
Softw Syst Model (2010) 9:427–451
DOI 10.1007/s10270-009-0120-9

THEME SECTION

A model-driven traceability framework for software product lines

Nicolas Anquetil · Uirá Kulesza · Ralf Mitschke ·
Ana Moreira · Jean-Claude Royer ·
Andreas Rummler · André Sousa

Received: 23 January 2009 / Revised: 5 June 2009 / Accepted: 8 June 2009 / Published online: 27 June 2009
© Springer-Verlag 2009

Abstract Software product line (SPL) engineering is a
recent approach to software development where a set of soft-
ware products are derived for a well defined target application
domain, from a common set of core assets using analogous
means of production (for instance, through Model Driven
Engineering). Therefore, such family of products are built
from reuse, instead of developed individually from scratch.
SPL promise to lower the costs of development, increase the
quality of software, give clients more flexibility and reduce
time to market. These benefits come with a set of new prob-
lems and turn some older problems possibly more complex.
One of these problems is traceability management. In the
European AMPLE project we are creating a common trace-
ability framework across the various activities of the SPL
development. We identified four orthogonal traceability
dimensions in SPL development, one of which is an exten-
sion of what is often considered as “traceability of variabil-
ity”. This constitutes one of the two contributions of this
paper. The second contribution is the specification of a meta-
model for a repository of traceability links in the context
of SPL and the implementation of a respective traceabil-
ity framework. This framework enables fundamental trace-
ability management operations, such as trace import and

Communicated by Prof. Richard Paige.

N. Anquetil (B) · J.-C. Royer
ASCOLA, EMN-INRIA, Nantes, France
e-mail: anquetil.nicolas@gmail.com

U. Kulesza · A. Moreira · A. Sousa
CITI/DI/FCT, Universidade Nova de Lisboa, Caparica, Portugal

R. Mitschke
TU Darmstadt, Darmstadt, Germany

A. Rummler
SAP Research, Dresden, Germany

export, modification, query and visualization. The power of
our framework is highlighted with an example scenario.

Keywords Traceability · Software product line ·
Model driven engineering

1 Introduction

Software product lines (SPL) [45] are receiving increasing
attention in software engineering. A software product line is
a software system aimed at producing a set of software prod-
ucts by reusing a common set of features, or core assets, that
are shared by these products. In SPL engineering (SPLE) a
substantial effort is made to reuse the core assets, by sys-
tematically planning and controlling their development and
maintenance. Thus, a peculiarity of SPLE is the variability
management [7,39,41], that is, the ability to identify the var-
iation points of the family of products and to track each prod-
uct variant. In contrast to single system software engineering,
SPLE yields a family of similar systems, all tailored to fit the
wishes of a particular market niche from a constrained set
of possible requirements. The SPL development process
consists of two main activities (see Fig. 1): Domain engi-
neering and Applications engineering. These activities are
performed in parallel, each with a complete development
cycle, consisting of, for example, requirements engineering,
architecture design and implementation. The complexity of
SPLE poses novel problems (e.g., variability management)
and also increases the complexity of traditional software
engineering activities, such as software architecture and
traceability.

Traceability [9,13,17,47,48]—i.e., the possibility to trace
software artefacts forward and backwards along the software
lifecyle—is an important and practical aspect of software

123

428 N. Anquetil et al.

Fig. 1 Domain and application engineering

engineering. The main advantages of traceability are: (i) to
relate software artefacts and corresponding design decisions,
(ii) to give feedback to architects and designers about the
current state of the development, allowing them to recon-
sider alternative design decisions, and to track and understand
errors, and (iii) to ease communication between stakeholders.

Traceability is often mandated by professional standards,
for example, for engineering fault critical systems, such as
medical applications. However, many existing tools and appr-
oaches are limited to requirements management (for instance
RequisitePro or works in [17,48]), rely on using and integrat-
ing various tools [5,13], propose very limited analysis [41],
and are not scalable. Additionally, industrial approaches and
academic prototypes do not address end-to-end traceability
yet, i.e., spanning the full software engineering lifecycle.
The use of traceability is considered a factor of success for
software engineering projects. However, traceability can be
impaired by various factors ranging from social, to econom-
ical, and to technical [5].

In this article, we propose the AMPLE Traceability Frame-
work (ATF), a framework that addresses the above mentioned
technical issues of traceability in the SPL context. ATF is
designed to be open and generic, thus postponing the social
and economic questions to the adoption of our solution in a
specific context. ATF has been developed using model-driven
techniques, which offer good support to define an open and
extensible reference model for traceability. The implementa-
tion utilizes Ecore [15], a metamodel that was developed for
the Eclipse platform [14]. ATF is based on a process agnostic
traceability metamodel that defines artefacts and hyper-links
representing traces between artefacts. Through the hyper-link
representation, the metamodel introduces m-to-n trace links
as first class concepts.

By instantiating the metamodel, ATF can be configured to
fit various development processes, as also suggested in [1]. In
particular, ATF allows the definition of hierarchical artefact
and link types as well as constraints between these types.
Additional information related to the trace context can be
stored in properties associated to artefacts and links. Such

properties are useful to track information related to specific
software processes or to record design rationales.

The ATF framework architecture is based on a metamod-
el implementation backed by a data base repository to store
trace information. This core provides basic functionalities to
initialize the framework and to access the trace data. The
implementation of the framework relies on the plugin archi-
tecture of the Eclipse platform to provide extensibility for
future applications. Building on the ATF core, the frame-
work provides a graphical front-end, which defines extension
points to facilitate trace registering, trace querying and trace
viewing. The front-end allows building scenarios, which
gather under a common label, populators of the traceability
repository, queries and views. Such scenarios are dedicated to
a specific analysis task. The workflow is designed in an intu-
itive manner, easily allowing users to combine various tools
(queries, views, manual edition of the traceability links) to
select and refine their trace link sets.

In addition to a generic framework for traceability, we
propose an application of traceability for software product
line engineering and the accompanying instantiation of ATF.
Existing propositions for traceability in SPL are examined,
to identify the peculiarities of traceability in SPLE. These
propositions include tools supporting traceability in SPLE as
well as existing approaches in academia. From these studies
we formulate four orthogonal traceability dimensions in SPL.
These dimensions—refinement, similarity, time and variabil-
ity—are used to categorize traceability links that arise in gen-
eral for any SPLE development process. Thus, we propose a
base instantiation of ATF, where the basic hierarchy of link
types considers these dimensions. The instantiation provides
a solid and clear framework for traceability in SPLE and is,
at the same time, extensible for further process specific link
types.

In summary, the contributions of this paper are two fold:

– the identification of four orthogonal traceability dimen-
sions in SPL development;

– the implementation of a traceability framework based on
the specification of a metamodel for a repository of trace-
ability links.

The remaining of this paper is organized as follows.
Section 2 reviews existing traceability tools and discusses
their capacities to support software product line engineering.
Section 3 analyzes the existing literature on SPLE traceability
and concludes proposing four orthogonal traceability dimen-
sions. Section 4 proposes the traceability framework require-
ments and follows by specifying the framework reference
metamodel. Section 5 describes the concrete implementation
of the ATF framework, its core, front-end, and implemented
plugins. Section 6 is devoted to a simple example to illus-
trate the configuration and the use of the ATF framework.

123

A model-driven traceability framework for software product lines 429

Table 1 Alphabetical list of the main tools reviewed in the AMPLE’s tool survey

Tool Provider Web site

CaliberRM Borland http://www.borland.com/us/products/caliber/rm.html

DOORS Telelogic http://www.telelogic.com/products/doors/index.cfm

GEARS BigLever Software Inc. http://www.biglever.com/solution/product.html

Pure::variants Pure-systems GmbH http://www.pure-systems.com/Variant_Management.49.0.html

RequisitePro IBM/Rational http://www.ibm.com/developerworks/rational/products/requisitepro/

SCADE suite Esterel Technologies http://www.esterel-technologies.com/products/scade-suite/

TagSEA University of Victoria & IBM T.J. Watson http://tagsea.sourceforge.net/

TeamCenter Siemens http://www.plm.automation.siemens.com/en_us/products/teamcenter/index.shtml

Table 2 Summary of the comparison of three requirement traceability tools according to the criteria chosen (see text)

RequisitePro CaliberRM DOORS

(i) Links management Manual Manual Manual + import

Between requirements Complete life-cycle Complete life-cycle

(ii) Queries Query & filter on requirements attri-
butes

Filter on requirements & links Query & filter on any data (includ-
ing links)

– Links incoherence Impact analysis, orphaned code

(iii) Views Traceability matrix, traceability tree Traceability matrix, traceability
diagram, reports

Traceability matrix, traceability tree

(iv) Extensibility – – Creation of new type of links

Trace data saved w/ ODBC Trace data saved w/ ODBC Integrates w/ > 25 tools (design,
text, CM,...)

(v) SPL, MDD, AOSD Not supported Not supported Not supported

Section 7 reviews some related work, mainly on traceabil-
ity tools and model-driven engineering. Finally, Sect. 8 con-
cludes the paper finishing with future work.

2 Analysis of existing traceability tools

The aim of the AMPLE project is to provide an SPL meth-
odology offering improved modularization of variation, its
holistic treatment across the life cycle, and easier mainte-
nance, through the use of Aspect-Oriented Software Devel-
opment (AOSD) and Model-Driven Development (MDD).
In the context of this project, we conducted a survey on
industrial tools that support some degree of traceability. The
main tools reviewed are listed in Table 1. The goal of the
survey was to investigate the current features provided by
existing tools to assess their strengths and weaknesses and
their suitability to address SPL development and mainte-
nance. The tools were evaluated in terms of the following
criteria: (i) management of traceability links, (ii) traceabil-
ity queries, (iii) traceability views, (iv) extensibility, and (v)
support for SPL, MD Engineering (MDE) and AOSD. These
criteria are important for this kind of tools as they provide
the basic support to satisfy traceability requirements (cre-
ation of trace information and querying), easier variability

management, adaptability to projects specific needs [13],
or concerns regarding evolution of these tools and SPL
development.

The “management of traceability links” criterion was
adopted to analyze the capacity of each traceability tool to
create and maintain trace links (manual or automatic) and
what kind of trace information is generated. The “traceabil-
ity queries” criterion analyzes what searching mechanism
is available from the tools to navigate among the artefacts
and respective trace links, varying from simple queries to
navigate among the related artefacts, to more sophisticated
queries that support advanced functionalities, such as cov-
erage analysis or change impact analysis. The “traceabil-
ity view” criterion characterizes the supported views (tables,
matrix, reports, graphics) that each tool provides to present
the traceability information between artefacts. The “exten-
sibility” criterion evaluates if any tool offers a mechanism
to extend its functionalities or to integrate it with any other
software development tools. Finally, the “support for SPL,
MDE and AOSD development” criterion indicates if a tool
adopts any mechanism related to these new modern software
engineering techniques.

Table 2 summarizes key aspects of the evaluation of some
tools. In terms of “links management”, the tools allow defin-
ing them manually, but offer the possibility to import them

123

http://www.borland.com/us/products/caliber/rm.html
http://www.telelogic.com/products/doors/index.cfm
http://www.biglever.com/solution/product.html
http://www.pure-systems.com/Variant_Management.49.0.html
http://www.ibm.com/developerworks/rational/products/requisitepro/
http://www.esterel-technologies.com/products/scade-suite/
http://tagsea.sourceforge.net/
http://www.plm.automation.siemens.com/en_us/products/teamcenter/index.shtml

430 N. Anquetil et al.

from other existing documents, such as, MS-Word, Excel,
ASCII and RTF files. CaliberRM and DOORS allow the crea-
tion of trace links between any kind of artefacts. RequisitePro
focuses only on the definition of trace links between require-
ments. For the “queries” criterion, RequisitePro provides
functionalities to query and filter on requirements attributes.
CaliberRM allows querying requirements and trace links.
DOORS provides support to query any data on the artefacts
and respective trace links. Regarding advanced query mech-
anisms, CaliberRM allows detecting some inconsistencies in
the links or artefacts definition, and DOORS offers impact
analysis report and detection of orphan code. The traceabil-
ity tools offer different kinds of “views”, such as, traceabil-
ity graphical tree and diagram, and traceability matrix. All
of them also allow navigating over the trace links from one
artefact to another. In terms of “extensibility”, CaliberRM
allows specifying new types of reports and DOORS allows
creating new types of links and personalized views. The three
tools also provide support to save and export trace links data
to external database through ODBC. DOORS integrates with
many other tools (design, analysis and configuration manage-
ment tools). In the AMPLE project, we decided to design our
tools around the Eclipse platform as it is an open infrastruc-
ture that allows to incorporate and integrate different tools
supporting different activities in software development and
maintenance (editing, compiling, testing, debugging, …).
We noted that only a few existing tools (e.g., DOORS or
SCADE suite) had some sort of mechanism to support soft-
ware development in open and extensible environment, such
as Eclipse. Finally, and as could be expected, these tools do
not support “SPL, MDD or AOSD” technologies explicitly,
yet.

The conclusions that were drawn from our survey were
that none of the investigated tools had built-in support for
SPL development, and a vast majority of them are closed, so
they cannot be adapted to deal with the issues raised by SPL.
There is some recent progress in providing traceability sup-
port for product lines. Two of the leading industrial tools in
SPL development, GEARS and pure::variants, have defined
some extensions to allow integration with other commercial
traceability tools. Pure::variants includes a synchronizer for
both CaliberRM and Telelogic DOORS that allows the inte-
gration of functionalities provided by these tools with the
variant management capabilities of pure::variants. Similarly,
GEARS allows importing requirements from DOORS, UGS
TeamCenter, and IBM/Rational RequisitePro. The evalua-
tion of three of these tools is summarized in Table 2. How-
ever, even the tools that may interact with pure::variants or
GEARS, handle traceability for traditional, single systems.
They all lack the ability to deal explicitly with SPL develop-
ment specificities such as, managing and tracing commonal-
ities and variabilities for different SPL artefacts, or dealing
with change impact analysis.

To complete our analysis, we reviewed the academic
approaches supporting traceability for product lines or sys-
tem families. Only three of them provide some sort of tool
support [2,27,38]. (More details can be found in the related
work Sect. 7.) Mohan and Ramesh [38] present a framework
and a knowledge management system to support traceabil-
ity of commonalities and variations. Ajila and Ali Kaba [2]
use traceability to manage the software product line evolution
based on an ad-hoc tool set. Jirapanthong and Zisman [27,28]
propose the prototype tool XTraQue to support traceability
in product lines. The approach is based on a reference model
with different kinds of artefacts and nine link types. A rule
engine extracts automatically the trace information, compar-
ing XML documents. None of these approaches provides a
clear and comprehensive view of the trace links in a SPL
development. They are too rigidly connected with a specific
software process. The ability to tune the set of artefact types,
the set of link types and the software process is critical, since
SPL approaches and domain needs are very heterogeneous.

From this survey we conclude that a thorough analysis
of the dimension in SPL is needed, with specific emphasis
on variability and versioning. As previously noted, a trace-
ability tool for SPL needs to be configured with artefacts
and link kinds associated to the software process, and as
explained in [1], MDE seems a good technology to achieve
this. Galvao and Goknil [22] present a survey of traceabil-
ity tools and approaches in MDE. The authors emphasize
the importance of tool support to automate traceability in
MDE and discuss several deficiencies in this context. Many
of these deficiencies are addressed by our framework and
will be discussed in Sect. 7. Nevertheless we need more than
MDE to solve the main difficulties related to traceability in
SPL engineering. We envision an open traceability frame-
work built around a core repository to store trace informa-
tion. Such a framework should allow easy connections with
external tools, for instance feature model editors, configura-
tion management systems, and textual documents process-
ing. It should also provide a basic query system to support
more advanced functionalities such as trace metrics, graph-
ical views, and execution of typical scenarios, like change
impact analysis or feature interaction.

3 Traceability in software product lines

Traceability is typically thought to maintain links among the
artefacts across the software development lifecycle. That is,
it provides means to determine the relationships and depen-
dencies between the software artefacts which help support
some software engineering activities such as change impact
analysis and software maintenance.

While traceability is an active field of research, there seems
to be little research on traceability for SPL. It is generally

123

A model-driven traceability framework for software product lines 431

accepted that for SPL, one requires to deal explicitly with
variability traceability (e.g. [7,45]). This section analyzes
the literature on traceability and SPL with emphasis on vari-
ous dimensions. Our proposition argues for considering four
orthogonal dimensions in software product line engineer-
ing. Amongst these relations, variability and versioning are
detailed since they are crucial and have to be considered con-
jointly in SPL engineering.

3.1 Software product line traceability: existing propositions

The difficulties linked to traceability in software product line
are [27]: (i) there is a large number and heterogeneity of
documents, much more than in traditional software devel-
opment; (ii) there is a need to have a basic understanding
of the variability consequences during the different develop-
ment phases; (iii) there is a need to establish relationships
between product members (of the family) and the product
line architecture, or relationships between the product mem-
bers themselves; and (iv) there is still poor general support
for managing requirements and handling complex relations.

For traditional software engineering, traceability is termed
horizontal or vertical. Unfortunately, different authors switch
the definition of horizontal and vertical ([50], e.g. compare
[26] and [44]). In this paper, we propose to rename them with
more suggestive names (see more in Sect. 3.2). In CMMI
(according to [26]), the term vertical traceability refers to a
link relating artefacts from different levels of abstraction in
the software development process. We will call this refine-
ment traceability. In CMMI, the term horizontal traceability
refers to a link relating artefacts at the same level of abstrac-
tion. That would be the case, for example, for two software
requirements presenting similarities. Such traceability allows
one to find possible additional artefacts that would require the
same maintenance operation than a given artefact (because
they are similar). We will call it similarity traceability.

Pohl et al. [45] recognize two types of variability trace-
ability links. First, there is a need to “relate the variability
defined in the variability model to software artefacts specified
in other models, textual documents, and code.” [45, p. 82].
These are traceability links that will, typically, be restricted to
the domain engineering level, where variability is defined. At
application engineering level, variability is reduced to con-
crete choices and there should not be any need for this kind
of traceability links, or they could be directly inferred from
the links at the domain engineering level. Second, we need to
link “application artefacts to the underlying domain artefact”
from which they are derived [45, p. 34]. These traceability
links will relate application engineering artefacts (in a given
application, e.g., a software component) to domain engineer-
ing artefacts (in the product family). In their book, Pohl et al.
appear to give more attention to the first type of traceability
than to the second. However, both are needed.

Berg et al. [7] propose the use of three traceability
dimensions: abstraction, refinement from problem space to
solution space, and variability. However, the first two seem
highly correlated as abstraction level typically decreases
when one goes from the specification of the problem to the
specification of the solution (along a traditional development
process). Therefore, we think they could only consider two
dimensions: one traces refinement of abstract artefacts to less
abstract ones. This is probably the most traditional dimen-
sion. The second traces variability and is specific to software
product line development. Berg et al. state that “The model
[…] explicitly and uniformly captures and structures the vari-
ation points of each artefact and traces them to their appropri-
ate dependent or related variation points in other artefacts”.
They seem to refer to the first kind of traceability identified
by Pohl et al., between the variability model and the other
artefacts at the domain engineering level. There is no ref-
erence to the second type of variability traceability: from
concrete artefact in an application to its underlying domain
artefact.

Jirapanthong and Zisman [28] identified six groups of
traceability links and nine possible traceability links. How-
ever none of these nine links is explicitly classified in a group,
thus greatly reducing the interest of the classification. The
nine traceability links are:

1. artefact a1 satisfies (meets the expectations and needs
of) artefact a2: this seems to be a refinement link;

2. a1 depends on a2 and changes in a2 may impact a1: this
may also be a refinement traceability;

3. a1 overlaps with a2: this could refer to a similarity
between the two artefacts;

4. a1 evolves to a2, i.e., it is replaced by a2 in the devel-
opment, maintenance or evolution: this seems to be a
configuration management traceability;

5. a1 implements a2: this seems to be a refinement trace-
ability;

6. a1 refines a2: this seems to be a part-of traceability link
or a refinement traceability link;

7. a1 contains a2: this is a part-of traceability link;
8. a1 is similar to a2: this is clearly a similarity traceability

link;
9. a1 is different from a2: this is a complex relation that

relates two use cases implemented by two subclasses of
the same class. It is not clear to us how to classify this
traceability link.

The problem with these links is that they seem very specific to
some particular kind of artefacts (the authors appear to work
mainly with text documents); they are not clearly orthogo-
nal, and they do not clearly relate to a known traceability
dimension, such as variability, refinement or similarity.

123

432 N. Anquetil et al.

Fig. 2 Examples of the four
orthogonal traceability
dimensions (grey arrows) in the
two processes of a software
product line

Mohan and Ramesh [39] take the problem from a differ-
ent perspective since they are interested in the knowledge
required to best manage variability and to store traceability
links. They identify two practices of traceability: low-end
practice and high-end practice. The traceability links com-
monly used in the low-end practice correspond to tracing
the refinement of abstract artefacts (such as requirements)
to less abstract ones (such as design artefacts). They may
also include traceability links between artefacts at the same
level of abstraction. These two are the traditional dimensions
of traceability: horizontal and vertical, respectively, that we
call here Refinement and Similarity. Traceability links in the
high-end practice “include details about sources of varia-
tions and their manifestations in design” which corresponds
to the first variability traceability kind of Pohl et al. (relat-
ing variability to software artefacts realizing it). Mohan and
Ramesh also discuss what knowledge should be recorded
along these traceability links, but this is outside the scope of
this paper.

Finally, another work by the same authors (Mohan et al.
[40], and Ramesh and Jarke [48]) is of interest although it
does not address traceability in the context of SPL. In that
paper, the authors argue for a better integration of traceability
and software configuration management. Their argument is
that both are intended to facilitate software maintenance and
contain complementary information on the current state of
the system and how it came to that state.

Other papers propose other traceability classifications,
such as [33,43,48]. However, we did not include them here
as they do not consider software product line engineering.

Thus, the first challenge we have is to clarify the main
dimensions in SPLE. To get a comprehensive and orthogonal
classification of trace link types would help in understanding
and managing traceability.

3.2 Traceability dimensions for software product lines

From our review of existing traceability tools (Sect. 2), as
well as existing SPL traceability propositions (Sect. 3.1), we
conclude that there is still a need for a coherent and complete
traceability classification scheme, to organize the different
types of traceability links required in SPL development. In
this paper, we define a set of orthogonal traceability dimen-
sions to manage traceability in SPL. The analysis is based on
the traceability needs identified in the literature.

We start by reusing the two traditional traceability dimen-
sions. We then need a dimension to account for variability
traceability as suggested by many. Finally, we believe that in
SPL, one needs tracing the evolution of artefacts (i.e., Soft-
ware Configuration Management, see Sect. 5.4).

Let us first summarize the four dimensions before discuss-
ing them in depth. Figure 2 illustrates examples of the four
traceability dimensions.

Refinement traceability relates artefacts from different lev-
els of abstraction in the software development process. It
goes from an abstract artefact to more concrete artefacts
that realize the first one. For example, a design model that
refines a software requirement. Such links may happen
in either of the two development stages of SPL: domain
engineering or application engineering.

Similarity traceability links artefacts at the same level of
abstraction. For example, UML components and class
diagrams can specify the SPL architecture at different
levels of detail but at the same level of abstraction
(software design). The trace links defined between these
artefacts can be used to understand how different
classes, for example, are related to specific components

123

A model-driven traceability framework for software product lines 433

Table 3 Some information on
the four traceability dimensions Dimension Occurs in which SPL engineering process?

Refinement Domain or application engineering

Similarity Domain or application engineering

Variability/Realization Domain engineering

Variability/Use Application engineering to domain engineering

Versioning Domain or application engineering

(or interfaces) of the SPL architecture. The links are
inside either of the two software product lines’ processes:
domain engineering or application engineering.

Variability traceability relates two artefacts as a direct con-
sequence of variability management. For example, at the
domain engineering level, a variability traceability link
would relate a variant with the artefact that “realizes” (or
implements) it. Or, an application artefact (application
engineering level) would be related to its underlying reus-
able artefact at the domain engineering level. For exam-
ple, a use case model and a feature model can be related
to illustrate which functional requirements are respon-
sible to address the SPL common and variable features.
Such traceability links allow understanding how SPL fea-
tures are materialized in requirements and find potential
related candidates during a maintenance task.

Versioning traceability links two successive versions of an
artefact.

Table 3 summarizes information on these four traceability
dimensions.

The variability and versioning traceability dimensions are
the least common ones. So, let’s discuss them in more detail.

3.2.1 Variability traceability dimension

As proposed by Pohl et al. [45] there are two main types of
variability traceability links. One could see them as subcat-
egories in this dimension. The first relates a variant in the
variability model (therefore at the domain engineering level)
to the artefacts that realize it, at all stages of the SPL develop-
ment. Following Pohl et al. definition [45, p. 83], we will call
it realization. Although it is restricted to one process (domain
engineering), it is different from refinement because: (1) it
is a direct consequence of explicit variability management,
whereas refinement traceability exists in traditional software
engineering and therefore has no direct relationship to vari-
ability; (2) it does not stem from the activities of the devel-
opment process where one lowers progressively the level of
abstraction of the artefacts produced; rather, it shows which
SPL parts should be included or considered in a particular
application if the variant is selected. This subcategory of var-
iability traceability is used in [7] and [39].

The second subcategory relates an artefact in the appli-
cation to its underlying reusable artefact in the family. We
propose to call this relationship use, because the applica-
tion (product) actually uses a reusable artefact defined in
the application family (product line). It is not a refinement
traceability either because: (1) it crosses the boundaries of
software processes, and relates an artefact at the application
engineering level to another artefact at the domain engineer-
ing level; (2) one artefact is not less abstract than the other;
actually, they are the “same” artefact, one defined in the appli-
cation family, the other reused in the application. This rela-
tionship is identified by Pohl et al. but does not seem to have
been used in other work. The use traceability relationship can
be derived from the realization, but the opposite is generally
not true. The reason to consider it as a useful relationship is
that computing it on-the-fly would be too expensive and sev-
eral important trace functionalities are easily defined using
this relation.

3.2.2 Versioning traceability dimension

Software Configuration Management (SCM) is an important
issue in SPL, as one product family will include concurrent
applications from different stages (or ages) of the whole fam-
ily. All these applications are related to the same family and
therefore are derived from the same set of artefacts. Artefacts
may evolve concurrently both at the application engineering
level (in any of the applications) or at the domain engineering
level.

Traceability is actually a central part of Software Config-
uration Management systems [13,40]. As the artefacts stored
in the SCM system evolve, the system itself is able to trace
the evolution of single artefacts. In addition, SCM systems
are used for building configurations (baselines), for example
as the basis for product deployments. In general, SCM sys-
tems hold the possibility to group versioned elements into
any meaningful unit. The information on the configurations
provides traceability into the different parts of the develop-
ment process where these configurations are used.

However, SCM systems, such as, Subversion [11] and
Microsoft Visual SourceSafe [36], are limited to tracing the
evolution of files. These systems are either not at all con-
cerned with the dependencies that arise between the stored

123

434 N. Anquetil et al.

files and other artefacts in a software engineering process,
or only to a limited degree. Visual SourceSafe, for example,
allows to trace which files are used across multiple projects,
i.e., tracing the reuse of software components or implemen-
tation elements, but they do not provide support to trace
requirements or specific SPL features. Information of such
interdependencies between artefacts can be captured using
traceability systems/tools. However, these systems/tools are
not concerned with the integration of versioning information.
The importance of integration between SCM and traceability
tools is also recognized in [40] as cited in Sect. 3.1.

The integration between SCM and traceability systems
must be considered in both directions. Either system can ben-
efit from the information provided by the other. The follow-
ing two key scenarios demonstrate the usage of integrated
information.

The first scenario is to use traceability information pro-
vided by the SCM system for enhanced impact analysis. This
is especially important during software maintenance. In such
scenario, errors must be corrected; traceability in the version-
ing dimension can be used for impact analysis regarding the
other versions of a product that must be corrected. In software
product line engineering, the complexity of this impact anal-
ysis is enhanced even further as also other members of the
product line and their respective versions must be identified
using the impact analysis.

The second scenario is to aid the construction of baselines,
which is one of the major responsibilities of SCM systems.
Baselines are configurations of artefacts that are, for exam-
ple, a beta release, a stable release, or a release delivered to
customers. By using backward traceability information, this
process may be enhanced with information regarding imple-
mented requirements or included features. Thus, developers
are able to determine the correctness and consistency of the
baselines.

The traceability information that stems from the baselines
is very important during product line maintenance. The addi-
tional traceability information, that relates the artefacts in
the versions as they were used for a release, may be used
to recover the state of the software that was delivered to the
customer. Traceability information regarding implemented
features of the product line can be retrieved and, thus, pro-
vide a higher level of understanding regarding the specific
baseline.

4 A model-driven traceability framework to SPL

Our goal is to implement a traceability framework that
accepts the four dimensions of traceability. However, there
is a number of additional requirements that this framework
should respect. This section reviews these requirements, then

describes the metamodel designed to answer them and from
which the traceability framework will be built.

4.1 Traceability framework requirements

Traceability still faces many challenges in software product
line engineering, in particular, the heterogeneity and num-
ber of artefacts, the increased complexity of artefacts, and
the diversity of software processes. Most current tool sup-
port is too specific to deal with these new challenges (see
Sect. 2). For example, commercial tools do not deal with
new artefacts [13] and abstractions, such as variability points
and variants, or they do not easily inter-operate with other
tools [1], such as feature models. Although we focus here
only on technical problems, there are also social, communi-
cation and economic problems involved that will need to be
tackled.

In a study of the factors influencing traceability adop-
tion, Ramesh [47] identifies two main groups of traceabil-
ity users, low-end (who are not using or only started to use
traceability) and high-end (who have been using traceabil-
ity for at least five years), which have different objectives
and practices. This paper describes four factors for adopt-
ing and using traceability: (i) develop methods, (ii) acquire
tools, (iii) develop tool, and (iv) change system development
policies. Acquire tools and develop tools are the most rele-
vant factors to our current task on traceability tool support.
Mohan and Ramesh [39] also present key recommendations
for successful traceability of variations. From the techni-
cal perspective, we can note their recommendations: focus
the documentation on variation points, provide an integrated
environment, and propose a comprehensive traceability solu-
tion. From these indications, we decided to develop our own
traceability framework.

Therefore, this framework must attend to a number of
requirements that we found important:

– it should be process agnostic, not imposing any artefact
or link type;

– it should be flexible, for example by allowing easy incor-
poration of new artefact types or link types;

– it should be scalable and deal with real life software prod-
uct line;

– it should be extensible, allowing the creation of new ways
to register, retrieve, manipulate and otherwise manage the
traceability links;

– it should support m-to-n traceability links, as opposed to
only 1-to-1 links, that most of the existing tools work on.

Being process agnostic is a fundamental requirement of
any traceability tool [13]. There are too much different pro-
cesses, each with specific artefact types to commit with such
an early decision on this issue. Except for the work of Moon

123

A model-driven traceability framework for software product lines 435

and Chae [41], all other approaches seem to have a
predefined set of artefacts types which cannot be adapted
to other development contexts or user needs. Furthermore,
according to Ramesh and Jarke [48] allowing an hierarchy
of artefact types is useful to tune the granularity level of the
trace. The same goes with link types. We therefore need to
accept creation of new kinds of artefact types and link types,
these being possibly organized in hierarchies of types.

Flexibility is required to ensure that new artefact or link
types will easily be created. For example, if Moon and Chae
[41] need to create new types of artefacts, they need to mod-
ify their metamodel, which is not an easy task. We need a
solution where new artefact and link types can be created,
if possible directly in the repository framework. Consider-
ing the different traceability dimensions encountered in SPL
development, this need for flexibility is still more critical.

Regarding scalability, we saw in Sect. 2 that commer-
cial tools do not deal with software product line engineering.
Unfortunately, most of the research tools only accept toy
examples. Although we do not aim at competing with the
commercial tools, the presence of industrial partners on the
AMPLE project makes it an obligation for us to come with
solutions that have some relevance to them. This includes
being able to deal with hundreds of thousands of artefacts and
links. For example, several approaches or tools are using an
XML support to document and/or trace links (e.g., [27,49]).
There have been concerns in the past on whether XML scales
up nicely or not (e.g., [35]). In need for a definite answer, we
decided to store the data in a relational database.

The traceability framework should also be easily extended
to adapt to new needs, such as creating new queries, new ways
to visualize the results, and inter-operate with other exist-
ing tools. Again, a solution like the one proposed by Moon
and Chae [41], where a metamodel needs to be modified to
change the framework, does not answer our requirements. We
would rather favor a solution that allows “traditional” (non
MDE) programming extension. MDE is still not widely used
in many real world settings and we feel that imposing it to the
user of our framework could create a barrier to its adoption.
This does not mean we rule out MDE. Actually, there seems
to be a general tendency to use MDE for traceability tool
support [1,20,29,41]. We believe that MDE provides flexi-
bility and easier evolution management for the framework.
Therefore, we will adopt it. Nonetheless, we do not want to
impose the use of MDE to the user of our framework as this
technology is not always a practical solution in real world
environments.

Finally, dealing with m-to-n traceability links was set as
one of our goals. M-to-n links are required as recognized in
Pohl et al. [45, p. 70] or Berg et al. [7], however, from the evi-
dences published, it seems that all research—including Berg
et al. [7]—only deals with 1-to-1 traceability links. If m-to-n
links are more difficult to represent graphically (see Sect.

5.3.3), they allow to represent more accurately the reality
of the traceability links, particularly links such as refinement
traceability. In case of SPL development, these kinds of links
can contribute: (i) to reduce the total amount of trace links,
thus helping the tool scalability; and (ii) to represent more
concisely a set of trace links between variability (variation
point, variants) and its respective artefacts related to it in
the application engineering. When representing the causal-
ity between, for example, a requirement and several design
artefacts, it is important to know all the design artefacts that
stem jointly from the same requirement so as to understand
them jointly. Representing m-to-n links also diminish dras-
tically the number of required links and therefore simplifies
the representation.

4.2 Traceability framework metamodel

From the previous requirements, we elaborate a meta-model
for traceability links. The goal of the metamodel in our trace-
ability framework is to provide a uniform and reusable struc-
ture for defining trace models during software product line
development. We studied some of the existing traceability
metamodels of the literature. One important piece of inspi-
ration was the ModelWare traceability metamodel [46]. We
reuse the idea that the model must be as simple as possible
and the complex logic for analysis shifted to the tool sup-
port. There exists a large body of knowledge related to meta-
models for traceability [3,4,9,10,16,20,27,29,48,49,55].
A variety of approaches for storing traceability information
are proposed: database schema [6], XML schema [27,49] or
metamodels [20,29,46]. We choose an agnostic metamod-
el representation since we want to address traceability when
aspect-orientation, model-driven development and software
product line engineering are used in conjunction.

We said that we want the user to be able to define the kinds
of artefacts or links he needs. Thus, the metamodel must rep-
resent not only artefacts and links but also kinds of artefacts
and kinds of links. These types can be organized in hierar-
chies. Another point is that we want to deal with m-to-n links,
that is to say, with possibly multiple sources and multiples
targets.

Our framework must be configured before usage, what
implies taking into account additional constraints. For
instance, a user may need to define a kind of link, say
UC-refinement, which is only existing between a use
case and an UML sequence diagram. Thus, we introduce the
notion of scope and scope area to cope with this additional
constraint. As in [34], we consider that many information
can be attached to artefacts and links. Our information sys-
tem must be sufficiently rich to represent information related
to the tracing context, for instance rationale for design deci-
sions, variant choices or other information. Thus, we pro-
vide the concepts of artefacts and links with a dictionary of

123

436 N. Anquetil et al.

Fig. 3 The ATF traceability
metamodel

properties and so-called context objects that might serve as
a container for more complex information.

The metamodel for traceability is depicted in Fig. 3. This
metamodel is designed in MOF 2.0 [42], as it facilitates the
integration of tools and languages developed in AMPLE by
providing easy mapping/transformation to Ecore metamod-
el from Eclipse Modeling Framework (EMF). EMF is the
model-driven framework that was adopted to implement our
traceability framework. This traceability metamodel basi-
cally defines TraceableArtefacts and TraceLinks
between these artefacts as fundamental elements. The
TraceableArtefacts are references to actual artefacts
that live in some kind of source or target model or just arbi-
trary elements created during the development phases of an
application like, a requirement in a requirements document.
Such traceable artefacts are named elements that contain,
in addition, an URI, that denotes the location of the actual
element and the way to access it (e.g., a text document, an
UML model, an elements inside an UML model, etc.). An
example for such an URI could be prj://crm/models/
datamodel.ecore/Customer, denoting a model ele-
ment Customer in a model datamodel in the folder models of
a project crm that is made accessible from some company-
wide project repository denoted by the URI protocol prj.
A traceable artefact in the repository can play the role of
source artefact and target artefact, simultaneously. For
instance, an architectural artefact could be a target trace-
able artefact when considering a requirements to architecture
mapping, and a source traceable artefact when considering
an architecture to implementation mapping.

A TraceLink represents explicitly trace relationships
between a set of source artefacts and set of target artefacts.
This enables the management of traceability models as a set
of annotated, directed, bi-partite hypergraphs G = (V1 +
V2, E), where V1 is the set of source artefacts, V2 is the
set of target artefacts, and E is a set of annotated arcs from
P(V1) to P(V2). The annotations serve to distinguish
different kinds of relationships between source and target
elements. To allow a more fine-grained control of the trace-
ability relationships, hyperlinks can also be decomposed into
a set of traceability links, which represents a relationship
(e.g., a dependency) between one source artefact and one
target artefact.

Each TraceableArtefact and each TraceLink is
typed to denote the semantics of the element itself. This
type is expressed via a TraceableArtefactType and
a TraceLinkType, respectively. Each type exists exactly
once in the appropriate domain. However, a type is not a sin-
gularity within such a domain, instead it may share aspects
with other types. For this reason, types may form an inher-
itance hierarchy. An example would be an UML Diagram
type, which can be specialized into a derived UML Sequence
Diagram type. Derived types share properties with their
parent types, just like classes in object-oriented languages.
Multiple inheritance is possible to generalize this concept.
Defining a type hierarchy enables generalized reasoning over
trace data, i.e., taking UML diagrams into account, regardless
whether they are sequence or activity diagrams (given the
appropriate type for sequence and activity diagrams are
defined as subtypes derived from a UML diagram type).

123

A model-driven traceability framework for software product lines 437

Links between artefacts can be established in an arbitrary
manner. However, for a domain, this is usually not desirable,
as particular links of a certain type only make sense as rela-
tionships between artefacts of certain types. For example, a
UML Classifier may not contain an UML Class Diagram,
while the opposite is of course valid. To allow such con-
sistency checks, the so-called Scopes and ScopeAreas have
been introduced. Each TraceLinkType has one scope,
in which it is valid. The scope itself contains a number of
scope areas. A scope area defines which artefact types are
allowed as types for link source and link targets. In order
to ease the creation of such validity scopes for link types,
these types derive their scope from their base types accord-
ing to the inheritance hierarchy explained in the previous
paragraph.

Artefacts and links form a graph which represents the
relations between elements that are produced during the
development of some arbitrary software product. However,
knowledge about these relations alone is most probably not
sufficient during the reasoning process over the trace graph.
For this reason all elements of the trace graph may be anno-
tated with additional information. The most simple way of
annotating elements is by using key-value pairs. Appropri-
ate keys and values may be created for each artefact and
link (and also for types). As an example, the creator and the
creation date of some model may be attached to the arte-
fact referencing this model. A creation date may also be
attached to some link of type transforms to to denote the
point of time at a model transformation has taken place.
However, we are aware that simple key-value pairs may
be used to capture additional trace information, but using
this possibility only may not be sufficient in some cases.
For this reason each element in the trace graph may refer-
ence an optional TraceContext. This is a nothing else than
an empty element in the metamodel from which a user can
derive and extend the metamodel appropriately. This way,
arbitrary complex information can be attached to elements
in the trace graph, like the context in which artefacts have
been created and relations among them are valid (just as the
name indicates).

Our metamodel is very similar to the one proposed by
Walderhaug et al. [55]. Both have traceable artefacts and
traceable artefact types, what we call trace links and trace link
types are relation traces and relation trace types in
Walderhaug et al. Three differences stand out. First, our scope
is more general than the mechanism proposed by Walderhaug
et al. that allows only one type of traceable artefact as source
of a trace link type and one type of traceable artefact as tar-
get. Second, Walderhaug et al. propose an artefact trace that
appears to allow automatic trigger of actions when traces are
created. Finally, we allow representing the context of a trace
or an artefact to register such things as a design rationale for
example.

Fig. 4 Overall ATF design

5 The framework

The overall design of the ATF framework is depicted in Fig. 4.
We built it as an extension to the Eclipse framework. This
gives us a strong platform on which to build our tools and it is
a good solution to allow easy integration in a typical working
place. The core part of our ATF framework is the traceability
information system which is based on a metamodel (see Sect.
4.2) and a repository (see Sect. 5.1). The front-end of ATF,
in Sect. 5.2, allows the user to interact more friendly with
the core ATF and define procedures and extension points to
add new facilities to the framework. Different extensions to
the framework started to be implemented, some of which
will be introduced in Sect. 6. Finally, one important piece
is the interaction with the configuration management system
which provides for versioning traceability. This is described
in Sect. 5.4.

5.1 ATF core

The core of the framework is centred around the metamodel
described in Sect. 4.2. The core consists of functionality to
initialize the framework and to grant access to the contained
trace data.

The trace data is held in a trace repository, which con-
tains all the specific data necessary to a certain use case for
tracing activities. In particular, it contains: a set of artefact
and link types, as well as their allowed relationships among
each other (in form of scope and scope areas as explained at
the end of Sect. 4.2); artefacts and links as relations between
more appropriate properties; and, context objects that form
the rationale for the existence of all trace elements.

The main entrance point(s) to the framework is a set of
manager classes. Each trace repository is controlled by a
so-called RepositoryManager, which grants access to

123

438 N. Anquetil et al.

other managers tailored to various facets of the work with
such a repository. Namely these are a Persistance
Manager, a TypeManager, an ItemManager, an
ExtractionManager and a QueryManager, provid-
ing functionality for common tasks and shielding the frame-
work from unintended misuse, that may jeopardize the
consistency of the stored trace information. Besides, tasks
of a RepositoryManager include the establishment and
the closure of a connection to a repository, configuration of
the persistence and the initialization of the repository with
default content (namely predefined artefact and link types
that are relevant to the respective trace domain). The lat-
ter is done via so-called repository profiles, which are basi-
cally XML files which contain artefact and link types and
their appropriate scopes, which define their validity area.
A profile can be set up in an arbitrary way and reflects the
hierarchy of artefact/link types available for a certain trace
domain. For instance a user can define a profile containing
two abstract top-level link typeshorizontal andverti-
cal and define other relevant types as derived subtypes, i.e.
depends on may be derived from horizontal, while
is transformed tomay be derived from vertical.
The typedepends on itself could be refined again by some
other type. The profile allows to set up type hierarchies like
this in a convenient way, as well as to define predefined prop-
erties for artefacts/links of certain types. Such profiles can be
reused or merged from case to case to match the requirements
of a new domain.

The PersistanceManager is responsible for persis-
tent storage of trace information, which allows CRUD (Cre-
ate, Read, Update, Delete) operations on trace data. The
ATF comes with two implementations: one using EMF/Teneo
which allows trace data to be stored in relational databases
like MySQL, and one which saves information into plain
XML files. If scalability is important, one should only use
the relational database option. Users with special needs for
persistence may also create their own persistence managers,
which can be plugged into the framework via an extension
point.

New types and items are created via the TypeManag-
er and ItemManager, respectively. While the first just
provides the same functionality for creating and configur-
ing new types as one may also express via the information
contained in a repository profile, the latter offers many conve-
nient methods for creating, updating and removing artefacts
and their relations, while performing permanent sanity and
consistency checking.

Creating and updating trace information is only one side
of the story; accessing the information in a certain manner
is the other. The QueryManager provides access to the
stored information. According to the metamodel presented in
the previous section, artefacts and links are not contained in
any specific data structure. This is due to scalability reasons.

In a real-world application for the ATF, the repository would
contain millions of artefacts. Initializing the container struc-
ture for the artefacts would result in constructing objects for
all stored artefacts in memory—which will fail at a certain
number of objects. In addition, it is unlikely that a user has
to work with all artefacts and links at the same time. Rather,
a user needs only access to artefacts/links with certain prop-
erties—and the QueryManager allows access to them in an
appropriate way. It allows a user to create basic queries, sub-
mit them to the underlying data store and construct the arte-
facts in memory. Referenced artefacts/links are loaded from
the data store on demand. Queries themselves are built from
constraints, which can be concatenated with Boolean opera-
tors. Thus, a user might query the repository for all artefacts
of type X whose name start with ‘abc’ and have at least one
outgoing link of type Y. The query manager is intended to be
the basis for an advanced query module (see also next sec-
tion), which allows a user to formulate more complex que-
ries that are compiled into a set of simple queries by using
the possibilities of the query manager. Such advanced query
module would be tailored to special traceability scenarios
and is subject to future work. For now, there are about 25
different constraints from which queries can be built from.

Trace information must be recovered from certain infor-
mation sources. Depending on the nature of these information
sources, small modules can be defined which actively mine
for trace data. These modules are called trace extractors, in
the ATF context. Controlling the lifecycle of such extractors
is the responsibility of the ExtractionManager. Extrac-
tors can be developed as independent components that might
be (re)used on by-project basis. They can be registered to a
repository, appropriately configured, and run via the extrac-
tion manager. New, user-created extractors can be plugged
into the framework via appropriate extension points.

The functionality of the core of the ATF was carefully
designed to be generic and easy to use. Actual applications
dealing with certain traceability scenarios are built, or instan-
tiated, on top of the ATF core, as explained in the next section.

5.2 ATF front-end

The ATF front-end aims at providing an open and flex-
ible GUI platform to design and implement new tools and
methods to define and manage the trace information resid-
ing in an ATF repository. This front-end uses and extends the
services provided by the ATF Core and can be seen as a high-
level API for managing and querying the trace information
stored in ATF.

Figure 5 illustrates an architectural overview of the ATF
front-end. This has three main hotspots (Trace Regis-
ter,Trace Query andTrace View) that can be instan-
tiated to provide the desired trace mechanisms. The main
objective of the front-end is to provide some glue between

123

A model-driven traceability framework for software product lines 439

Fig. 5 ATF front-end architectural overview

Fig. 6 ATF framework workflow

these hotspots, according to the general workflow illustrated
in Fig. 6. With the front-end and a series of basic plugins
already implemented (see Sect. 6), a developer can add spe-
cific capacities, for example a complex query, without having
to worry about anything else, for example how to visualize
the result.

A Trace Register instance is similar to the
ExtractionManager in the core. It provides support to
create new artefacts and links in the repository. This is done
by adding plugins that could use fully automatic techniques,
provide a GUI for manual definition of the trace informa-
tion, or a combination of both. A Trace Query instance
provides means to perform specific (advanced) queries on a
set of trace links and artefacts. It uses the ATF basic query
capabilities to execute more complex and powerful queries
(e.g., feature interaction detection and change impact anal-
ysis). Finally, Trace View instances are responsible for
supplying some sort of view (graphical, textual, etc.) for the
results returned by the execution of a trace query.

The front-end UI allows defining Traceability
Scenarios. A scenario can be used to group registers,
queries and views that are related in some logical manner.
For instance, to group all the queries and views related to
the variability dimension in order to perform a variability
analysis of the product line. The Extensions Loader
module is responsible for detecting any hotspot instance and
make it available to the user in the appropriate interface.
This simplifies the process of integrating new instantiations
to the existing framework. Finally, theGeneric Viewers

and Editors module is used to provide a “black box”
instantiation environment. This relieves the burden of instan-
tiating an hotspot, has a developer will not be required to
be aware of the underlying mechanisms (e.g., implementing
graphical components).

Figure 6 depicts the workflow of this framework. The idea
is to begin by creating an ATF repository, and populate it
using either the appropriate Trace Register or the core
ExtractionManager. It is then possible to execute a
Trace Query instance and pass the results to the desired
Trace View instance. The user can further refine the query
results by executing a new query, which will return a refined
set of trace links or artefacts, until the desired information is
reached. The idea is to perform a round-trip between the que-
ries and the views. The query results are passed to a view,
which in turn allows the user to select a set of trace links
or artefacts and execute a new query with that selection. The
results may also be exported to several formats, using special
views for that purpose.

5.3 ATF plugins

We have implemented a number of plugins that extend the
basic functionalities of the framework. These experiments
confirmed some of our choices and demonstrated the flexi-
bility of the ATF. ATF plugins are standard Eclipse plugins
that may extend the ATF in three directions (see also Sect.
5.2): Trace Register, to populate a repository; Trace
Query, to implement complex advanced queries that should
be of interest to end-users (e.g., impact analysis); Trace
View, to visualize the result of a query.

These plugins were developed independently, by different
members of the AMPLE project. Anyone can implement a
plugin of interest to address his/her specific traceability sce-
nario and rely on the framework to provide infrastructure and
needed additional facilities.

5.3.1 Register plugins

Register plugins introduces new artefacts and links in the
repository. The artefact and link types must have been cre-
ated before inserting the data. We implemented several of
such plugins on different types of data:

– Populating from various kinds of development artefacts.
Plugin extractors were developed for importing artefacts
or models produced by tools such as, Rational Rose,
Enterprise Architect, MoPLine, or Eclipse Feature Mod-
elling Plugin (FMP). They are used to extract various
kinds of artefacts such as use cases, actors, class dia-
grams, features models. These plugins would be mostly
useful for Refinement or Similarity traceability links.

123

440 N. Anquetil et al.

– Populating from source code. We have also implemented
two independent Java extractors: one using the JavaCC
parser, and the other using Eclipse JDT (Java Develop-
ment Tools). Various levels of granularity of artefacts may
be looked for in source code, such as packages, files, clas-
ses, methods or even statements. These plugins would be
mostly useful for Refinement or Similarity traceability
links.

– Populating from MDE process. Members of the AMPLE
project defined two concurrent MDE tool chains that pro-
duce traceability data in XML format. Extractors were
defined that process these files to load the data in the
repository. These plugins concentrate on Refinement or
Similarity traceability links.

– Populating from source configuration system. We defined
a plugin that interact with a Subversion server to extract
software configuration information. This plugin concen-
trates on Versioning traceability links and will be desc-
ribed in detail in Sect. 5.4.

– Manually populating the repository. One plugin allows
to manually define links between already registered arte-
facts. This is intended to complement the other plugins by
providing information that could not be extracted auto-
matically.

5.3.2 Query plugins

Query plugins allow extracting information from the reposi-
tory. It is intended to implement advanced queries that should
be of interest to end-users. We have two such advanced que-
ries:

– An impact analysis query that uses transitive closure on
forward refinement traceability links to define all the arte-
facts potentially impacted by a change in one (usually
abstract) artefact.

– A feature interaction query that also uses transitive closure
on forward refinement traceability links to identify pairs
of features that could present interaction issues. This hap-
pens when the intersection of the transitive closure of the
two features is not empty.

5.3.3 View plugins

View plugins allow to visualize the result of the queries. To
visualize trace link graphs is valuable, at least as an explor-
atory aid [21]. As in [34] we agree that visualizing traceability
links is important, but getting a useful view is a non trivial
task. This is particularly the case for us since we use m-to-n
links. For example, the realization traceability link may relate
one software requirement to several design artefacts, all pack-
aged in one or two components.

Graph visualization is an old preoccupation of computer
science. There are many tools available, for instance,
graphviz [18], prefuse [25] and jung [53]. One challenge
is visualizing a huge quantity of data. It requires specific
tools such as those proposed in [19]. To solve the scalabili-
ty issue, abstraction and clustering techniques (see [24]) are
helpful. We explored different ways to visualize the trace
links and will discuss this basic support here. We feel that
more advanced support is the responsibility of the informa-
tion and visualization community.

Because of the m-to-n links, trace information forms an
hypergraph, a graph where links may relate more than two
vertices [8,23]. Although graphs have a very natural and intu-
itive graphical representation (points linked by lines), hyper-
graphs may be more challenging. Unfortunately, there are
few tools to represent and manipulate hypergraphs.

We identified three possible representations for traceabil-
ity links:

– represented hyper-edges as arrows with more than one
source or/and more than one target. This is the most intui-
tive solution, but it is complex to render graphically, espe-
cially when there are many vertices scattered over the
surface. We did not experiment this possibility.

– use “sets” to represent the links, where one such set incl-
udes all the vertices which are either source or target of
an hyper-edge. This is similar to a Venn Diagram [54]. It
can look cluttered and directed edges (which traceability
links are) are not easy to represent. We experimented this
solution but will not illustrate it here.

– promote the links to new kinds of vertices turning the
hypergraph into a bipartite graph: a graph with two dif-
ferent kinds of vertices, and vertices of one kind are only
related to vertices of the other kind. It is visually less intu-
itive as one needs to identify “true” vertices, the artefacts,
and “false” ones, the links. However, it suffers less from
the problem of scattered vertices than the first solution and
can represent directed edges. Another benefit is to be able
to use the numerous tools, measures and theory that exist
for bipartite graphs. Two examples of such representation
are presented in Figs. 10 and 11.

We also experimented with non-graph representation:

– Textual list of links, useful to export to a file or when there
are many links.

– Textual hierarchical representation where the artefacts and
the links are unfolded on user demand (see Fig. 8, for an
example). It does not allow a global view of the links but
provides a good and simple way to explore and navigate
the graph.

123

A model-driven traceability framework for software product lines 441

Fig. 7 Screen shot of the ATF
tree view

Fig. 8 Example instance of ATF metamodel

– Graphical hierarchical representation (see Fig. 7),
conceptually very similar to the previous one, but possibly
more intuitive to interpret.

5.3.4 Future extensions

We are still working on ATF plugins to extend its capabilities.
Two main exploration directions are envisioned: advanced
queries and visualization.

First we plan to implement more advanced queries that
would solve concrete problems. Such problems may include,

for example: Test case coverage—to check that a feature is
covered by at least one test case; Dead code identification—to
check whether a given software component is actually related
to some high level artefact (e.g., a SPL requirement, feature
or variability); Correction back-porting—to find all the ver-
sions of a changed artefact in all generated SPL applications;
MDE debugging—to identify the source of an error in the
generation process.

Another exploration direction would be to try to improve
the visualization of the links. One possibility we are inter-
ested in would be to take advantage of the orthogonal trace-
ability dimensions to show four views of a given set of links
according to the four dimensions. Two proposals are envi-
sioned: the first one would be similar to what we currently
have (graphical representations of the links) and one could
turn on or off the drawing of particular traceability dimen-
sions to simplify the graph; the second one would offer four
connected views where the artefacts would have the same
position, but each view would present the links in one trace-
ability dimension.

5.4 SCM integration in ATF

One of the plugins implemented is dedicated to realize the
integration of software configuration management with the
traceability framework, so as to deal with the forth trace-
ability dimension (Versioning traceability). Although SCM
and traceability are two relatively well understood activities
of software development, their integration is not completely
trivial and need to be discussed here.

The primary aspect of traceability that is enabled by SCM
systems is the traceability of the evolution of versioned items.
Items inside the SCM system are subject to evolution through
revisions. To represent the evolution of versioned items, the
version set is often organized in a version graph, whose nodes
and edges correspond to versions and their relationships,
respectively.

In general, there are two choices to represent integrated
information between an SCM system and a traceability sys-
tem. Either the elements of the SCM system become

123

442 N. Anquetil et al.

first-class citizens in the traceability system, e.g., nodes in
a traceability graph, or SCM information is represented as
metadata of specific traceability entities, e.g., a property
which states that a traced element corresponds to a certain
file and revision in the SCM system.

The first approach can result in increased size for the
data in the traceability system, because not all changes in
an artefact must have corresponding changes in the trace-
ability links. Thus, we have several traced elements with the
same traceability links. However, the approach also provides
a uniform way to query all dimensions of traceability in one
coherent framework.

The second approach can reduce the size of the trace-
ability data, but it requires more elaborated synchronization
and querying mechanisms. Synchronization is an issue if a
sequence of versioned items has the same traceability links,
e.g., version 1 to 5 of an artefact. In this case, the integra-
tion must provide ways to represent this in the metadata. In
addition, the query mechanisms must be more elaborated to
examine this metadata and correlate the trace links that are
represented in the SCM system to the traceability informa-
tion.

We have chosen the first approach and elected to make
SCM items first-class citizens of ATF. The information resid-
ing in the SCM system is made available to ATF through
extractors. Once the information is stored in ATF, traceabil-
ity links can be established to specific versions of artefacts.
An extractor for the Subversion system was implemented as
a proof-of-concept [37].

Since ATF now includes different versions for artefacts
in the traceability graph, new trace links between artefacts
must be specified by using the respective artefact version-
ing information. Without the version information, the ATF
cannot decide for which versions the link is applicable and
relies on a default policy that decides this applicability. Such
a policy can be, for example, that the link is always provided
for the latest version of an item.

The integration of SCM information as first class citizens
offers many benefits. Firstly, the approach allows an easy
correlation of the information from different SCM systems,
by providing one integrated view of the information. Thus,
the approach offers the possibility to incorporate heteroge-
neous tools landscapes used during the software engineering
process. Secondly, repositories can also come from different
vendors and use different versioning schemes. For example,
Subversion uses a global versioning scheme, while CVS has
independent versions for each item. Both systems can be
represented using an ATF integration. Finally, the approach
allows providing versioning schemas for fine-grained trace-
ability items that are usually not considered in SCM. As part
of the AMPLE project, we have implemented a feature-driven
versioning approach, that versions feature models in SPL.
The feature-driven versioning allows to correlate versions of

features with versions of artefacts in SCM and with versions
of products. Thus, enhanced traceability of variability in the
product derivation is provided. This incorporates (i) trace-
ability of variation points, i.e., features, into instantiations of
components and (ii) traceability of these instantiated compo-
nents into the products.

6 ATF instantiation

This section presents an instantiation example of the frame-
work. The example is part of the reference instantiation that
was created for the AMPLE project. It describes end-to-end
traceability from market requirements to code, and includes
product line features and UML models.

ATF is a general purpose traceability framework and can
be configured to suit many different projects and traceability
scenarios. Thus, in the following, we describe the process
of instantiating the ATF framework for a specific software
product line scenario.

The example comes from the Smart Home application
domain, an “intelligent” home where doors, lights, entertain-
ment, security, … are all controlled and integrated by com-
puter. Our smart home example will use rooms, two optional
features (security and automatic window), lights and light
controllers, and security devices, such as burglar alarms or
presence detectors.

Initial requirements are grouped into common and vari-
able features, which determines the feature model. The requ-
irements are documented by scenarios, which are described
with UML sequence diagrams, at design level, and further
implemented in test cases. The feature model, with the help
of scenarios, is designed into a UML class diagram which
will be implemented by Java classes. For simplification pur-
poses, as part of the MDE process, we suppose one builder
“script” (or transformation) that automates the generation of
applications.

6.1 Analyzing the software product line process

The first step to instantiate the framework is to define which
artefacts are needed and how they relate to one another. In our
example, we use a simplified process and we assume the fol-
lowing steps: (i) Requirements Engineering, (ii) Variability
Management, (iii) UML Design, and (iv) Implementation.

Another important issue is the granularity of the data, or
the degree of detail and precision in traced artefacts. The
extremes in the spectrum of granularity are a large number
of narrow categories, or a smaller number of broad cate-
gories. The choice of granularity must be governed by the
kind of analysis to perform. For example, for a requirements
coverage analysis one would need traceability for individ-
ual requirements and the artefacts that realize them. In this

123

A model-driven traceability framework for software product lines 443

Fig. 9 Simple (FMP) feature model

example, we use a multi-layered granularity approach.
Mohan et al. advocate that such a traceability plan is essential
for effective change management [40]. The artefacts include
high level ones such as an entire requirements document but
also individual elements contained in such artefacts, such as
individual requirements.

From this, we defined a repository with the necessary arte-
fact and link types. This definition could be done either using
the XML profile or the ATF programming interface. Figure 8
illustrates a view of the two hierarchies of types (artefact and
link types). It presents the different artefacts and link types
that are part of our software product line process to support
traceability. As we can see, the high level link types are the
four traceability dimensions proposed in Sect. 3. We did not
consider Similarity links in this small example.

6.2 Traceability scenarios

In software product line engineering, Domain Engineering
is responsible, among other things, for: (i) the analysis and
identification of the commonalities and variabilities typically
specified in the feature model; and (ii) the specification and
implementation of a SPL architecture that addresses these
common and variable features, which can be, for example,
modeled using a combination of UML diagrams (used to rep-
resent its components and relationships), and implemented
using Java components. During the domain engineering pro-
cess, different artefacts (feature models, class diagrams, Java
classes/interface) can be elaborated and traceability links
must be created between them to allow a better management
of variability and change impact analysis.

Suppose we want to build a house with one room and
the optional security feature. Later we get a new market
opportunity which considers that automatic windows are also
an interesting feature option for a room. Figure 9 gives a
view of this simple feature model with the Roomfeature
and two optional (Securityfeature and Automatic-
windowfeature) sub features. The design was elaborated
using the FMP plugin available at http://gsd.uwaterloo.ca/
projects/fmp-plugin/.

First we need to perform domain engineering and to build
two applications corresponding to a simple room and a room
with security. After application engineering, we get an initial

Fig. 10 View of the initial trace set (top part) and enlarged view of
some nodes (bottom part)

trace set, which is depicted in Fig. 10 (top part). This view
represents the artefacts created and the Refinement links
between them from domain and application engineering. Var-
iability and Versioning links do not appear in the picture.

Figure 10 also shows a bipartite graph approach to trace-
ability link visualization (see Sect. 5.3); the large nodes rep-
resent the artefacts and the small ones represent the links.
Links and artefacts are selectable in this view and when one
is selected, its properties (name, type, identifier) appear in
the top part of the graph (grey background). In top part of
Fig. 10, the feature model artefact is selected (it is indicated
by a bold arrow, at the right hand side of the graph). When
an artefact is selected (node 14 on the far right), the links
stemming from it are in light red, and the target artefacts of
these links are pink colored (the eight nodes in darker grey).

The bottom part of the figure enlarges a part of this graph
with the selected artefact (bottom right) a link from it (called

123

http://gsd.uwaterloo.ca/projects/fmp-plugin/
http://gsd.uwaterloo.ca/projects/fmp-plugin/

444 N. Anquetil et al.

Fig. 11 Impacted artefacts from radial view

implements, a link type from the Refinement dimension), and
several target artefacts (e.g., the UML class diagram and the
UML light controller class).

The developers need to test this new application, so they
use the trace set repository to find the set of test cases appli-
cable to the SmartHome product line. The steps to find these
test cases could be:

1. Start from the product configuration (also called a feature
model instance) that represents a specific SPL product/
application derived from a selection of variable features
in the SPL feature model;

2. Compute the requirements included in the product from
this configuration and the realization links (Variability
dimension) in the product family;

3. Compute the transitive closure of Refinement links in the
domain engineering to find out all the test cases associ-
ated to these requirements.

If the procedure needs to be repeated frequently, one could
imagine automating it with a new Trace Query plugin. The
following excerpt of Java code illustrates how the query could
be programmed:

Query<TraceLink> qLinks = qm.queryOnLinks();
qLinks.add(

Constraints.type(tm.findLinkTypeByName
(‘‘uses’’)));

List<TraceLink> result = new List<TraceLink>();
for (List<TraceLink> lnk : qLinks.execute()) {

//test source name and target type
if (... &&...) {result.add(lnk);}

}

An empty query is first created from qm, a QueryManager
instance (see Sect. 5.1). Then one adds the constraints to this

query; here we constrain on the type of link (uses type) that
we want to use. Finally, a loop on the result allows checking
which of these links have the appropriate source or target.
This is an example where the uses relation is useful for effi-
ciently access to the artefacts associated to a product.

Let us assume that during the tests, the burglar_on
test reveals that a requirement is missing: “light should be
switched on, on alarm”. A manual analysis of the system
identifies that the Light Controller UML class does
not capture the event alarm_on. After correcting the prob-
lem, the developer uses the trace set to know what are the
artefacts possibly impacted by this change. In this case, a
view of the Refinement trace links in the “Radial view” plugin
answers the questions. This is illustrated in Fig. 11. In this
view, one selects the artefact changed (here the UML light
controller class identified by an arrow) which places it in the
center of a semi-circle with the related artefacts arranged in a
semi-circle around it. Also, the links that stem from this arte-
fact and the artefacts that are target of these links are colored
in red (dark grey). The color is propagated recursively to
the targets of the targets. Since the links visualized here are
Refinement links, all coloured artefacts are those that derive
from this UML class by refinement which gives us a simple
impact analysis tool.

6.3 Versioning examples

Versioning is an important companion of an ATF repository.
The principle is to connect the development project with the
Subversion system, for which we use the subclipse version-
ing system [51]. A specific extractor, the SVN register, has
been defined to extract artefacts from a Subversion reposi-
tory. This tool identifies new, versioned and deleted artefacts
and it creates time links between the old and the new ver-
sions automatically. This tool has some other facilities, like
managing coarse-grained and fine-grained artefacts, but this
is out of the scope of this paper.

In our example, we should share our project and com-
mit it. Following this commit, the first SVN registering will
create an ATF representation of the artefacts in the project.
As explained above, the developers have to add the required
refinement links between these artefacts, possibly using some
dedicated extractors, or manually.

Continuing our scenario, the developers have to do some
changes in the artefacts, changing some, adding others, etc.
This leads to a new versioning action in the Subversion repos-
itory. Using again the SVN register, it updates the ATF arte-
facts and creates time links to denote versioning between
artefacts.

Introducing versioning increases the complexity of the
representation and additional means to explore the links are
needed. We have defined several algorithms computing
sets of links which are useful to provide view points on the

123

A model-driven traceability framework for software product lines 445

Fig. 12 Room with security product evolution

evolution of the product line. For instance, product derivation
can be defined as the set of time and refinement links associ-
ated to an application. Similarly, product evolution is defined
as the set of time and uses links related to a product. The
results of these algorithms can be interactively explored using
our predefined views. In Fig. 12 we can observe that the two
versions of the room with security application differ in four
artefacts which have evolved due to the previous changes.

In a further step we can also illustrate a change in the fea-
ture model. For instance, consider the extension of the feature
model with the option for automatic window. The analysts,
architects and developers modify the previous development
project and commit it. The SVN register identifies 16 new and
25 versioned artefacts; this is a more complex modification
of the software project than the previous change. At this step
the feature model evolution is significant, its realization in
artefacts and their evolutions. Figure 13 represents an interac-
tive view of this graph complemented with some comments
to help the reader. We can explore it to observe the structure
of the feature model and the evolution of the realization of
the features. For instance, the security feature has two real-
izations, while the room feature has two different versions.

Other computations have been defined, like obtaining the
refinement set of a product or the comparisons of two set
of links. Figure 14 depicts the comparison of the refinement
sets of the first version of the room with security application
and the last version of the room with automatic window and
security features. Green nodes (or links) are common to both
products while violet are specific to the room with security,
and yellow proper to the product with automatic window.

This very simple example helps to understand how one
could solve complex traceability problems using our frame-
work and based on the four orthogonal traceability dimen-
sions we identified.

Fig. 13 Feature model evolution

Fig. 14 Two products comparison

7 Related work

We already reviewed related tools in Sect. 2 and close related
work in Sect. 3.1. However some other specific tools have not
yet been discussed.

7.1 Traceability tools

Mohan and Ramesh [38] present a traceability and knowl-
edge management framework that supports tracing common-
alities and variability in customer requirements to their
corresponding design artefacts. The framework provides
primitives to represent the conceptual elements, inputs and
outputs of the system development process, as well as the
links among them. The framework concentrates mainly on
the identification of common and variable requirements,

123

446 N. Anquetil et al.

architectural design decisions and functional customizations
done on the base product. The conceptual model identifies
the various actors, documents and processes involved in the
development process. Various dimensions of traceability
information are exposed: what information, who are the
stakeholders, how the information is represented and so on.
These dimensions are very different from what we identified
and are not limited to technical considerations. The traceabil-
ity links are typed by predefined kinds which is also different
from our flexible framework.

Jirapanthong and Zisman [27] give several reasons to
explain the difficulty of the traceability task in SPL (see Sect.
3.1). They use an extension of the Feature-based Object-
oriented Method (FORM) [30]. Their approach relies on six
groups of relations subdivided into nine different types of
traceability relationship. The kernel of the system is a set
of rules that are responsible for analyzing the documents
and generate various traceability relationships between them.
The rule based tool support seems a good way to automate
the trace generation. In this approach, only classic object-
oriented and UML artefacts are considered. It manages dif-
ferent types of artefacts and trace links but in an ad-hoc and
unstructured way. Also, the set of artefacts and link types is
not adaptable to other needs. The approach was refined and
extended in [28], to cover artefacts from a product line case
study and a more detailed set of links.

Asuncion et al. present an end-to-end traceability tool
developed at Wonderware [5]. It supports the entire software
development lifecycle by focusing on requirement traceabil-
ity and process traceability. The authors discuss the following
problems: multiple representations of the same document,
obsolescence and distribution of documents, and multiplic-
ity of individual processes in the company. Furthermore they
quote additional issues: the manipulation of artefacts in bulk,
the limited functionality of the commercial tool, the inability
to scale, and the lack of effective trace visualization. They
argue that technical, social and economic perspectives of
traceability must be addressed simultaneously. In this paper
we only consider technical issues. They propose a rigid trace-
ability model that captures a set of common artefacts and the
links between them. Our implementation authorizes a very
flexible set of artefacts and trace link types. On the other
hand, the workflow process seems more flexible. However,
since the artefact types are frozen, this is not sufficient for an
SPL approach. The design of the traceability tool is based on
a three-tiered client-server architecture: a data base support,
a set of applications and an intranet layer for web access.
Although we did not explicitly foster this architectural pat-
tern, the organization is similar to our framework. The func-
tionalities provided are: storing and management of traces, a
visualization tool and MS-Word macros to support document
automation. Apart from the SPL context, this paper exposes
the same challenges that we observed. Two main differences

can be pointed out, though: we propose a more flexible way to
represent the software process information and we explicitly
manage the software evolution in conjunction with traces.

7.2 Traceability and model-driven engineering

Another important point to discuss is traceability and model-
driven engineering. There is a fair amount of recent work in
this area (we already mentioned some of it [20,27,29,41,46]
in Sect. 4.2). We will reference [1] here because it is a com-
prehensive survey of the main issues. The paper reviews the
state of the art in model traceability and highlights open prob-
lems. MDE is used to automate the creation and discovery
of trace links, to help maintain the consistency among the
heterogeneous artefacts and the links. To get a rich trace set,
the earlier approaches were to add attributes on links or to
have a predefined set of standard link types. The authors
argue that the optimal solution should provide a predefined
customizable metamodel. We followed this approach in ATF
with our traceability metamodel. Usual solutions have two
drawbacks: (i) link and artefact types are limited, and (ii) link
information is kept inside the artefacts. Keeping link infor-
mation separated from the artefacts is clearly better; however
it needs to identify uniquely each artefact, even fined-grained
artefacts. Much of the recent research has focused on find-
ing means to automate the creation and maintenance of trace
information. Text mining, information retrieval and analysis
of trace links techniques have been successfully applied. An
important challenge is to maintain links consistency while
artefacts are evolving. In this case, the main difficulty comes
from the manually created links, but scalability of automatic
solution is also an issue.

A survey of traceability tools and approaches in MDE was
conducted by Galvao and Goknil [22]. It identifies that tool
support is fundamental to automate traceability in MDE. The
survey reports several drawbacks in these approaches/tools:
(i) the lack of support to deal with artefacts (requirements,
feature and goal models) produced during early development
stages; (ii) the difficulty of current approaches to manage
fine grained trace links from different models produced; (iii)
the absence of mechanisms to deal with evolution of trace
links; and (iv) the need to provide more flexible traceability
mechanisms to externally store the trace links between source
and target models to keep a low coupling between models
and traceability data. Our model-driven traceability frame-
work addresses all these requirements. It provides an infra-
structure that can be customized to work in different
scenarios and stages of SPL development and deals with
fine grained trace links between models. It also allows man-
aging the evolution of model artefacts and their respective
trace links by extracting information of versioning from Soft-
ware Configuration Management systems. Finally, it keeps a

123

A model-driven traceability framework for software product lines 447

separate data repository to store, search and process the trace
links between the different models.

7.3 Traceability and evolution

A major challenge in the development of SPL is their con-
trolled evolution [39,40,52]. For example, changes in SPL
requirements lead to modifications in its features and, hence,
affect deployed products as well as products still under devel-
opment. In general, successful evolution of SPLs requires
comprehension of the impact of changes.

Ajila and Ali Kaba propose to use traceability information
for supporting software product line evolution [2]. They iden-
tify three sources of changes in product lines: (i) changes in
an individual product, (ii) changes in the entire product line,
and (iii) repositioning of an architectural component from
individual product to the product line. The authors analyze
more precisely the reasons and the nature of changes in soft-
ware product line development. The dimensions of analysis
were motivations that led to the change (external or inter-
nal) and changes in the management process. In essence, the
paper is oriented towards a model for the change process in
SPL evolution. The authors propose to use impact analysis
on traces to determine a generalized change set for the prod-
uct line. This change set is to be monitored by interested
stakeholders to assess the risk of changes for the software
product line. However, the work does not discuss any means
to handle traceability in SPL evolution.

Krueger discusses the difficulty of managing the evolu-
tion of SPLs from the viewpoint of software configuration
management (SCM) [32]. While this work makes no explicit
reference to traceability, the topic of SCM can be viewed as
a traceability work (as argued in Sect. 3.2.2). From works
such as [12] and [9], SCM systems can be viewed as provid-
ing traceability between related components in a product and
traceability for their evolution in time, as well as traceability
for the evolution of the products in time. Krueger identifies
three new challenges in SCM that arise from SPLE and out-
lines possible solutions. The three challenges are phrased
using SCM terminology, but address the problem of trac-
ing the evolution of software artefacts. Traceability of prod-
uct line evolution is expressed as management of variation
points, customizations and customization composition.

1. Variation point management is required for the varia-
tions in the software artefacts, including different ways
of instantiation. As a solution, variation points are imple-
mented to include a collection of file variants and logic to
be able to identify such a file variant at any given point in
the domain space.

2. Customization management deals with the compositions
of common artefact, i.e., artefacts without variations,
and variant artefacts into customized components, by

instantiating the variation points. This problem is solved
by assigning logical names to a component customization.

3. Customization composition management refers to the
composition of common component and customized com-
ponents into customized products. The proposed solution
associates a logical name to a customized product with a
list of customized components.

Kruger’s outlined solutions are influenced by the scope and
needs of configuration management and are therefore limited
to the abstraction of files and logical names, i.e., labelled con-
figurations in SCM. None of the solutions is discussed with
concrete implementations and experience in actual usage.

7.4 Visualization of trace links

Visualization of traceability links is important and is not a
simple task. In their work [34], Marcus et al. describe prop-
erties related to trace links and argue that a traceability tool
should be able to manipulate (add, delete, edit) these link
properties. The authors further list 12 requirements for trace-
ability visualization tool. We support the majority of these
requirements to varying degrees.

Integration and interoperation with external software tools
(concerning three out of the 12 requirements) is currently lim-
ited in our framework to data exchange. We export to XML,
Excel format, and dot format (of the GraphViz tool [18]).
An important feature of their tool (TraceViz) is the various
textual and graphical views it offers. Although we do have
both textual and graphical views, their propositions could
improve our basic views. On the other hand, our graphical
view is interactive, allowing the user to move the artefacts
around. Their tool does not seem to have such facility.

8 Conclusion and future work

Software product lines are receiving increasing attention in
software industry over the last years. Traceability is also one
current important issue in software engineering, since it can
bring several benefits to change impact analysis during soft-
ware evolution. As explained by several authors [13,39,40,
48] traceability and software evolution have to be managed
conjointly to increase the ability to develop product fami-
lies. Current industrial tools and even academic approaches
do not yet address end-to-end traceability for software prod-
uct line engineering. The task is complex since one must
consider several dimensions: technical, social and economic.
In our approach, we mainly address the technical issues,
postponing the other questions to a later configuration and
installation stage of the tool support. However, the num-
ber and heterogeneity of artefacts, the variety of trace links
and the numerous development approaches are effective

123

448 N. Anquetil et al.

problems. Thus, we provide a generic and customizable
framework that can be configured with artefact types, link
types, and traceability functionalities relevant to a specific
context. This was done thanks to the use of a core traceability
metamodel, which enables to define m-to-n trace links, scope
and trace information. MDE provides good support to define
an extensible traceability metamodel, and we implement it
using the Ecore metamodel of EMF. Our work also identifies
and strongly argues for the use of four orthogonal dimen-
sions to characterise trace links: refinement, similarity, vari-
ability and versioning. Refinement and similarity are typical
dimensions adopted by current traceability tools. Variabil-
ity and versioning were created to deal with the specificities
of change management in the context of SPL. We propose
an integrated environment supporting both traceability and
versioning. Furthermore, our framework takes into account
the explicit variation dimension, and feature models play a
central role in versioning other artefacts.

The AMPLE Traceability Framework, developed to
address different scenarios of SPL traceability, was devel-
oped on top of the Eclipse platform, as a set of extensible
plugins. The ATF architecture is based on the metamod-
el implementation and a data base repository to store trace
information. This core part provides basic functionalities to
initialize the framework and to persist/access the trace data.
Moreover, the graphical front-end defines extension points
and facilities for trace registering, querying and viewing. It
allows building traceability scenarios that connect groups
of trace registers, queries and views dedicated to a specific
analysis task. A workflow established for the ATF front-
end guarantees that the various plugins (extractors, registers,
queries and views) can work together adequately and in the
way defined by the framework users to select and refine its
trace link sets. Different trace extractors, register, queries and
views can be defined, as Eclipse plugins, to extend the base
traceability functionality provided by ATF.

Our framework defines some core functions, but more is
needed to get an effective tool support for a real development
environment. We expect to improve our views, specifically
to get orthogonal and synchronized views of the trace reposi-
tory. This would help the navigation as well as understanding
the interactions between the four dimensions of a SPL devel-
opment. As suggested by previous work [13,39,40,48], to get
a better traceability solution, we should investigate the devel-
opment process and the trace strategy. In the AMPLE project
we are working on a smart home case study, using a com-
plex SPL process mixing model-driven and aspect-oriented
engineering techniques. We intend to validate the ATF frame-
work to guarantee that it can deal with different and complex
SPL traceability scenarios. Different SPL adoption strategies
are being explored, varying from: (i) a proactive develop-
ment—that model and specify the development artefacts as a
series of model transformations to produce the SPL; and (ii) a

extractive/reactive development—that seeks to derive the
SPL from existing products. Each of these scenarios demand
specific traceability tools in the presence of changes to the
SPL artifacts and products. We are mainly concentrated on
providing support: (i) to trace variations across domain engi-
neering and application engineering; and (ii) to provide feed-
back to architects, designers and developers about the cur-
rent state or the design decision of the product lines. This last
issue is one point identified in [13,39], which has the ben-
efit of communication and cooperation in the development
team. A rational design decision analyzer is being designed
and implemented on top of the ATF front-end module. Addi-
tionally, our industrial experience in AMPLE is allowing
us to explore the automatic extraction and maintenance of
trace links from existing transformations between models
produced in the SPL engineering.

The taxonomy of trace links has been investigated in sev-
eral papers [2,27,48,56]. However, as we previously said,
these are mostly ad-hoc and non structured relationships. The
seminal paper of Ramesh and Jarke [48] discussed such a
taxonomy but in the context of requirement traceability. The
four dimensions identified in this paper (Sect. 3) are a first
attempt to understand and organize their dependencies, and a
finer analysis was proposed in [31]. More work is needed here
to build a standard set of relationships, with a clear hierarchy
and with a well accepted semantics.

Acknowledgments The authors wish to thank Vasco Amaral and João
Araújo from Universidade Nova de Lisboa for their help in proof reading
this article and for their suggestions to improve its writing. This work is
funded by the European FP7 STREP project AMPLE. The authors thank
the members of the European AMPLE project (www.ample-project.net)
for their help in designing and developing the AMPLE Traceability
Framework.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Syst. J. 45(3), 515–526 (2006)

2. Ajila, S., Kaba, B.A.: Using traceability mechanisms to sup-
port software product line evolution. In: Zhang, D., Grégoire, E.,
DeGroot, D. (eds.) Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, IRI, pp. 157–
162. IEEE Systems, Man, and Cybernetics Society (2004)

3. Almeida, J.P., van Eck, P., Iacob, M.-E.: Requirements traceabil-
ity and transformation conformance in model-driven development.
In: Proceedings of the 10th International Enterprise Distrib-
uted Object Computing Conference (EDOC), pp. 355–366.
Washington, DC, USA (2006)

4. Amar, B., Leblanc, H., Coulette, B.: A traceability engine dedicated
to model transformation for software engineering. In: Oldevik, J.,
Olsen, G.K., Neple, T., Paige, R. (eds.) ECMDA Traceability Work-
shop (ECMDA-TW) 2008 Proceedings (2008)

5. Asuncion, H.U., François, F., Taylor, R.N.: An end-to-end indus-
trial software traceability tool. In: ESEC-FSE ’07: Proceedings of
the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations

123

http://www.ample-project.net

A model-driven traceability framework for software product lines 449

of Software Engineering, pp. 115–124. ACM, New York, NY, USA
(2007)

6. Bayer, J., Widen, T.: Introducing traceability to product lines.
In: van der Linden, F. (ed.) Proceedings of the 4th Int. Workshop on
Software Product-Family Engineering (PFE), vol. 2290 of Lecture
Notes in Computer Science, pp. 409–416. Bilbao (Spain), October
(2001)

7. Berg, K., Bishop, J., Muthig, D.: Tracing software product line var-
iability: from problem to solution space. In: SAICSIT’05: Proceed-
ings of the 2005 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on
IT Research in Developing Countries, pp. 182–191. South African
Institute for Computer Scientists and Information Technologists,
Republic of South Africa (2005)

8. Berge, C.: Graphes et hypergraphes. Dunod (1970)
9. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based

traceability for managing evolutionary change. IEEE Trans. Softw.
Eng. 29(9), 796–810 (2003)

10. Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K., Hu H.,
Xia, J.: Automating speculative queries through event-based
requirements traceability. In: Proceedings of the 10th Int. Con-
ference on Requirements Engineering (RE), pp. 289–298. Essen
(Germany), September (2002)

11. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Con-
trol with Subversion. O’Reilly & Associates, Inc., For version 1.6
(2006)

12. Dart, S.: Concepts in configuration management systems. In: Pro-
ceedings of the 3rd International Workshop on Software Configu-
ration Management, pp. 1–18. ACM Press, New York, NY, USA
(1991)

13. Dömges, R., Pohl, K.: Adapting traceability environments to
project-specific needs. Commun. ACM 41(12), 54–62 (1998)

14. http://www.eclipse.org/. Last accessed: 05/04/2009
15. Ecore: Eclipse modeling framework project: Meta model.

http://www.eclipse.org/modeling/emf/?project=emf. Last
accessed: 04/20/2009

16. Egyed, A.: A scenario-driven approach to trace dependency anal-
ysis. IEEE Trans. Softw. Eng. 29(2), 116–132 (2003)

17. Egyed, A., Grünbacher, P.: Automating requirements traceability:
beyond the record & replay paradigm. In: ASE, pp. 163–171. IEEE
Computer Society (2002)

18. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.:
Graphviz – open source graph drawing tools. Lect. Notes Comput.
Sci. 2265, 483–484 (2002)

19. Elmqvist, N., Do, T.N., Goodell, H., Henry, N., Fekete, J.-D.:
ZAME: interactive large-scale graph visualization. In: Proceedings
of the IEEE Pacific Visualization Symposium 2008, pp. 215–222.
IEEE Press, March (2008)

20. Falleri, J.-R., Huchard, M., Nebut, C.: Towards a traceability
framework for model transformations in kermeta. In: Aagedal, J.,
Neple, T., Oldevik, J. (eds.) ECMDA Traceability Workshop (EC-
MDA-TW) 2006 Proceedings, pp. 31–40 (2006)

21. Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: Information
Visualization: Human-Centered Issues and Perspectives, vol. 4950
of Lecture Notes in Computer Science, chapter The Value of Infor-
mation Visualization, pp. 1–18. Springer, New York (2008)

22. Galvao, I., Goknil, A.: Survey of traceability approaches in model-
driven engineering. In: EDOC ’07: Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Confer-
ence, p. 313. IEEE Computer Society, Washington, DC, USA
(2007)

23. Harary, F.: Graph theory. Addison-Wesley, Reading (1969)
24. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
25. Heer, J.: The prefuse visualization toolkit. http://prefuse.org/
26. Hunt, T.: Vertical and horizontal requirements relationships. Last

accessed: 04/22/2009, (2007)

27. Jirapanthong, W., Zisman, A.: Supporting product line develop-
ment through traceability. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC), pp. 506–514. Taipei,
Taiwan (2005)

28. Jirapanthong, W., Zisman, A.: Xtraque: traceability for product line
systems. J. Softw. Syst. Model. 8(1), 117–144 (2007)

29. Jouault, F.: Loosely coupled traceability for ATL. In: Oldevik, J.,
Aagedal, J. (eds.) ECMDA Traceability Workshop (ECMDA-TW)
2005 Proceedings, pp. 29–37 (2005)

30. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.-H.: FORM:
a feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143–168 (1998)

31. Khan, S.S., Greenwood, P., Garcia, A., Rashid, A.: On the inter-
play of requirements dependencies and architecture evolution: an
exploratory study. In: Proceedings of the 20th International Con-
ference on Advanced Information Systems Engineering, CAiSE
2008. Springer Verlag, June 16–20, 2008 (to appear)

32. Krueger, C.W.: Variation management for software production
lines. In: SPLC 2: Proceedings of the Second International Confer-
ence on Software Product Lines, pp. 37–48, London, UK. Springer-
Verlag (2002)

33. Limón, A.E., Garbajosa, J.: The need for a unifying traceability
scheme. In: Oldevik, J., Aagedal, J. (eds.) ECMDA Traceability
Workshop (ECMDA-TW) 2005 Proceedings, pp. 47–56 (2005)

34. Marcus, A., Xie, X., Poshyvanyk, D.: When and how to visualize
traceability links? In: TEFSE ’05: Proceedings of the 3rd Interna-
tional Workshop on Traceability in Emerging Forms of Software
Engineering, pp. 56–61. ACM, New York, NY, USA (2005)

35. Megginson, D.: Xml performance and size. Last accessed:
04/23/2009, May (2005)

36. Microsoft. Visual sourcesafe. http://msdn.microsoft.com/en-us/
vstudio/aa700907.aspx. Last accessed: 04/23/2009

37. Mitschke, R., Eichberg, M.: Supporting the evolution of software
product lines. In: Oldevik, J., Olsen, G.K., Neple, T., Paige, R.
(eds.) ECMDA Traceability Workshop (ECMDA-TW) 2008 Pro-
ceedings, pp. 87–96 (2008)

38. Mohan, K., Ramesh, B.: Managing variability with traceability in
product and service families. In: Proceedings of the 35th Hawaii
International Conference on System Sciences, pp. 1309–1317
(2002)

39. Mohan, K., Ramesh, B.: Tracing variations in software product
families. Commun. ACM 50(12), 68–73 (2007)

40. Mohan, K., Xu, P., Ramesh, B.: Improving the change-management
process. Commun. ACM 51(5), 59–64 (2008)

41. Moon, M., Chae, H.S.: A metamodel approach to architecture var-
iability in a product line. In: Proceedings of the Reuse of Off-
the-Shelf Components, 9th International Conference on Software
Reuse, vol. 4039 of LNCS, pp. 115–126. Springer-Verlag (2006)

42. OMG. Meta object facility, mof 2.0. http://www.omg.org/spec/
mof/2.0/. OMG (2006)

43. Paige, R.F., Olsen, G.K., Kolovos, D.S., Zschaler, S., Power,
C.: Building model-driven engineering traceability classifications.
In: Oldevik, J., Olsen, G.K., Neple, T., Paige, R. (eds.) ECMDA
Traceability Workshop (ECMDA-TW) 2008 Proceedings, pp. 49–
58 (2008)

44. Pfleeger, S.L., Bohner, S.A.: A framework for software mainte-
nance metrics. In: Proceedings of the Conference on Software
Maintenance, pp. 320–327 (1990)

45. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer
Verlag, Heidelberg (2005)

46. ModelWare Project. Traceability metamodel and system solution.
http://www.modelware-ist.org, ModelWare Project, Deliverable
D1.6 (2006)

47. Ramesh, B.: Factors influencing requirements traceability
practice. Commun. ACM 41(12), 37–44 (1998)

123

http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/?project=emf
http://prefuse.org/
http://msdn.microsoft.com/en-us/vstudio/aa700907.aspx
http://msdn.microsoft.com/en-us/vstudio/aa700907.aspx
http://www.omg.org/spec/mof/2.0/
http://www.omg.org/spec/mof/2.0/
http://www.modelware-ist.org

450 N. Anquetil et al.

48. Ramesh, B., Jarke, M.: Toward reference models for requirements
traceability. IEEE Trans. Softw. Eng. 27(1), 58–93 (2001)

49. Riebisch, M.: Supporting evolutionary development by feature
models and traceability links. In: Proceedings of the 11th Inter-
national Conference on Engineering of Computer-Based Systems
(ECBS), pp. 370–377, Brno (Czech Republic), May (2004)

50. Sousa, A., Kulesza, U., Rummler, A., Anquetil, N., Mitschke, R.,
Moreira, A., Amaral, V., Araujo, J.: A model-driven traceability
framework to software product line development. In: Oldevik, J.,
Olsen, G.K., Neple, T., Paige, R. (eds.) ECMDA Traceability Work-
shop (ECMDA-TW) 2008 Proceedings, pp. 97–109 (2008)

51. http://subclipse.tigris.org/. Last consulted on: 05/0/2009
52. Svahnberg, M., Bosch, J.: Evolution in software product lines: two

cases. J. Softw. Maint. 11(6), 391–422 (1999)
53. JUNG Framework Development Team. Java universal net-

work/graph framework. http://jung.sourceforge.net/ (2008)
54. Venn, J.: On the diagrammatic and mechanical representation of

propositions and reasonings. Dublin Philos. Mag. J. Sci. 9(59), 1–
18 (1880)

55. Walderhaug, S., Johansen, U., Stav, E., Aagedal, J.: Towards a
generic solution for traceability in mdd. In: Aagedal, J., Neple, T.,
Oldevik, J. (eds.) ECMDA Traceability Workshop (ECMDA-TW)
2006 Proceedings (2006)

56. Wieringa, R.: Traceability and modularity in software design.
In: Proceedings of the 9th International Workshop on Software
Specification and Design, pp. 87–95 (1998)

Author biographies

Nicolas Anquetil is a profes-
sor at the Catholic University of
Brasilia (Brazil), currently on
leave at the Ecole des Mines
de Nantes (France). He regu-
larly authors reviewed papers
in international conferences and
journals on the following topics
Software Maintenance, Software
Reverse Engineering, Knowl-
edge Management for Software
Engineering.

Uirá Kulesza is an Associ-
ate Professor at the Computer
Science Department (DIMAp),
Federal University of Rio Grande
do Norte (UFRN), Brazil. He
obtained his PhD in Com-
puter Science at PUC-Rio, Brazil
(2007), in cooperation with Uni-
versity of Waterloo and Lancas-
ter University. His main research
interests include: aspect-oriented
development, software product
lines, and design/implementa-
tion of model-driven generative
tools. He has co-authored over
60 referred papers in interna-

tional conferences, journals and books. He is a research member
of the AMPLE project—Aspect-Oriented Model-Driven Product

Line Engineering (www.ample-project.net), working as a post-doc
researcher for the New University of Lisbon.

Ralf Mitschke is a research
assistant at the Software
Technology Group of Tech-
nische UniversitSt Darmstadt,
Germany, since 2007. His
research interests include soft-
ware product lines, mechanisms
for modularizing variability, and
aspect oriented programming.
His current research is centred
on traceability for software prod-
uct lines. It is performed as part
of the AMPLE project, a project
with special focus on traceabil-
ity to enable controlled software-
product-line evolution.

Ana Moreira is an Associate
Professor in Computer Science
at Universidade Nova de Lisboa,
Portugal. She is a member of the
Editorial Boards of the Journal
Software and Systems Modeling
and of the Journal Transac-
tions on aspect-Oriented Soft-
ware Development. She serves
on the Steering Committee of
the International Conference on
Model-Driven Engineering Lan-
guages and Systems (MODELS)
and on the Aspect-Oriented Soft-

ware Association (for the AOSD conference). She was the Steering
Committee Chair for MoDELS 2006. Ana is one of the founders of
the Early-Aspects movement, as well as the pUML community. She
has been involved, both as organizer and program committee member,
in several international conferences, such as ECOOP, CAiSE, UML,
MODELS and AOSD. She was the Program Committee Chair for AOSD
2009.

Jean-Claude Royer is cur-
rently Professor at Ecole des
Mines de Nantes (France). He
received a PhD from the
University of Bordeaux I (1989)
in the area of Scheme and
object-oriented programming.
After twelve years as associated
professor at University of Nan-
tes, he got an “Habilitation à
Diriger des Recherches” (2001)
with title “formal concepts and
models for object-oriented anal-
ysis and design”. Actually his
research focuses on components
and architectures, the use of for-

mal tools and concepts to analyse these systems. From 1996 until 2008
he was the chief redactor of a french journal “Objet, logiciels, data bases,
réseaux”. Currently he is the leader of the work package on traceability
in software product lines, in the AMPLE European project.

123

http://subclipse.tigris.org/
http://jung.sourceforge.net/
http://www.ample-project.net

A model-driven traceability framework for software product lines 451

Andreas Rummler holds the
position of a Senior Researcher
at SAP Research, the global
research division of SAP AG. He
worked at the Ilmenau Univer-
sity of Technology in Germany
for about 5 years as a research
associate and received his PhD
in the area of information tech-
nology in 2006. He successfully
co-founded an IT company in
2005 and joined SAP Research in
2007 and is now responsible for
both internal and external (pub-
licly funded) projects. He served
as a reviewer for conferences like

MODELS or the International Conference on Model Transformations
(ICMT) or journals like the IEEE Journal on Software & Systems
Modeling.

André Sousa is a post-grad-
uate researcher at New
University of Lisbon, working
in the AMPLE project—Aspect-
Oriented Model-Driven Prod-
uct Line Engineering (www.
ample-project.net). He obtained
his MSc in Computer Science
(2008) and graduated in Com-
puter Engineering (2007) at New
University of Lisbon. His main
research interests are: enterprise
development, software product
lines and development of model-
driven tools.

123

http://www.ample-project.net
http://www.ample-project.net

	A model-driven traceability framework for software product lines
	Abstract
	1 Introduction
	2 Analysis of existing traceability tools
	3 Traceability in software product lines
	3.1 Software product line traceability: existing propositions
	3.2 Traceability dimensions for software product lines
	3.2.1 Variability traceability dimension
	3.2.2 Versioning traceability dimension

	4 A model-driven traceability framework to SPL
	4.1 Traceability framework requirements
	4.2 Traceability framework metamodel

	5 The framework
	5.1 ATF core
	5.2 ATF front-end
	5.3 ATF plugins
	5.3.1 Register plugins
	5.3.2 Query plugins
	5.3.3 View plugins
	5.3.4 Future extensions

	5.4 SCM integration in ATF

	6 ATF instantiation
	6.1 Analyzing the software product line process
	6.2 Traceability scenarios
	6.3 Versioning examples

	7 Related work
	7.1 Traceability tools
	7.2 Traceability and model-driven engineering
	7.3 Traceability and evolution
	7.4 Visualization of trace links

	8 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

