) SafetyCritical: represents a safety-critical design element that impacts system safety. It also identifies the safety or airworthiness level
of design elements (within the system in context)

criticality level: indicates the level of criticality (e.g., airworthiness level, Safety Integrity Level (SIL)), on some pre-defined scale, such as the
software level or the failure condition category. Examples: For RTCA DO-178B [7]: “A”, “B”, “C”, “D”, “E”. For IEC 61508 [13]: “SIL 1”,
“SIL 2”, “SIL 3”, “SIL 4”. For … etc

confidence level: indicates the level of confidence, on some pre-defined scale, that the criticality level is satisfied. Examples: “High”,
“Medium”, “Low”, “80%”, “50%”, … etc

(C.8) Partition: identifies a design partition that resulted from separating some design element from other design elements. Partitioning is a
technique for providing isolation between functionally independent entities to contain and/or isolate faults and potentially reduce the effort
of the verification process. It prevents specific interactions and cross-coupling interference [2]. Its key advantages are in separating
safety-critical design elements that have different safety levels, so that the failure of the less critical entity does not result in the failure of the
more critical entities

explanation: provides further details on the reasons for the partitioning. Examples: “Partitioned away from a software component with a
higher airworthiness level”, … etc

(C.16) Handler: identifies a design element that handles Events (C.14) that are detected by a Monitor (C.17). A handler handles the Events
(C.14) by performing specific Reactions (C.15) in response to the Events (C.14)

(C.17) Monitor: identifies a design element that monitors other Safety-Critical (C.9) design elements for Events (C.14). Detected Events
(C.14) are passed to Handlers (C.16) for processing, which in turn invoke the appropriate Reactions (C.15)

kind: the kind of this monitor, indicating the quality of service that it monitors. Examples: “Safety”, “Reliability”, “Integrity”,
“Performance”, “Concurrency”, “Configuration”,… etc

(C.10) EnvironmentalModel: identifies a design element that models a SafetyCritical (C.9) element by mimicking the behaviour, usually in
test mode, of another design element that will be used in the real system. For example, software simulators are instances of
EnvironmentalModels, and it is common to use them to model hardware elements or other subsystems (hardware or software) for system
integration and testing purposes. EnvironmentalModels are often used in developing large systems, they make the testing experience easier
and more cost effective, and they play a key role in System Integration Labs (SIL) [2]

parameters: specifies which behaviours are modeled and how. Examples: for a communication subsystem model/simulator (e.g., Radio
Frequency (RF)): “Messages received as Poisson with Lambda = 100ms”, “Message loss frequency is Poisson with Lambda = 250
messages”, … etc

(C.11) Strategy: describes an approach used to in a specific design element. This approach could be a design decision that relates to some
category (see kind attribute below)

kind: the kind of this strategy. Examples: “Safety”, “Reliability”, ‘Integrity”, “Performance”, “Concurrency”, “Certification”, “Design”,
“Configuration”, “Scheduling”, “Formalism”… etc

parameters: specifies the strategy policy parameters. Examples: for a Scheduling strategy: “Round Robin”, “FIFO”, “LIFO”, … etc, for a
Formalism strategy (i.e., use of formal methods): “Natural Deduction”, “Linear Logical Framework (LLF)”, … etc

(C.12) Measure: quantifies a characteristic of a design element. Measures can be quantified for various types of metrics such as coupling
between entities, complexity of a single entity, cohesion of a single entity, size, … etc

kind: identifies the kind of the measurement that is used to quantify the SafetyCritical entity. Examples: “Level of Nested Calls”,
“Conditional Structures”, “Unconditional Branches”, “Number of Entry/Exit Points of Code”, “Big O”, “Source Lines of Code”,
“Inter-Entity Call Points”, … etc

value: an expression specifying the value, or the permitted range, of the measure. Examples: “n2”, “log n”, “25”, … etc

123

Modeling safety and airworthiness information 363

Table 11 continued

(C.13) Interface: describes an interface between design elements. Interfaces are common between subsystems of the same system, between
the system and some other external system, between software and hardware, and other situations

is between hardware and software: indicates whether the interface is between hardware and software.

Examples: “True”, “False”

protocol id: identifies the protocol used. Examples: “MIL STD 1553” [29], “Ethernet”, “CORBA”, … etc

input function parameters: specifies the expected input function and/or its frequency. Examples: “Poisson with Lamba = 20ms”, “Periodic
every 1 second”, … etc

output function parameters: specifies the expected output function and/or its frequency. Examples: “Poisson with Lamba = 20ms”, “Periodic
every 1 second”, … etc

(C.18) Concurrent: identifies a design element that participates in a concurrency model. There are several possible roles that the design
element can assume in a concurrency model, such as being a resource or software execution code that can be either active or passive. An
active design element is one that is capable of generating stimuli concurrently or pseudo (seemingly) concurrently without being prompted
by an explicit stimulus instance, whereas a passive one is one that cannot generate its own behaviour but only reacts when prompted by a
stimulus [13]

role: the role of this entity. Examples: “Active”, “Passive”, “Resource”

is shared: specifies whether this entity can be shared by more than one other entity or not. Examples: “True”, “False”

parameters: specifies how this entity acts from a concurrency point of view, such as the frequency of events that an active entity can trigger,
or the maximum frequency at which a passive entity or a resource can be accessed. Examples: “Poisson with Lamba = 20ms”, “Periodic
every 1 second”, … etc

(C.19) Defensive: specifies that a design element employs a defensive design model, and describes it. In a defensive design model (e.g.,
defensive programming model for software), a design element checks for illegal inputs and forbid execution using illegal inputs, thus
avoiding a scenario where the design element may fail due to an unfulfilled assumption on the input variables

defendable inputs: specifies illegal input conditions that this design element checks against. Examples: “Division by Zero”, “Altitude < 0”, …
etc

(C.20) Configuration: represents a specific configuration. Software and/or hardware configurations may change by changing memory bits,
changing lookup tables, loading a software patch, and others

id: uniquely identifies a specific software configuration. Examples: for a user interface software that can provide interface in many languages
based on a string lookup table: “English Interface”, “French Interface”, “German Interface”, … etc

(C.21) Configurable: identifies a design element that can be configured or altered to produce a different Configuration (C.20) or behaviour.
Such change is generally performed by the user or buyer of the software, not the by vendor or its development team

kind: the kind of this configurable design element. Examples: “Memory Bits”, “Lookup Tables”, …etc

when: specifies when this configurable design element can be configured to change configurations. Examples: “Compile-Time”,
“Link-Time”, “Run-Time”, … etc

(C.22) Loadable: identifies a design element that can be loaded by the user to change the Configuration (C.20). Loadable design elements are
loaded on Configurable (C.21) design elements

(C.23) Configurator: identifies a design element that can configure Configurable (C.21) design elements to change the Configuration (C.20),
possibly by loading Loadable (C.22) design elements

(C.24) Replicated: identifies a design element that participates in a Replication Group (C.26), such as multiple-version dissimilar software,
and whose output is evaluated by a Comparator (C.25)

id: specifies a unique identifier for this entity within its replication group. Examples: “Filter Version 1”, “Filter Version 2”, “Filter Version 3”,
… etc

(C.25) Comparator: identifies a design element that analyzes outputs of Replicated (C.24) design elements and determines the formal output
of the Replication Group (C.26)

policy parameters: specifies how the comparator determines the formal output. Can include assignment of weights. Examples: “Equal
Weights”, “Majority Voting”, … etc

(C.26) ReplicationGroup: identifies a software replication group composed of Replicated (C.24) design elements and a Comparator (C.25)
that compares their outputs. For example, a replication group is an instance of software redundancy or multiple-version dissimilar software.
It is a technical solution to reliability challenges and has been traditionally used in safety-critical systems

id: specifies the ID of this replication group. Examples: “Radar Filter Replication Group”, “Controller Replication Group”, “REPLICATION
1”, … etc

123

364 G. Zoughbi et al.

Table 12 Relationships between safety-related concepts

Requirement [0..*] Is Requirement Of Requirement [0..*]
Each Requirement may be traceable to zero or more higher-level Requirements. Conversely, a Requirement may have zero or more lower-level

Requirements (traceable to it)

Deviation [0..*] References Requirement [1..*]
Each Deviation must deviate from at least one, potentially more, Requirement. Moreover, there may exist more than one Deviation from a

particular Requirement. However, not every Requirement may have Deviations from it, which would be the case when the design fully
conforms to the Requirements

ImplementationStyle Is Child Class Of Style
Each ImplementationStyle is a Style

ImplementationStyle [0..*] References Requirement [0..*]
Each ImplementationStyle may conform to, or deviate from, zero or more Requirements. Conversely, a Requirement may require zero or more

ImplementationStyles. In the case where an ImplementationStyle is not associated with any Requirements, the ImplementationStyle signifies a
design decision rather than an obligation or a requirement

BehaviouralStyle Is Child Class Of Style
Each BehaviouralStyle is a Style

BehaviouralStyle [0..*] References Requirement [0..*]
Each BehaviouralStyle may conform to, or deviate from, zero or more Requirements. Conversely, a Requirement may require zero or more

BehaviouralStyles. In the case where a BehaviouralStyle is not associated with any Requirements, the BehaviouralStyle signifies a design
decision rather than an obligation or a requirement

Nature [0..*] References Requirement [0..*]
A Nature may have been used solely as a design decision, in which case it is not associated with any Requirements, or it may have been used to

conform to one or more Requirements. Conversely, a Requirement may exist but not cause any Natures, or it may cause one or more Natures

Rationale [0..*] References Requirement [1..*]
Each Rationale must be associated with at least one, potentially more, Requirement. Moreover, there may exist more than one Rationale

associated with a particular Requirement. However, not every Requirement may have Rationales associated with it. However, such a case is
uncommon because it would mean that there are no design elements traceable to this Requirement

Reaction Is Child Of Event
Each Reaction is an Event

Reaction [0..*] Is Consequence Of Event [1..*]
Each Reaction is a consequence of one or more Events because it is executed in response to the Events. However, each Event may not cause any

reactions at all, or it may cause one or several Reactions. Since Reactions are Events by inheritance, then a terminal Reaction, which is the last
Reaction in a chain of Reactions, does not cause any more Reactions

SafetyCritical [1..*] Triggers Event [0..*]
A SafetyCritical entity may trigger zero or or more Events. A particular Event may not be triggered by any SafetyCritical entity, or it may be

triggered by one or more SafetyCritical entities

Partition [0..*] References Requirement [0..*]
A Partition may exist to fulfill one or more Requirements, or it may exist as a design decision to isolate functionally independent elements such

that a failure in one component does not cause the other to fail. Conversely, a Requirement may or may not require one or more Partitions to be
performed

Partition [0..*] Is Partitioned From SafetyCritical [1..*]
By definition, a Partition is always Partitioned from one or more SafetyCritical entities. However, a SafetyCritical entity may not necessarily

have one or more Partitions from it

Handler [0..*] Handles Event [1..*]
A Handler handles at least one Event, and it usually handles more than one Event. However, one or more Events may not necessarily be handled

by a Handler. The latter case may occur for Events that are not of interest in the system, such as non-safety-critical events. In addition, it usually
occurs for many Reactions, which are Events by inheritance

Handler [0..*] Performs Reaction [1..*]
A Handler performs one or more Reactions. However, a Reaction may not necessarily be performed by a Handler, or it may be performed by one

or more Handlers

Monitor [0..*] Monitors SafetyCritical [1..*]
A Monitor monitors one or more SafetyCritical entities. However, not every SafetyCritical entity is monitored by a monitor. It is also possible for

a SafetyCritical entity to be monitored by more than one Monitor

Monitor [0..*] Detects Event [1..*]
A Monitor detects at least, but usually more than, one Event. However, an Event may go undetected by Monitors, or it may be detected by one or

more Monitors

Monitor [1..*] Notifies Handler [0..*]
Each Handler is notified by at least one Monitor. However, some Monitors may not necessarily notify any Handlers, and a Monitor may notify

more than one Handler

123

Modeling safety and airworthiness information 365

Table 12 continued

EnvironmentalModel [0..*] Models SafetyCritical [1..*]
An EnvironmentalModel models at least one SafetyCritical entity. A SafetyCritical entity may not have any EnvironmentalModels, or it may

have one or more EnvironmentalModels. For example, a radar system may have two EnvironmentalModels, with each one modeling the radar’s
behaviour under different environmental conditions.

Strategy [0..1] Describes Strategy Of SafetyCritical [1..*]
A Strategy describes the approach used (e.g., design strategy, testing strategy) in one or more SafetyCritical entities. In addition, a SafetyCritical

entity’s approach may, or may not, be described by a Strategy

Measure [0..1] Quantifies Characteristic Of SafetyCritical [1..*]
A Measure quantifies a characteristic of one or more SafetyCritical entities. In addition, a SafetyCritical entity may, or may not, have

characteristics quantified by a Measure.

Interface [0..*] Is Interface For SafetyCritical [1..*]
Each Interface is for one or more SafetyCritical entities or components. In addition, a specific SafetyEntity may have one or more Interfaces. An

example of the latter case would be where a subsystem has one Interface to it in each of the other subsystems in the complete system

Concurrent [0..*] Triggers Event [0..*]
Each Concurrent entity may trigger zero or more Events. Conversely, each Event may be triggered by zero or more Concurrent entities. A

Concurrent entity may not trigger any Events if it is passive

Defensive [0..1] Performs Reaction [1..*]
A Defensive entity protects against unusual inputs by performing one or more Reactions to such unusual inputs, or Events. However, Reactions

are not necessarily performed by Defensive entities

Configurable [0..*] Defaults To Configuration [1..1]
Each Configurable entity must be defaulted to a particular Configuration. In addition, a Configuration may be the default one for zero of more

Configurables

Configurable [1..*] Is Configurable To Configuration [1..*]
Each Configurable entity may be configured to produce one or more Configurations. In addition, each Configuration can be produces by

configuration one or more Configurable entities in a particular way

Loadable [1..*] Is Loadable On Configurable [1..*]
Each Loadable entity is loadable on one or more Configurable entities. Conversely, every Configurable entity can be configured by loading one

or more Loadables on it

Loadable [0..*] Requires Configuration [0..*]
Loading a Loadable entity may require specific base Configurations for it to be Loaded. For example, loading a particular software patch may

require pre-loading earlier patches. However, there may not be such a requirement if the patch is a complete and comprehensive patch, rather
than an incremental patch. Conversely, not every Configuration is required by Loadable entities

Loadable [1..*] Produces Configuration [1..*]
A Configuration may be produced by loading a Loadable. A Loadable may produce more than Configuration if loaded on different base

Configurations. For a Configuration to be produced, at least one Loadable must be loaded

Configurator [1..*] Configures Configurable [1..*]
A Configurator configures one or more Configurable entities. A Configurable entity may be configured by more than one Configurator, such as

the case where the Configurators configure different aspects of the Configurable entity

Configurator [1..*] Loads Loadable [1..*]
A Configurator loads one or more Loadables. In addition, a Loadable is loaded by one or more Configurators

Comparator [1..1] Compares Replicated [2..*]
A Comparator compares the outputs of at least two Replicated entities. The output of a Replicated entity is compared by exactly one Comparator

ReplicationGroup [1..1] Owns Comparator [1..1]
Each ReplicationGroup has exactly one Comparator

ReplicationGroup [1..1] Owns Replicated [2..*]
Each ReplicationGroup has at least two Replicated entities

123

366 G. Zoughbi et al.

References

1. Balasubramanian, K., Krishna, A.S., Turkay, E., Balasubramanian,
J., Parsons, J., Gokhale, A., Schmidt, D.: Applying model-driven
development to distributed real-time and embedded avionics sys-
tems. Int. J. Embed. Syst. 2(3/4), 142–155 (2006)

2. CENELEC EN: 50128.: Railway Applications: Software for Rail-
way Control and Protection Systems. European Committe for
Electrotechnical Standardization. January 1997

3. Eclipse Foundation.: Eclipse Modeling Framework. http://www.
eclipse.org/emf/. Accessed May 2005

4. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time
Applications with UML, Object Technology. Addison Wesley,
Reading (2000)

5. Hamid, B., Radermacher, A., Lanusse, A., Jouvray, C., Gerard, S.,
Terrier, F.: Designing fault-tolerant component based applications
with a model driven approach. In: Proceedings of IFIP Workshop
on Software Technologies for Embedded and Ubiquitous Systems,
pp. 9–20 (2008)

6. Hansen, K.T., Gullesen, I.: Utilizing UML and patterns for safety
critical systems. In: Proceedings of Workshop on Critical Systems
Development with UML, in Conjunction with the International
Conference on the UML (2002)

7. Hayhurst, K.J., Holloway, C.M.: Challenges in software aspects
of aerospace systems. In: Proceedings of Annual NASA Goddard
Software Engineering Workshop (2001)

8. Heinrich, M., Winkler, M., Steidelmueller, H., Zabelt, M.,
Behring, A., Neumerkel, R., Strunk, A.: MDA applied: a task-
model driven tool chain for multimodal applications. In: Proceed-
ings of Task Models and Diagrams for User Interface Design,
LNCS, vol. 4849, pp. 15–27 (2007)

9. Herrmann, D.S.: Software Safety and Reliability: Techniques,
Approaches, and Standards of Key Industrial Sectors. Wiley,
New York (2000)

10. IBM.: Rhapsody. http://www.01.ibm.com/software/awdtools/
rhapsody/

11. IBM-Rational.: Rational Software Architect. http://www.306-ibm.
com/software/awdtools/architect/swarchitect/

12. Inc A.S.: ARTiSAN Studio. http://www.artisansw.com/pdf/
product_sheets/studio.pdf

13. International Electrotechnical Commission (IEC).: Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. IEC 61508 (1998)

14. Jürjens, J.: Developing safety-critical systems with UML. In: Pro-
ceedings of International Conference on the UML, LNCS, vol.
2863, pp. 360–372 (2003)

15. Lagarde, F., Espinoza, H., Terrier, F., Andre, C., Gerard, S.: Lever-
aging patterns on domain models to improve UML profile defi-
nition. In: Proceedings of Fundamental Approaches to Software
Engineering, LNCS, vol. 4961, pp. 116–130 (2008)

16. Leveson, N.G.: Safeware—System Safety and Computers. Addi-
son-Wesley, New York (1995)

17. Lewis, R., Dale, C., Anderson, T.: Safety case development as an
information modelling problem. In: Proceedings of Safety-Critical
Systems Symposium, Part 6, pp. 183–193 (2009)

18. Meunier, J.-N., Lippert, F., Jadhav, R.: RT modeling with UML
for safety critical applications—the HIDOORS project example.
In: Proceedings of Workshop on Specification and Validation of
UML Models for Real-Time and Embedded Systems, in Conjunc-
tion with the International Conference on the UML (2003)

19. Monin, A., Dowell, J.: User interface specification with sequence
diagrams: an application to the AIRBUS A380 Datalink sys-
tem. Cogn. Technol. Work 11(4), 267–277 (2009)

20. Nilsen, K.: Certification requirements for safety-critical software.
RTC Magazine (2004)

21. Ober, I., Graf, S., Yushtein, Y., Ober, I.: Timing analysis and vali-
dation with UML: the case of the embedded MARS bus manager.
Innov. Syst. Softw. Eng. 4(3), 301–308 (2008)

22. OMG.: OCL 2.0 Specification. Object Management Group, Final
Adopted Specification ptc/03-10-14 (2003)

23. OMG.: UML Profile for Schedulability, Performance, and Time
Specification. Adopted Specification. http://www.omg.org/docs/
formal/05-01-02.pdf (2005)

24. OMG: MOF 2.0/XMI Mapping Specification v2.1.1., http://www.
omg.org/cgi-bin/doc?formal/07-12-01.pdf, (2007)

25. OMG: UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Formal Specification
08-04-05. http://www.omg.org/cgi-bin/doc?formal/08-04-05.pdf
(2008)

26. OMG: A UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Formal Specification 2009-11-02.
http://doc.omg.org/formal/2009-11-02.pdf (2009)

27. OMG: Unified Modeling Language: Infrastructure. Adopted
Specification 09-02-04. http://www.omg.org/cgi-bin/doc?formal/
09-02-04.pdf (2009)

28. OMG: Unified Modeling Language: Superstructure. Adopted
Specification 09-02-02. http://www.omg.org/cgi-bin/doc?formal/
09-02-02.pdf (2009)

29. Pender, T.: UML Bible. Wiley (2003)
30. RTCA: Software Considerations in Airbone Systems and Equip-

ment Certification. Radio Technical Commission for Aeronautics
(RTCA), European Organization for Civil Aviation Electronics
(EUROCAE), Standard Document no. DO-178B/ED-12B, Decem-
ber 1992

31. Sparx Systems: Enterprise Architect. http://www.sparxsystems.
com/products/ea/index.html

32. World Wide Web Consortium: The Extensible Stylesheet Language
Family (XSL). http://www.w3.org/Style/XSL/ (2009)

33. Zoughbi, G., Briand, L.C., Labiche, Y.: A UML profile for devel-
oping airworthiness-compliant (RTCA DO-178B) safety-critical
software. Carleton University, Technical Report SCE-05-19,
December 2006

34. Zoughbi, G., Briand, L.C., Labiche, Y.: A UML profile for devel-
oping airworthiness-compliant (RTCA DO-178B) safety-critical
software. In: Proceedings of ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, pp. 574–
588 (2007)

123

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.01.ibm.com/software/awdtools/rhapsody/
http://www.01.ibm.com/software/awdtools/rhapsody/
http://www.306-ibm.com/software/awdtools/architect/swarchitect/
http://www.306-ibm.com/software/awdtools/architect/swarchitect/
http://www.artisansw.com/pdf/product_sheets/studio.pdf
http://www.artisansw.com/pdf/product_sheets/studio.pdf
http://www.omg.org/docs/formal/05-01-02.pdf
http://www.omg.org/docs/formal/05-01-02.pdf
http://www.omg.org/cgi-bin/doc?formal/07-12-01.pdf
http://www.omg.org/cgi-bin/doc?formal/07-12-01.pdf
http://www.omg.org/cgi-bin/doc?formal/08-04-05.pdf
http://doc.omg.org/formal/2009-11-02.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-04.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-04.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-02.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-02.pdf
http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://www.w3.org/Style/XSL/

Modeling safety and airworthiness information 367

Author Biographies

Gregory Zoughbi is an ICT
consultant at Center of Excel-
lence (CoE) for United Arab
Emirates (UAE) Armed Forces,
a subsidiary of the Emirates
Advanced Investments (EAI)
company. He specializes in the
fields of Systems and Soft-
ware Engineering, and Informa-
tion and Communication Tech-
nologies (ICT). He is currently
involved in the ICT strate-
gic planning efforts in various
areas including Service-Oriented
Architecture (SOA) and Enter-
prise Architecture (EA). Prior to

his current role, he was a software engineer at CAE Inc. where he devel-
oped military simulations based on High-Level Architecture (HLA), and
at General Dynamics (GD) Canada where he worked on the system and
software development for the mission systems of the CH-148 Cyclone
Maritime Helicopter Project and the CP-140 Aurora aircraft project. He
was also a core team member of GD Canada’s Software Engineering
Process Group (SEPG) where he helped the company achieve CMMI
Level 3. Prior to his work at GD Canada, he worked in the telecom
industry in Montreal and with BMW in Germany. He holds a Master’s of
Applied Science degree in Electrical Engineering from Carleton Univer-
sity, where he proposed a model-based software development approach
for projects with airworthiness (RTCA DO-178B) requirements that
resulted in conference and journal publications. He previously obtained
a Bachelor of Computer Engineering degree from McGill University.
Gregory previously satisfied all the requirements for registration as a
Professional Engineer (P. Eng.) in Ontario, Canada.

Lionel Briand is a group leader
at the Simula Research labo-
ratory and a professor at the
University of Oslo (Norway),
leading projects on software ver-
ification and validation in col-
laboration with industry. Before
that, he was on the faculty of the
department of Systems and Com-
puter Engineering, Carleton Uni-
versity, Ottawa, Canada, where
he was full professor and held the
Canada Research Chair (Tier I)
in Software Quality Engineering.
He has also been the software
quality engineering department

head at the Fraunhofer Institute for Experimental Software Engineer-
ing, Germany, and worked as a research scientist for the Software

Engineering Laboratory, a consortium of the NASA Goddard Space
Flight Center, CSC, and the University of Maryland, USA. Lionel has
been on the program, steering, or organization committees of many
international, IEEE and ACM conferences. He is the coeditor-in-chief
of Empirical Software Engineering (Springer) and is a member of the
editorial boards of Systems and Software Modeling (Springer) and Soft-
ware Testing, Verification, and Reliability (Wiley). He was on the board
of IEEE Transactions on Software Engineering from 2000 to 2004.
Lionel is an IEEE Fellow and a registered Canadian engineer (Ontario).
His research interests include: model-driven development, testing and
quality assurance, and empirical software engineering.

Yvan Labiche is associate pro-
fessor at the Department of Sys-
tems and Computer Engineering
of Carleton University (Ottawa,
Canada), where he leads the
Software Quality Engineering
Laboratory, an industry-oriented,
software engineering research
laboratory dedicated to the devel-
opment of new methods and
tools to develop higher quality
software in a cost-effective man-
ner. Yvan holds a Ph.D. in soft-
ware engineering from Institut
National Polytechnique de Tou-
louse, France. While doing his

Ph.D., he conducted research at LAAS/CNRS, Toulouse, France, and
worked with Aerospatiale Matra Airbus (now EADS) on the definition
of testing strategies for safety-critical, on-board object-oriented
software systems. His research interests include software testing,
model-based software testing, model-driven software development,
technology evaluation, empirical software engineering. He has pub-
lished many papers in conferences and journals. He served as a program
committee member on several IEEE-sponsored conferences, such as
Models, ICSM, QSIC, ICST. Yvan is a member of the IEEE.

123

	Modeling safety and airworthiness (RTCA DO-178B) information: conceptual model and UML profile
	Abstract
	1 Introduction
	2 System safety and certification per DO-178B
	2.1 Introduction to DO-178B
	2.2 Safety information stakeholders and usage scenarios
	2.3 A case for a UML-based communication between stakeholders

	3 Assessment of UML-based solutions
	3.1 Safety-related information requirements
	3.2 Existing UML-based solutions

	4 Safety-related conceptual model for airborne systems
	4.1 Design process
	4.2 Conceptual model

	5 SafeUML: safety-related UML profile for airborne systems
	5.1 Profile design
	5.2 Value of information captured by SafeUML
	5.3 Application of SafeUML to other safety standards

	6 Case study
	6.1 System overview
	6.2 Functional and safety requirements
	6.3 Identification of events and reactions
	6.4 Navigation Controller subsystem design: usage scenarios 1, 2, 3
	6.5 Safety analysis and certification based on design models: usage scenarios 4, 5

	7 Conclusion
	Acknowledgments
	Appendix A: Safety conceptual model
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

