
Softw Syst Model (2010) 9:21–46
DOI 10.1007/s10270-009-0121-8

SPECIAL SECTION PAPER

Comparing relational model transformation technologies:
implementing Query/View/Transformation with Triple Graph
Grammars

Joel Greenyer · Ekkart Kindler

Received: 31 March 2008 / Revised: 1 May 2009 / Accepted: 8 June 2009 / Published online: 15 July 2009
© Springer-Verlag 2009

Abstract The Model Driven Architecture (MDA) is an
approach to develop software based on different models.
There are separate models for the business logic and for
platform specific details. Moreover, code can be generated
automatically from these models. This makes transforma-
tions a core technology for MDA and for model-based
software engineering approaches in general. Query/View/
Transformation (QVT) is the transformation technology
recently proposed for this purpose by the OMG. Triple Graph
Grammars (TGGs) are another transformation technology
proposed in the mid-nineties, used for example in the FUJ-
ABA CASE tool. In contrast to many other transformation
technologies, both QVT and TGGs declaratively define the
relation between two models. With this definition, a transfor-
mation engine can execute a transformation in either direc-
tion and, based on the same definition, can also propagate
changes from one model to the other. In this paper, we com-
pare the concepts of the declarative languages of QVT and
TGGs. It turns out that TGGs and declarative QVT have
many concepts in common. In fact, QVT-Core can be mapped
to TGGs. We show that QVT-Core can be implemented by
transforming QVT-Core mappings to TGG rules, which can

Communicated by Prof. Gregor Engels.

J. Greenyer was supported by the International Graduate School of
Dynamic Intelligent Systems.

J. Greenyer (B)
Software Engineering Group, University of Paderborn, Warburger
Str. 100, 33098 Paderborn, Germany
e-mail: jgreen@upb.de

E. Kindler
Informatics and Mathematical Modelling, Technical University
of Denmark (DTU), 2800 Kongens Lyngby, Denmark
e-mail: eki@imm.dtu.dk

then be executed by a TGG transformation engine that
performs the actual QVT transformation. Furthermore, we
discuss an approach for mapping QVT-Relations to TGGs.
Based on the semantics of TGGs, we clarify semantic gaps
that we identified in the declarative languages of QVT and,
furthermore, we show how TGGs can benefit from the con-
cepts of QVT.

Keywords MDA · Model-based software engineering ·
Model transformation · Query/View/Transformation (QVT) ·
Triple Graph Grammar (TGG)

1 Introduction

In the recent years, several approaches to model-based
software engineering have been proposed. One of the most
prominent approaches is the Model Driven Architecture
(MDA) of the OMG [14]. The main idea of all these
approaches is that software should no longer be programmed,
but developed by a stepwise refinement and extension of
models. In the MDA, the focus is on separating the mod-
els for the business logic from the models for platform and
implementation specific details. In the end, the code can be
generated from these models. Because of this, technologies
for transforming, integrating, and synchronizing models are
at the core of model-based software engineering.

Today, there are many different technologies for trans-
forming one model into another. Most of these technolo-
gies are defined in a more or less operational way; i.e. they
define instructions how the elements from the source model
must be transformed into elements of the target model. This
implies that forward and backward transformations between
two models are defined more or less independently of each
other. By contrast, Query/View/Transformation (QVT) [17]

123

22 J. Greenyer, E. Kindler

and Triple Graph Grammars (TGGs) [21] allow us to
declaratively define the relation between two or more mod-
els by rules. Such a declarative definition of a relation can be
used by a transformation engine in different ways, which we
call application scenarios: Firstly, there are the forward and
backward transformations of one model into another. Sec-
ondly, once we have transformed one model into another,
the engine can keep track of changes in either model and
propagate those changes to the other model and change it
accordingly. This is called model synchronization and is one
of the most crucial application scenarios in round-trip engi-
neering. Since QVT and TGGs use one definition of the rela-
tion between two classes of models for all these application
scenarios, inconsistencies among the different scenarios are
avoided. Note that declarative QVT and TGG transforma-
tions are not always deterministic, but this problem is not in
the focus of this paper. For a detailed discussion of bidirec-
tional model transformations, we refer to Stevens [22]. For
details on algorithms for realizing the model synchronization
scenarios we refer to Giese and Wagner [4,5].

Query/View/Transformation is the transformation tech-
nology recently proposed by the OMG for the MDA. QVT
has different parts: There are declarative and operational lan-
guages. In this paper, we focus on the declarative languages
QVT-Relations and QVT-Core. TGGs were introduced in the
mid-nineties, and are now used in the FUJABA Tool Suite,
which is a CASE tool supporting round-trip engineering. In
Fujaba, TGGs are for example used for transforming back
and forth between UML diagrams and Java code [25]. Other
implementations of TGGs exist in the MOFLON tool set [1],
the AToM3 meta-modeling tool [8], and PROGRES [2,20].
To be able to transform eclipse modeling framework (EMF)
models in our Eclipse-based projects and for this compari-
son of QVT and TGGs, we have implemented another TGG
engine.

In addition to being declarative, QVT and TGGs have
many concepts in common and—upon closer investigation—
have striking similarities. In this paper, we investigate
these similarities for several reasons. Firstly, the common
concepts of QVT-Core and TGGs represent the essential
concepts of a declarative approach toward specifying the
relationship between two classes of models. Secondly, we
want to analyze the similarities of QVT and TGGs in order
to extract the essential differences of the two technologies.
Our analysis shows that QVT-Core can be mapped to the
concepts of TGGs so that QVT-Core can be implemented by
an engine for executing TGG transformations. This mapping
was worked out in a master thesis [6] and is discussed in this
paper. This mapping supports the most important constructs
of QVT-Core with some limitations on the expressive power
of attribute constraints (see Sect. 2.3 for details). Here, in
addition to our prior conference contribution [7], we discuss
the QVT-Core-to-TGG mapping in more detail and we also

discuss an approach for mapping QVT-Relations to TGGs
directly in order to clarify the semantics of QVT-Relations
and to foster a common understanding of relational transfor-
mation languages. Finally, the differences between QVT and
TGGs are analyzed and we discuss how both technologies can
benefit from the concepts provided by the other technology.
This will help to improve both transformation technologies.
Foremost, we suggest to be more explicit about the binding
of rules to the model elements in the interpretation of QVT.
Moreover, we suggest to introduce reusable nodes in TGGs
(see Sect. 5).

This paper is structured as follows: Sect. 2 introduces the
main concepts of QVT and TGGs with the help of an exam-
ple. Section 3 identifies the similar concepts and shows how
QVT-Core can be mapped to TGGs, which provides an
implementation of QVT based on a TGG engine. We have
implemented this mapping through a TGG transformation
and document a number of representative TGG rules of this
mapping. Section 4 discusses an approach for mapping
QVT-Relations directly to TGGs. Section 5 discusses some
differences between QVT and TGGs and their implications
for the interpretation of QVT and for extensions of TGGs.

2 TGG and QVT transformations by example

As pointed out in the introduction, QVT and TGGs have in
common that they are both relational. In this section, we illus-
trate the general idea of relational transformation approaches,
and we introduce QVT and TGGs by the help of an example.
The example is a simplified version of a transformation taken
from the ComponentTools project [3]. ComponentTools is
a tool for engineers to design, analyze, and verify systems
by using different mathematical models and formal meth-
ods. One core feature of ComponentTools is the possibility
to define transformations between formalisms. Our example
shows how to transforms a component-based material flow
system contained inside a project plan into a Petri net, which
defines its dynamic behavior.

2.1 A relational definition of a transformation

Here we discuss a simple class of systems where a produc-
tion line is built from components such as tracks, switches,
and stoppers. The structure is defined in a project plan, which
we call project for short. The left-hand side of Fig. 1 shows a
very simple project, which consists of two track components
that are connected to each other, indicated by an arrow from
the out-port of the first track to the in-port of the other. The
right-hand side of Fig. 1 shows a Petri net that models the
behavior of this production line. This Petri net can then be
used for simulating, visualizing, and verifying the behavior
of that production line.

123

Implementing QVT with TGGs 23

Fig. 1 A project and the corresponding Petri net

Fig. 2 Relation between a track and its Petri net

Fig. 3 Relation between a connection and the Petri net (arc)

The ellipses and the dashed arrows in Fig. 1 indicate how
the different parts of the project correspond to the differ-
ent parts of the Petri net. A track component corresponds to
a Petri net part with a place (circle), a transition (square),
and an arc (arrow) in-between. More precisely, the place
corresponds to the in-port of the project, and the transition
corresponds to the out-port. The connection of the project
corresponds to an arc of the Petri net, which connects the
respective transition and place.

The idea of this transformation can be captured in two
rules, which are shown in Figs. 2 and 3. Let us have a look at
Fig. 2 first. The rule consists of two parts: the context (top)
and the relation (bottom). Its meaning is that when we have
a project and a corresponding Petri net already, we can insert
a track in the project and the corresponding place, transition,
and arc in the Petri net. Since the project and the correspond-
ing Petri net need to exist in order to apply the rule, they
are called context. Likewise, the rule from Fig. 3 says that if
we have an out-port and an in-port with their corresponding
transition and place, we can insert a connection to the pro-
ject along with the corresponding arc in the Petri net. Both

rules together express the relation between the elements of a
project and the elements in the Petri net. Basically, they say
how a project and a Petri net can be built up by applying the
rules on the project domain and the Petri net domain in paral-
lel. Note that these rules do not have a direction, and we have
not yet discussed how to use them for transforming a project
into a corresponding Petri net. The rules just define when a
pair of models is in relation by creating the two models in
parallel.

Next, we will show how these rules can be used for trans-
forming a project into a Petri net, so that the project and the
Petri net are related as defined by the rules above. The top
(i.) left-hand side of Fig. 4 shows our example project again,
which we are going to transform into a Petri net. In order
to transform the project, we have added the Petri net root
element to which we want to add all the Petri net elements.
Since the project and the Petri net are the start situation for
applying rules (in graph grammars often called a start graph
or axiom, or a start rule in QVT), we bind the project and the
Petri net to this fixed start situation. Graphically, this binding
is indicated by the two ticks. Now, we start with matching
the rules to the project. This is done in row (ii.), where we
apply the rule from Fig. 2. This rule fits for the following
reason: The context of the rule is matched to the already
bound elements (the project and the Petri net), indicated by
the dashed boxes. The relation part of the rule in the project
is matched to the previously unbound track at the bottom
(indicated by the outlined boxes), and the missing elements
of the rule for matching the rule on the Petri net side are cre-
ated (indicated by the outlined boxes). These newly created
elements will now also be indicated as bound elements. Next,
we can match the other track of the project in the same way as
shown in row (iii.) and bind the respective elements. At last,
we can match the rule for the connection as shown in row (iv):
The context of that rule is matched to the elements bound by
the earlier rule applications, the connection is bound, and the
corresponding arc in the Petri net is created and bound. Now
all elements of the project are bound and the corresponding
Petri net is created. Its elements were created alongside bind-
ing the elements of the project to the rules. Note that every
element of the project was exactly bound once when it was
matched with the relation side of a rule; later it could be used
only in the context of a matching rule.

The above example outlines the basic idea of applying
relational rules for performing transformations. The essence
is that, in the rules, we distinguish between the context of a
rule and the relation: the context of a rule is always matched
to already bound elements. The elements of the relation of
a rule are matched to unbound elements of the source of the
transformation, or are bound to the newly created elements
of the target of the transformation. In the further course of
this paper, we will see that an essential difference between
QVT and TGGs is that the relation part of declarative QVT

123

24 J. Greenyer, E. Kindler

Fig. 4 Example rules: a forward transformation

rules may also bind to already bound nodes. Common to
relational rules is that they explicitly refer to domains, which
are the “columns” of the rule. In our example, the two
domains project and Petri net have two completely differ-
ent meta-models. But, it is also possible that both domains
have the same meta-model; this could for example be a trans-
formation from UML to UML. In principle, this idea is not
even restricted to two domains. There can be any number of
domains. In this paper, however, we confine ourselves to two
domains.

The rules do not define a transformation direction.
The direction of a transformation is part of what we call

application scenario: it defines which domain is the source
and which domain is the target of the transformation.

2.2 Meta-models for the example

In the subsequent sections, we discuss some more details of
TGGs and QVT. In order to do that, we need to introduce the
meta-models for our two domains: ComponentTools projects
and Petri nets. These meta-models are shown in Fig. 5.

The meta-model for the ComponentTools project is called
ctools. It shows that a project consists of components and
connections. For now, the only concrete components are
tracks. A component can have ports, where each port has
a type, which is “in” or “out”. And a connection can con-
nect two ports. Note that a meta-model would include many
more restrictions to exactly capture the syntactically correct
projects, which we did not include here.

The meta-model for Petri nets is pnet. It shows that a Petri
net consists of places, transitions, and arcs. For the purpose
of this paper, we made a slight simplification: arcs actually
do not have a direction, they just have a transition end and a
place end.

2.3 TGG rules

Figure 6 shows the TGG version of the rule from Fig. 2, which
defines the relation between the track of a project and its cor-
responding Petri net. There are two main differences: First
of all, the rule is not shown in the concrete graphical syntax
for projects resp. Petri nets anymore; rather it is shown in the
abstract syntax based on the meta-models. This, however,
is a presentation issue only. Secondly, the correspondences
between the elements of the different models are made more
specific now. The elements in the middle part, which are
called correspondence nodes, have explicit references to the
elements that are related by the rule. For example, we can now
exactly see that the out-port of a track component is related
to the transition of the Petri net. And the track component
itself is related to all elements of the Petri net.

Technically, a TGG-rule can be considered to be a graph
grammar rule. If we have a graph or a model that contains the
left-hand side of the graph grammar rule, we can replace that
part by the right-hand side of the graph grammar rule. In our
rules, the right-hand side always contains all elements of the
left-hand side; so the application of the rule, always extends
the existing graph or model. And, it will extend both domains
in parallel, which is exactly the meaning of a relational rule
as discussed in Fig. 4. If we start from a situation as shown in
Fig. 7 by applying the graph grammar rules, we will exactly
get the pairs of models that correspond to each other. In graph
grammars, this starting point is called an axiom. When exist-
ing model elements are bound to an axiom, such as shown in
Fig. 4(i), we call that the start context.

123

Implementing QVT with TGGs 25

Fig. 5 The ctools and pnet
example meta-models

Fig. 6 The TGG rule for tracks

Fig. 7 The start context for the example transformation

This graph grammar semantics exactly captures the
relation between two sets of models, by generating them in
parallel from some axiom or start context. The only differ-
ence to classical graph grammars is that, in TGGs, there are
two distinguished domains and a correspondence domain,
and every element of a rule is associated with exactly one
of these domains. Since there are three domains, they are
called TGGs. As mentioned earlier, this can be extended

to more than two domains: Multi-Graph Grammars as pro-
posed in [12], which however are beyond the scope of this
paper.

As explained above, the graph grammar semantics of TGG
rules is defined by generating the elements of all domains
in parallel. In order to perform a transformation from one
domain to the other, we can use the same idea as in Fig. 4
again. Before explaining that, we introduce a slightly less
verbose notation for TGG rules: As mentioned already, all our
TGG rules contain all elements from the left-hand side also on
their right-hand side. Therefore, the elements of the left-hand
side occur twice. We avoid that and draw all elements only
once, but the elements occurring on the right-hand side only,
will be drawn in green and marked with ‘++’, since they are

123

26 J. Greenyer, E. Kindler

Fig. 8 The TGG rule in its
compact notation

Fig. 9 The different application modes of a TGG rule and the inter-
pretation of context/produced nodes

the produced elements. All other elements (not labeled with
‘++’) correspond to what we called context in our general
schema (see Fig. 2); elements labeled with ‘++’ correspond
to the relation elements.

Figure 8 shows a TGG rule in this more compact nota-
tion. In addition, it introduces a new concept, which is called
attribute constraints (in rounded boxes). In this example, the
attribute constraints formalize the restriction that the in- and
out-ports are actually in- and out-ports. See in Fig. 5 that
the ports have a “type” attribute of type string. Our current
TGG implementation supports simple attribute constraints
that allow to assign or check string, integer, or boolean lit-
eral values or to enforce or check an attribute to be equal to
another object’s attribute of the same type (see Sect. 3.2 for
examples).

Figure 9 illustrates the different application scenarios of a
TGG. We start with explaining the first scenario (i), which
is called forward transformation. The schema shows the rule
with the context elements at the top and the relation elements
at the bottom. During the transformation, the rules will be
applied, which means that the elements of the rule will be
matched with and bound to the elements of the actual models.
To explain the details, we need to distinguish three categories
of elements in a rule, which are processed in different ways:

We call these categories context, bind, and create. The graph-
ical representation of these elements in the schema is shown
on the right-hand side of Fig. 9. In order to apply a rule in
a forward transformation, the elements of the context of the
rule must be mapped to elements that are bound already (con-
text: map to bound element). For produced nodes of a TGG
rule, there are two categories: The elements of the source
domain of the transformation will be mapped and bound to
yet unbound elements (produce: bind to unbound element)
of the source domain. When these elements are successfully
mapped, they will be bound. The other category are the ele-
ments of the correspondence domain and the target domain:
they will be created once the elements of the source domain
were successfully mapped and bound. Once these elements
are created, they will be also bound (produce: create and
bind to new element). This exactly reflects the transforma-
tion as explained in Fig. 4: starting from the bound elements
in the start context, the relation elements of the rule will be
bound resp. created and bound until there is nothing left for
being bound anymore. When everything is bound, the newly
created nodes in the target domain constitute the result of
the transformation. Note that the matching, the creation and,
thus, the binding mechanism applies not only to nodes, but
also to edges. That means that we have an explicit mechanism
for binding edges to links in the model.

For a backward transformation, we just need to change
two categories of processing the produced nodes: This is
shown in row (ii) of Fig. 9. Note, that we do not need to
change the rules for that; we just change the way in which
the different elements are processed (i.e. create and bind, and
bind unbound). The last scenario (iii) in Fig. 9 shows how the
correspondences between two models can be created.

Actually, there is another, more general scenario which
subsumes all the others: Let us assume that we have two mod-
els that, at some point in time, were consistent to each other
according to the TGG-rules. Then both models are changed
independently of each other. In that case, both models need
to be changed to bring them into correspondence again. We
call that model synchronisation. Note that all other scenarios
are a special case of synchronisation. For example, let us

123

Implementing QVT with TGGs 27

consider a forward transformation. Since the target model
does not exist in this case, we first create the start situation
as shown in Fig. 4(i) and assume that the synchronized pair
that we started with is nothing more than the start context.
Then, we start the synchronisation from there, which does
the forward transformation.

Note also that the synchronisation scenario is more tricky
than the other scenarios, because there are many different
ways of coming up with two corresponding models. The easi-
est way would be to delete everything from both models such
that nothing but the start situation remains as shown in Fig. 7.
Though these two models perfectly correspond to each other,
this is not what we want, since the two corresponding models
do not contain any information of the two models we wanted
to synchronize. And there are many other ways to come up
with two corresponding models. The question is which pair
we really want and what the “best” pair is. This very much
depends on when, how and by whom the different changes on
the two models have been made. And it might also depend on
the role of the two models in some process. Technically, the
“best” fitting pair could, for example, be captured by some
kind of metric on a minimal distance to the pair we started
from. But, we do not cover this topic in this paper.

In Fig. 4, we have discussed already how rules can be
applied to transform one model into the other. In this example,
it is always clear which rule can be applied in the forward
direction. And this is typically the case for most practical
applications of TGGs. But, in principle it could happen that
different rules are applicable to the same part of the source
model. In that case, we have non-determinism and it could
happen that, dependent on the non-deterministic choices of
rules, we cannot bind all the elements of the source model
in the end. In that case, the transformation is not valid and
we need to backtrack in order to try out other possible

combination of rules. This is technically possible, but the
backtracking makes the transformations much more ineffi-
cient. That is why, in practice, one chooses the rules in such a
way that the application of the rules is deterministic. What is
missing yet, however, is a theory when rules are deterministic
and how to make rules deterministic (in analogy to classical
theory of parsing deterministic grammars). But, we do not
go into the details of that here.

2.4 QVT-Relations

QVT provides two declarative model transformation lan-
guages, QVT-Relations and QVT-Core. Both languages rely
on two other OMG standards, namely the meta object facil-
ity (MOF) [16] as a meta-modeling infrastructure, and the
object constraint language (OCL) [15] for describing model
structures. QVT-Relations is the more user-friendly language
whereas QVT-Core, in contrast, is slightly more verbose,
intended to be interpreted by tools or to be compiled to
executable code. The QVT specification provides a map-
ping from QVT-Relations to QVT-Core by means of a
QVT-Relations transformation. The semantics of QVT-Rela-
tions is described independently of QVT-Core and there
exists a tool today which directly operate on QVT-Relations
(MediniQVT [9]). However, the QVT specification addition-
ally defines the semantics of QVT-Relations by mapping to
QVT-Core; the semantics of QVT-Core is described more
formally in predicate logic.

Both a textual and graphical syntax is specified for
QVT-Relations. Figure 10 shows the previously introduced
example transformation in graphical QVT-Relations. The
corresponding textual version is shown in Listing 1.

The relation TrackToPlaceArcTransition repre-
sents the relation corresponding to the TGG rule shown in

Fig. 10 The example
transformation in
QVT-Relations

123

28 J. Greenyer, E. Kindler

Fig. 8, which looks very similar. However, there are some
differences to the previously introduced TGGs. One differ-
ence to TGGs is that QVT-Relations uses OCL to describe
model patterns. Expressions called template expressions
specify the properties of model objects that shall be matched
or created. For example, the expression ctools::Port{
type = ’In’ } is an object template expression, which
describes an instance of class “Port” with a “type” attri-
bute that is equal to the string “In”. This object template
expression is used in the expression componentToPort
= portIn : ctools::Port{ type = ’In’ },
which is called a property template expression. This prop-
erty template expression states that a valid match of the
object template expression results in a binding of the variable
portIn to a matched object. Then this property template
expression specifies a property of an object described by
another object template expression. In this example, this
object template expression describes an instance of the class
“Track”. Three property template expressions specify val-
ues for its references componentToProject and com-
ponentToPort (refer back to the example meta-models
in Fig. 5.) The reader may observe that property template
expressions do not differ between cases where a single-val-
ued or set-valued property is specified. In the set-valued case,
these expressions are interpreted such that at least one ele-
ment in the set has to match the object template expres-
sion. In this nested structure of template expressions, the
top-most expression contains the whole specification of the
domain model pattern. It is therefore called the domain pat-
tern. The (root) variable that it is assigned to is referred to
as the domain. In the graphical syntax, such domain vari-
ables are annotated with «domain». Reference values in
object template expressions may also be specified by vari-
able expressions which contain previously bound variables,
and, apart from binding objects, variables can bind attribute
values which can be used in variable expressions of other
object template expressions, for example ctools::Pro-
ject{ name = n }. In the Listing below, n is a variable
that, in principle, could take any value. Since this variable
occurs twice in this rule, in conditions name = n for the
project and the Petri net, this rule expresses that a project and
a corresponding Petri net shall have the same name n.

Listing 1 (QVT-Relations Code)

top relation ProjectToPetrinet {
checkonly domain ctools pr : ctools::Project{

name = n
};
enforce domain pnet pn : pnet::Petrinet {

name = n
};

}

top relation TrackToPlaceArcTransition {
checkonly domain ctools track : ctools::Track{

componentToProject = pr : ctools::Project{},
componentToPort = portIn : ctools::Port{

type = ’In’
},
componentToPort = portOut : ctools::Port{

type = ’Out’
},

};
enforce domain pnet arc : pnet::Arc {

arcToPetrinet = pn : pnet::Petrinet{},
arcToPlace = place : pnet::Place{

placeToPetrinet = pn
},
arcToTransition = trans : pnet::Transition{

transitionToPetrinet = pn
}

};
when {

ProjectToPetrinet(pr, pn);
}

}

Another difference between QVT-Relations and TGGs
is that relations may contain explicit references to other
relations. We see that the relation TrackToPlaceArc-
Transition contains a reference to the relation Pro-
jectToPetrinet inside the so-called when clause. Such
a when clause states that the relation shall hold in the con-
text of a successful binding of the referenced relation. Here,
the variables pr and pn are the parameters of the relation
call. The signature of a relation is defined by the domain
variables.

More specifically, this means the following in a forward
transformation scenario, putting ourselves in the position of
a transformation engine for a moment: We start with some
relation, for example TrackToPlaceArcTransition,
and find a set of bindings for the source domain pattern in the
source instance model. We call this set of possible bindings
the binding candidates. We have to evaluate all expressions
in the domain pattern as well as those in the when clause.
In this case, we discover that variable pn is restricted by
the relation ProjectToPetrinet. So we have to pro-
cess this relation now. For efficiency, we might have
handled the referenced relations first, after analyzing the
relation dependencies. But this does not change the result.
The ProjectToPetrinet relation is similar to the TGG
axiom shown in Fig. 7, with the difference that this rela-
tion may be applied several times, e.g. to several Project
objects in the source model. This relation has no when clause
with further restrictions and, thus, whenever their source pat-
tern can be bound to the source model structures, the target
pattern is created accordingly. Thus, after matching the
Project and after creating the Petrinet object, we can return to
the TrackToPlaceArcTransition relation and refine
the previously established binding candidates according to
the bindings from the ProjectToPetrinet relation for
variables pr and pn. That is if we have found tracks with no

123

Implementing QVT with TGGs 29

parent Project, then those binding candidates are removed
from the set of binding candidates. For each valid binding
of the source pattern in the TrackToPlaceArcTransi-
tion relation, we can now create the corresponding target
model structures.

We see that the domain patterns in the relations are marked
by the keywords check and enforce. This describes
whether the patterns can only be matched in existing mod-
els or whether model structures can be modified when nec-
essary. According to the check and enforce modifiers, the
example relations shown here allow only a transformation
in the direction of the Petri net domain. QVT explains when
target elements shall be created by the check-before-enforce
semantics: When there are already existing elements in the
target model that can be exactly matched by the domain
pattern of a relation, QVT has the principle to bind exist-
ing model structures first before creating new ones. Exist-
ing model elements are those elements that are created by
a previous rule application or elements that exist because
we are in an application scenario of updating an existing
target model. Target elements that existed before the trans-
formation and remain unbound after a transformation will
be deleted. Sometimes we would like to force the reuse
of particular existing model elements although they do not
exactly match in a relation’s domain pattern. This is achieved
by declaring one or more properties that uniquely identify
these objects. These identifying sets of attributes are called
keys.

Note that in TGG rules, we distinguish between nodes that
may be bound only to yet unbound objects and nodes which
may be bound only to already bound objects (see Fig. 9). The
declarative QVT languages do not specify such a binding
semantics for variables. We consider this a major semantic
gap in QVT, which may lead to unintentional transformation
results. We explain that in Sects. 5.3 and 5.4 and argue that
we need a specific binding semantics as in TGGs for certain
variables in QVT-Relations and QVT-Core. We also discuss
keys and the check-before-enforce semantics in more detail
in Sect. 5.4.

Another difference to TGGs is that QVT-Relations does
not contain variables which explicitly express the correspon-
dences between the domain model elements. The hexagon in
the middle of each relation as shown in Fig. 10 is just part of
the graphical syntax and is not reflected in the code. Rather,
the hexagon expresses that the relation itself is the corre-
spondence between the variables in the domain patterns. In
Sect. 2.5, we show that the QVT-Core rules which correspond
to the relations contain one central correspondence variable
(or trace variable in QVT terms).

We discuss further features of the QVT-Relations lan-
guage, for example the where clause or top and non-top rela-
tions, when discussing their relationship to the concepts of
TGGs in Sects. 4 and 5.

2.5 QVT-Core mappings

In the following, we introduce QVT-Core and its semantics
along our running example. As mentioned before, the QVT
specification provides a mapping from QVT-Relations to
QVT-Core. QVT-Relations is more user-friendly, whereas
QVT-Core is a comparatively simple, but more verbose lan-
guage. On the one hand, QVT-Core is simpler because in
QVT-Core rules, called mappings, model structures are
described by a flat set of variables and expressions. The
nested template expressions of enforceable domains of
QVT-Relations are mapped to nested mappings in QVT-
Core, but we will omit these details here. On the other hand,
QVT-Core mappings are more verbose because an extra
domain is introduced, which contains explicit variables and
expressions to describe the trace model between the trans-
formed domains. The trace model is essentially the same
concept as the correspondence model in TGGs. The sim-
plicity of QVT-Core and the analogous concepts of the trace
and correspondence model are the reasons why we base our
mapping from the relational QVT to TGGs on QVT-Core, as
shown in Sect. 3. In Sect. 4, we sketch an idea of how to map
QVT-Relations to TGGs directly.

Figure 11 schematically shows the QVT-Core mapping
which corresponds to the two relations shown in Fig. 10. We
improvise a graphical syntax here, because the QVT specifi-
cation defines only a textual syntax for QVT-Core. Listing 2
shows the corresponding textual representation.

Similar to TGGs, we see three columns in this mapping,
which are called areas in QVT-Core. The outermost areas
represent the domain models of the transformation and
therefore these areas are called domain areas or domains
according to the terminology in QVT-Relations. check
ctools(…)… and check enforce pnet(…)… are
examples of such domains in the textual syntax. The middle
column is called the middle area and it contains the vari-
ables and expressions to describe the explicit trace model
structure between the domain model elements. The trace
(class) model is generated during the transformation from
QVT-Relations to QVT-Core (see Sect. 2.6 or the QVT-
Specification [17] for details). In the textual representation,
the middle area is described in the where(…){…}-state-
ment. (The where statement must not be confused with the
where clause in QVT-Relations, see Sect. 4.) The check and
enforce keywords are used again here, similar to QVT-
Relations to distinguish such domains which may only be
matched and such which may also be created or modified.
We explain the semantics of a mapping more closely after
explaining further parts of the mapping structure.

Each area consists of two patterns: a guard pattern
(enclosed in parenthesis) and a bottom pattern (enclosed in
braces). The guard patterns of a mapping represent the con-
text of a mapping. This means that, when there is a valid

123

30 J. Greenyer, E. Kindler

Fig. 11 The example
transformation in QVT-Core

match of the guard patterns of all domains, a mapping needs
to hold. A mapping holds, when we can find a valid match
for either all bottom patterns or none of the bottom pat-
terns. The pattern descriptions consist of variable declara-
tions and expressions, as for example in this bottom pattern
shown in the listing{track:Track, …| track.com-
ponentToProject = pr; …}. The expressions in the
patterns are either predicate expressions or assignments.
Predicate expressions constrain properties of the objects to
be matched, i.e. they specify attribute values of the objects,
for example portIn.type = ’In’; and they constrain
the references among the objects to be matched, for exam-
ple track.componentToPort = portIn;. Assign-
ments are similar to predicate expressions, but they express
object properties which may be assigned in enforceable bot-
tom patterns. Instead of the equality sign in predicate
expressions, assignments use the assignment operator, for
example arc.arcToPlace := place;. The variables
in enforceable bottom patterns can be marked as realized
variables, which represent objects that may be created or
deleted when enforcing the pattern and for which property
values may be assigned.

Listing 2 (QVT-Core Code)

map ProjectToPetrinet{
check ctools(){
pr:Project

}
check enforce pnet(){
pn:Petrinet

}
where(){
t1:TProjectToPetrinet|
t1.pr := pr; t1.pn := pn;

}
}

map TrackToPlaceArcTransition{
check ctools(pr:Project){
track:Track, portIn:Port, portOut:Port|

track.componentToProject = pr;
track.componentToPort = portIn;
track.componentToPort = portOut;
portIn.type = ’In’; portOut.type = ’Out’;

}
check enforce pnet(pn:Petrinet){
realize place:Place, realize arc:Arc,
realize trans:Transition|
arc.arcToPetrinet := pn;
arc.arcToPlace := place;
arc.arcToTransition := trans;
place.placeToPetrinet := pn;
trans.transitionToPetrinet := pn;

}
where(t1:TProjectToPetrinet|
t1.pr=pr,t1.pn=pn){
realize t2:TTrackToPlaceArcTransition|
t2.pr := pr; t2.pn := pn;
t2.track := track; t2.inPort := inPort;
t2.outPort := outPort; t2.pl := pl;
t2.arc := arc; t2.trans := trans;

}
}

Operationally, the semantics of a QVT-Core mapping is
that, if there exists a valid binding of all guard patterns and
there exists a valid binding of a bottom pattern of at least one
domain, we have to make sure that there exist bindings for all
other bottom patterns: The bindings of the other bottom pat-
ters are checked first, which means that, for checkonly and
enforced bottom patterns, existing elements are bound when
an exact match of the pattern can be found. When no valid
match can be found for an enforceable bottom pattern, we
create this pattern. In the case that we have a valid match of
at least one enforced bottom pattern, but fail to find a match
for a checkonly bottom pattern, then we have to delete the
matched objects from the enforceable domains. In the case
that we can find a valid match for at least one checkonly bot-
tom pattern, but fail to find a valid match for another bottom
pattern, the mapping is violated.

123

Implementing QVT with TGGs 31

As mentioned in the previous section, QVT does not
specify whether certain variables may be bound only to yet
unbound objects or only to already bound objects. We discuss
that in Sect. 5.3.

2.6 Mapping QVT-Relations to QVT-Core

The QVT specification provides a mapping from QVT-Rela-
tions to QVT-Core in order to specify the semantics of
QVT-Relations in more detail. Furthermore, QVT proposes
to use QVT-Core as a basis for executing transformations
that are specified in QVT-Relations. We do not discuss the
details of this mapping here, but we want to give a short,
example-driven summary of how the QVT-Core mappings
in Listing 2 are obtained from the relations in Listing 1.

A QVT-Core transformation specification that is obtained
from a QVT-Relations transformation specification consists
of a set of QVT-Core mappings where each mapping corre-
sponds to a relation. The domain areas of a mapping corre-
spond to the domains of a relation. The template expressions
in the domains of a relation are mapped to sets of flattened
predicate expressions in the domain areas of the mapping.
Variables in the guard patterns of the mapping are those which
are involved in a relation call of a when clause. For each
relation in the QVT-Relations transformation, a class for the
explicit trace model is created. For each variable in a relation,
the trace class has a reference to a domain class which is the
type of this variable. In QVT-Core, this trace class is the type
for the variable appearing in the middle bottom pattern of
a mapping (see realize t1:TProjectToPetrinet
and realize t2:TTrackToPlaceArcTransition
in Listing 2). In the middle bottom pattern, all the reference
property values are assigned for the trace variable, point-
ing to the other variables of the mapping (t2.pr := pr;
t2.pn := pn; t2.track := track; …). The
trace variables which appear in the middle guard pattern are
typed over the trace class belonging to the relation invoked in
the when clause relation call (see for example
where(t1:TProjectToPetrinet|…)) and predi-
cates expression link the trace variable(s) to the domain guard
pattern variables which were passed on as parameters in the
when relation call (e.g. t1.pr=pr,t1.pn=pn).

The translation of enforceable domain patterns from QVT-
Relations to QVT-Core is actually a bit more complicated
than shown here: The nested template expressions in the rela-
tions’ enforceable domains result in a nesting of mappings.
However, we do not discuss this in more detail in this paper.

After having introduced TGGs, QVT-Relations and QVT-
Core in this section, we show how QVT-Core can be mapped
to TGGs in the following section. In Sect. 4, we return to
QVT-Relations. There, we clarify the semantics of the where
clause, which we omitted in this section. Also we describe the
relationship between the explicit rule invocations in

QVT-Relations and the implicit rule relationships in QVT-
Core and TGGs.

3 Mapping QVT-Core to TGGs

As we have seen in the previous section, there are some appar-
ent similarities between QVT and TGGs. In this section we
show that a mapping can be specified from large parts of
QVT-Core to TGGs. Semantic differences that persist beyond
this structural mapping between QVT-Core and TGGs are
discussed in Sect. 5.

We have specified a TGG transformation to describe this
mapping and, in the following, we introduce a number of rep-
resentative rules of this mapping. The full details have been
worked out and implemented in a master thesis [6]. The rules
and models shown in this section are diagrams taken from
this implementation, which we explain here in more detail.

We have implemented a TGG engine as an Eclipse plug-in
that allows to transform ECore models from the EMF. Differ-
ent from the implementation of TGG transformation engines
in Fujaba [25] and MOFLON [1], where TGG rules are com-
piled to Java code, we interpret the rules directly. Although
the rule interpretation may be slower, we experience that the
interpreter logic is more easily maintainable and extensible
this way.

Before explaining the transformation from QVT-Core to
TGGs, we introduce the meta-models involved in the trans-
formation.

3.1 QVT-Core and TGG meta-models

We implemented the QVT-Core meta-model for our map-
ping as it is described in the QVT specification. Since our
implementation is based on EMF, we reused EMF’s Ecore
model as the implementation of the Essential MOF (EMOF),
a subset of MOF [16], which is referenced by the QVT spec-
ification. Furthermore, we reused the OCL model used by
EMF as the implementation of the Essential OCL, a subset
of OCL [15], which is also referenced by QVT. Following
the QVT specification, we implemented the QVT-Base pack-
age, which contains some base meta-classes that describe
the fundamental parts of a transformation specification. The
QVT-Core meta-model extends those base meta-classes. We
considered some concepts of the QVT-Base package a suit-
able base for the TGG meta-model as well. Therefore, our
TGG meta-model also extends QVT-Base, although not all
the concepts of QVT-Base are reused in TGGs. The package
dependencies are summarized in Fig. 12.

Let us inspect the QVT-Base meta-classes first. Some
details of the meta-models are omitted here, for example that
some meta-classes extend classes from the EMOF package
(see the QVT specification [17] for details). Furthermore,

123

32 J. Greenyer, E. Kindler

Fig. 12 The QVT-Core and TGG package dependencies

Fig. 13 The QVT-Base package

role names of the associations are omitted where they are
equal to the name of the class of the association end.

The QVT-Base package is shown in Fig. 13. As shown
here, a transformation consists of a number of rules, each

being composed of a number of domains. A domain can be
checkable and it can be enforceable. A domain is associ-
ated with exactly one typed model that references one or
more packages. These packages contain the classes of the
domain models involved in this transformation specification.
The domain patterns of the rules are typed over these class
models represented by the typed model. The QVT-Base pack-
age provides the basic notion of a pattern. A pattern con-
sists of a number of predicates, which contain exactly one
OCL expression (which shall evaluate to true or false). A
pattern also consists of a number of OCL variables, which
bind to model elements when the pattern is matched to a
domain instance model. Each variable is typed by exactly one
class.

In the QVT-Core meta-model, shown in Fig. 14, a core
transformation extends the transformation meta-class from
QVT-Base and a mapping in QVT-Core extends the basic
rule meta-class from QVT-Base. As described previously,
a domain in a QVT-Core mapping is also referred to as an
area, which consists of a guard and bottom pattern. The core
domain inherits the two concepts of the domain and the area.
The guard and bottom patterns are each a core pattern, which
extends the basic pattern from QVT-Base. Thus, each guard
and bottom pattern may contain variables and predicates.
These variables and predicates are typed over the typed model
of the core domain that they are contained in. In addition to
variables and predicates, a bottom pattern may consist of real-
ized variables and assignments. As stated before, the realized
variables and assignments are used to define creatable parts of
the bottom patterns of enforceable domains. Assignments are
formed as follows: The value expression is an OCL expres-
sion which represents the value which shall be assigned to
the property of some object in the enforced domain
model. For example, the value expression of the assignment
portIn.type = ’In’; is a string literal expression
representing the string’In’. The slot expression is typically

Fig. 14 The QVT-Core meta-model

123

Implementing QVT with TGGs 33

Fig. 15 The TGG meta-model

an OCL variable expression that is referring to a variable
in the same pattern, e.g. portIn. This variable binds the
object to which the property value shall be assigned. Finally,
the information about which property of the object shall be
assigned with the value is specified by the target property of
the assignment. It points to the structural feature (meaning
an attribute or reference) of the type class of the slot variable,
for example the type-attribute of the class Port.

Our TGG meta-model shown in Fig. 15 also extends some
concepts of the QVT-Base package. A TGG, for example,
is a transformation and a TGG rule extends the rule from
QVT-Base. Predicates and OCL expressions are currently
not extended in the TGG meta-model. It would be desirable
to use OCL in TGGs for expressing constraints on attribute
values, but up to now only simple attribute value constraints
are supported by our TGG-Interpreter implementation. For
brevity, we omit our custom meta-classes for expressing these
simple attribute value constraints. The reader may refer to [6]
for details. Instead of using OCL to describe model patterns,
we use a graph model: Each TGG rule is a graph, which con-
sists of nodes which may have outgoing and incoming edges.
Each TGG rule is also a (single) graph grammar rule, which
has a left graph pattern and a right graph pattern (refer back to
Fig. 6). These patterns reference the nodes and edges which
form part of that pattern (following the idea of the compact
notation as shown in Fig. 8). A TGG rule is a graph grammar
rule, which is separated into three or more parts (columns)
representing the participating domains and the correspon-
dence domain. Thus, a TGG rule owns domain graph patterns
and (not shown in the meta-model) every node in the rule is
required to belong to exactly one domain graph pattern. Omit-
ted in Fig. 15 is that nodes are typed over classes from the
typed model of the domain graph pattern they are in. Accord-
ingly, edges are typed over references in the typed model of
their domain graph pattern.

Fig. 16 The transformation start context

Fig. 17 Rule: MappingToTGGRule

3.2 The QVT-Core to TGG transformation rules

In the following, we describe a number of representative TGG
rules for translating a QVT-Core transformation specification
into a TGG. The first TGG rules describe how the transfor-
mation structure and rule structure is mapped. Then we show
how to translate a guard pattern variable in a QVT-Core map-
ping to a context node in a TGG rule and we explain how
an enforceable assignment of a reference value is translated
into an edge. At last, we explain how to map a string value
assignment to the corresponding TGG constraint.

The start context of the QVT-Core to TGG transformation
shown in Fig. 16 states that a core transformation corresponds
to a TGG. The rule shown next in Fig. 17 depends on this
start context and states that whenever a mapping is created
in a QVT-Core transformation, then a TGG rule with a left
and right graph pattern has to be created in the TGG. In the

123

34 J. Greenyer, E. Kindler

following, we may also read the rules in such a way that “a
mapping corresponds to a TGG rule with a left and right graph
pattern”, but most of the following transformation rules we
explain with the QVT-Core to TGG transformation direction
in mind. Then, we may say that “a mapping is transformed
into a TGG rule with a left and right graph pattern”. The rule
diagrams shown here are exported from the TGG rule edi-
tor that we implemented in Eclipse. The edges are annotated
with the name of their type reference. For example a core
transformation contains mappings by the composition rela-
tionship “rule” that is inherited from the QVT-Base package.
The edge pairs represent bidirectional links. For readability
of the diagrams, we hide the type name annotations on the
edges where ever we see no risk of confusion. The domain
graph patterns that we previously presented as the “columns”
of a TGG rule are now represented by the nodes at the bottom
of the rule diagrams which are labeled with “(Domain)”. The
dashed lines leading from the domain graph pattern node to
the rule nodes express which nodes belong to which domain.
The yellow, rounded rectangles in the rule diagrams represent
attribute equality constraints, which state that certain attri-
bute values of objects have to be equal. In the rule shown in
Fig. 17 it is required that the name of the TGG rule is equal to
the name of the QVT-Core mapping and vice versa. The attri-
bute equality constraints have a direction in which they are
interpreted, indicated by the arrows on the connection ends.
Currently, our TGG interpreter requires two such statements
for each transformation direction. In the future, however, we
would like to express such bidirectional constraints with only
one statement.

When translating QVT mappings, we actually need to dis-
tinguish between translating regular mappings and nested
mappings (see also Sect. 2.5), but we omit further details
here.

Based on the axiom, also the TypedModelToTypedModel
rule shown in Fig. 18 can be applied to transform the typed
model of a core transformation to a typed model of a TGG
transformation. Next, rule UsedPackageToUsedPackage in
Fig. 19 states that any packages referenced by a typed model
of a QVT-Core transformation is also referenced by the cor-
responding typed model of a TGG. This rule may indeed
seem odd compared to the other TGG rules that we pre-
sented so far, because there are no produced (++) nodes, but
instead a gray node annotated with “##” that is belonging to
yet another domain (ecore). The gray (##) node or reusable
node as we call it, is a concept which we have not explained
so far. It allows us to cover two distinct cases in one rule.
To explain this, we read the rule as a single graph produc-
tion rule: For two corresponding typed models, we may (1)
produce a new package and create a “usedPackage”-link to
this package from both typed models. However, (2) we may
want to reference an already created package as a used
package from the two typed models. In this case, only the

Fig. 18 Rule: TypedModelToTypedModel

Fig. 19 Rule: UsedPackageToUsedPackage

“usedPackage”-links shall be created to this existing pack-
age. Thus, using the reusable (##) node, is an abbreviation
for writing two rules: (1) One rule where the package node is
a produced (++) node and (2) another rule where the package
node is a context node. In our QVT-Core to TGG transfor-
mation, the ecore domain is a source domain and, therefore,
the used packages are only matched and never created. Thus,
we do not need to qualify further, which packages will be
reused; we match a package multiple times when it is ref-
erenced as a used package multiple times by different typed
models. In Sects. 5.3 and 5.4, we explain why distinguish-
ing these different types of nodes (context nodes, produced
nodes and reusable nodes) is important.

Next, let us consider the GuardDomainToDomainGraph-
Pattern rule shown in Fig. 20, which translates a core domain
of a QVT-Core mapping into a domain graph pattern of
a TGG rule. This rule requires that the core mapping was
already mapped to a TGG rule by the rule MappingToTGG-
Rule (Fig. 17). The guard and bottom patterns of the core
domain are matched and correspondences are created
between the guard and bottom pattern of the core domain
and the left and right graph pattern of the TGG rule. Here
we see that each core domain has a guard and a bottom pat-
tern whereas there exists only one left graph pattern and one
right graph pattern per TGG rule. A guard pattern specifi-
cally corresponds to the left and right graph pattern and a
bottom pattern corresponds to the right graph pattern only.
This expresses the fact that guard pattern variables
correspond to context nodes and bottom pattern variables
correspond to produced nodes (as explained shortly).
Furthermore, the typed model of the core domain is required

123

Implementing QVT with TGGs 35

Fig. 20 Rule: CoreDomainToDomainGraphPattern

Fig. 21 Rule: GuardPatternVariableToNode

to be previously translated into a typed model of the domain
graph pattern (see the TypedModeToTypedModel rule in
Fig. 18). When the CoreDomainToDomainGraphPattern rule
is applied, the domain graph pattern is set to reference the
typed model corresponding to the typed model of the core
domain.

Now we have introduced all rules which provide the con-
text for translating variables in QVT-Core mappings to nodes
in TGG rules. We explain the GuardPatternVariableToCon-
textNode rule in Fig. 21. We see that a variable of a guard pat-
tern is translated into a node. The node, however, is required

Fig. 22 Rule: VariableTypeClassToNodeTypeClass

to be associated with a number of other elements: The node
firstly needs to be contained in the TGG rule. Secondly, the
node belongs to the domain graph pattern which corresponds
to the variable’s core domain. Thirdly, the node is required
to be a context node, which is expressed though its associa-
tion with the left and right graph patterns of the TGG rule.
Variables in the bottom patterns of a mapping are translated
to produced nodes in TGG rules similarly. The difference
is that no links are created between the node and the left
graph pattern. We also do not distinguish between translat-
ing variables or realized variables, because in TGGs we do
not distinguish between enforceable and patterns and such
which are only checked. We discuss this in more detail in
Sect. 5.1.

The rule for ensuring that the node’s type class is
equal to the type class of its corresponding variable is
shown in Fig. 22. The principle of this rule is similar to

123

36 J. Greenyer, E. Kindler

the UsedPackageToUsedPackage rule in Fig. 19—the vari-
ables’/nodes’ type classes may be produced or reused when
the classes serve as type classes for multiple variables/nodes.

The rest of the QVT-Core to TGG translation consists of
rules for translating predicates and assignments into edges
or attribute value constraints. We distinguish between such
predicates and assignments which refer to reference prop-
erties and those which refer to attribute (data) values. The
former are translated into edges of the TGG rule, the lat-
ter are transformed into attribute value constraints. As we
currently only support simple attribute value constraints in
TGGs, we can only map expressions where string, integer
or boolean values are constrained or assigned or where the
equality of two attribute values is compared.

The ReferencePredicateToEdge rule in Fig. 23 shows how
to translate a guard pattern predicate with an OCL expression
over a reference value to a context edge. The pattern which
we see on the QVT side corresponds to the abstract syntax of
OCL for an expression like track.componentToPort
= portIn;. The “equals” corresponds to an Operation-
CallExpression (named “EqualsOperationCallExpression”,
but we don’t check this is this rule), which performs an equal-
ity check between a value given by a source OCL expression
and an argument OCL expression. The source expression
is the property call expression in front of the equals sign
(e.g. track.componentToPort). The property call
expression references a source expression which is point-
ing to an object, in this case through a variable expression
(e.g. refereing to the track variable). The argument of the
property call expression is refereing to a property. In this rule
for translating a predicate to an edge, we require the referred
property to be a reference (which is an “EReference” in the
ECore meta-model). Furthermore, in this rule we require the
reference to be unidirectional. ECore expresses bidirectional
references in such a way that an EReference may be paired
with another “opposite” EReference. The NULL node in this
rule expresses that the “eOpposite” reference value of the
referred EReference is NULL and, thus, we are dealing with
a unidirectional reference. In case of a bidirectional refer-
ence, we need to create two edges in TGGs for representing
each link separately. This is a technicality required by our
implementation of the TGG interpreter, which complicates
the QVT to TGG mapping—surely, there is room to improve-
ment.

Note that the edge leading to the NULL node is marked by
“##”. This indicates that this edge is reusable, where reusable
has the same meaning as for reusable nodes that were men-
tioned before: it can be either used as a context edge of the
rule or as a produced edge (see Sect. 5.4 for more details). In
combination with NULL nodes, however, marking the edges
is meaningless, since there shall not (and does not) really exist
any link to be bound to such an edge. We use the reusable edge
for a merely technical reason: the interpreter algorithm does

not check for any existing link bindings when it is matching
reusable edges.

The argument of the operation call expression is a variable
expression pointing to the variable which is compared with
the property (e.g. portIn). We see that this variable corre-
sponds to the target node of the edge whereas the variable in
the source expression corresponds to the source node of the
edge. Since we are translating a guard pattern predicate, the
edge is also associated with the left and right graph pattern
of the TGG rule, which implies that it is a context edge.

With the last rule shown next, we want to explain two
points which differ from the previous rule. Firstly, we show
that expressions over object properties which are not ref-
erence properties, but attribute (data value) properties are
mapped not to edges, but to attribute value constraints. Cer-
tainly, these mappings are specific to our TGG model and
may be realized differently when OCL expressions or other
query mechanisms are supported by TGGs. Secondly, we
show how assignments which may appear in bottom patterns
differ from OCL predicate expressions. Figure 24 shows the
rule for translating a string literal assignment into a string
literal constraint. The pattern on the QVT side of the rule
describes the abstract syntax for an assignment expression
like portIn.type := ’In’;. The slot expression
points to a variable expression, representing the object to
which a value shall be assigned. The property which shall
be assigned is specified by the target property which is ref-
erenced by the assignment. As just explained, we need to
specify in particular that the target property is not an ERefer-
ence, but an EAttribute—for the other case, there is a rule for
translating a (produced) edge. Furthermore, the assignment
references an expression which represents the value which
shall be assigned to the objects property. In this case, it is
an OCL string literal expression. The value represented by
this expression is stored inside the expression’s string symbol
attribute, which is translated to the string value attribute of
the string literal constraint on the TGG side. We omit further
details about how attribute value expressions form part of
the TGG meta-model—it is just important to note that these
constraints refer to a slot node and a slot attribute to deter-
mine on which object which property should be checked or
assigned.

Note that in TGGs, there is no distinction between an
expression which is enforceable and one which is not. It is
up to the transformation engine to decide the enforcement of
edges and attribute value constraints in a particular applica-
tion scenario—we will come back to this in Sect. 5.

4 Relationship between the QVT-Relations and TGGs

In this section, we compare QVT-Relations and TGGs in
more detail. We clarify the semantics of the where clause in

123

Implementing QVT with TGGs 37

Fig. 23 Rule: ReferencePredicateToEdge

Fig. 24 Rule: StringLiteralAssignmentToStringLiteralConstraint

123

38 J. Greenyer, E. Kindler

Fig. 25 The extended example
transformation in
QVT-Relations

QVT-Relations by explaining how it is mapped to QVT-Core.
Furthermore, we explain how the explicit rule invocations
through the when&where clause in QVT-Relations relate to
the implicit rule dependencies in TGGs. Based on this rela-
tionship, we show how the mapping from QVT-Relations to
QVT-Core could be improved in terms of efficiency. A direct
mapping from QVT-Relations to TGGs furthermore provides
a better understanding of QVT-Relations. The QVT spec-
ification is in some parts unclear about the exact semantics
of QVT-Relations. Even today’s QVT-Relations tools,
ModelMorf [23] and MediniQVT [9], produced different
results when we tested them with our example transformation
(we explain details in Sect. 5.3).

Figure 25 shows a slightly extended version of the exam-
ple transformation shown in Fig. 10. New are the relations
PortToNode andConnectionToArc (the latter we have

already shown schematically in Fig. 3). PortToNode is a
relation that maps a port to a node and translates the attached
property objects into annotation objects of the nodes. (We
have introduced an abstract class Node for this purpose in
our Petri net meta-model that is the superclass of the classes
Place and Transition.) In this rule, the value of each prop-
erty’s description attribute is translated into the text attribute
of the corresponding annotation. We see that this relation is
referenced twice in the so-called where clause of theTrack-
ToPlaceArcTransition relation. This relation call in
the where-clause means that the relation PortToNode has
to hold for variables which are passed on to it as parame-
ters. In this case, it is the pair of the in-port and the place
and the pair of the out-port and the transition. Note that,
every relation except for the invoked relation PortToNode
is marked by the keyword top. This means that the relation

123

Implementing QVT with TGGs 39

Fig. 26 Unfolding of
PortToNode mappings in
QVT-Core

PortToNodemay not map all ports to Petri net nodes right
away, but can only map those model elements that are passed
on to the rule by the invoking relation.

Besides the transformation of the track component, the
full ComponentTools to Petri net transformation will later
on handle many more components, such as curves, switches,
joins, stoppers, etc. The reader may peek at Fig. 28 to see
how a join component is translated into its Petri net logic.
For each of these rules, in- and out-ports are mapped to par-
ticular places and transitions in the Petri net. Thus, each rela-
tion translating a component will invoke the PortToNode
relation once for each port. The PortToNode relations are
furthermore needed as a precondition when the connections
that may connect the ports of components are translated to
arcs between the Petri net nodes that correspond to the com-
ponents’ ports. This is done by the relation Connection-
ToArc.

The obvious difference between QVT-Relations and
TGGs is that QVT-Relations explicitly formulates the depen-
dencies of transformation rules in the when and where
clauses. However, in TGGs these dependencies do also exist,
but only implicitly by specifying that rules can only be applied
when the necessary context patterns were previously pro-
duced by another rule.

In the mapping from QVT-Relations to QVT-Core, we
have shown that variables in a relation that are involved in a

relation call of the when clause (as parameters) are mapped
to guard pattern variables in the QVT-Core mapping. (see
Sect. 2.6). Furthermore, these variables are connected by a
trace variable of the same type as the trace variable cor-
responding to the referenced relation. As we explained in
Sect. 3, guard pattern variables are always translated to con-
text nodes. Thus, we can infer that all variables of a relation
involved in a when relation call correspond to context nodes
in TGGs.

But, how is the where clause mapped to QVT-Core and
how can we map it to TGGs? The translation of a relation call
in the where clause to QVT-Core is shown in Fig. 26 for the
example of rules TrackToPlaceArcTransition and
PortToNode from Fig. 25 (also refer to the QVT specifica-
tion [17, Chapter 10]). Firstly, nothing in particular happens
to the variables in the mapping which corresponds to the
invoking relation. But, in the mapping which corresponds
to the invoked relation, the referenced variables are mapped
to variables in the guard pattern. Those variables are ref-
erenced by an additional trace variable which is added to
the guard pattern and which has the same type as the trace
variable of the mapping which corresponds to the invoking
relation. This far, this is the same principle as translating
a relation call in the when clause that goes in the oppo-
site direction. However, since a relation may be referenced
by a where relation call by several other relations, the

123

40 J. Greenyer, E. Kindler

Fig. 27 The extended example
transformation in TGGs

question arises which type to choose for the trace variable?
QVT solves this by creating a separate mapping each time a
relation is invoked. Each of these mappings are equal except
for the type of the trace variable in the guard pattern and
the expressions which link this trace variable to the
domain variables. In our example in Fig. 26, we show this
“unfolding” of mappings. The relation which is referenced
by two relation calls from the TrackToPlaceArc
Transition variable is “unfolded” into two mappings.
In our example, the trace variables do not differ, because
the two relation calls originate from the same relation, but
the domain variables are referenced through expressions ref-
ereing to another reference. In the TrackToPlaceArc-
Transition mapping in Fig. 26, we labeled the edges
from the trace variable to all domain variables, which
correspond to these expressions over different references.
See how they reappear in the guard of the two mappings
PortToNode_TrackToPlaceArc Transition_1

and PortToNode_TrackToPlaceArc Transi-
tion_2.

Such an unfolding of mappings, however, may produce
a large set of rules. In this example transformation, many
more relations may be added to transform further compo-
nents. Every time the PortToNode relation is called from
these relations, a separate mapping is created in QVT-Core.
This seems highly redundant and may possibly slow down
the transformation process.

Figure 27 shows the TGG rule set that corresponds to the
relations in Fig. 25. The dependencies that are explicitly spec-
ified in QVT-Relations by when&where are implicit depen-
dencies given by the required contexts of the rules. Differ-
ent from the mapping to QVT-Core, however, we see that
the TGG rule TrackToPlaceArcTransition, in addi-
tion to its central correspondence node, contains two other
correspondence nodes that are typed by the correspondence
class PortToNode. This is the same correspondence class

123

Implementing QVT with TGGs 41

which is the type of the correspondence nodes in the con-
text of the PortToPlace TGG rule. This shows how we
can express where relation calls in TGGs: for every occur-
rence of a where relation call in a relation, we insert a
produced correspondence node with a distinct type into the
corresponding TGG rule. This correspondence node has pro-
duced edges to the (domain) nodes which correspond to the
variables involved in the where relation call. In the TGG rule
which corresponds to the referenced relation, we insert a
context correspondence node of the same type along with
context edges referencing the nodes which correspond to
the domain variables of the relation. This strategy of map-
ping where relation calls to TGGs avoids the previously
explained “unfolding” of rules. We feel that adapting this
principle to the translation of QVT-Relations to QVT-Core
would result in a much smaller and more efficient set of map-
pings.

We currently elaborate this direct mapping from QVT-
Relations to TGGs. From the insights gained in this mapping,
consistency constraints and a guideline for specifying TGGs
can be formulated [24]. We see this complementary to the
work by Klar et al. [11] about structuring and modularizing
model transformations.

5 Comparing QVT and TGGs

In the previous sections, we have discussed the main con-
cepts of declarative QVT and TGGs, and we have shown
how QVT-Core as well as QVT-Relations can be mapped to
TGGs. This way, our TGG-interpreter implements a trans-
formation engine for QVT.

The QVT standard, however, leaves some room for inter-
pretations, which becomes evident when comparing differ-
ent implementations of QVT-Relations (see Sect. 5.3 for an
example). In this section, we compare QVT and TGGs and
discuss semantic gaps which currently exist in the QVT spec-
ification.

5.1 Application scenarios

One fundamental difference between QVT and TGGs is that
QVT encodes the direction of a transformation in the rules
by the directives check and enforce, whereas there is no
indication of a transformation direction in TGG rules. For
TGGs, the transformation direction is provided only when
a transformation is started, which we call the application
scenario. We believe that it is one of the strengths of TGGs
that the relation between two classes of models can be
defined without explicitly referring to a transformation direc-
tion [10]. There may be transformations which may not gen-
erally be applicable in the backward direction, because the
target domain does not contain the information needed to

(re)create source domain models from it. Even in that case,
we should not restrict the rules to only one transformation
direction. Firstly, in some cases the rules can still be used
to propagate changes in the target model back to the source
model. For example, after an initial transformation from
the source to the target model, the correspondence/trace
information is maintained and therefore, in some cases,
changes can still be synchronized between both models (see
Sect. 2.3) in both directions deterministically. Secondly, in
case that the source model and the correspondence/trace
information is lost (or never existed), even not fully bidirec-
tional transformations can be combined with reverse-engi-
neering techniques to re(create) some possible source model.
But, that is a different issue that is not in the scope of this
paper.

5.2 Rules and their coordination

Our QVT-Core to TGG mapping shown in Sect. 3 and the
approach for mapping QVT-Relations to TGGs in Sect. 4
shows that QVT and TGG rules are very similar. Using a
graph model to describe a model pattern instead of OCL is a
matter of taste, convenience, or personal opinion. Still, OCL
is more powerful than simple graph patterns, in particular
for expressing calculations on attribute values. This is why
TGGs come with many different extensions. We propose to
extend the graph model in TGGs by introducing constraints
that may contain arbitrary OCL-expressions. In [10], we have
shown how this can be implemented in TGGs.

By our mapping from QVT to TGGs, we have shown
that the coordination of the rule applications is quite sim-
ilar in QVT and TGGs. Even the explicit rule invocations
in QVT-Relations through the relation calls in the when and
where clauses can be mapped to corresponding (implicit) rule
dependencies in TGGs (see Sect. 4).

One remaining issue in the coordination of the application
of different rules is the question where to start the application
of rules. In QVT, there are the start rules: For QVT-Relations,
the start rules are such top-level rules that do not have any
relation calls in their when-clause. For QVT-Core, these are
the mappings with an empty guard. QVT can start matching
any of these start rules, wherever they fit. This is different in
TGGs: There is one axiom, which is a graph pattern, not a
rule;1 the nodes of the axiom will be bound to the existing
objects of the model. This initial binding is called the start
context. From there, other rules will be applied. Thus, TGGs
are very explicit where to start, which increases the efficiency
of a transformation, but we may loose flexibility. In practice,
this difference between QVT and TGG does often not play an

1 Sometimes, this pattern is considered to be the right-hand side of a
rule. Though this is technically correct, the axiom is not applied as a
rule; therefore, calling an axiom a rule is conceptually misleading.

123

42 J. Greenyer, E. Kindler

important role. Many QVT transformations are designed in
such a way that a single start rule can be mapped in exactly
one way to an existing model or a pair of related models
initially—at the so-called roots of the respective models. This
would be exactly the start context that we would provide to
a TGG engine. Allowing multiple starting points for a QVT
transformation furthermore raises the question of what hap-
pens to a QVT transformation when start rules could be bound
to the model in different ways. Are the bindings starting from
different places allowed to overlap? This is a questions of how
model objects may be bound to (bottom pattern) variables of
applied rules, which is subject of the next section.

5.3 Bindings

It is very important for a correct application of the transfor-
mation rules to specify in which way objects in the model
may be bound to nodes or, respectively, variables in a rule
when the rule is applied. The semantics for mappings in
QVT-Core (see Sect. 2.5 of this paper or Sect. 9.7 and 9.8
of the QVT specification [17]) is that when there is a valid
binding of all guard pattern variables in a mapping and there
is furthermore a valid binding of at least one bottom pattern,
then valid bindings have to exist for all other bottom pat-
terns. This semantics corresponds to the intuitive idea of a
relation—either all “columns” of a relation should match or
none. But the QVT specification does not specify whether
model objects may be bound to at most one bottom pattern
variable, i.e. whether bindings of model patterns of different
rule applications may overlap in the instance model. How-
ever, this restriction is important because, if not the case,
the intuitive sounding one-to-one relation between the bot-
tom patterns cannot be ensured in the instance model where
we see the results. Stevens [22] also raises this question—
in the course of matching existing models with a QVT rule,
may bindings found for the bottom pattern variables overlap?
In our opinion, QVT should distinguish between variables
where bindings may overlap and variables where bindings
must not overlap.

In TGGs, we require that, in the end, every object in the
models is bound to exactly one produced node of an appli-
cation of a TGG-rule (see Sect. 2.3). In the following, we
refer to this semantics as the bind-exactly-once semantics.
Note, that the model objects may of course be bound to sev-
eral context nodes of different applications of TGG-rules.
In our mapping from QVT-Core to TGGs as presented in
Sect. 3, we map each bottom pattern variable of a QVT-
Core mapping to a produced node of a TGG rule. Thus, our
interpretation of the QVT standard is that the same bind-
exactly-once semantics applies to bottom pattern variables.
Therefore, the bind-exactly-once semantics applies to such
variables in QVT-Relations that are not part in a when

relation call (see Sect. 2.6) and not referenced by a where
relation call of another relation (see Sect. 4).

A particular part of the bind-exactly-once semantics in
TGGs is that, in the end, all model objects must be bound.
If there are left-over model objects that are not bound, the
transformation is incomplete. In order to define when a trans-
formation is successful in the case that we only intend to
transform part of the model, we have to specify a view of
the model to which the transformation is applied. Then, we
require that all objects in this view are bound exactly once
to a produced node. In [10], we call the parts outside the
view of a model the model’s context. The context may be
relevant in constraints, but these objects are not bound at
all, and can therefore be ignored by the TGG engine. In our
implementation, we consider the view simply to be those
objects and links in the model which are instances of the
classes and references that we use as node and edge types
in the TGG rules. This is, however, not a general strategy.
Our interpretation of the QVT-standard is that the same bind-
exactly-once semantic applies. However, QVT does not spec-
ify whether a transformation is unsuccessful when objects
remain unbound. It is only stated that objects which remain
unbound when transforming in the direction of an enforced
domain shall be deleted (see Sect. 2.4).

Experiments with MediniQVT [9] and ModelMorf [23],
which both implement QVT-Relations, show that there are
other interpretations of how the objects may be bound in
QVT-Relations. These interpretations may yield unin-
tended results. Figure 28 shows a slightly more complicated
TGG rule from the ComponentTools project—for ease of
understanding, it is presented in the concrete syntax of
the two domains. It transforms a join component into a
corresponding Petri net logic. We encoded the rule in Fig. 28
as a QVT-Relations rule in MediniQVT and ModelMorf. The
result when testing MediniQVT with this example was that
the rule was applied four times for a single join component.
The number 4 comes from the four different ways that the
in-ports of the instance model can be bound to the in-ports of
the bottom pattern of the rule. See Fig. 29 for an illustration
of the output. (The two in-ports of the join component are

Fig. 28 Relation of a join component and its Petri net structure

123

Implementing QVT with TGGs 43

Fig. 29 The result of a MediniQVT transformation of a join compo-
nent

called “PortIn1” and “PortIn2”, the out-port is called “Por-
tOut”. Figure 29 displays the names of the corresponding
places and transitions.) The Petri net element, however, was
only created once. The reason for that seems to be that Med-
iniQVT has a distinct semantics for domain variables, which
was the Petri net in this case. The domain variable on the
ComponentTools side was the join component. We tried to
specify the rule differently, in order to have not the Petri
net as the domain variable. But that was not possible since,
firstly the Petri net element is the only element from where
we can navigate the whole Petri net structure and, secondly,
there is no single Petri net element that relates to the join
component—it is simply the whole structure.

ModelMorf shows a different effect. It obviously has a
mechanism for choosing non-overlapping bindings for rules.
But, in other examples, when we translated a join compo-
nent connected with other components, we observed redun-
dant nodes and arcs being created from the connections. But,
thus far we can only second guess about the reasons for that.
Admittedly, model structures with such symmetries may not
occur in many model transformation, but neither is it an arti-
ficial example. The main point here is that there seem to be
different interpretation of legal bindings in QVT and it is
not possible to argue whether any of the implementations
is correct or not based on the specification. From a TGG
perspective, the bind-exactly-once interpretation for variable
bindings makes the most sense.

5.4 Reusable nodes and global constraints

Actually, the bind-exactly-once-semantics of TGGs is
sometimes a bit restrictive. The first reason for that is the fol-
lowing: As explained in the previous subsection, in order for a
transformation to be successful, we defined that every object
of a source model of a transformation must be mapped—even
if it is not relevant for generating the target model. But, this
is not a serious problem, because such parts could be consid-
ered not to belong to the model. Thus, we may imagine that
the transformation engine works on a restricted view.

Still, the bind-exactly-once-semantics of TGGs some-
times forces us to make two different TGG rules for one

and the same relation (see discussion of the rule of Fig. 19).
Sometimes, we need one rule for the situations in which a
particular object was bound already (then it would be in the
context part of the rule); and we need another rule for a situa-
tion in which the object was not yet bound (then it would be in
the production part of the rule). These two rules are basically
identical, except that this node is marked with a ++ (pro-
duced node) in one rule and not marked with ++ (context
node) in the other. And if we had several of such nodes within
the same rule, the number of variants of that rule would grow
exponentially with that number. This is why we introduced
the concept of reusable nodes in [10]—since in a colored
representation the node is either a white or a green node,
we graphically represent these nodes in gray and sometimes
even call them gray nodes. The semantics of these reusable
nodes is that, at the discretion of the TGG engine, they can
be either considered to be in the context part or in the pro-
duction part of the rule. Then, the way of dealing with nodes
from the model’s context and of dealing with reusable nodes
is actually the same; both ideas can be captured by the same
concept. We have already described an example of a reusable
node in Sect. 3, see Fig. 19 and its explanation.

The concept of reusable nodes serves a similar purpose as
the check-before-enforce semantics of variables in QVT (see
Sect. 2.4). The idea of check-before-enforce in QVT is the
following: before creating the object, it is checked whether
such an object exists already in the target model. If it exists, it
will not be created another time; instead, the existing object
will reused, i.e. the rule variable will be bound to the existing
object. If it does not exist, it will be created. (Actually objects
are only reused when a valid match of a complete domain
pattern can be found, see Sect. 2.4.) These two cases resem-
ble the two different choices for reusable nodes in TGGs. In
TGGs, however, the reuse of an existing object is not given
priority: it can be reused if it exists in the target model already,
but it could also be created another time. To reuse existing
elements or to create them anew is at the discretion of the
TGG engine. It may be practical in many cases to give pri-
ority to reuse, as QVT does, but creating an element anew
still leads to a valid correspondence of the models. The prob-
lem is that the concept of reusable nodes and the semantics of
variable bindings in QVT introduces non-determinism. How-
ever, giving a priority to reuse does not completely eliminate
this non-determinism again. The transformation result may
still differ depending on the sequence of rule applications.
Therefore, we prefer to keep the concepts of reusable nodes,
which introduces non-determinism, separate from techniques
to eliminate non-determinism.

In some situations, it might be acceptable to create an
object several times; in other situations, we may not want
that. Then, this can be defined by global constraint on the
model. A global constraint is expressed in the meta-model
class diagram and possibly additional OCL-constraints. Such

123

44 J. Greenyer, E. Kindler

a global constraint could be a 0..1 association or constraints
like “an automaton may have only one state marked as the
initial state”. Such constraints could also require, for exam-
ple, the uniqueness of some attribute value. The keys in QVT,
which define the uniqueness of objects by one attribute value
or by a combination of attribute values, are thus a special
kind of global constraint.

In summary, the check-before-enforce concept of QVT
combines the TGG concepts of reusable nodes with a general
priority on the reuse of elements in case of an exact match of
a rule pattern and a reuse that is forced by global constraints.
In TGGs, we prefer to keep the concept of reusable nodes
that introduces non-determinism separate from concepts for
restricting the non-determinism again.

6 Related work

There exist a number of approaches for interpreting the
semantics of QVT or for implementing QVT by a mapping
to another domain.

Rensink and Nederpel provide a graph transformation
semantics for MTL, one of the model transformations lan-
guages that were initially proposed for the QVT standard
[18]. MTL is a declarative, unidirectional language where
rules specify source and target patterns by simple query
expressions. Rensink and Nederpel worked out a mapping
from MTL into single graph transformation rules. In contrast
to Rensink and Nederpel, our approach covers the declara-
tive, bidirectional transformation languages that were finally
included in the QVT standard.

Lengyel et al. have worked out a mapping from QVT-
Relations into graph rewriting rules instead of bidirectional
TGGs [13]. The when and where relationships among the
relations are translated into a control structure in which graph
transformation rules corresponding to the relations are exe-
cuted. However, they do not discuss possible implications
that their mapping has on the interpretation of the semantics
of QVT-Relations.

Romeikat et al. provide a translation from QVT-
Relations to QVT Operational Mappings [19]. QVT Opera-
tional Mappings is another language of the QVT specification
for expressing transformations imperatively. In Operational
Mappings, rules describe how to translate certain input
objects into output objects. Rule dependencies in QVT-
Relations that are expressed by when and where clauses are
mapped to invocations of operational mappings from other
mappings as well as resolveIn-expressions that allow map-
pings to refer to elements mapped by previously executed
mappings. They also describe how the check-before-enforce
semantics and the key mechanism of QVT-Relations may be
realized in QVT-Operational Mappings, but they do not dis-
cuss in detail the implication of their mapping approach to

the interpretation of QVT-Relations. The authors furthermore
admit that their approach is limited to certain “easy” cases in
QVT-Relations, but they do not specify their limitations in
detail.

Instead of mapping QVT to another domain, Stevens pro-
vides a formalization of bidirectional model transformations
[22]. She clarifies issues like the reversibility of transfor-
mations and the exact meaning of bindings as we have also
discussed in Sect. 5.3.

7 Conclusion

In this paper, we have discussed the similarities of QVT and
TGGs. Due to the similar structure and concepts, relational
QVT can be transformed into TGG rules. We have shown
how QVT-Core transformations can be mapped to TGGs and,
this way, a TGG engine can execute transformations specified
in QVT-Core. We also presented an idea on how QVT-
Relations can be directly mapped to TGGs; but the exact
mappings need yet to be worked out in detail.

In addition, we have discussed the differences in the phi-
losophy and concepts between QVT and TGGs. This
improves our understanding of how model transformations
and model synchronizations work with relational rules. With
the help of the semantics of TGGs, we clarified some seman-
tic gaps which we find in the specification of QVT today. The
insights gained from QVT have furthermore inspired some
extensions of TGGs.

Acknowledgments The authors would like to thank Patrick
Könemann for helpful discussions, Jörg Kiegeland for his support on
MediniQVT as well as Oleg Travkin for the discussions and the work
on his Bachelor project.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A. : MOFLON:
a standard-compliant metamodeling framework with graph trans-
formations. In: Rensink, A., Warmer, J. (eds.) Model Driven
Architecture—Foundations and Applications: Second European
Conference. Lecture Notes in Computer Science (LNCS),
vol. 4066, pp. 361–375. Springer, Heidelberg (2006)

2. Cremer, K., Gruner, S., Nagl, M. : Graph transformation based
integration tools: applications to chemical process engineer-
ing. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.)
Handbook on Graph Grammars and Computing by Graph Transfor-
mation: Applications, Languages, and Tools, vol. 2, pp. 369–394.
World Scientific, Singapore (1999)

3. Gepting, A., Greenyer, J., Kindler, E., Maas, A., Munkelt, S.,
Pales, C., Pivl, T., Rohe, O., Rubin, V., Sanders, M., Scholand,
A., Wagner C., Wagner, R.: Component tools: a vision of a tool.
In: Proceedings of the 11th Workshop on Algorithms and Tools
for Petri Nets (AWPN2004), Paderborn, Germany, September 30–
October 1, pp. 37–42 (2004)

123

Implementing QVT with TGGs 45

4. Giese, H., Wagner, R.: Incremental model synchronization with
Triple Graph Grammars. In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS),
Genova, Italy, October 2006. Lecture Notes in Computer Science
(LNCS), vol. 4199, pp. 543–557. Springer, Berlin (2006)

5. Giese, H., Wagner, R.: From model transformation to incremental
bidirectional model synchronization Softw. Syst. Model. (SoSyM)
8 (1), 21–43 (2009). doi:10.1007/s10270-008-0089-9

6. Greenyer, J.: A Study of Model Transformation Technologies:
Reconciling TGGs with QVT. Master’s thesis, University of
Paderborn, Department of Computer Science, Paderborn, Ger-
many, July (2006)

7. Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) Proceed-
ings of the 10th International Conference on Model Driven Engi-
neering Languages and Systems, MoDELS 2007, Nashville, USA,
September 30–October 5, 2007. Lecture Notes in Computer Sci-
ence, vol. 4735, pp. 16–30. Springer, Berlin (2007)

8. Guerra, E., de Lara, J.: Model view management with triple graph
transformation systems. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) Proceedings of the Third
International Conference on Graph Transformation, ICGT 2006.
Lecture Notes in Computer Science, vol. 4178. Springer, Berlin
(2006)

9. ikv++ technologies ag. medini QVT. WWW, 2007. Version:
1.1.2.14069. http://projects.ikv.de/qvt (2008). Accessed Dec 2008

10. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Exten-
sions, Implementations, and Application Scenarios. Technical
Report tr-ri-07-284. Department of Computer Science, Univer-
sity of Paderborn, Department of Computer Science, University
of Paderborn, June (2007)

11. Klar, F., Königs, A., Schürr, A.: Model transformation in the large.
In: Proceedings of the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium
on The foundations of Software Engineering, Dubrovnik, Croatia,
Sept. 03–07, 2007, pp. 285–294 (2007)

12. Königs, A., Schürr, A.: MDI—a rule-based multi-document and
tool integration approach. Special Section Model-Based Tool Inte-
gration J. Softw. Syst. Model. 5(4), 349–368 (2006)

13. Lengyel, L., Levendovszky, T., Charaf, H.: Realizing QVT
with graph rewriting-based model transformation. In: Interna-
tional Workshop on Graph and Model Transformation (GraMoT),
Brighton, UK, September (2006)

14. Object Management Group (OMG): Model Driven Architecture
MDA—A Technical Perspective, July (2001). OMG document
ormsc/01-07-01

15. Object ManagementGroup (OMG): UML 2.0 OCL Specification,
March (2003). OMG document ptc/03-10-14

16. Object Management Group (OMG): Meta Object Facility (MOF)
Core Specification, January (2006). OMG document formal/
06-01-01

17. Object Management Group (OMG): MOF QVT Final adopted
Specification, July (2007). OMG document ptc/07-07-07

18. Rensink, A., Nederpel, R. : Graph transformation semantics for a
QVT language. In: Bruni, R., Varro, D. (eds.) International Work-
shop on Graph Transformation and Visual Modeling Techniques
(GT-VMT), Vienna, Austria. Electronic Notes in Theoretical
Computer Science, vol. 211, pp. 51–62. Elsevier, Amsterdam
(2008)

19. Romeikat, R., Roser, S., Müllender, P., Bauer, B.: Translation of
QVT relations into QVT operational mappings. In: Proceedings of
the 1st international conference on Theory and Practice of Model
Transformations, pp. 137–151 (2008)

20. Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineer-
ing with PROGRES. In: Proceedings of the 5th European Software
Engineering Conference, ESEC 1995, Sitges, Spain, September
25–28, 1995. Lecture Notes in Computer Science, vol. 989/1995,
pp. 219–234. Springer, Berlin (1995)

21. Schürr, A.: Specification of graph translators with triple graph gram-
mars. In: Tinhofer, G. (ed.) Proceeding of the 20th International
Workshop on Graph-Theoretic Concepts in Computer Science.
Lecture Notes in Computer Science (LNCS), vol. 903, pp. 151–
163. Springer, Heidelberg (1994)

22. Stevens, P.: Bidirectional model transformations in QVT: seman-
tic issues and open questions. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) Proceedings of the 10th Interna-
tional Conference on Model Driven Engineering Languages and
Systems, MoDELS 2007, Nashville, USA, September 30–October
5, 2007. Lecture Notes in Computer Science, vol. 4735, pp. 1–15.
Springer, Berlin (2007)

23. Tata Consultancy Services (TCS): ModelMorf—A Model Trans-
former. WWW, 2007. Version: Pre-Beta 3. http://www.tcs-trddc.
com/ModelMorf/ (2008). Accessed Dec 2008

24. Travkin, O.: Abbildung von QVT-Relations auf TGGs und deren
Auswirkung auf die Spezifikation von TGGs (in German). Bachelor
thesis, University of Paderborn, Department of Computer Science,
Paderborn, Germany, August (2008)

25. Wagner, R.: Developing model transformations with Fujaba. In:
Giese, H., Westfechtel, B. (eds.) Proceedings of the 4th Interna-
tional Fujaba Days 2006, Bayreuth, Germany, vol. tr-ri-06-275 of
Technical Report, pp 79–82. University of Paderborn, September
(2006)

Author Biographies

Joel Greenyer received his mas-
ter degree in Computer Science
in 2006 from the University of
Paderborn. He is currently a Ph.D.
student of the International Grad-
uate School Dynamic Intelligent
Systems at the University of
Paderborn, working in the Soft-
ware Engineering Group of Prof.
Dr. Wilhelm Schäfer. His main
area of research is the model-
based design of mechatronic
systems, with the focus on the
modeling and synthesis of interac-
tion specifications as well as the

consistency management among models, model transformation and
model synchronization.

123

http://dx.doi.org/10.1007/s10270-008-0089-9
http://projects.ikv.de/qvt
http://www.tcs-trddc.com/ModelMorf/
http://www.tcs-trddc.com/ModelMorf/

46 J. Greenyer, E. Kindler

Ekkart Kindler is currently an
associate professor in Computer
Science and Engineering at the
Technical University of Denmark
(DTU). He received his masters
and his Ph.D. in Computer Sci-
ence from the Technische Uni-
verstität München in 1990 and
1995, respectively. He received his
Habilitation in Computer Science
from the Humboldt-Universität zu
Berlin in 2001. After his Habil-
itation, he was visiting professor
in theoretical as well as in practi-
cal computer science at different

German Universities and was an assistant professor (Hochschuldozent)
in Software Engineering at Paderborn University from 2002 to 2007.
His research interests include formal methods and their application in
software and systems engineering and business process management.
Currently, he is working on formalizing and unifying the concepts of
business process modeling and on techniques and tools for the automatic
analysis and verification of system and process models. He is also work-
ing in the area of Model-based Software Engineering and techniques
that make use of models in the software development process for getting
rid of low-level programming. This includes techniques for interpreting
models, for automatically generating code from models, as well as for
model transformation in general.

123

	Comparing relational model transformation technologies: implementing Query/View/Transformation with Triple Graph Grammars
	Abstract
	1 Introduction
	2 TGG and QVT transformations by example
	2.1 A relational definition of a transformation
	2.2 Meta-models for the example
	2.3 TGG rules
	2.4 QVT-Relations
	2.5 QVT-Core mappings
	2.6 Mapping QVT-Relations to QVT-Core

	3 Mapping QVT-Core to TGGs
	3.1 QVT-Core and TGG meta-models
	3.2 The QVT-Core to TGG transformation rules

	4 Relationship between the QVT-Relations and TGGs
	5 Comparing QVT and TGGs
	5.1 Application scenarios
	5.2 Rules and their coordination
	5.3 Bindings
	5.4 Reusable nodes and global constraints

	6 Related work
	7 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

