
Softw Syst Model (2010) 9:141–160
DOI 10.1007/s10270-009-0112-9

REGULAR PAPER

Improving the quality of use case models using antipatterns

Mohamed El-Attar · James Miller

Received: 28 May 2008 / Revised: 30 December 2008 / Accepted: 13 January 2009 / Published online: 15 February 2009
© Springer-Verlag 2009

Abstract Use case (UC) modeling is a popular require-
ments modeling technique. While these models are simple to
create and read; this simplicity is often misconceived, lead-
ing practitioners to believe that creating high quality mod-
els is straightforward. Therefore, many low quality models
that are inconsistent, incorrect, contain premature restrictive
design decision and contain ambiguous information are pro-
duced. To combat this problem of creating low quality UC
models, this paper presents a new technique that utilizes
antipatterns as a mechanism for remedying quality prob-
lems in UC models. The technique, supported by the tool
ARBIUM, provides a framework for developers to define
antipatterns. The feasibility of the approach is demonstrated
by applying it to a real-world system. The results indicate
that applying the technique improves the overall quality and
clarity of UC models.

Keywords Use cases · Antipatterns · UML · Use case
modeling qualityattributes · OCL

1 Introduction

The unified modeling language (UML) [11,35] has been
widely accepted as the de-facto language for producing soft-
ware blueprints [9,24,25,28,37,40]. Use case (UC) model-
ing, part of the UML framework, is a popular method to

Communicated by Prof. Robert France.

M. El-Attar (B) · J. Miller
STEAM Laboratory, Electrical and Computer Engineering Department,
University of Alberta, Edmonton, AB, Canada
e-mail: melattar@ece.ualberta.ca

J. Miller
e-mail: jm@ece.ualberta.ca

capture a system’s functional requirements [1,2,5,16,22,25,
32,44]. UC models are comprised of unstructured text and
diagrams that adhere to a small notational set. This simplic-
ity allows all stakeholders, including non-technical stake-
holders, to fully understand the models allowing everyone to
share a common understanding of the system being modeled.

The notation and guidelines for creating UML artifacts,
including UC models, are clearly defined in [35]. However,
mechanisms to construct semantically correct and verifiable
diagrams are not discussed [35]. Therefore, UC models are
vulnerable to inappropriate techniques and decisions. UC
modeling mainly occurs in the early stages of development
and hence influences the construction of other UML artifacts.
Defects in a UC model are likely to propagate through to later
development phases where the cost of repairing defects esca-
lates [10,20,48].

A UC model must accurately represent an analytical view
of a system’s functional requirements. This is the princi-
pal research problem addressed in this paper. The proposed
approach aims to tackle this issue by searching for the exis-
tence of antipatterns in UC models. Antipatterns represent
debatable diagrammatic and textual structures. Their detec-
tion prompts a “review” of the debatable structures to either
undertake corrective actions or to verify their correctness.
The effectiveness of our proposed technique is dependent
on the original state of a UC model. Applying our proposed
technique will help bring a given UC model into a form that
more accurately represents its system’s functional require-
ments, ideally yielding a flawless UC model.

The remainder of this paper is structured as follows: Sect. 2
provides a brief background on UC modeling. Section 3 out-
lines the proposed approach and presents a taxonomy of 26
UC modeling antipatterns. In Sect. 4, we introduce ARBI-
UM and explain how it provides automated support for the
proposed approach. A real world case study is presented in

123

142 M. El-Attar, J. Miller

Sect. 5 to demonstrate the effectiveness of our approach.
Section 6 concludes and discusses future work.

2 Background

A UC model consists of three main components: a diagram,
textual descriptions and a glossary. The diagram provides a
visual summary of the services offered by a system and its
interaction with its environment (actors). The textual descrip-
tions explain the interactions between a system and its actors.
The glossary is used to remove namespace ambiguities.

2.1 Related work on UC model quality improvement

Many researchers and practitioners have devised techniques
to improve the quality of UC models. The following is a brief
summary of their approaches:

2.1.1 Computer-supported verification of UC
models—state of the art

Berenbach [7] describes a set of software-supported (Design-
Advisor) heuristics to create large verifiable analysis
models. This approach can be highly restrictive as many
organizations only use a subset of UML; moreover, many
organizations have procedures that utilize in-house design
heuristics. These restrictions are resolved by ARBIUM, the
tool presented in this paper. ARBIUM provides support for
analysts to define and verify their own heuristics in addition
to being equipped with a set of predefined rules that are appli-
cable to any UC model. The antipatterns defined in this paper
encompass all of the heuristics presented in [7] that pertain
to UC modeling. It is believed that this approach, Berenbach
[7], presents the current state of the art in computer-supported
verification of UC models; and hence, this approach will be
compared against our approach in the case study presented in
Sect. 5. The heuristics in [7] will be presented in Sect. 5 and
the antipatterns that embody these heuristics will be identi-
fied.

2.1.2 Other approaches

The antipatterns developed in this paper are based on widely
accepted guidelines and practices, such as those presented
in [1,4,6,8,9,13–19,23,26,27,29–33,38,40–42,44]. Hence,
the work presented in this paper should be regarded as build-
ing upon foundations laid by others. However, most of these
pre-existing guidelines are informal and are provided at a
very abstract level. In this section, we will briefly outline
other related work which tackles the identified problem.

UC modeling inspection technique developed in [3], based
upon recommendations provided in [5,32,44], is focused on

textually-oriented domain-dependent defects in UC models.
In order to effectively apply these guidelines and inspec-
tion techniques, a great deal of UC modeling expertise is
required and therefore these techniques will not be evaluated
in Sect. 5. Linguistic techniques [18,32] and tools [32,39,43]
do not perform any verification upon the semantics of the
UCs and their relationships. However, UC modeling seman-
tics are carefully considered when developing antipatterns
and applying our technique. UC refactorings [12,38,39,42,
49] were developed to address simple defects in UC models.
The refactorings are based on simple heuristics which can
be found in a small subset of our antipatterns. Ryndina et al.
[43] developed a computer-supported approach to verify UC
models. However, the approach does not support the basic UC
modeling syntax defined in [35]; specifically (a) all types of
relationships amongst UCs, (b) the generalization relation-
ship between actors and (c) multiple actor associations with
a single UC. ARBIUM is designed to support these basic UC
modeling notations.

It should be noted that it is not necessary to apply the
antipatterns technique exclusively. In fact, we recommend
that other approaches should be used in addition to using
antipatterns. The resulting UC models will be of higher qual-
ity in comparison to using any approach exclusively.

2.2 Quality attributes of UC models

In order to develop high quality UC models, it is required to
identify the quality attributes that should exist in UC models.
Table 1 provides a summary of the most important quality
attributes as stated by [2,5,6,9,14–16,22,27,43]. Our tech-
nique aims to improve the overall quality of a UC model by
improving these attributes.

3 UC modeling antipatterns

This paper focuses on deficiencies that require human cogni-
tion to verify. Therefore, the approach can be characterized as
“risk-based”, meaning that a “poor” UC modeling structure
does not necessarily indicate that a defect certainly exists;
rather it indicates that the structure in question may lead to
potential defects. In this section, we describe a new technique
to find these situations in UC models. The final judgment,
with regard to correctness, can only be taken by a domain
expert. The proposed quality improvement technique is based
on identifying modeling practices that are likely to lead to
harmful consequences. While it is impossible to formally
analyze the unstructured Natural Language (NL) found in
textual descriptions, UC diagrams can be formally analyzed
due to their adherence to a rigorous syntax [35]. Therefore,
an informal review process will be required to analyze

123

Improving the quality of use case models using antipatterns 143

Table 1 Quality attributes of a UC model

Quality Attribute Definition Implications of absence

Correctness The UC diagram along with textual descriptions must accu-
rately represent the requirements.

May lead to a faulty system.

Consistency All components of the UC model must conform to the same
concepts and represent a consistent view of the require-
ments.

May lead to a faulty system.

Analytical The model should describe a system’s requirements with
respect to: what it needs to achieve; instead of how it
achieves it. The model should not contain any interface
details, implementation or design decisions.

Restricts the designers’ creativity and prevents them from
devising an optimal solution. It becomes unclear what ser-
vices the system actually offers.

Understandability The model must be unambiguous and readable. All stake-
holders must be able to understand it and commonly agree
upon the presented functional requirements.

May lead to a faulty system. The creation of test cases that
don’t test the actual requirements. The project may experi-
ence delays and cost overruns.

textual descriptions, while inappropriate design decisions in
UC diagrams can be formally detected.

To effectively apply this approach, a repository of (anti)
patterns which articulate poor UC modeling habits and deci-
sions is required; our initial repository is described in
Sect. 3.5. An advantage to this approach is that it can be
applied in the early phases of the development cycle where
UC models are often incomplete.

3.1 Advantages of using antipatterns: what can antipatterns
do?

Learning from previous experiences and mistakes is the main
concept behind using antipatterns. An antipattern explains
why a given structure may cause deficiencies in a UC model.
An antipattern will also provide a detection mechanism to
guide modelers to areas in the UC model where an antipat-
tern may exist, be it in the UC diagram, the descriptions, or
both. Most importantly, an antipattern will explain why such
a debatable structure seemed appropriate in the first place.
Finally, an antipattern provides suggestions upon improving
the current structure to avoid potential consequences. Basi-
cally, an antipattern provides key information to guide mod-
elers from a fallacious solution to a superior solution [47].
Table 2 shows the antipattern template used in this paper. The
purpose of each field is described briefly in Table 2 and in
more detail in Sect. 3.2.

3.2 Matching antipatterns with UC models

As mentioned earlier, poor modeling decisions may exist in
the UC diagram, the descriptions, or both. The “Detection”
section in an antipattern contains detailed guidelines to match
the antipattern. For poor modeling decisions that exist in UC
diagrams, an antipattern will outline a set of diagrammatic
elements that represent a debatable structure. Detecting a
match for such antipatterns can be achieved by juxtaposing
the antipattern’s stated unsound diagrammatic structure with

the actual UC diagram. As for poor decisions that exist in
textual descriptions, the “Detection” section will guide ana-
lysts to particular field(s) of a UC template where an antipat-
tern match can be detected. If an antipattern is matched; the
analysts are then required to verify the correctness of the UC
model.

Upon reviewing an antipattern match, corrective measures
may be required. If corrective measures were undertaken, this
may consequently eliminate previously detected antipattern
matches that have not been reviewed. Alternatively, under-
taking corrective measures may cause new antipatterns to
surface. Therefore, the antipattern matching process must be
performed iteratively until all antipattern matches have been
addressed.

3.3 Using OCL to describe unsound diagrammatic
structures

Unsound structures described in NL are inherently ambigu-
ous. Ambiguity can be eliminated by describing unsound dia-
grammatic structures referred to by antipatterns using OCL
constraints [46]. During the matching process, if the con-
straints were not satisfied, then an antipattern match is
detected. Wherever possible, antipatterns will be augmented
with OCL statements to automate or semi-automate their
detection.

Traditionally, OCL statements are used to describe con-
straints in class diagrams or object models. In order to
describe diagrammatic UC structures using OCL, the UC
diagram must be transformed to an object model. This is
possible since every instance of a UC diagram conforms to
the metamodel provided by OMG [35]. Each element in a UC
diagram maps onto one or more metaclasses. However, it is
clearly impractical to expect analysts or domain experts to
study hundreds of pages of documentation explaining thou-
sands of metaclasses, most of which are not exclusive to
UC diagrams, in order to construct their OCL statements.
To increase the accessibility of our approach, a simplified

123

144 M. El-Attar, J. Miller

Table 2 An antipattern template

Antipattern name: The title of the antipattern.

Description: A description of the faulty decisions or techniques.

Rationale: A list of the deceptive or seductive reasons as to why the fallacious solution seemed to be appropriate.

Consequences: A list of the harmful consequences that could be sustained from applying the fallacious solution.
Detection:

Where—A guide to the areas where the antipattern can exist.
How—Instructions that are used to positively identify a match for the antipattern.

Improvement: A list of actions that can be performed to convert a fallacious solution into a superior solution or avoid the fallacious solution.

metamodel was created (see Fig. 1), which contains only four
classes and a limited number of associations linking these
classes together. All these metaclasses are exclusive to UC
diagrams. The simplified metamodel does not need to sup-
port the entire notational set of UC diagrams. The smaller
metamodel will encourage the adoption of the metamodel
by analysts and minimize the learning curve while support-
ing the notational subset most commonly used, and which
encompasses most UC diagrams. The metamodel can easily
be extended to support any additional notation required.

The metaclasses shown in Fig. 1 represent actors, UCs,
the association relationship, the generalization relationship
(both between actors and UCs), abstraction, the include rela-
tionship, the extend relationship and extension points. The
following is a brief description of the metamodel elements:

• Instances of the UseCase and Actor classes are assigned
names using the name attribute, and a Boolean abstract
attribute that indicates whether they are abstract or con-
crete. The extensionLocation attribute of the ExtendsAt
association class is used to state the extension point to
which an extend relationship link is referring.

• For the ExtendsAt association class, the extensionUC role
indicates that the extension UC extends the base UC. The
extended extension point is referenced by the extension-
Location attribute. The ExtendsAt relationship is required
since the extension point referred to is a property of the
extend relationship. The base UC is specified using the
base role.

• An extend relationship that does not refer to an exten-
sion point is indicated using the Extends association. For
the Extends association, the extension role indicates the
extension UC. Meanwhile, the base UC in turn is speci-
fied using the base role.

• An include relationship is specified using the Includes
association. For the Includes association, the inclusion
role indicates the inclusion UC being included by a base
UC which is in turn indicated by the base role.

• The generalization relationship between UCs is supported
by the Specializes_use_case association. The Special-
izes_use_case association has one UseCase object

assigned the parent role, while another UseCase object
is assigned the child role.

• The generalization relationship between actors is sup-
ported by the Specializes_actor association. The Special-
izes_actor association has one Actor object assigned the
parent role, while another Actor object is assigned the
child role.

• The Associated_With association represents an associa-
tion relationship between an actor and a UC. The actor
end of the association relationship is assigned the acto-
rEnd role, while the UC end of the relationship is assigned
the useCaseEnd role.

• Directed associations are represented with the Directed-
Association association class, the directedActorEnd role
indicates the actor involved in the association, while the
directedUCEnd role indicates the UC involved in the
association. The String attribute directTowards can be set
to either “UC” or “Actor” to indicate where the associa-
tion link is directed towards.

Automated support is available to examine diagrammatic
constructs using OCL and the above metamodel. Unfortu-
nately, examination of textual descriptions remains a manual
process. The tool supported antipatterns shown in Sect. 3.5
are augmented with OCL statements whenever possible to
automate or semi-automate their detection.

3.4 Domain independent versus domain dependent
antipatterns

Antipatterns can either be domain-independent (DI) or
domain dependent (DD). DI antipatterns make no assump-
tions about the underlying domain and hence are applicable
to any UC model. Researchers can derive DI antipatterns
by understanding the semantics of the UC modeling nota-
tion and the purpose behind each component of a UC model.
DD antipatterns represent additional, specialized antipatterns
which seek to encode an organization’s specific objectives
for a specific project or domain. Analysts should collaborate
with domain experts to develop DD antipatterns. Using OCL

123

Improving the quality of use case models using antipatterns 145

Fig. 1 The simplified version
of the UC metamodal used in
ARBIUM1

and the simplified metamodel, analysts can quickly define
DD antipatterns.

Antipatterns can be further subdivided—with respect to
their suitability of being machine readable (see Table 3). The
principal advantage of antipatterns that are machine readable
is that they can be (semi-)automatically matched. Diagram-
matic structures are described using OCL as a set of con-
straints, which is used by ARBIUM to perform the matching
process. The process of matching textual patterns cannot be
automated as unstructured natural language cannot be for-
mally analyzed. Therefore, a review process is required to
detect matches for textual patterns described by antipatterns.
The availability of tool support to match an antipattern is
dependent on the information provided in its “Detection”
section.

Type (1): This paper mainly focuses on this type of antipat-
tern. A large number of Type (1) antipatterns are
presented in detail in Sect. 3.5. The detection pro-
cess of these antipatterns can be fully automated
as they only require analysis of UC diagrams.

Type (2): For this type of antipattern, ARBIUM can be used
to detect the diagrammatic structure described
by an antipattern; subsequently a review process
is required to analyze the corresponding textual
descriptions.

Type (3): For this type of antipattern, the review process
needs to be conducted manually since these antip-

1 Some elements of the metamodel are present to more effectively ben-
efit from the features provided by USE (UMLbased Specification Lan-
guage), which is used in addition to ARBIUM to automate the detection
process (Sect. 4)

atterns require the examination of textual descrip-
tions. No automation support can be provided to
detect this type of antipattern. A number of Type
(3) antipatterns are described in Sect. 3.5.

Type (4): These DD antipatterns are machine-readable.
Analysts use the simplified metamodel to com-
pose OCL statements that describe the debatable
construct. Analysts will need to collaborate with
domain experts to develop these antipatterns.

Type (5): Similar to Type (4) antipatterns, analysts will need
to collaborate with domain experts to develop this
type of antipatterns. Unlike Type (4) antipatterns,
Type (5) antipatterns require a review or inspec-
tion of textual descriptions in addition to the UC
diagrams.

Type (6): DD antipatterns are again developed through a
collaborative effort between analysts and domain
experts. A manual review process needs to be per-
formed in order to match this type of antipatterns
as they require examination of textual descrip-
tions.

3.5 Examples of UC modeling antipatterns

In this section we present a number of UC modeling
antipatterns. Due to space limitations, an abridged version
of a subset (8 out of 26) of the current repository of antipat-
terns is presented. Also due to space limitations, antipatterns
“a3.”, “a4.” and “a5.” are clustered as they address the same
issue and hence contain a number of similar components. A
detailed description of all antipatterns, including elongated
versions of the antipatterns presented below, augmented with

123

146 M. El-Attar, J. Miller

Table 3 Types of antipatterns

Situation Full automation Semi-automation No automation
support available support available support available

Domain-independent Antipatterns (1) (2) (3)

Domain Dependent Antipatterns (4) (5) (6)

Table 4 Antipatterns presented in this Section

Antipattern Name Comment Automation
Support

a1. Accessing a generalized concrete UC [9,35,37] Abridged Type (1)

a2. UCs containing common and exceptional functionality [1,7–9,11,12,35,37] Abridged Type (1)

a3. Functional decomposition of UCs using the include relationship [9,16,35] Abridged and clustered Type (1)

a4. Functional decomposition of UCs: using the extend relationship [35,37] Type (1)

a5. Functional decomposition of UCs: using pre and postconditions [9,14,15] Type (3)

a6. Accessing an extension UC [35,37] Abridged Type (1)

a7. Multiple actors associated with one UC [5,11,14,15,30,35] Abridged Type (1)

a8. A description of an actor that is not depicted in the UC diagram [1,14,15,30,41] Abridged Type (2)

examples, is presented in [45]. The antipatterns presented in
this Section are listed in Table 4. In Table 4, each antipat-
tern name is followed by literature references of which the
antipattern is based upon.

• Antipattern name

a1. Accessing a generalized concrete UC—Automation
Support: Type (1)

• Description

A family of UCs that represent a framework of services
offered by a system can be defined using the generaliza-
tion relationship. Modelers can define a hierarchy between
the UCs using the generalization relationship. To access this
framework of services, an actor is associated with gener-
alized UCs to indirectly access the services offered by this
hierarchy of UCs.

• Rationale

An association can be created between an actor and a gener-
alized UC for two reasons:

(1) The generalized UC contains behavior that individually
is useful to the actor.

(2) The operational mechanisms of the generalization rela-
tionship in UC diagrams are similar to that of class

diagrams. Therefore, modelers may utilize the concept
of polymorphism in their UC model. Hence, when an
actor initiates a generalized UC, the service request can
be delegated to one of its specializing UCs.

• Consequences

Often generalized UCs contain fragments of general behav-
ior that are completed by their specializing UCs. Therefore,
generalized UCs are often incomplete. If a generalized UC is
concrete, it can be standalone as a complete UC that can be
exclusively initiated. However, if an actor makes an exclu-
sive initiation request to such a generalized UC, incomplete
behavior will be executed.

• Detection

Where—Search for any generalized UCs in the “UC Dia-
gram”. How—If the generalized UC is concrete2 and asso-
ciated with an actor.
OCL Description:
context UseCase
inv AccessingGeneralizedUseCaseBy-

Actor:
not ((not (self.isAbstract)) and self.

actorEnd->size > 0 and self.child->size
>0)

2 Concrete UCs are labeled using a regular font. Meanwhile, abstract
UCs are labeled using an italic font.

123

Improving the quality of use case models using antipatterns 147

• Improvement

(1) Set the generalized UC to be abstract. Unlike concrete
UCs, abstract UCs cannot be initiated.

(2) Remove the association relationship between the actor
and the generalized UC and replace it with explicit
associations between the actor and the specializing UCs.
Associations with the specializing UCs will force a ser-
vice request to be performed through one of the spe-
cializing UCs. Hence, the generalized UC will not be
exclusively initiated.

• Antipattern name

a2. UCs containing common and exceptional functional-
ity—Automation support: Type (1)

• Description

The reuse of a UC is optimized by making it both an extension
and an inclusion UC.

• Rationale

Object-oriented modeling and design strongly promotes the
concept of reuse. Modelers are keen to reuse much of the
functionality contained in preexisting UCs. Reusing UCs
prevents the cluttering of the UC model with many redun-
dant UCs. However, when applying the concept of reuse, the
include and extend relationships can be misused, leading to
the creation of UCs containing both common and exception-
handling behavior.

• Consequences

The shared UC currently contains common and exceptional
behavior required by the two base UCs. Therefore, when
either base UCs initiate the shared UC, additional undesired
functionality is performed.

• Detection

Where—Search for any inclusion UCs in the UC diagram.
How—If the inclusion UC is extending other UCs.

OCL description:
Context UseCase
inv UsingIncludeAndExtendToImplement-

AbstractUC:
not ((self.isAbstract) and (self.

inclusion->size > 0 or
self.extension->size > 0 or self.

extensionUC->size > 0))

• Improvement

(1) Check if the shared UC contains functionality suitable
for only one of the base UCs. This can be achieved by
examining the contents of the shared UC.

• If the shared UC contains functionality suitable only
for the base UC that includes it, then the extend rela-
tionship should be removed. A new extension UC
should be created to handle the exceptional situa-
tion generated by the other base UC.

• If the shared UC contains functionality suitable only
for the base UC that it extends, then the include rela-
tionship should be removed. A new UC should be
created and included by the other base UC.

(2) In the case that the shared UC does indeed contain both
common and exception handling behavior. The shared
UC should be split into two separate UCs. Each of the
newly created UCs should only contain functionality
appropriate to its corresponding base UC.

In all cases, the UCs should be renamed to accurately describe
their purpose.

• Antipattern names

a3. Functional decomposition: Using the include relation-
ship—Automation support: Type (1)

a4. Functional decomposition: Using the extend relation-
ship—Automation Support: Type (1)

a5. Functional decomposition: Using pre and postcondi-
tions—Automation support: Type (3)

• Description

a3. Functional decomposition commonly occurs due to
the misuse of the include relationship. Inclusion UCs are set
to describe tasks that are required to perform parts of a com-
plete service offered by their base UC. The tasks described
by the inclusion UCs represent functions in a program, or
menu options.

a4. Another form of functional decomposition is the
improper use of the extend relationship. Naturally, this addi-
tional behavior is very specific to the respective base UC. If an
extension UC contains general behavior that would be useful
to more than one base UC, this would be a strong indication
that the extension UC has degraded into a function.

a5. Modelers misuse the pre and postconditions in UCs to
explicitly declare a virtual call sequence between the UCs.
It can be deduced that the virtual sequence is likely to be
the result of UCs degrading into functions. There are two
methods that can be used to apply this concept: (a) by stating

123

148 M. El-Attar, J. Miller

as a postcondition in UC “N” that UC “N+1” must start, and
stating as a precondition in UC “N+1” that UC “N” must suc-
cessfully end; (b) implicitly, by restating the postconditions
of UC “N” as the preconditions UC “N+1” and vice versa.
Even though this method may be valid, it is likely to lead to
the over-specification of the conditions in one of the UCs.

• Rationale

Dissecting UCs into functions yields a set of “smaller” UCs
that are easier to understand and code. Consequently, in later
development phases, the “smaller” UCs will be easier to
test and maintain. Functional decomposition can be used to
embody design decisions that analysts would like to enforce
throughout the development of a system. In the case of func-
tional decomposition using the extend relationship, there
might be times where the extension UC is used to provide
general functionality that is specialized by the UCs it extends.

• Consequences

The “smaller” UCs offer no value to the system’s users if
initiated individually. Being able to discern the actual ser-
vice offered by these numerous function-oriented “smaller”
UCs is a very difficult task. One can at best guess what ser-
vice these UCs will offer when performed together. There-
fore, the “smaller” UCs created as a result of functional
decomposition obscure the real purpose of the system. For
complex systems, it is likely that this “guess” will be incor-
rect. Functional decomposition of UCs may lead to more
complex descriptions of the interactions between the actors.
Functional decomposition embodies premature design deci-
sions which severely limits the creativity of designers and
forces them to abide to these decisions. In the case of func-
tional decomposition using the extend relationship, it is often
the case that the extension UC does not properly handle the
exceptional situations caused by the base UCs.

• Detection

a3. Where—Search for an inclusion UC inside the UC
diagram. How—If the inclusion UC is included by a single
base UC. It is important to note that the inclusion UC must
not be associated with any actors or UCs.
OCL description:
context UseCase
inv NotJustOneInclude:
not (self.base->size = 1)
a4. Where—Search for an extension UC in the UC dia-

gram. How—If the extension UC extends more than one UC.
How - Examine the behavior described by the extension UC
to check that it is not too generic.

OCL description:
context UseCase
inv ExtendingMoreThanOneUseCase:
not ((self.extended->size) + (self.

extendedUC->size) > 1)
a5. Where—In the preconditions and postconditions of

each base UC description. How—(a) If it is stated as a post-
condition for a UC is that another UC needs to be initiated.
(b) If it is stated as a precondition of a UC that another UC
needs to be successfully completed. (c) If it is found that the
precondition of a UC and a postcondition of another UC state
the same requirements.

• Improvement

The behavior described in the functionally decomposed UCs
must be combined into UCs that individually offer a com-
plete service. For the case when extension UCs are used to
specialize general behavior described by their base UCs,̧
a generalization relationship should be used instead of the
extend relationship.

• Antipattern name

a6. Accessing an extension UC—Automation support:
Type (1)

• Description

Similar to base UCs, extension UCs can be initiated by actors.
Therefore, modelers may associate an extension UC with any
actor.

• Rationale

Extension UCs differ from regular base UCs in that they
contain behavior that is of exceptional or optional nature.
Modelers may require an actor to access behavior contained
in an extension UC for a number of reasons:

(1) If the extension UC contains optional behavior relative
to the base UC that may be exclusively useful to an actor.
Therefore, an explicit association is created between the
actor and the extension UC to allow the actor to execute
this optional behavior without initiating the base UC
first.

(2) When an extension UC is handling an exceptional situ-
ation, it may be desired to notify a particular actor that
such an exceptional situation has occurred. This can be
achieved by creating an association between the actor
and the extension UC.

123

Improving the quality of use case models using antipatterns 149

(3) The operation of the extension UC may require certain
information to be provided by an actor. An association
between the actor and the extension UC is created to
allow the actor to convey this information.

• Consequences

(1) This situation is appropriate because the extension UC
contains behavior that is complete and optional. More-
over, it is desirable to execute this optional functionality
without initiating the extended base UC.

(2) The actor is supposed to communicate with an exten-
sion UC only in the case of an exceptional situation
arising. However, since the navigability of the associ-
ation between the actor and the extension UC is not
specified, the actor may initiate the extension UC. This
is an undesired effect as it allows an actor to initiate an
extension UC regardless of the situation. It should only
be initiated when an exceptional situation has occurred.

(3) Same as (2).

• Detection

Where—Search for any extension UCs in the UC dia-
gram. How—If the extension UC detected is directly associ-
ated with any actor in the model.
OCL description:
context UseCase
inv AccessingExtensionUseCaseByActor:
not((self.extended -> size > 0 or

self.extendedUC->size>0) and self.
actorEnd-> size > 0)

• Improvement

(1) The association between the actor and the extension UC
is required in this situation. Therefore, no corrective
actions are required.

(2) The modelers need to explicitly state that the associa-
tion between the actor and the extension UC is a one-
way communication link. Unfortunately, UML lacks the
required notation to depict this type of association
between actors and UCs. To work around this limita-
tion, a UML “note” can be connected to the association
link between the two entities to explicitly state that it is a
directed association. Moreover, the navigation direction
of the association link can be specified to ensure that the
interaction between the two entities is started by the UC.

(3) The base UC should be used to convey information to
the extension UC. Therefore, the association between
the actor and the extension UC should be removed. The
extension UC should retrieve the required information

from the base UC that it extends. The base UC should
have the required information since the actor would have
provided it when initially performing the base UC. If the
actor only communicates with the extension UC after it
has been initiated, then the navigation direction of the
association link should be set to point towards the actor.

• Antipattern name

a7. Multiple actors associated with one UC—Automation
support: Type (1)

• Description

A UC is associated with more than one actor.

• Rationale

(1) The associated actors play a similar role when perform-
ing the shared UC. In other words, the actors commu-
nicate with the shared UC in a similar fashion.

(2) The instances of the system’s users are depicted instead
of the role played by the users.

(3) The functionality performed by the shared UC is too
generic.

(4) Execution of the shared UC requires communication
with multiple actors.

• Consequences

(1) Actors should have unique roles when interacting with
a shared UC. This leads designers to create different
implementations of a UC when it is interacting with dif-
ferent actors, even though the implementation should be
the same.

(2) This situation violates the true semantics of an actor.
This will lead to similar consequences to those described
in (1). Moreover, the model will need to be changed fre-
quently as instances of a type of the system’s users are
frequently added and removed.

(3) The actual functionality developed will only cater to
one of the actors, or perhaps none.

(4) This situation is appropriate as actors have different
roles when the shared UC is performed.

• Detection

Where—Search for any UCs associated with actors in the
UC diagram. How—If the UC is associated with multiple
actors.
OCL Description:

123

150 M. El-Attar, J. Miller

context UseCase
inv MultipleActorsAssociatedWithUC:
not (self.actorEnd->size > 1)

• Improvement

(1) This situation can be fixed by extracting the overlap-
ping roles between the associated actors and creating a
new actor that represents these roles.

(2) An actor representing the true role of the depicted users
should be created to replace all user instances.

(3) The shared UC should be split into separate UCs which
accurately represents the behavior of the system when
interacting with each actor.

• Antipattern name

a8. A description of an actor that is not depicted in the UC
diagram—Automation support: Type (2)

• Description

The UC model contains a description of an actor; however,
the actor is not depicted in the UC diagram.

• Rationale

(1) Even though the behavior of the actor might be known,
it is not clear at the time how the actor will interact with
the system.

(2) The actor represents a device used by the system to per-
form its UCs, without it being directly associated with
the UCs. For example, the system might require a timer
to control or initiate the activation of certain UCs.

(3) The actor described is associated with many UCs.
Therefore, depicting the actor and its association with
multiple UCs will clutter the UC diagram.

• Consequences

(1) It is acceptable to describe an actor before deciding how
it interacts with the system. However, it is essential that
the actor’s association with the system be eventually
defined; otherwise the actor’s involvement with the sys-
tem will be ambiguous.

(2) Timers and other input/output devices do not constitute
actors. This issue is discussed in the description of the
“Representing devices as actors” antipattern “a19.” (see
[45]).

(3) This situation can be the result of having too many
UCs. The “Too many UCs” antipattern “a25.” (see [45])
describes the consequences of this situation. If an actor
remains missing from the UC diagram, the actor’s
involvement with the system can be misinterpreted.

• Detection

Where—For every actor described. How—(a) If the actor
is not depicted in a UC diagram.

• Improvement

(1) The actor must be depicted and associated with the
appropriate UCs in the UC diagram.

(2) The behavior of these devices should be included in the
behavior of their associated UCs. If it is necessary to
describe the behavior of a device, such a description
should be available in the supplementary requirements
document.

(3) First, the improvements stated by the “Too many UCs”
antipattern (a25.) should be undertaken. If any actor
remains associated with too many UCs, then reorganiz-
ing the layout of the UC diagram can be beneficiary. In
any event, the actor and its associations with the system
must be depicted.

The remaining 18 antipatterns are presented in [45]

4 Tool support using ARBIUM

Examining the structure of a UC diagram is a process that
can be fully automated. For complex systems, a UC model
may contain hundreds of UCs [7]; in addition, these UCs are
not depicted in any chronological order. Moreover, various
types of relationships are depicted linking those UCs. Inher-
ently, these relationships are not depicted in any chronolog-
ical order either. Such systems also usually contain a large
number of actors that are associated with UCs using asso-
ciation relationship links. Ultimately the UC diagram can
be viewed as a large mesh of UCs, actors and relationship
links. Attempting to detect a match for a given diagrammatic
structure described by an antipattern can be very challenging,
cumbersome and error prone. ARBIUM (Automated Risk-
Based Inspector of UC Models) provides automation sup-
port for detecting diagrammatic structures. The presented
technique does not target deficiencies that can be detected
via static analysis, such as syntax errors. ARBIUM is geared
towards detecting potential deficiencies that require human
validation.

123

Improving the quality of use case models using antipatterns 151

Unsound structures described in antipatterns are entered
into ARBIUM as OCL statements. The OCL statements
adhere to the simplified metamodel presented earlier (Fig. 1).
In addition to being able to describe and search for custom
made antipatterns, ARBIUM is provided with a set of pre-
defined antipatterns, which analysts may utilize to improve
their models. The predefined antipatterns are of the DI vari-
ety so that they can be applied to any UC model regardless
of its domain.

The matching process is aided by the tool USE (UML-
based Specification Environment). USE is a tool that checks
the integrity of information systems against constraints
described in OCL [21]. ARBIUM generates two input files
for USE: a specifications file and a script file. The specifica-
tions file describes the class structure of the metamodel, and
contains the set of antipatterns specified by the analyst. The
script file loads an object representation of the actual UC dia-
gram, based on the simplified metamodel. After completing
the matching process, USE presents any antipattern matches
for analysts to review. An overview of how ARBIUM, incor-
porating USE, can be used to search for antipatterns is shown
below (see Fig. 2). A more detailed discussion of ARBIUM
is presented in [45].

5 Evaluation

In this section we present a real world case study to dem-
onstrate the application of our proposed technique and to
examine its feasibility. In addition, we compare the results of
using ARBIUM to drive the inspection process to the results
of using DesignAdvisor [7].

5.1 Definition and motivation

The main research question posed by this case study is
whether the detection of antipatterns and analysis of the
resulting matches can improve the overall quality of UC mod-
els. This is achieved on two fronts: (a) by restructuring the UC
diagrams to adhere to the notational syntax rules and seman-
tics set by OMG [35]; and (b) by changing UC descriptions to
comply with recommended guidelines and widely accepted
practices (Sect. 2). Therefore, the effectiveness of using our
proposed approach will be assessed by comparing the result-
ing UC model with the original UC model, with respect to
the aspects mentioned in (a) and (b).

5.2 Case study formulation

The proposed approach was applied to the MAPSTEDI
(Mountains and Plains Spatio-Temporal Database Informat-
ics) [34] UC model. ARBIUM was utilized to perform
the matching process. The MAPSTEDI system is being

developed to allow the University of Colorado Museum (UCM),
Denver Museum of Nature and Science (DMNS), and Denver
Botanic Gardens (DBG) to merge their separate collections
into one distributed biodiversity database. The merged col-
lections will include over 285,000 biological specimens. The
system will also be used as a research toolkit by geocoders to
analyze biodiversity data in the southern and central Rocky
Mountains and the northern plains both spatially and tempo-
rally. The MAPSTEDI system will be developed over three
phases. Upon completion of the project, MAPSTEDI will
be able to “georeference” the museum collection databases.
Users’ search results will be provided by the MAPSTEDI
website in GIS-linked spatio-temporal coverage.

The UC model of the MAPSTEDI system contains sev-
eral UC packages that are used to model different subsys-
tems of the target system. The UC model is accompanied
with UC descriptions. The descriptions play an essential role
in examining the validity of the UC diagrams and the model
as a whole. The MAPSTEDI UC model contains five UC
packages which represent different aspects of the system’s
functionality. Each UC package contains one UC diagram:

• Database access (Fig. 3): The purpose of this UC pack-
age is to state who may access the database and how.
Users of the system can search and download collections
data. Users may also visualize biodiversity analysis. Only
research users are permitted to access sensitive data.

• Database queries (Fig. 4): This UC package provides a
hierarchal outline of the query functionalities performed
by the system. The subsystem queries local and distrib-
uted databases for collections data. There are two distrib-
uted databases, the DMNS and DIGIR databases.

• Database integrator (Fig. 5): This UC package shows
how the collections data from separate databases (local
and remote) are integrated after being updated.

• Database edits (Fig. 6): This UC package outlines the
operational mechanisms for editing and updating the dat-
abases. The geocoder edits the collections data and the
databases are updated accordingly.

• Administrative process (Fig. 7): This UC package shows
the administrative functionalities and responsibilities.
The subsystem backups and restores collections data and
application code. The subsystem also installs any new
updates.

Currently the MAPSTEDI UC model suffers from a num-
ber of issues (listed below) that decrease its quality. These
issues are determined after examining the UC diagrams and
the corresponding UC and actor descriptions:

1. The public and research users are shown to have different
roles when accessing certain functionalities offered by

123

152 M. El-Attar, J. Miller

Fig. 2 An overview of how
ARBIUM and USE can
automate the detection process

Fig. 3 The UC diagram of the “Database Access” subsystem

the system, however they perform the same role. More-
over, the UC diagram indicates that both public and
research users need to be involved with the system in
order to perform certain functionalities which is incor-
rect.

2. A dependency is created between UCs Download Collec-
tions Data and Search Collections Data through improper
use of pre and postconditions. (Please refer to antipattern
(a5.) for details regarding the implications of this issue).

3. UCs in the Query Databases UC diagram are shown to
extend each other, meaning that some UCs introduce
optional or exceptional behavior to the functionality
described in other UCs which is incorrect. The UCs have
a hierarchical relation with respect to the query services
that they offer, which is not shown.

4. The UC model presents a number of functionally decom-
posed UCs, such as the Edit Collections Data, Upload
DGB and UCM Data and Run QC Tests UCs. This is
detrimental to the analytical quality of the UC model.
Further implications of functional decomposition are pre-
sented in antipatterns (a3.), (a4.) and (a5.).

5. The database edits UC diagram shows an incorrect type
of dependency between the Geocode Specimen UC and
the Update Collections Data UC.

6. The UC model contains a superfluous actor: Data Editor.

7. The administrative process UC diagram shows three UCs
that are too generic to allow either of the administrator
actors to perform their intended duties.

8. The UC Model describes two actors that are system func-
tionality not actors.

9. UC Query Remote Database is indirectly accessed by an
actor while it exclusively does not describe complete and
meaningful functionality.

Many of these issues may have severe consequences down-
stream in the development process. It is crucial to remove
these issues from the UC model. In the following subsections,
our proposed technique will be applied to the UC model in
order to assess its ability to resolve these issues. All UC dia-
grams will be juxtaposed with the entire set of antipatterns.
While performing the matching process, it is important to
consider overlapping entities. That is, UCs or actors that exist
in more than one diagram. Considering overlapping entities
help reveal antipattern matches that may exist over multiple
UC diagrams.

5.3 Analysis and interpretation of the results

The resulting antipattern matches shown in Table 5 require
human inspection to verify the correctness of the UC model.
A total of 11 antipattern matches were detected across all of
the UC packages. An analysis of the antipattern matches of
the first iteration is shown in Table 6. All antipatterns detected
in the first iteration, with the exception of antipattern matches
1.1.2 and 1.6.1, are of Type (1). Therefore, they were detected
automatically by ARBIUM. Antipattern match 1.1.2 (Type
(3)) was detected by manually applying the anti-pattern tem-
plate to the descriptions of the Download Collections Data
and Search Collections Data UCs of the Database Access
UC diagram. Meanwhile, antipattern match 1.6.1 (Type (2))
was detected by manually applying the anti-pattern template

123

Improving the quality of use case models using antipatterns 153

Fig. 4 The UC diagram of the
“Database Queries” subsystem

Fig. 5 The UC diagram of the
“Database Integrator”
subsystem

Fig. 6 The UC diagram of the “Database Edits” subsystem

to the actor descriptions, while ARBIUM searched for these
actors in the UC diagrams.

The database edits, database queries and database integra-
tor UC diagrams were merged since they contain a number
of overlapping entities. The merged UC diagram (“Merged
UC Diagram”) is presented in Fig. 9.

As mentioned earlier, the proposed technique must be
applied iteratively as corrections and changes applied upon
reviewing an antipattern match might cause new antipatterns
to surface. The matching process is repeated for a second iter-
ation. Table 7 shows the antipattern matches detected during
the second iteration, and Table 8 shows the corresponding
analysis. All antipatterns matched are of Type (1) and hence
were detected by ARBIUM. The antipattern matches were
detected in the Merged UC diagram shown in Fig. 9.

5.4 Discussion of results and validation

In this section we assess whether the application of our
technique resolved the issues that existed in the original

MAPSTEDI UC model (see end of Sect. 5.2). Table 9
provides a summary of the issues resolved by applying our
technique:

5.5 Comparison of alternative approaches

In order to fully evaluate the effectiveness of using antip-
atterns, it should be compared to alternative approaches by
applying them to the MAPSTEDI UC model. As mentioned
earlier in Sect. 2, only the approach presented by Berenbach
in [7] can be compared to our approach since it does not
require significant human cognition to apply. The MAPSTE-
DI UC model was examined to determine if it violates any
of the heuristics presented in [7]; these violations will then
be “resolved” in the model. Table 10 presents the heuristics
from [7], and presents the number of violations found in the
MAPSTEDI model. Each heuristic is stated is followed by
the antipatterns that embody it; the heuristics from [7] believe
that the model is defect free!

6 Conclusions, future work and suggestions

UC modeling is a very powerful requirements modeling tool,
providing great flexibility for requirements engineers to cap-
ture the behavioral essence of the target system. In a UC
driven development process, UC models are used to create
other UML artifacts leading to the eventual implementation
of the target system. Thus poorly constructed UC models
may yield many inconsistencies between subsequent UML

123

154 M. El-Attar, J. Miller

Fig. 7 The UC diagram of the
“Administrative Process”
subsystem

Table 5 First iteration matches

Match No. UC diagram Antipattern matched Elements involved

1.1.1 Database Access a6. Multiple actors associated with one UC Actors: Public User and Research User
UCs: Download Collections Data, Search
Collections Data and Visualize Biodiver-
sity Analysis

1.1.2 a8. Functional decomposition: Using pre
and postconditions

UCs: Download Collections Data, Search
Collections Data

1.2.1 Database Queries a3. Functional decomposition: Using the
extend relationship

UCs: All five UCs illustrated in the corre-
sponding UC diagram.

3.1 Database Integrator a5. Functional decomposition: Using the
include relationship

UCs: Edit Collections Data and Update
Collections Data.

1.3.2 a5. Functional decomposition: Using the
include relationship

UCs: Upload DGB and UCM Data, Run
QC Tests and Update Collections Data.

1.4.1 Database Edits a5. Functional decomposition: Using the
include relationship

UCs: Geocode Specimen and Find Local-
ity

1.4.2 a4. Accessing an extension UC Actors: Data Editor and Database Integra-
tor.
UCs: Edit Collections Data and Geocode
Specimen.

1.5.1 Administrative Process a6. Multiple actors associated with one UC Actors: Database Administrator and Arc-
IMS Administrator
UCs: Backup Process

1.5.2 a6. Multiple actors associated with one UC Actors: Database Administrator and Arc-
IMS Administrator
UCs: Restore Process

1.5.3 a6. Multiple actors associated with one UC Actors: Database Administrator and Arc-
IMS Administrator
UCs: Install Software Updates

1.6.1 System Wide a7. A description of an actor that is not
depicted in the UC diagram

Actors: Database Upload Process and
Database QA/QC Process

artifacts, ultimately leading to many defects in the eventual
code. Unfortunately, UC modeling is often misapplied result-
ing in significant numbers of defects. Hence, it is essential
to produce high quality UC models.

In this paper we devise a technique based on antipatterns
that helps improve the quality of UC models throughout the
development cycle. The application of the technique does not
require any artifacts in addition to UC models, this allows
the technique to be applied early in the development cycle,
where other design artifacts are usually unavailable and the
cost of removing defects is minimal. Given the “informality”
of UC models, many approaches provide abstract guidelines
towards improving UC models. Using antipatterns provides

analysts with a more systematic approach to improve UC
models, significantly reducing the dependency on skill and
experience. A large repository of antipatterns was developed
to guide analysts in improving their UC models. The reposi-
tory contains 26 domain-independent antipatterns that can be
applied to any UC model. The majority of the developed an-
tipatterns benefit from (semi-)automation support to increase
the accuracy and speed of their detection. In addition to the
provided antipatterns, a framework was developed for ana-
lysts to create their customized antipatterns based on a sim-
plified UC modeling metamodel, where analysts can create
their own antipattern descriptions using OCL. The complex-
ity of the metamodel was intentionally designed to encourage

123

Improving the quality of use case models using antipatterns 155

Table 6 First iteration analysis

Antipattern Match 1.1.1:

Analysis

Upon analysis of the three UCs which the actors Public User and Research User are associated with, the actors were found to have similar roles
when performing the UCs.

Corrective actions

The role that the actors play in correspondence to the three given UCs will be generalized into a separate actor (called User). The generalized
actor is then associated with the UCs, while the Research User remains the only actor associated with UC Access Sensitive Data (Fig. 8).

Antipattern match 1.1.2

Analysis

The precondition of the Download Collections Data UC states that the Search Collections Data UC must be initialized beforehand.

Corrective actions

Each UC offers a complete service individually hence they should remain separate. However, the precondition stated by the Download Collections
Data UC should be removed.

Antipattern match 1.2.1

Analysis

The extend relationship was used to represent the hierarchy between the query services offered by the system.

Corrective actions

The extend relationships should be replaced with generalization relationships (Fig. 9).

Antipattern match 1.3.1

Analysis

The Edit Collections Data UC represents subroutine type behavior that is required by the Update Collections Data UC.

Corrective actions

The functionality described in the Edit Collections Data UC should be merged with the description of the Update Collections Data UC and
represented as a “Sub-flow3 Subsequently, the UC Edit Collections Data and it’s include relationship link with UC Update Collections Data are
removed from the diagram (Fig. 9).

Antipattern match 1.3.2

Analysis

Analysis of the involved UCs show that updating the database requires the DGB (Denver Botanic Gardens) and UCM (University of Colorado
Museum) data to be uploaded. Meanwhile, the task of uploading any data also requires that the data undergo Quality Control (QC) tests.

Corrective Actions

The Upload DGM and UCM Data and Run QC Tests UCs should be merged into the Update Collections Data UC by modeling each as a
separate “Sub-flow” component. Moreover, the description of the “Sub-flow” component responsible for uploading the data should indicate a
requirement to execute the other “Sub-flow” that is responsible for running the QC tests. UCs Upload DGM and UCM Data and Run QC are
removed from the Database Integrator diagram. Meanwhile, an include relationship will be directed from the Update Collections Data UC to
the Query Remote Database UC, to replace the include relationship that was present between the Run QC Tests and Query Remote Database
UCs (Fig. 9).

Antipattern Match 1.4.1

Analysis The Find Locality UC represents subroutine type behavior that is required by the Geocode Specimen UC.

Corrective actions

The functionality described in the Find Locality UC should be merged and represented as a “Sub-flow” component of the Geocode Specimen
UC. Hence, UC Find Locality and it’s include relationship with UC Geocode Specimen are removed from the diagram (Fig. 9).

Antipattern match 1.4.2

Analysis The Edit Collections Data UC was merged into the Update Collections Data UC as a result of antipattern match 1.3.1 in the Data Inte-
grator UC diagram. Therefore, actors Data Editor and Database Integrator are now associated with the UC Update Collections Data. Moreover,
UC Update Collections Data now extends the Geocode Specimen UC.

Upon analyzing the extended UC Geocode Specimen, it is discovered that updating the database represents part of its required functionality.

The data-editing role played by the Geocoder actor is modeled using the Data Editor actor. However, the Geocoder is the only actor that edits
this data. Moreover, the model shows that the Geocoder already has indirect access to the Update Collections Data UC, through the Geocode
Specimen UC.

3A “Sub-flow” is a component of a UC description that describes subroutine-like behavior that is exclusive only to the belonging UC.”

123

156 M. El-Attar, J. Miller

Table 6 continued

Antipattern match 1.1.1

Corrective actions

The extend relationship between the involved UCs was used to indicate subroutine type behavior. Therefore, this relationship should be replaced
with an include relationship directed from the Geocode Specimen UC to the Update Collections Data UC. Hence, the Data Integrator actor is
no longer directly accessing an extension UC (Fig. 9).

Since the Geocoder actor already has indirect access to the Update Collections Data UC, the Data Editor actor is no longer required and should
be removed (Fig. 9).

Antipattern matches 1.5.1, 1.5.2 and 1.5.3

Analysis All three antipattern matches resulted from the same issue; the shared UCs are too general to suit either the ArcIMS Administrator
or the Database Administrator actor. After reviewing the tasks of both actors, it was determined that the ArcIMS Administrator actor accesses
the system to backup and restore the application code and to install code updates. Meanwhile, the Database Administrator actor accesses the
system to backup and restore the collections data, and to install database updates.

Corrective actions

The three shared UCs should be split down into six UCs in order to properly represent the administrative duties of the actors (Fig. 10).
Antipatterns match 1.6.1

Analysis Two actors Database Upload Process and Database QA/QC Process where described but never depicted in any UC diagram. The
descriptions of the actors however simply state functionality that is performed by the system itself, and hence should be part of the UC
descriptions.

Corrective actions

No corrective actions are required since the actor tasks were already stated in the UC descriptions. The superfluous actors should be removed
from the UC model.

Table 7 Second iteration matches

Match No. UC Diagram Diagrammatic-antipattern matched Elements involved

2.1.1 Merged UC diagram (Fig. 9) a1. Accessing a generalized concrete UC Actors: Database Integrator

UCs: Query Remote Database and Inte-
grate Query Results.

2.1.2 a2. UCs containing common and excep-
tional functionality

UCs: Query Remote Database, Update
Collections Data and Geocode Specimen.

2.1.3 a4. Accessing an extension UC Actor: Database Integrator

UCs: Update Collections Data

Table 8 Second iteration analysis

Antipattern match 2.1.1

Analysis

This antipattern match resulted from replacing the inappropriately used extend relationships with generalization relationships. The generalized
UC Query Remote Database is concrete and is indirectly accessed by the Database Integrator actor through the Integrate Query Results UC.

Corrective actions

According to the “Accessing a generalized concrete UC” antipattern (a1.), this situation may be fixed by setting the generalized Query Remote
Database UC to be abstract. To conserve space, this minor change to the merged UC diagram (Fig. 9) will not be shown.

Antipattern match 2.1.2

Analysis

The shared UC Update Collections Data contains subroutine behavior relative to the Geocode Specimen and Query Remote Database UCs.
Corrective actions

The include relationship with the UC and the Update Collections Data UC should remain intact. Meanwhile, the extend relationship between
the Update Collections Data UC and the Query Remote Database UC should be replaced with an include relationship. To conserve space, this
minor amendment to the merged UC diagram (Fig. 9) will not be shown.

Antipattern match 2.1.3

Analysis:

This antipattern no longer exists due to the corrective actions undertaken after analyzing antipattern match 2.1.2.

123

Improving the quality of use case models using antipatterns 157

Table 9 Addressing issues in the MAPSTEDI UC model

Issue Discussion and Validation Resolved

1 The newly created generalized actor User represents the only role that exists while performing the shared UCs. Hence,
the generalization relationship between the actors Research User and Public User, and their parent actor User, correctly
indicates that they have the same role while performing the shared UCs. Having a single generalized actor access the
previously shared UCs also eliminates the misinterpretation that both the Research User and Public User actors are
required to be involved with the system simultaneously in order to perform the UCs. The only unshared UC Access
Sensitive Data remains associated only with the Research User actor.

✓

2 Removal of the improper preconditions from the Search Collections Data UC complies with a widely accepted author-
ing guideline discussed in [9]. Now the Search Collections Data UC is appropriately dependent on the Download
Collections Data UC through an include relationship only.

✓

3 The generalization relationships appropriately represent the hierarchy of services offered by the UCs in the Query
Databases UC diagram.

✓

4 The analytical value of the UC model is greatly improved as the functionally decomposed UCs (Edit Collections Data,
Upload DGB and UCM Data and Run QC Tests) are removed. Their respective functionalities are appropriately merged
into their respective base UCs so that the base UCs describe complete and useful behavior.

✓

5 The Geocode Specimen UC is now appropriately set to include the Update Collections Data UC, representing the
correct type of dependency that exists between the UCs.

✓

6 Each actor must have a distinct role. The Data Editor actor represents part of the role already performed by the Geocoder
actor. The superfluous Data Editor actor is now removed from the UC model, eliminating redundancy and improving
understandability.

✓

7 UCs must contain the correct level of detail in order to provide a complete and meaningful service to an actor. Each of
the three overly general UCs shared by the administrator actors are now split into two separate UCs. The newly created
UCs contain specific behavior to allow each administrator actor to perform their respective administrative duties.

✓

8 Every actor described in the UC model must be depicted at least once in a UC diagram. An actor is invalid if its
description states functionality that is performed by the system itself. Therefore, actors Database Upload Process and
Database QA/QC Process are now removed from the UC model.

✓

9 A UC should only be concrete if it can offer a complete service to an actor, which is not the case with the Query Remote
Database UC. Therefore, the Query Remote Database UC was set to be abstract to force one of its implementing UCs
to carryout the specific behavior of querying a remote database.

✓

Table 10 Examining the MAPSTEDI UC model for violations of the heuristics presented in [7]

Heuristic Violations
detected

1 “Every UC must be defined.” (Covered by a17.) 0

Analysis: Every UC was appropriately defined. The template used for each UC contained fields for the UC name, actors
involved, preconditions, postconditions and the actual description of the intended behavior. The description section of each UC
stated a basic flow as well as alternative whenever applicable.

2 “Abstract UCs must be realized with included or inheriting concrete UCs.” (Covered by a1. and a12.) 0

3 “A concrete UC cannot include an abstract UC (unless it is realized).” (Covered by a3., a9. and a12.)

Analysis: There was no abstract UCs in the original MAPSTEDI UC model.

4 “Extending UC relationships can only exist between concrete UCs.” (Covered by a4., a6. and a9.) 0

Analysis: The extend relationship only existed in two diagrams: (a) the Data Edits and (b) the Database Queries UC diagrams.
The Data Edits had one extend relationship between two concrete UCs. Meanwhile, the extend relationships between all UCs
in the Database Queries UC diagrams are concrete.

5 “Use activity diagrams to show all possible scenarios associated with a UC.” N/A

6 “The definition of a UC must be consistent across all diagrams defining the UC.”

7 “Use sequence diagrams rather than collaboration diagrams to define one thread or path for a process.”

8 “Avoid realization relationships and artifacts in the analysis models.”

Analysis: Only the UC model of the MAPSTEDI was available. Moreover, this case study focuses on comparing approaches
that improve UC models early in the development cycle where only the UC model is available.

123

158 M. El-Attar, J. Miller

Fig. 8 The Database Access UC diagram after the first iteration

its adoption by analysts and minimize the requisite learning
curve, while supporting the basic notational subset of UC
models. Automation support for detecting antipatterns is
provided via the tool ARBIUM, which is also discussed in
this paper. ARBIUM provides (semi-) automation support to
23 antipatterns presented in the repository and allows ana-
lysts to define their own antipatterns.

The effectiveness of the approach was demonstrated upon
the MAPSTEDI system. Before applying the proposed pro-
cess, the MAPSTEDI UC model suffered from a number of
quality degradation issues. Most issues (antipatterns) were
detected automatically using ARBIUM. Most antipattern
matches addressed resulted in changes; however, there were
also a small number of antipattern matches that are consid-
ered false positives. This indicates that real-world UC mod-
els are highly vulnerable to poor modeling habits and design
decisions and often require improvements. Many of these
improvements were critical as they improved the correct-
ness and consistency of the UC models. Others enhanced the
understandability of the UC models and made them more
analytical. The antipattern matches revealed the issues that
existed in the original UC model that had been overlooked.
The issues were addressed and resolved accordingly, result-
ing in a higher quality UC model.

Future work will initially be based around the creation of
more UC modeling antipatterns; and improving the usabil-
ity (e.g. the incorporation diagrammatic construct drawing
package) of ARBIUM with respect to the construction of

Fig. 9 A merged view of the
remaining three UC diagrams
after the first iteration

Fig. 10 The Administrative
Process UC diagram after the
first iteration

123

Improving the quality of use case models using antipatterns 159

new domain-specific anti-patterns. ARBIUM can also be
upgraded to perform limited textual analysis, making use
of any structure that may exist in UC descriptions, such as
the actual template. Another beneficial upgrade to ARBIUM
is the implementation of transformation rules written in a
model transformation language such as queries/views/trans-
formation (QVT) [36] to formalize and automate changes
applied to UC diagrams.

Other future work can be directed towards creating a hier-
archy of antipatterns. The hierarchy will act as an antipatterns
matching strategy for analysts to apply the proposed tech-
nique more efficiently. Analysts will be able to determine
which antipatterns to look for first and when to start a new
iteration. This will help reduce the effort and time required
to apply the technique. The antipatterns matching strategy
may then be implemented in ARBIUM to further automate
the technique and reduce the analyst’s workload.

Finally, it will be beneficial to improve the UC modeling
notation in order to prevent the occurrence of many antipat-
terns. For example, while analyzing a large number of UC
models and applying the proposed technique, it was discov-
ered that many antipatterns matches existed due to a nota-
tional limitation in UC modeling. The extend relationship is
used to model both exceptional behavior and optional behav-
ior. One of the greatest advantages of UC modeling is that it
contains a small notational set, allowing its ease of use. How-
ever, it may be advantageous to introduce two additional rela-
tionships that explicitly represent optional and exceptional
behavior separately.

References

1. Adolph, S., Bramble, P.: Patterns for Effective Use Cases. Addison-
Wesley, Reading (2002)

2. Anda, B., Sjøberg, D., Jørgensen, M.: Quality and understandabil-
ity in use case models. In: Lindskov Knudsen, J. (ed.) Proceedings
of the 15th European Conference on Object-Oriented Program-
ming, pp. 402–428 (2001)

3. Anda, B., Sjøberg, D.I.K.: Towards an inspection technique for
use case models. In: Proceedings of the 14th International Con-
ference on Software Engineering and Knowledge Engineering,
pp. 127–134 (2002)

4. Anderson, E., Bradley, M., Brinko, R.: Use Case and business rules:
styles of documenting business rules in use cases. In: Addendum
to the ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (1997)

5. Armour, F., Miller, G.: Advanced Use Case Modeling. Addison-
Wesley, Reading (2000)

6. Ben Achour, C., Rolland, C., Maiden, N.A.M., Souveyet, C.: Guid-
ing use case authoring: results of an empirical study. In: Proceed-
ings of the IEEE Symposium on Requirements Engineering (1999)

7. Berenbach B.: The evaluation of large, complex UML analysis and
design models. In: Proceedings of the 26th International Confer-
ence on Software Engineering, pp. 232–241 (2004)

8. Biddle, B., Noble, J., Tempero, E.: Essential use cases and respon-
sibility in object-oriented development. Aust. Comput. Sci. Com-
mun. 24, 7–16 (2002)

9. Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley,
Reading (2002)

10. Boehm, B.: Software Engineering—Economics. Prentice Hall,
Englewood Cliffs (1981)

11. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Lan-
guage User Guide, 2nd edn. Addison-Wesley, Reading (2005)

12. Butler, G., Xu, L.: Cascaded refactoring for framework evolu-
tion. In: Proceedings of the Symposium on Software Reusability,
pp. 51–57. ACM Press, New York (2001)

13. Chandrasekaran, P.: How use case modeling policies have affected
the success of various projects (or how to improve use case mod-
eling). In: Addendum to the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (1997)

14. Cockburn, A.: Structuring Use Cases with Goals, Tech. Report.
Human and Tech., 7691 Dell Rd, Salt Lake City, UT 84121,
HaT.TR.95.1, (1995)

15. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley,
Reading (2000)

16. Constantine, L.L.: Essential modeling: use cases for user interfaces.
In: ACM Interactions, vol. 2, pp. 34–46, Apr 1995

17. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic
approach to the natural language requirements quality: benefits of
the use of an automatic tool. In: Proceedings of the 26th Annual
NASA Goddard Software Workshop, Nov., pp. 97–105 (2001)

18. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of Lin-
guistic Techniques for Use Case analysis. In: Proceedings of IEEE
Joint International Conference on Requirements Engineering,
pp. 157–164 (2002)

19. Firesmith, D.G.: Use Case Modeling Guidelines. In: Proceedings
of Technology of Object-Oriented Languages and Systems, vol.
30, p 184 (1999)

20. Gilb, T., Graham, D.: Software Inspection. Addison-Wesley,
Reading (1993)

21. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL
models by automatic snapshot generation. In: Proceedings of the
6th International Conference on the Unified Modeling Language
(2003)

22. Gomaa, H.: Designing Software Product Lines with UML. Addi-
son Wiley, Reading (2001)

23. Gomaa, H.: Use cases for distributed real-time software architec-
tures. In: Proceedings of the Joint Workshop on Parallel and Dis-
tributed Real-Time Systems, pp. 34–42 (1997)

24. Jaaksi, A.: Our Cases with Use Cases. J. Object-Oriented Pro-
gram. 10, 58–64 (1998)

25. Jacobson, I.: Use Cases—Yesterday, Today and Tomorrow. The
Rational Edge (2003)

26. Kroll, P., Kruchten, P.: The Rational Unified Process Made
Easy: A Practitioner’s Guide To The RUP. Addison-Wesley,
Reading (2003)

27. Kruchten, P.: Modeling component systems with the unified model-
ing language. In: Proceedings of International Workshop on Com-
ponent-Based Software Engineering (1997)

28. Kruchten, P.: The Rational Unified Process: an Introduction, 2nd
edn. Addison-Wesley Longman Inc., Boston (1999)

29. Kulak, D., Guiney, E.: Use Cases: Requirements in Context.
Addison-Wesley, Reading (2000)

30. Lilly, S.: Use Case Pitfalls: Top 10 problems from real projects
using use cases. In: Proceedings of Technology of Object-Oriented
Languages and Systems (1999)

31. McBeen, P.: Use Case Inspection List. http://www.mcbreen.ab.ca/
papers/QAUseCases.html (2007). Accessed Nov 2007

32. McCoy, J.: Requirements use case tool (RUT). In: Companion of
the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 104–
105 (2003)

123

http://www.mcbreen.ab.ca/papers/QAUseCases.html
http://www.mcbreen.ab.ca/papers/QAUseCases.html

160 M. El-Attar, J. Miller

33. Medvidovic, N., Rosenblum, D., Redmiles, D., Robbins, J.: Model-
ing software architectures in the Unified Modeling Language. ACM
Trans. Softw. Eng. Methodol. 11, 2–57 (2002)

34. Museum and EPOB, University of Colorado, MAPSTEDI
UC Model (2008). http://mapstedi.colorado.edu/documents/
Mapstedi_High_Level_Use_Case_Model.pdf. Accessed

35. Object Management Group, UML Superstructure Specification
(2005). http://www.omg.org/docs/formal/05-07-04.pdf, Version
2.0 formal/05-07-04. Accessed Dec 2005

36. Object Management Group, “MOF 2.0 Query/Views/Transforma-
tions RFP,” Dec. 2002, http://www.omg.org/cgi-bin/apps/doc?ad/
05-03-02.pdf.

37. Overgraad, G., Palmkvist, K.: Use Cases Patterns and Blue-
prints. Addison-Wesley, Reading (2005)

38. Ren, S., Rui, K., Butler, G.: Refactoring the scenario specifica-
tion: a message sequence chart approach. In: Proceedings of 9th
Object-Oriented Information Systems, pp. 294–298 (2003)

39. Ren, S., Butler, G., Rui, K., Xu, J., Yu, W., Luo, R.: A prototype
tool for use case refactoring. In: Proceedings of the 6th Interna-
tional Conference on Enterprise Information Systems, pp. 173–178
(2004)

40. Rosenberg, D., Scott, K: Use Case Driven Object Modeling with
UML. Addison-Wesley, Readings (1999)

41. Rosenberg, D., Kendall, S.: Top Ten Use Case Mistakes (2007).
http://www.sdmagazine.com/documents/s=815/sdm0102c/.
Accessed Nov 2007

42. Rui, K., Butler, G.: Refactoring Use case models: the metamodel.
In: Oudshoorn, M. (ed.) Proceedings of 25th Computer Science
Conference, pp. 4–7 (2003)

43. Ryndina, O., Kritzinger, P.: Improving Requirements Specification:
Verification of UC Models with Susan. Tech. Report CS04-06-00,
Department of Computer Science, University of Cape Town (2004)

44. Schneider, G., Winters, J.: Applying Use Cases—a Practical
Guide. Addison-Wesley, Reading (1998)

45. STEAM Laboratory website, University of Alberta, “Use Case
Modeling Antipatterns (2008). http://www.steam.ualberta.ca/
main/research_areas/Use%20Case%20Antipatterns%20Website.
htm. Accessed Aug 2008

46. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, Reading (1998)

47. Wikipedia: The Definition of Antipatterns (2007), http://c2.com/
cgi/wiki?AntiPattern

48. Wohlin, C., Korner, U.: Software Faults: Spreading, Detection and
Costs. Softw. Eng. J. 5, 33–42 (1990)

49. Xu, J., Yu, W., Rui, K., Butler, G.: Use case refactoring: a tool
and a case study. In: Proceedings of 11th Asia Pacific Software
Engineering Conference, pp. 484–491 (2004)

Author Biographies

Mohamed El-Attar is Ph.D. can-
didate (Software Engineering) at the
University of Alberta and a mem-
ber of the STEAM laboratory. His
research interests include Require-
ments Engineering, in particular with
UML and use cases, object-oriented
analysis and design, model transforma-
tion and empirical studies. Mohamed
received a B.Eng in Computer Systems
from Carleton University. Contact him
melattar@ece.ualberta.ca

James Miller received the B.Sc.
and Ph.D. degrees in Computer
Science from the University of
Strathclyde, Scotland. During this
period, he worked on the ESPRIT
project GENEDIS on the produc-
tion of a real-time stereovision
system. Subsequently, he worked
at the United Kingdom’s National
Electronic Research Initiative on
Pattern Recognition as a Principal
Scientist, before returning to the
University of Strathclyde to accept
a lectureship, and subsequently
a senior lectureship in Computer

Science. Initially during this period his research interests were in Com-
puter Vision, and he was a co-investigator on the ESPRIT 2 project
VIDIMUS. Since 1993, his research interests have been in Software
and Systems Engineering. In 2000, he joined the Department of Elec-
trical and Computer Engineering at the University of Alberta as a full
professor and in 2003 became an adjunct professor at the Department
of Electrical and Computer Engineering at the University of Calgary.
He is the principal investigator in a number of research projects that
investigate software verification, validation and evaluation issues across
various domains, including embedded, web-based and ubiquitous envi-
ronments. He has published over one hundred refereed journal and con-
ference papers on Software and Systems Engineering (see www.steam.
ualberta.ca for details on recent directions); and currently serves on the
program committee for the IEEE International Symposium on Empir-
ical Software Engineering and Measurement; and sits on the editorial
board of the Journal of Empirical Software Engineering.

123

http://mapstedi.colorado.edu/documents/Mapstedi_High_Level_Use_Case_Model.pdf
http://mapstedi.colorado.edu/documents/Mapstedi_High_Level_Use_Case_Model.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf
http://www.sdmagazine.com/documents/s=815/sdm0102c/
http://www.steam.ualberta.ca/main/research_areas/Use%20Case%20Antipatterns%20Website.htm
http://www.steam.ualberta.ca/main/research_areas/Use%20Case%20Antipatterns%20Website.htm
http://www.steam.ualberta.ca/main/research_areas/Use%20Case%20Antipatterns%20Website.htm
http://c2.com/cgi/wiki?AntiPattern
http://c2.com/cgi/wiki?AntiPattern
www.steam.ualberta.ca
www.steam.ualberta.ca

	Improving the quality of use case models using antipatterns
	Abstract
	1 Introduction
	2 Background
	2.1 Related work on UC model quality improvement
	2.1.1 Computer-supported verification of UC models---state of the art
	2.1.2 Other approaches

	2.2 Quality attributes of UC models

	3 UC modeling antipatterns
	3.1 Advantages of using antipatterns: what can antipatterns do?
	3.2 Matching antipatterns with UC models
	3.3 Using OCL to describe unsound diagrammatic structures
	3.4 Domain independent versus domain dependent antipatterns
	3.5 Examples of UC modeling antipatterns

	4 Tool support using ARBIUM
	5 Evaluation
	5.1 Definition and motivation
	5.2 Case study formulation
	5.3 Analysis and interpretation of the results
	5.4 Discussion of results and validation
	5.5 Comparison of alternative approaches

	6 Conclusions, future work and suggestions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

