
Softw Syst Model (2009) 8:347–364
DOI 10.1007/s10270-008-0092-1

SPECIAL SECTION PAPER

Model transformation by example using inductive logic programming

Zoltán Balogh · Dániel Varró

Received: 11 July 2007 / Revised: 8 April 2008 / Accepted: 13 May 2008 / Published online: 13 August 2008
© Springer-Verlag 2008

Abstract Model transformation by example is a novel
approach in model-driven software engineering to derive
model transformation rules from an initial prototypical set of
interrelated source and target models, which describe critical
cases of the model transformation problem in a purely decla-
rative way. In the current paper, we automate this approach
using inductive logic programming (Muggleton and Raedt
in J Logic Program 19-20:629–679, 1994) which aims at
the inductive construction of first-order clausal theories from
examples and background knowledge.

Keywords Model transformation · By-example synthesis ·
Inductive logic programming

1 Introduction

The efficient design of automated model transformations bet-
ween modeling languages has become a major challenge
to model-driven engineering (MDE) by now. Many highly
expressive transformation languages and efficient model

Communicated by Dr. Jean Bezivin.

This work was partially supported by the SENSORIA European
project (IST-3-016004). Dániel Varró was also supported by the
J. Bolyai Scholarship.

Z. Balogh · D. Varró (B)
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudósok krt. 2, 1117 Budapest, Hungary
e-mail: varro@mit.bme.hu

Z. Balogh · D. Varró
OptXware Research and Development Ltd,
Budapest, Hungary
e-mail: zoltan.balogh@optxware.hu

transformation tools are emerging to support this problem.
The evolution trend of model transformation languages is
characterized by gradually increasing the abstraction level
of such languages to declarative, rule-based formalisms as
promoted by the QVT (Queries, Views and Transformations)
[23] standard of the OMG.

However, a common deficiency of all these languages and
tools is that their transformation language is substantially
different from the source and target models they transform.
As a consequence, transformation designers need to unders-
tand not only the transformation problem, i.e. how to map
source models to target models, but significant knowledge
is required in the transformation language itself to forma-
lize the solution. Unfortunately, many domain experts, who
are specialized in the source and target languages, lack such
skills in underlying transformation technologies.

Model transformation by example (MTBE) is a novel
approach (first introduced in [34]) to bridge this conceptual
gap in transformation design. The essence of the approach is
to derive model transformation rules from an initial prototy-
pical set of interrelated source and target models, which des-
cribe critical cases of the model transformation problem in a
purely declarative way. A main advantage of the approach is
that transformation designers use the concepts of the source
and target modeling languages for the specification of the
transformation, while the implementation, i.e. the actual
model transformation rules are generated (semi-) automati-
cally. In our context, (semi-)automatic rule generation means
that transformation designers give hints how source and tar-
get models can potentially be interconnected in the form of a
mapping metamodel. Then the actual contextual conditions
used in the transformation rules are derived automatically
based upon the prototypical source and target model pairs.

The current paper proposes the use of inductive logic pro-
gramming [22] (ILP) to automate the model transformation

123

348 Z. Balogh, D. Varró

by example approach. ILP can be defined as an intersection
of inductive learning and logic programming as it aims at
the inductive construction of first-order clausal theories from
examples and background knowledge, thus using induction
instead of deduction as the basic mode of inference.

As the main practical advantage of this interpretation, we
demonstrate that by using existing ILP tools, we can achieve a
higher level of automation for MTBE compared to our initial
experiences in [34] using relatively small examples.

The current paper extends [34] by providing a systematic
approach based on first-order logic foundations instead of
an intuitive solution. Compared to [35], the current paper
provides significantly more details on the core approach and
main algorithms (in Sect. 6). Furthermore, we discuss certain
limitations that were revealed by a complex case study for
our MTBE approach. Finally, we also sketch a prototype tool
chain that has been implemented as an initial tool support for
MTBE.

The rest of this paper is structured as follows. In Sect. 2,
we present a running example which will be used throughout
the paper. Section 3 provides a brief introduction to induc-
tive logic programming. Section 4 gives an overview of the
core concepts of the MTBE approach. Section 5 summa-
rizes the inputs required for MTBE. In Sect. 6, which is the
central part of the current paper, we give a detailed presen-
tation on how to automate MTBE using inductive logic pro-
gramming. In Sect. 7, we collected some known limitations
of our approach, while Sect. 8 sketches a prototypical tool
chain that we used for carrying out our case studies. Finally,
Sect. 9 discusses related work and Sect. 10 concludes our
paper.

2 Running example: object-relational mapping

As the running example of the current paper, we use a stan-
dard object-relational mapping problem where UML class
diagrams are mapped into relational database tables. We
expect that this case study is relatively simple and well-
known to the reader, which allows us to better concentrate
on the technicalities of our approach, and enables an easier
comparison with existing rule-based solutions to the same
problem.

In addition to this simple case study, we also fully
investigated a complex model transformation aiming to
analyze UML statecharts by Petri net techniques [14].
While we gained significant insight especially in the limita-
tions of MTBE by this transformation, we regard it too com-
plex and technical to demonstrate our approach. Finally, we
decided to present the identified limitations (Sect. 7) within
the object-relational domain to keep the current paper more
focused.

Fig. 1 Source and target metamodels of the example

Source and target metamodels

The source and target languages (UML and relational
databases, respectively) are captured by their respective meta-
models in Fig. 1. To avoid mixing the notions of UML class
diagrams and metamodels, we will refer to the concepts of
the metamodel using nodes and edges (more precisely, node
types and edge types) for classes and associations, respecti-
vely. Since model transformation rules will be captured by
graph transformation [28], this terminology is compliant with
the notions of our model transformation domain.

UML class diagrams consist of class nodes arranged into
an inheritance hierarchy (by parent edges). Classes contain
attribute nodes (attrs), which are typed over classes (type).
Directed edges are leading from a source (src) class to a
destination (dst) class.

Relational databases consist of table nodes, which are
composed of column nodes by tcols edges. Each table has
a single primary key column (pkey). Foreign key (FKey)
constraints can be assigned to tables (fkeys). Such a key refers
to columns (cref) of another table, and it is related to the
columns of local referring table by kcols edges.

Informal transformation rules

The main guidelines of (this variant of) the object-relational
mapping can be summarized as follows:

− Each top-level UML class (i.e. a top-most class in the
inheritance tree) is projected into a database table. Two
additional columns are derived automatically for each
top-level class: one for storing a unique identifier (pri-
mary key), and one for storing the type information of
instances.

− Each attribute of a UML class will appear as a column
in the table related to the top-level ancestor of the class.
For the sake of simplicity, the type of an attribute is

123

Model transformation by example using inductive logic programming 349

restricted to user-defined classes. The structural
consistency of storing only valid object instances in
columns is maintained by foreign key constraints.

− Each UML association is projected into a table with
two columns pointing to the tables related to the source
and the target classes of the association by foreign key
constraints.

Obviously, our aim is to semi-automatically derive
transformation rules in correspondance with the informal
guidelines above by only relying on a prototypical set of
interrelated source and target models serving as the specifi-
cation of the transformation.

3 An overview of inductive logic programming

Inductive logic programming [22] (ILP) aims at inductively
constructing first-order clausal hypotheses from examples
and background knowledge. In case of ILP, induction is typi-
cally interpreted as abduction combined with justification.
Abduction is the process of hypothesis formation from some
facts while justification (or confirmation) denotes the degree
of belief in a certain hypothesis given a certain amount of
evidence.

Formally, the problem of inductive inference can be defi-
ned as follows. Given some (a priori) background knowledge
B together with a set of positive facts E+ and negative facts
E−, find a hypothesis H such that the following conditions
hold:

Prior satisfiability. All e ∈ E− are false in M+(B) where
M+(B) denotes the minimal Herbrand model of B (deno-
ted as B ∧ E− �|� �).

Posterior satisfiability (consistency). All e ∈ E− are false
in M+(B ∧ H) (denoted as B ∧ H ∧ E− �|� �).

Prior necessity. E+ is not a consequence of B, i.e. some
e ∈ E+ are false in M+(B) (denoted as B �|� E+).

Posterior sufficiency (completeness). E+ is a consequence
of B and H , i.e. all e ∈ E− are true in M+(B ∧ H)

(denoted as B ∧ H |� E+).

A generic ILP algorithm [22] keeps track of a queue of
candidate hypotheses. It repeatedly selects (and removes) a
hypothesis from the queue, and expands that hypothesis using
inference rules. The expanded hypothesis is then added to the
candidate queue, which may be pruned to discard unpromi-
sing hypotheses from further consideration.

Many existing ILP implementations like Aleph [33] that
we used for our experiments are closely related to Prolog,
and the following restrictions are quite typical:

– B is restricted to definite clauses where the conjunction
of (positive or negative) body clauses implies the head,
formally

Head : −Body1, Body2, . . . Bodyn

– E+ and E− are restricted to ground facts.

Further language and search restrictions can be defined
in Aleph by using mode, type and determination declara-
tions. Moreover, we can also ask in Aleph to find all nega-
tive constraints, i.e. Prolog clauses of the form false :- Body1,
Body2,. . . ,Bodyn , More details on negative constraints will be
given in Sect. 6.3.

As a demonstrative example, let us consider some traditio-
nal family relationship. The background knowledge B may
contain the following clauses:

grandparent(X,Y) :- father(X,Z),
parent(Z,Y).

father(george ,mary).
mother(mary ,daniel).
mother(mary ,greg).

Some positive examples E+ can be given as follows:

grandfather(george ,daniel).
grandfather(george ,greg).

Finally, some negative facts E− are also listed:

grandfather(daniel ,george).
grandfather(mary ,daniel).

Believing B, and faced with the facts E+ and E−, Aleph
is able to set up the following hypothesis H by default.

grandfather(X,Y) :- father(X,Z),
mother(Z,Y).

By default settings, Aleph will set up a hypothesis only for
clauses used in the positive and negative examples. However,
there is some (limited) support for abductive learning [1]
when Aleph will be able to derive hypothesis not only for the
clause covered by positive and negative examples:

parent(X,Y) :- mother(X,Y).

Our results presented in the current paper rely exclusively
on Aleph, which is considered to be a powerful inductive
logic programming engine. In the future, we plan to investi-
gate alternate ILP engines such as Progol [25], for instance to
reveal if tool-specific limitations can be overcome this way.

123

350 Z. Balogh, D. Varró

Fig. 2 Model transformation by example: process overview

4 Model transformation by example (MTBE)

4.1 Overview of model transformation by example

Model transformations by example (MTBE) [34] is defined
as a highly iterative and interactive process as illustrated in
Fig. 2.

Step 1: Set-up of prototype mapping models. The trans-
formation designer assembles an initial set of interrelated
source and target model pairs, which are called prototype
mapping models in the rest of the paper. These prototype
mapping models typically capture critical situations of
the transformation problem by showing how the source
and target model elements should be interrelated by
appropriate mapping constructs.

Step 2: Automated derivation of rules. Based on the pro-
totype mapping models, the MTBE framework should
synthesize a set of model transformation rules, which
correctly transform as many prototypical source models
into their target equivalents as possible.

Step 3: Manual refinement of rules. The transformation
designer can refine the rules manually at any time by
adding attribute conditions or providing generalizations
of existing rules.

Step 4: Automated execution of rules. The transformation
designer validates the correctness of the synthesized rules
by executing them on additional source–target model
pairs as test cases, which will serve as additional pro-
totype mapping models. Then the development process
is started all over again.

The main vision of the “model transformations by
example” approach is that the transformation designer mainly
uses the concepts of the source and target languages as the
“transformation language”, which is very intuitive. He or she
does not need to learn a new formalism for capturing model
transformations.

While the current paper focuses on automating the “model
transformation by example” approach, we still regard MTBE
as a highly iterative and interactive process. Our experience
also shows that it is very rare that the final set of transfor-
mation rules is derived right from the initial set of prototype
models. Furthermore, transformation designer can overrule
the automatically generated rules at any time, especially,
when certain critical abstractions or generalizations are not
detected automatically.

Concerning correctness issues, one would expect as a
minimum requirement that the derived model transforma-
tion rules should correctly transform all prototypical source
models into their target equivalent. However, this is not
always practical, since overspecification or incorrect specifi-
cation in prototype mapping models may decrease the chance
of deriving a meaningful set of model transformation rules.
Since MTBE takes prototype mapping models as specifica-
tions (unintended) omissions in them might easily result in
incorrect rules. Therefore, MTBE approaches should ideally
tolerate a certain amount of “noise” when processing proto-
type mapping models.

4.2 Steps of automation

From a technical point of view, the process of model trans-
formation by example can be split into the following phases
to support the semi-automatic generation of transformation
rules:

1. Set up an initial prototype mapping model. In the first
step, an initial prototype mapping model is set up
manually from scratch or by using existing source and
target models.

2. Context analysis.Then we identify (positive and negative)
constraints in the source and target models for the pre-
sence of each mapping node. For instance, only top-level
classes are related to database tables or a table related to a
class always contains a primary key column. For this pur-
pose, we first examine the contexts of all mapped source
and target nodes.

3. Connectivity analysis. For each edge in the target meta-
model, we identify contextual conditions (in the source
and mapping models) for the existence of that target edge.

4. Derive transformation rules for target nodes. Then we
derive transformation rules for all (types of) mapping
nodes that derive only target nodes using the information
derived during context analysis. Informally, the context
of source nodes will identify the precondition of the
derived model transformation rules, while the context of
target nodes will define the postcondition of model trans-
formation rules. As a result, we create target nodes from
source nodes interconnected by a mapping structure
(of some type).

123

Model transformation by example using inductive logic programming 351

5. Derive transformation rules for target edges. Finally, we
derive transformation rules for each target edge based
upon the information gained during connectivity analysis
of source and target elements.

6. Iterative refinement. The derived rules can be refined at
any time by extending the prototype mapping model or
manually generalizing the automatically generated rules.

In the current paper, we discuss how the MTBE approach
can be automated by using inductive logic programming [22]
as an underlying framework. Our goal is to show that it is pos-
sible to construct relatively small prototype mapping models
for practical problems from which the complete set of model
transformation rules can be derived semi-automatically. Fur-
thermore, we also identify critical transformation problems
where our approach failed to derive a complete solution.

5 Inputs of model transformation by example

Model transformation by example takes a set of prototypi-
cal interconnected source and target model pairs as inputs.
We now discuss how such interconnections can be descri-
bed by mapping metamodels (Sect. 5.1), and how proto-
type mapping models are defined based upon this metamodel
(Sect. 5.2). We also collect our assumptions for the structure
of prototype mapping models that we rely upon for automa-
tion (Sect. 5.3).

5.1 Mapping metamodel

In many model transformation approaches, source and target
metamodels (of Fig. 1) are complemented with another meta-
model, which specifies the interconnections allowed between
elements of the source and target languages. This metamodel
has various names. In triple graph grammars [29] it is called
a correspondence metamodel, while it is also called a wea-
ving (meta)model in [4,8]. In previous works of the authors,
the term reference metamodel was used [35], which unfor-
tunately coincides with reference models introduced in [16].
In order to avoid unintended clashes in terminology, in the
current paper, we refer to this metamodel as mapping meta-
model (see Fig. 3). Instances of this metamodel are called
(prototype) mapping models.

In our case, three types of mapping nodes are defined,
namely, Cls2Tab, Asc2Tab, Attr2Col , which pair classes to
tables, associations to tables and attributes to columns, res-
pectively. In addition, various typed edges interconnect these
mapping nodes to elements in the source and target meta-
models.

− In case of Cls2Tab, edge class points to a Class in the
source language, edge tab links to the corresponding

Fig. 3 Mapping metamodel

Table, edge pkey marks the primary key Column in the
database model, while kind denotes the Column storing
the type information for the instances.

− In case of Asc2Tab, an edge assoc points to an Asso-
ciation, and a tab edge denotes the Table derived as main
corresponding target element. In addition, a pair of edges
(prefixed with src and trg, respectively) are used to mark
the Columns storing the identifiers of classes and foreign
key FKey restrictions (as denoted by edges srccol , srckey ,
trgcol and trgkey .

− Finally, in case of Attr2Col , an edge attr links a source
Attribute with a corresponding target Column.

We require that all edges in the mapping metamodel (i.e.
those associations that lead out from classes of the mapping
metamodel) have an at most one multiplicity, which is not
depicted explicitly in Fig. 3. As a consequence, each mapping
node in a model uniquely identifies all the interconnected
elements in the source and target models.

Furthermore, for the sake of convenience, we assume that
these (outgoing) edges of the mapping metamodel can be
(totally) ordered for each type of mapping nodes and edges
pointing to source elements precede edges leading to target
elements. For instance, we can assume that the edges of the
Cls2Tab node are ordered in the following way: class, tab,
pkey and kind .

These conditions enable to represent (model-level) map-
ping structures as tuples

re f (ri , src1, . . . , srcn, trg1, . . . , trgm)

where re f corresponds to the type of the mapping node, ri

is the unique identifier of the node, src1, . . . , srcn are nodes
of the source model (defined by the order of mapping edges),
while trg1, . . . , trgm are nodes of the target model linked by
appropriate mapping edges.

Assumptions on mapping metamodel. It is worth pointing
out that we assume that transformation designers provide
the mapping metamodel as input to model transformation

123

352 Z. Balogh, D. Varró

Fig. 4 A prototype mapping model

by example. This metamodel already contains certain hints
from the transformation designer on the actual transforma-
tion rules. For instance, we learn from the metamodel that
classes are expected to be transformed to tables and columns.

However, the mapping metamodel does not specify (i)
under what condition a class is transformed into a table, (ii)
if the same class can be mapped to different tables, (iii) if two
classes are mapped into the same tables, or (iv) if classes are
ever transformed to columns at all. These contextual condi-
tions will be defined below implicitly by prototype mapping
models. The automation discussed in this paper will exclu-
sively focus on automating the derivation of model transfor-
mation rules to precisely capture contextual conditions with
respect to its inputs, namely, the mapping metamodel and
prototype mapping models.

Finally, we regard the derivation of mapping metamodel
as a separate automation problem, which is subject to future
work. First results for (semi-)automating this step were
reported in [11].

5.2 Prototype mapping models

Prototype mapping models can be obtained by interrelating
any existing (real) source and target models. However, pro-
totype mapping models are preferably small, thus they are
rather created by hand to incorporate critical situations of the
transformation problem. These prototype mapping models
can also serve as test cases later on. A sample prototype map-

ping model is depicted in Fig. 4 for demonstration
purposes.

This prototype mapping model contains three UML
classes (Employee, Manager and Clerk where the first is the
parent of the other two), an attribute boss of type Manager
belonging to class Clerk and an attribute favourite of type Clerk
belonging to the class Manager .

The prototype mapping model captures that two relational
database tables are present in the target model (tMngr and
tClerk). Both tables have three columns:

− The columns of tMngr : idMngr for the unique identifier,
kindMngr for storing the kind of instance, and favourite-
Clerk which is the target equivalent of the favourite attri-
bute together with a foreign key fkeyFavourClerk

− The columns of tClerk : idClerk , kindClerk and clerkBoss,
where the latter is the target equivalent of the boss
attribute together with a corresponding foreign key
fkeyClerkBoss.

It is worth pointing out that not all source nodes are neces-
sarily linked to a mapping node. In such a case, the corres-
ponding source element does not have an equivalent in the
target model (see the prototype mapping model of Fig. 5 for
an example). However, each target element is required to be
linked to exactly one mapping node, otherwise, their exis-
tence is not causally dependent on the source model, which
will be one of our assumptions.

123

Model transformation by example using inductive logic programming 353

Fig. 5 Prototype mapping
model with unmapped source
elements

5.3 Assumptions

For this derivation process we make the following assump-
tions for the structure of the prototype mapping models:

Assumption 1: Each mapping node is connected to all the
source nodes on which it is causally dependent. This
requirement guarantees that prototype mapping models
describe exactly the intent of the transformation desi-
gners, thus they can be used as a specification for the
automation step.

Assumption 2: Each mapping node is connected to all the
target nodes which cannot exist without each other (i.e.
belong to the same component). For instance, in our map-
ping, a table generated from a class always has a primary
key column, thus both are linked to the same mapping
node. Note that this is a major syntactic difference com-
pared to [34], however, it fully corresponds to the idea of
weaving models [4] where complex mapping structures
are used.

Assumption 3: Each target node is linked to exactly one
mapping node. For instance, a table and its primary key
column will be linked to the same mapping node. This
requirement prescribes that the transformation is deter-
ministic in a sense that the creation of each target node
is uniquely identified by a mapping node and a corres-
ponding mapping edge, and no merging of target nodes
is required.

Assumption 4: The existence of a node in the target model
depends only on the existence of a certain mapping node,
i.e. source and target models are dependent on each other
only indirectly via mapping structures.

Assumption 5: The existence of an edge in the target model
depends only on contextual conditions of the source
model and the existence of certain structure (but does
not directly depend on the target model itself).

While these assumptions seem to cover a large set of
practical model transformations, we will also discuss cer-
tain transformation problems in Sect. 7 where some of these
conditions do not hold, and we ran into problems when auto-
mating MTBE.

6 Automating model transformation by example

We now discuss how inductive logic programming can be
used to automate the model transformation by example
approach. First we sketch how prototype mapping models
can be constructed and mapped into corresponding Prolog
clauses (Sect. 6.1). Then, we discuss one by one how to auto-
mate each phase of MTBE (Sects. 6.2–6.5).

6.1 From prototype mapping models to Prolog clauses

Source and target models are mapped into corresponding Pro-
log clauses following a straightforward representation where
each node type in the source or target metamodel is mapped
into a unary predicate, and each edge type in the metamodel
is transformed into a binary predicate. In order to avoid name
clashes, the name of the source node type is generated as a
prefix for binary predicates for edges.

− On the one hand, (source or target) model nodes cor-
respond to a ground predicate (over the unique identifier
which represents the object), which predicate defines the
type of that node.

− On the other hand, (source or target) edges have no
unique identifiers in our representation, the correspon-
ding binary predicate defines the source and target nodes,
respectively.

Note that this is not a conceptual limitation of our
approach: this mapping to Prolog clauses could be easily

123

354 Z. Balogh, D. Varró

refined to incorporate identifiers of edges. Unsurprisingly,
there is a penalty in the performance of the underlying ILP
engine to incorporate this change.

For instance, in the UML part of the prototype mapping
model of Fig. 4, a class Clerk with an attribute boss of type
class Manager can be represented by the following Prolog
clauses (provided that clerk , manager and boss are unique
identifiers this time).

% Clauses for source model
class(clerk).
class(manager).
attribute(boss).
attribute(favourite).
class_attrs(manager ,favourite).
class_attrs(clerk ,boss).
attribute_type(boss ,manager).
attribute_type(favourite ,clerk).

The representation of its corresponding target model (see
Fig. 4) is the following.

% Clauses for target model
table(tMngr).
column(idMngr).
column(kindMngr).
column(favouriteClerk).
table_tcols(tMngr ,idMngr).
table_tcols(tMngr ,kindMngr).
table_tcols(tMngr ,favouriteClerk).
table_pkey(tMngr ,idMngr).
fkey(fkeyFavourClerk).
table_fkey(tMngr ,fkeyFavourClerk).
fkey_cref(fkeyFavourClerk ,idClerk).
fkey_kcols(fkeyFavourClerk ,

favouriteClerk).

table(tClerk).
column(idClerk).
column(kindClerk).
column(clerkBoss).
table_tcols(tClerk ,idClerk).
table_tcols(tClerk ,kindClerk).
table_tcols(tClerk ,clerkBoss).
table_pkey(tClerk ,idClerk).
fkey(fkeyClerkBoss).
table_fkey(tClerk ,fkeyClerkBoss).
fkey_cref(fkeyClerkBoss ,idMngr).
fkey_kcols(fkeyClerkBoss ,clerkBoss).

Representation of mapping models. Mapping (weaving)
models are represented in a slightly different way in order
to improve the performance of the ILP engine. In Sect. 5.1,
we made an assumption on the structure of mapping models,
namely, that each mapping node and its outgoing edges can

be represented by a tuple

re f (ri , src1, . . . , srcn, trg1, . . . , trgm).

As a consequence a straightforward representation of map-
ping models is the following:

% Clauses for mapping model
cls2tab(r1 ,manager ,tMngr ,idMngr ,kindMngr).
cls2tab(r2 ,clerk ,tClerk ,idClerk ,kindClerk).
attr2col(r3 ,boss ,clerkBoss ,fkeyClerkBoss).
attr2col(r4 ,favourite ,favouriteClerk ,

fkeyFavourClerk).

Furthermore, each mapping node is uniquely identified by
(ordered) source nodes src1, . . . , srcn as well as (ordered)
target nodes trg1, . . . , trgm . Therefore, the identifier ri can
be omitted from the tuple, moreover, the tuple can be pro-
jected to the source and target elements without changing its
truth value, i.e.

re f (ri , src1, . . . , srcn, trg1, . . . , trgm) ⇐⇒
re f (src1, . . . , srcn) ⇐⇒

re f (trg1, . . . , trgm).

As a consequence, we can interchangeably use the follo-
wing clauses in the different phases of MTBE:

% Alternative clauses for mapping models
cls2tab(r1 ,manager ,tMngr ,idMngr ,kindMngr).
cls2tab(manager).
cls2tab(tMngr ,idMngr ,kindMngr).

Inheritance and helper edges. While the simplified meta-
models of Fig. 1 do not contain generalization, we empha-
size that the inheritance hierarchy of metamodel nodes and
edges (i.e. the generalization of classes and the refinement of
association ends as in MOF 2.0) can be mapped into Prolog
clauses of the form

superclass(X) :- subclass(X)

when superclass is a generalization of subclass in some meta-
model. Such clauses will be part of our background know-
ledge.

Various model transformation approaches introduce the
concept of helper (derived) edges in order to reduce the com-
plexity of individual transformation rules. When the actual
model transformation rules are derived, we assume that such
helper edges of the source language are already part of our
background knowledge. As a result, helper edges enable the
ILP engine to derive more general hypothesis as an output.

Background knowledge on helper edges can be obtained
in two different ways.

− We allow domain experts to directly add helper informa-
tion to the knowledge base.

123

Model transformation by example using inductive logic programming 355

− However, we can also use ILP to derive such helper
information automatically in a preprocessing phase car-
ried out on the source and target languages separately.

In our running example, the background knowledge may
contain the following definitions defined by some domain
expert (currently on the Prolog level).

ancestor(X,Y) :- class_parent(X,Y).
ancestor(X,Y) :- class_parent(Z,Y),

ancestor(X,Z).

This definition of the ancestor relation can also be taught in
a preprocessing phase by the ILP engine with an appropriate
set of positive and negative examples (i.e. using the same
technique as described below). In such a case, the domain
expert only gives a hint that the ancestor relation may be
important (by adding it to the metamodel as a derived ele-
ment), and supplies an appropriate set of examples. In the
sequel, we assume the presence of such helper relations in
the background knowledge, which were derived by analyzing
the source and target models prior to the model transforma-
tion itself.

Moreover, by using abductive learning [1,21] techniques,
Aleph can also synthesize the ancestor relation on demand,
i.e. when learning other predicates. In this case, we only need
to assume that our background knowledge contains sound but
not necessarily complete information on helper edges like
ancestor , i.e. the domain expert needs to give some positive
examples for the ancestor edge.

Furthermore, there is intensive research on predicate lear-
ning [7] in the field of inductive logic programming when
absolutely no hint is required from domain experts on helper
edges, i.e. not even the existence of ancestor edge is required
to be given as a hint. However, Aleph unfortunately does not
yet support this feature.

6.2 Context analysis

In this phase, we identify constraints in the source and target
models for the presence of each mapping node.

Context analysis for the source model. In case of context
analysis of the source model, our background knowledge B
will consist of all the facts derived from the source model
(by taking the source projection of the prototype mapping
model), and the positive and negative facts (E+ and E−)
will consist of tuples on the mapping node in question. This
way, a separate ILP problem will be derived for each mapping
node.

For instance, we will identify contextual conditions in
the source model when a mapping node of type attr2col
should appear. For this purpose, we construct B from

Fig. 4 to obtain the facts listed above. For positive facts,
we have attr2col(boss), and attr2col(favourite) and for negative
facts, we can state attr2col(manager), attr2col(employee) and
attr2col(clerk). In Aleph, all these specifications need to be
listed in separate files, but for presentation purposes, we will
list them together.

% Background knowledge
class(clerk).
class_attrs(clerk ,boss).
attribute(boss).
class(manager).
class_attrs(manager ,favourite).
attribute_type(boss ,manager).
attribute_type(favourite ,clerk).
% Positive facts
attr2col(boss).
attr2col(favourite).
% Negative facts
attr2col(clerk).
attr2col(manager).
attr2col(employee).

When deriving negative facts from a prototype mapping
model, we currently build on closed world assumption as a
frame condition, i.e. negative facts are derived for all identi-
fiers part of the source model and not listed in positive facts.
However, this is not the only possibility, and we can expli-
citly ask the user to provide (an incomplete) list of nega-
tive examples. While this latter approach seems to be more
cumbersome, in many case the ILP engine can better tole-
rate noise, i.e. when transformation designers unintendedly
include (or exclude) certain elements from the prototype
mapping model.

Aleph will automatically derive the following rule as hypo-
thesis by using core inductive logic programming algorithms:

attr2col(X) :- attribute(X).

Note that this result fulfills our expectations provided that
only well-formed models are considered when language-
specific constraints are checked separately.

However, we might want to specify that attributes are
required to be attached to classes, and that each attribute
is required to have a type in order to be transformed into a
corresponding column. Since ILP derives the most general
solution, these constraints are not incorporated in the solution
by default. Therefore, we enrich our background knowledge
and negative facts with fictitious model elements as follows.

% Background knowledge
% ... as before +
attribute(notype).

123

356 Z. Balogh, D. Varró

attribute(noattrs).
class_attrs(notype ,manager).
class_attrs(noattribute ,clerk).
attribute_type(noattrs ,manager).
attrs(noattribute ,manager).
% Negative facts
% ... as before
% Negative facts
% ... as before +
attr2col(noattrs).
attr2col(notype).
attr2col(noattribute).

As a result, the ILP engine will derive the following rule:

attr2col(A) :- attribute(A),
class_attrs(B,A),
attribute_type(A,C).

This rule will properly handle incomplete model as well.
The price we paid for that is that both the background know-
ledge B and the negative facts E− need to be extended with
carefully selected cases, which can be cumbersome. Fortu-
nately, if a sufficient number of real source and target model
pairs are available, they might already cover cases to handle
such incomplete models. Anyhow, it is a subject of future
research to incorporate language constraints into automati-
cally generated transformation rules.

In the general case, the ILP engine might derive multiple
rules as a hypothesis, which means a disjunction of the dif-
ferent bodies. This is normal for the context analysis of the
source model, since the same type of mapping nodes can be
used with different source contexts.

Context analysis for the target model. As for the context ana-
lysis of the target model, the ILP engine needs to identify tri-
vial hypotheses due to Assumption 3 (discussed in Sect. 5.3),
which prescribes causal dependency of target nodes on the
mapping structure. Therefore, we reverse the direction of our
investigations, and use predicates corresponding to mapping
structures as background knowledge, predicates correspon-
ding to the nodes of the target model as positive and negative
examples. Below we present an example for identifying the
target context for FKeys.

% Background knowledge
attr2col(favouriteClerk ,fkeyFavourClerk).
attr2col(clerkBoss ,fkeyClerkBoss).
cls2tab(tMngr ,idMngr ,kindMngr).
cls2tab(tClerk ,idClerk ,kindClerk).
% Positive facts
fkey(fkeyClerkBoss).
% Negative facts
fkey(clerkBoss).
fkey(tMngr).

fkey(idMngr).
fkey(kindMngr).
fkey(tClerk).
fkey(idClerk).
fkey(kindClerk).

As a result, the ILP engine will derive the following
hypothesis for the target model, which states that a map-
ping node of type attr2col should always be connected to an
FKey in the target model.

fkey(A) :- attr2col(B,A).

In contrast to the context analysis of the source model, it
is an error now if the ILP engine derives multiple rules for
the target model as Assumption 3 would be violated.

In addition to this context analysis, one could also carry out
context analysis with reverse roles, which can help construc-
ting reverse transformations, but this step is out of scope for
the current paper.

Aleph-specific settings. There are a couple of important
Aleph-specific parameters which need to be set appropria-
tely to drive the search engine for the proper hypothesis. We
identified the following most important ones.

− Number of variables (i). We need to limit the number of
fresh variables used in constructing a hypothesis. For ins-
tance, B and C were such fresh variables in the example
of attr2col above.

− Clause length (clauselength). An upper bound needs to
be set on the number of clauses used when constructing
a hypothesis. For instance, the hypothesized attr2col rule
contains three clauses (and the header).

− Determination. In case of determination, we need to set
which clauses may have an impact on the hypothesi-
zed clause. Without the loss of generality, we assume
that all source clauses are allowed to have an impact on
the existence all mapping nodes. For instance, determi-
nation(attr2col, type) prescribes that predicate type may
induce attr2col .

− Modes. Mode settings (i) prescribe the determinism or
non-determinism of a predicate, (ii) define which
variables of a clause are input and which are output
variables, and (iii) assign (pseudo-)types to each pre-
dicate. For instance,

:- mode(*, attrs(+class,-attribute))

denotes that predicate attrs may succeed several times
(*) if its first parameter is an input variable (+) and its
second parameter is an output variable (-).

123

Model transformation by example using inductive logic programming 357

Note that our pessimistic approach for setting determi-
nation and modes causes only minor performance penalty
in case of small knowledge bases, and a prototype mapping
model is, typically, relatively small. We have experienced
performance problems only in our complex case study of
[14] when a more careful adjustment of these parameters
was required.

6.3 Learning negative constraints

In a typical model transformation, the existence of a cer-
tain mapping structure may depend on the non-existence
of certain structures in the source model. ILP systems fre-
quently contain support to identify such negative constraints
by means of constraint learning. The technique of constraint
learning aims at identifying negative constraints of the form
false :- b1, b2, ... , bn., i.e. the conjunction of the bodies should
never happen.

Learning of negative constraints will be demonstrated on
the intuitive mapping rule that only top-level classes should
be transformed into database tables. For this purpose, we use
an additional prototype mapping model, which is illustrated
in Fig. 5.

In case of constraint learning, we only need to construct the
background knowledge without positive and negative facts
from the source model and the mapping structures as follows:

% Background knowledge
class(animal).
class(dog).
class_parent(dog ,animal).
class_attrs(dog ,chase).
attribute(chase).
class(cat).
attribute_type(chase ,animal).
cls2tab(animal).

With appropriate Aleph settings, the following constraints
will be induced automatically (which are specific to the map-
ping node cls2tab):

false :- cls2tab(A),
class_parent(A,A).

false :- cls2tab(A),
class_parent(B,A).

The first constraint is, in fact, a language restriction of
UML (i.e. no class is a parent of itself), while the second
derived constraint is a negative constraint of the transforma-
tion itself.

A practical problem of the Aleph system we needed to
face is that all synthesized constraints are listed instead of
listing only the most general ones. Therefore, we need to

prune the enumerated list of constraints according to clause
entailment in order to keep only the most general constraints.
For instance, the following constraint is derived by Aleph,
but should be filtered out as presenting redundant knowledge
with respect to the previous results:

false :- cls2tab(A),
class_parent(A,A),
class_parent(B,A).

We carry out this pruning by submitting the derived
constraints to the Prover9 first-order theorem prover [26]. For
this purpose, we present the identified constraints as assump-
tions to the theorem prover, and the prover tries to construct a
formal proof that the more complex constraint implies any of
the more simple ones. As for the example above, our assump-
tions are the following:

∀A¬(cls2tab(A) ∧ class_parent(A, A)) (1)

∀A∀B¬(cls2tab(A) ∧ class_parent(B, A)) (2)

∀A∀B¬(cls2tab(A) ∧ class_parent(A, A) ∧ class_parent(B, A)). (3)

As a theorem we aim to prove that

∀A∀B(cls2tab(A) ∧ class_parent(A, A) ∧ class_parent(B, A)) →
(cls2tab(A) ∧ class_parent(A, A) ∨ cls2tab(A)

∧class_parent(B, A)).

Prior to submitting similar problems to the theorem pro-
ver, the constraints are ordered according to their length. All
(non-filtered) constraints up to length n−1 can be used when
proving the entailment of a constraint of length n. Fortu-
nately, such theorems are proved immediately by Prover9,
therefore, the effort related to the use of sophisticated
theorem provers is negligible.

6.4 Connectivity analysis

In case of connectivity analysis, we derive different kind of
ILP problems for each edge in the target metamodel. The
background knowledge B now contains all elements from
the source model and all mapping structures as well. This
time, the tuple of the mapping structure contains both source
and target mappings as follows:

re f (src1, . . . , srcn, trg1, . . . , trgm).

Positive and negative facts (E+ and E−) are derived this time
from an edge in the target metamodel by deriving a separate
ILP problem from each edge type.

As a demonstration, we carry out the connectivity ana-
lysis for target edge cref , which is performed (from an ILP
perspective) in a similar way as context analysis.

123

358 Z. Balogh, D. Varró

% Background knowledge
% Source model
class(employee).
class(clerk).
class_parent(clerk ,employee).
class_attrs(clerk ,boss).
attribute(boss).
class(manager).
class_parent(manager ,employee).
class_attrs(manager ,favourite).
attribute_type (boss ,manager).
attribute_type (favourite ,clerk).
% Mapping model
attr2col(favourite ,favouriteClerk ,

fkeyFavourClerk).
attr2col(boss ,clerkBoss ,fkeyClerkBoss).
cls2tab(manager ,tMngr ,idMngr ,kindMngr).
cls2tab(clerk ,tClerk ,idClerk ,kindClerk).
% Helper edges
ancestor(X,Y) :- class_parent(X,Y).
ancestor(X,Y) :- class_parent(Z,Y),

ancestor(X,Z).

% Positive facts
cref(fkeyClerkBoss ,idMngr).
cref(fkeyFavourClerk ,idClerk).
% Negative facts = all type consistent
% pairs which are not in positive facts
cref(fkeyClerkBoss ,kindMngr).
cref(fkeyClerkBoss ,idClerk).
cref(fkeyClerkBoss ,kindClerk).
cref(fkeyClerkBoss ,clerkBoss).
cref(fkeyClerkBoss ,favouriteClerk).
cref(fkeyFavourClerk ,kindMngr).
cref(fkeyFavourClerk ,idMngr).
cref(fkeyFavourClerk ,kindClerk).
cref(fkeyFavourClerk ,clerkBoss).
cref(fkeyFavourClerk ,favouriteClerk).

Further explanation is needed to understand how negative
facts are derived this time. Here, we enumerate all FKey and
Column pairs in the model which are not connected by a cref
edge. In this step, we impose closed world assumption on our
model, thus the set of (type-conforming) object identifiers are
exactly those that can be found in the model.

The Aleph ILP system will derive the following hypothe-
sis for this prototype mapping model.

cref(A,B) :- cls2tab(C, D, B, E),
attr2col(F, G, A),
attribute_type(F, C).

This rule states that a target node A (of type FKey) is
connected to a target node B (of type Column) with an edge of
type cref , if class C which belongs to the table D containing
B as its primary key is the type of attribute F , which is the
source equivalent of the foreign key A.

During a validation phase, domain experts might reveal
that this is only a partial solution since type edges may lead
into a subclass (descendant) of class E , and not necessa-
rily into E itself. Therefore, if we incrementally refine our

knowledge base by adding the prototype mapping model of
Fig. 5, a new Prolog inference rule is derived in addition to the
previous one, which fully corresponds to our expectations:

cref(A,B) :- attr2col(C,A,D),
attribute_type(C,E),
ancestor(E,F),
cls2tab(F,G,B,H).

This rule extends the previous one by stating that maybe
an ancestor F of the class E (which is the type of attribute C)
has the corresponding table which stores the mapped primary
key column B.

With appropriate additional training for associations,
Aleph will derive six rules which “generates” a cref edge
(using src and dst instead of type, and asc2tab instead of
attr2col).

6.5 Generation of model transformation rules

Now we discuss how to derive model transformation rules
based upon the inference rules derived by the ILP engine
during context analysis and connectivity rules. We use graph
transformation rules [9] as the underlying transformation lan-
guage, which provides a pattern and rule based manipula-
tion technique for graph models frequently used in various
model transformation tools. Each rule application transforms
a graph by replacing a part of it with another graph. We derive
a different set of rules for generating target nodes and edges.

Graph transformation rules. Formally, a graph transforma-
tion rule contains a left-hand side graph LHS, a right-hand
side graph RHS, and a negative application condition graph
NAC. The LHS and the NAC graphs are together called the
precondition PRE of the rule.

The application of a GT rule to a host model M replaces
a matching of the LHS in M by an image of the RHS. This
is performed by (i) finding a matching of LHS in M (by pat-
tern matching), (ii) checking the negative application condi-
tions NAC (which prohibit the presence of certain nodes and
edges) (iii) removing a part of the model M that can be map-
ped to LHS but not to RHS yielding the context model, and
(iv) gluing the context model with an image of the RHS by
adding new objects and links (that can be mapped to the RHS
but not to the LHS) obtaining the derived model M′.

In the paper, we use a (slightly modified) graphical repre-
sentation initially introduced in [12] where the union of these
graphs is presented. Elements to be deleted are marked by
the del keyword, elements to be created are labeled by new ,
while elements in the NAC graph are denoted by neg.

Rules for generating target nodes. The first kind of GT rules
that we derive are required for generating all the target nodes.

123

Model transformation by example using inductive logic programming 359

For this purpose, we combine the source and the target context
of a certain mapping node as discussed in Algorithm 1.

− The LHS of the rule is constructed for each source context
of a mapping node (Lines 2–5).

− The RHS of the rule contains a copy of the LHS and
the entire target context of the same mapping node inter-
connected by an appropriate mapping structure (Lines
6–12).

− A separate NAC is derived for each negative constraint
containing a mapping node of a certain type (Lines
13–15).

− Finally, the mapping structure generated by the RHS is
added to prevent applying the rule twice on the same
source object.

As a demonstration, we list the graph transformation rule
derived from mapping node cls2tab in Fig. 6. The rule
expresses that for each class C without a child superclass
CP , a table T is generated with two columns Id and Kind
(which are, in fact, attached to table T later on by transfor-
mation rules generating edges).

Rules for generating target edges. A second set of graph
transformation rules aims at interconnecting previously gene-
rated target nodes with appropriate edges. For this purpose,
we need to combine the Prolog rules derived during connecti-
vity analysis with target contexts. During connectivity analy-
sis, we identify what conditions are required in the SOURCE
language in order to generate a target edge of a certain type.

− The LHS of such GT rule is constituted from the
inference rules derived by connectivity analysis. These
inference rules only identify source edges and intercon-
necting mapping structures, thus the types of the related
nodes need to be inferred. (Lines 2–5)

− The RHS is simply a copy of the LHS extended with the
corresponding target edge. (Lines 6–7)

− The same edge is added as a NAC is derived to prevent
multiple application of the rule on the same match.
(Line 8)

Fig. 6 GT rule to derive for target nodes

Fig. 7 A GT rule to derive target cref edges

As a demonstration, we present one GT rule (out of the
six) derived for generating cref edges in Fig. 7. In the cur-
rent paper, we systematically separated graph transforma-
tion rules into node creation rules and edge creation rules
for separation of transformation concerns. It is subject to
future research to merge these automatically generated rules
in order to obtain a more compact set of transformation rules.

Helper edges can be treated in two ways. A first solution is
when each helper edge is added explicitly to the metamodel,
thus they are ordinary edges. These edges are then derived
by ordinary graph transformation rules. Alternatively, a hel-
per edge can be represented as a recursive pattern [3] which
is supported by model transformation frameworks like
VIATRA or TEFKAT.

Practical assessment of MTBE for the object-relational map-
ping. As an initial case study for our approach, we implemen-
ted the object-relational mapping with MTBE. The source
model used in the prototype mapping models contained alto-
gether ten classes, three attributes and four associations. Its
target equivalent contained 8 tables with 2 or 3 columns for
each, and 11 primary key constraints.

Using this relatively small prototype mapping model, we
were able to automatically generate 20 graph transformation
rules (3 for deriving target nodes and 17 for deriving target
edges) by using MTBE, which turned out to be the complete
transformation.

Obviously, this prototype mapping model was not created
directly from scratch, but it was a result of three iterations.
However, all rules have been derived automatically, which
exceeded our expectations expressed in [34].

7 Known limitations

In order to assess the conceptual and practical limitations
of our approach, we have chosen a complex model trans-
formation problem as another case study, where a large abs-
traction gap needs to be bridged between the source and target
languages. The transformation was originally defined in

123

360 Z. Balogh, D. Varró

Algorithm 1 An algorithm for generating graph transformation rules to derive target nodes
RN : a node from the mapping metamodel
pRN : a node predicate derived from the mapping metamodel
SrcCtx : list of inference rules derived as the source context for RN
T rgCtx : list of inference rules derived as the target context for RN
NegConstr : negative constraints derived for RN

fun generate_GT_rule_for_nodes(RN , SrcCtx , T rgCtx , NegConstr)=
1: for all inference rule psrc

RN :- a1, a2, an in SrcCtx do
2: create an empty GT rule R = (L H S, R H S, N AC)

// Creating the LHS
3: add a node for each variable appearing in the body a1, a2, an
4: infer types for the nodes based on the metamodels
5: add an edge to the L H S for each predicate of the body a1,a2,an

// Creating the RHS
6: copy LHS to RHS
7: add a mapping node r1 for pRN
8: add edges to interconnect r1 with all source nodes identified by psrc

RN

9: for all inference rule ptrg
RN :- b1 in T rgCtx do

10: add a target node nb1 to R H S for the body b1
11: add an edge to interconnect r1 with the new target node nb1
12: end for

// Creating NACs based on constraints
13: for all negative constraint false :- n1, nk in NegConstr do
14: add the graph corresponding to the body of the constraint as a new NAC
15: end for

// NAC to prevent applying a rule twice on a matching
16: add a mapping node r2 node to a new NAC
17: add edges to all the source nodes a1, a2, an from r2
18: end for

Algorithm 2 An algorithm for generating graph transformation rules to derive target edges
RE : an edge from the target metamodel
pRE (A, B): an edge predicate derived from the target metamodel
Connect : list of inference rules derived connectivity analysis for RE

fun generate_GT_rule_for_edges(RE , SrcCtx , T rgCtx , NegConstr)=
1: for all inference rule pRE (A, B) :- a1, a2, an in Connect do
2: create an empty GT rule R = (L H S, R H S, N AC)

// Creating the LHS
3: add a node for each variable appearing in the body a1, a2, an
4: infer types for the nodes based on the metamodels
5: add an edge to the L H S for each predicate of the body a1,a2,an

// Creating the RHS
6: copy LHS to RHS
7: add a target edge e1 of type RE leading from node A to node B

// Creating NAC
8: add the same edge as a NAC as well
9: end for

[14], and it aims to derive a Petri net representation of UML
statecharts for model analysis purposes.

On the one hand, most of the transformation rules have
been generated automatically even for this complex case
study. However, two conceptual limitations of the current
MTBE approach using ILP techniques have also been
revealed. These limitations do not violate our assumptions
(see Sect. 5.3), but since they arise from practical problems,
they demonstrate that these assumptions might be too res-
trictive for certain model transformation problems.

In order to avoid the presentation of the complex trans-
formation itself, we have taken these problems out of their
context and present an analogy in the context of the object-
relational mapping.

7.1 Non-deterministic transformations

Let us assume that our object-relation transformation requires
that each UML class can only be processed if all its parents

123

Model transformation by example using inductive logic programming 361

Fig. 8 A sample class hierarchy for ordering classes

have already been processed. Thus, we need to define a total
order between the classes as an output, which can be deno-
ted by a chain of next edges, for instance. Thus, the goal is
to derive transformation rules for generating this total order
using some sample chains as prototype mapping models.

Figure 8 depicts one class hierarchy where class c1 is the
parent of class c2 and c3, while class c4 is not in a parent
relation with any of the previous classes. One possible orde-
ring of these classes is c1,c2,c3,c4, but c1,c4,c3,c2 is also a
possible ordering.

In this case, the transformation has a non-deterministic
result, i.e. any total order respecting the partial order imposed
by the parent relation is a valid result. However, the main pro-
blem is that this transformation has two consecutive phases:
GT rules generating the first next edge are different from
GT rules generating subsequent next edges. However, these
phases were not revealed by the ILP engine.

On the other hand, when the transformation rules are suc-
cessfully derived, their confluence can be investigated by
well-known techniques of graph transformation (such as
critical pair analysis [15]).

7.2 Counting in transformations

The second problem is related to counting during model
transformations. Let us assume that each table in the target
database model should have an attribute counting the number
of classes it represents. For instance, when a top-level class
is transformed into a table, this attribute of the table should
count the number of descendants of that class.

When transforming the class hierarchy presented in Fig. 8,
two tables corresponding to classes c1 and c4 are generated.
The counter for the corresponding table of c1 should be set
to 3, while the counter related to c4 is set to 1.

Here the problem is that such a counting is only possible
if (i) we use higher-order logic where one can refer to the
number of matches for a certain predicate, or (ii) processing
the matches sequentially as long as an unprocessed match is
found.

7.3 Practical limitations

One complexity aspect of the model transformation [14] is
that one source node is related to many target nodes due

to the abstraction gap between high-level UML models and
low-level Petri nets.

As a consequence, both the number of variables (i) and
the clause length (clauselength) of the hypothesis (which are
the most important parameters of the ILP engine concerning
performance) had to be kept at a relatively large numbers
(above 10). Thus, we experienced cases when the generation
of inference rules was not instantaneous (but still completed
within 5–10 s).

However, more critical performance would be experien-
ced when the source model have the same complexity, i.e.
when the derivation of a target edge depends on a large source
context with a large number of edges. While our experience
shows that this is not so common in a typical model trans-
formation problem, these issues should be kept in mind as
potential practical limitations of using an ILP engine for the
model transformation by example approach.

It is worth pointing out that Aleph requires at least two
positive examples in order to carry out generalization, other-
wise only the facts themselves will be retrieved instead of
inference rules.

8 Prototype tool support

We have implemented a prototypical tool chain (illustrated
in Fig. 9) to automate MTBE by integrating an off-the-shelf
model transformation tool with an ILP engine using Eclipse
as the underlying tool framework.

− Source and target metamodels and models as well as
prototype mapping models are constructed and stored as
ordinary models in the VIATRA model space.

Fig. 9 A prototype tool chain for automating MTBE

123

362 Z. Balogh, D. Varró

− Then a first transformation takes prototype mapping
models and generates a set of ILP problems in the way
discussed in Sect. 6.

− These models are fed into the Aleph ILP engine to induce
inference rules (for context analysis or connectivity ana-
lysis) or learn negative constraints. Obviously, this step
is hidden from the user, as Aleph runs in the background.

− Ongoing work aims at integrating the Prover9 theorem
prover in order to filter redundant constraints as descri-
bed in Sect. 6.3.

− Based upon the discovered inference rules, transforma-
tion rules are synthesized in the graph transformation
based language of the VIATRA2 framework [3].

− These transformation rules are then executed as ordinary
transformations within VIATRA2 to complete the life-
cycle of our model transformation by example approach.

This initial tool chain was already a great help for us in
carrying out our experiments. Since a different ILP problem
is submitted to Aleph for each type of mapping node or tar-
get edge, their manual derivation was already infeasible in
practice.

However, additional future work should be carried out to
improve the usability of the tool chain. Probably the most
critical issue is that prototype mapping models need to be
defined using the abstract syntax of the language, which is
frequently too complex notation for domain experts. Ideally,
mappings could be defined using the concrete syntax of
source and target languages.

9 Related work

While the current paper is based on [34,35], Strommer et al.
independently presented a very similar approach for model
transformation by example in [36]. As the main conceptual
difference between the two approaches is that [36] presents
an object-based approach which finally derives ATL [17]
rules for model transformation, while [34] is graph-based
and derives graph transformation rules.

In a recent paper of Strommer [31], their MTBE approach
is applied to a model transformation problem in the business
process modeling domain and several new MTBE operators
used on the concrete syntax were identified. Disregarding
the string manipulation (which is obviously out of scope for
the current paper), all the rest can be incorporated in our
approach. In this sense, our limitations in Sect. 7 only arise in
significantly more complex model transformation problems.

Naturally, the model transformation by example approach
show correspondence to various “by-example” approaches.
Query-by-example [38] aims at proposing a language for
querying relational data constructed from sample tables filled

with example rows and constraints. A related topic in the
field of databases is semantic query optimization [20,30],
which aims at learning a semantically equivalent query which
yields a more efficient execution plan that satisfy the integrity
constraints and dependencies.

The by-example approach has also been proposed in the
XML world to derive XML schema transformers [10,19,
24,37], which generate XSLT code to carry out transfor-
mations between XML documents. Advanced XSLT tools
are also capable of generating XSLT scripts from schema-
level (like MapForce from Altova [2]) or document
(instance-)level mappings (such as the pioneering XSLera-
tor from IBM Alphaworks, or the more recent StylisStudio
[32]).

Programming by example [6,27], where the programmer
(often the end-user) demonstrates actions on example data,
and the computer records and possibly generalizes these
actions, has also proven quite successful.

While the current paper heavily uses advanced tools
in inductive logic programming [22], other fields of logic
programming has also been popular in various model trans-
formation approaches like answer set programming for
approximating change propagation in [5] or F-Logic as a
transformation language in [13].

The derivation of executable graph transformation rules
from declarative triple graph grammar (TGG) rules is inves-
tigated in [18]. While TGG rules are quite close to the source
and target modeling languages themselves, they are still crea-
ted manually by the transformation designer.

10 Conclusions

In the current paper, we proposed to use inductive logic
programming tools to automate the model transformation
by example approach where model transformation rules are
derived from an initial prototypical set of interrelated source
and target models. We believe that the use of inductive logic
programming is a significant novelty in the field of model
transformations.

Let us briefly summarize our experience in using ILP and
Aleph. Our experiments carried out on the object relational
mapping and a complex model analysis transformation [14]
demonstrated that ILP (and Aleph) is a very promising way
for implementing MTBE due to the following reasons.

− Partly to our own surprise, we were able to derive all
the transformation rules of the object-relational mapping
automatically with Aleph, which exceeded our expecta-
tions in [34].

− For rule training, we used relatively small prototype map-
ping models.

123

Model transformation by example using inductive logic programming 363

− We used default Aleph settings almost everywhere (only
the number of new variables and clauses were set
manually). Determination and mode settings were deri-
ved systematically when using Aleph for MTBE.

Of course, we experienced certain limitations as well,
which were presented in Sect. 7. Therefore, our main inten-
tions for future work is to resolve these limitations.

− Non-deterministic transformations were problematic,
especially, when an edge of a certain type needs to be
generated in a certain order.

− We failed to implement counting in transformation rules,
when a target attribute contains the number of matches of
a source pattern. This way, handling of attributes values
is subject to future work. We expect that data mining
techniques could be usable to resolve this issue.

Despite these limitations we believe that the model trans-
formation by example approach has a strong potential, and
inductive logic programming turns out to be a powerful tool
when implementing it.

References

1. Ade, H., Denecker, M.: AILP: Abductive inductive logic program-
ming. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pp. 1201–1209. Morgan Kaufmann,
Montréal (1995)

2. Altova:. MapForce 2006. http://www.altova.com/features_
xml2xml_mapforce.html

3. Balogh, A., Varró, D.: Advanced model transformation language
constructs in the VIATRA2 framework. In: ACM Symposium on
Applied Computing—Model Transformation Track (SAC 2006),
pp. 1280–1287. ACM Press, Dijon (2006)

4. Bézivin, J.: On the unification power of models. Softw. Syst.
Model. 4(2), 171–188 (2005)

5. Cicchetti, A., di Ruscio, D., Eramo, R.: Towards propagation of
changes by model approximations. In: Proceedings of the 10th
International Enterprise Distributed Object Computing Conference
Workshops (EDOC 2006), p. 24. IEEE Computer Society. Work-
shop on Models of Enterprise Computing (2006)

6. Cypher, A. (ed.): Watch What I Do: Programming by Demonstra-
tion. MIT Press, Cambridge (1993)

7. De Raedt, L., Lavrač, N.: Multiple predicate learning in two induc-
tive logic programming settings. J. Pure Appl. Logic 4(2), 227–254
(1996)

8. Didonet Del Fabro, M., Bézivin, J., Jouault, F., Valduriez, P.:
Applying generic model management to data mapping. In: Jour-
nées Bases de Données Avancés (BDA), pp. 343–355 (2005)

9. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Hand-
book on Graph Grammars and Computing by Graph Transforma-
tion, vol. 2: Applications, Languages and Tools. World Scientific,
Singapore (1999)

10. Erwig, M.: Toward the automatic derivation of XML transforma-
tions. In: First International Workshop on XML Schema and Data
Management (XSDM’03), LNCS, vol. 2814, pp. 342–354.
Springer, Heidelberg (2003)

11. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration
using matching transformations and weaving models. In: SAC
2007: Proceedings of the 2007 ACM Symposium on Applied com-
puting, pp. 963–970. ACM, New York (2007)

12. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams:
a new graph transformation language based on UML and Java.
In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
Proceedings of Theory and Application to Graph Transformations
(TAGT’98), LNCS, vol. 1764. Springer, Heidelberg (2000)

13. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Trans-
formation: The missing link of MDA. In: Corradini, A., Ehrig, H.,
Kreowski, H.-J., Rozenberg, G. (eds.) Proceedings of ICGT 2002:
First International Conference on Graph Transformation, LNCS,
vol. 2505, pp. 90–105. Springer, Barcelona (2002)

14. Huszerl, G., Majzik, I., Pataricza, A., Kosmidis, K., Dal Cin, M.:
Quantitative analysis of UML Statechart models of dependable
systems. Comput. J. 45(3), 260–277 (2002)

15. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attri-
buted graph transformation systems. In: Corradini, A., Ehrig, H.,
Kreowski, H.-J., Rozenberg, G. (eds.) Proceedings of ICGT 2002:
First International Conference on Graph Transformation, LNCS,
vol. 2505, pp. 161–176. Springer, Barcelona (2002)

16. Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification.
In: Proceedings of Formal Methods for Open Object-Based Distri-
buted Systems (FMOODS 2006), LNCS, vol. 4037, pp. 171–185.
Springer, Heidelberg (2006)

17. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Model
Transformations in Practice Workshop at MODELS 2005, LNCS,
vol. 3844, pp. 128–138. Springer, Heidelberg (2005)

18. Königs, A., Schürr, A.: MDI—a rule-based multi-document and
tool integration approach. J. Softw. Syst. Model., Special Section
on Model-based Tool Integration (2006, in press)

19. Lechner, S., Schrefl, M.: Defining web schema transformers by
example. In: Marik, V., Retschitzegger, W., Stepankova, O. (eds.)
DEXA, LNCS, vol. 2736, pp. 46–56. Springer, Heidelberg (2003)

20. Lowden, B.G.T., Robinson, J.: Constructing inter-relational rules
for semantic query optimisation. In: Hameurlain, A., Cicchetti, R.,
Traunmüller, R. (eds.) Proceedings of Database and Expert Sys-
tems Applications, 13th International Conference, DEXA 2002,
Aix-en-Provence, France, 2–6 September, LNCS, vol. 2453,
pp. 587–596. Springer, Heidelberg (2002)

21. Moyle, S.: Using theory completion to learn a navigation control
program. In: Matwin, S., Sammut, C. (eds.) Proceedings of
Twelfth International Conference on ILP (ILP 2002), vol. LNAI,
pp. 182–197. Springer, Heidelberg (2003)

22. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory
and methods. J. Logic Program. 19-20, 629–679 (1994)

23. Object Management Group. QVT: Request for Proposal for Que-
ries, Views and Transformations. http://www.omg.org

24. Ono, K., Koyanagi, T., Abe, M., Hori, M.: XSLT stylesheet gene-
ration by example with WYSIWYG editing. In: Proceedings of
the 2002 Symposium on Applications and the Internet (SAINT
2002), pp. 150–161. IEEE Computer Society, Washington, DC,
USA (2002)

25. Progol. http://www.doc.ic.ac.uk/~shm/progol/
26. Prover9: Automated Theorem Prover. http://www.cs.unm.edu/

~mccune/prover9/
27. Repenning, A., Perrone, C.: Programming by example: program-

ming by analogous examples. Commun. ACM 43(3), 90–97 (2000)
28. Rozenberg, G. (ed.): Handbook of Graph Grammars and Com-

puting by Graph Transformations: Foundations. World Scientific,
Singapore (1997)

29. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Tinhofer, B. (ed.) Proceedings of WG94: Internatio-
nal Workshop on Graph-Theoretic Concepts in Computer Science,
LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1994)

123

http://www.altova.com/features_xml2xml_mapforce.html
http://www.altova.com/features_xml2xml_mapforce.html
http://www.omg.org
http://www.doc.ic.ac.uk/~shm/progol/
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

364 Z. Balogh, D. Varró

30. Shekhar, S., Hamidzadeh, B., Kohli, A., Coyle, M.: Learning trans-
formation rules for semantic query optimization: A data-driven
approach. IEEE Trans. Knowl. Data Eng. 5(6), 950–964 (1993)

31. Strommer, M., Murzek, M., Wimmer, M.: Applying model trans-
formation by-example on business process modeling languages.
In: Proceedings of Third International Workshop on Foundations
and Practices of UML (ER 2007), LNCS, vol. 4802, pp. 116–125.
Springer, Heidelberg (2007)

32. StylisStudio. http://www.stylusstudio.com
33. The Aleph Manual. http://web.comlab.ox.ac.uk/oucl/research/

areas/machlearn/Aleph/
34. Varró, D.: Model transformation by example. In: Proceedings of

Model Driven Engineering Languages and Systems (MODELS
2006), LNCS, vol. 4199, pp. 410–424. Springer, Genova (2006)

35. Varró, D., Balogh, Z.: Automating model transformation by
example using inductive logic programming. In: ACM Sympo-
sium on Applied Computing—Model Transformation Track (SAC
2007). ACM Press, New York (2007)

36. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards
model transformation generation by-example. In: Proceedings of
HICSS-40 Hawaii International Conference on System Sciences,
p. 285. IEEE Computer Society, Hawaii, USA (2007)

37. Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven
understanding and refinement of schema mappings. In: Procee-
dings of ACM SIGMOD Conference on Management of Data,
pp. 485–496 (2001)

38. Zloof, M.M.: Query-by-example: the invocation and definition of
tables and forms. In: Kerr, D.S. (ed.) VLDB, pp. 1–24. ACM,
New York (1975)

Author’s Biography

Zoltán Balogh graduated in
2008 at the Budapest University
of Technology and Economics.
He has been working on the
topic of model transformation by
example. Since graduation, he
works as a software engineer at
OptXware Research and Deve-
lopment Ltd.

Dániel Varró is an assistant
professor at the Budapest Univer-
sity of Technology and Econo-
mics. His research interests are
related to model driven software
and systems engineering with spe-
cial focus on model transforma-
tions. He regularly serves in the
programme committee of various
international conferences in the
field. He is the founder of the
VIATRA model transformation
framework, and the principal
investigator at his university of the
SENSORIA and DIANA Euro-
pean Projects. Previously, he was

a visiting researcher at SRI International, at the University of Paderborn
and TU Berlin. He is also a co-founder of the OptXware Research and
Development Ltd.

123

http://www.stylusstudio.com
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

	0pt Model transformation by example using inductive logic programming
	Abstract
	1 Introduction
	2 Running example: object-relational mapping
	3 An overview of inductive logic programming
	4 Model transformation by example (MTBE)
	4.1 Overview of model transformation by example
	4.2 Steps of automation

	5 Inputs of model transformation by example
	5.1 Mapping metamodel
	5.2 Prototype mapping models
	5.3 Assumptions

	6 Automating model transformation by example
	6.1 From prototype mapping models to Prolog clauses
	6.2 Context analysis
	6.3 Learning negative constraints
	6.4 Connectivity analysis
	6.5 Generation of model transformation rules

	7 Known limitations
	7.1 Non-deterministic transformations
	7.2 Counting in transformations
	7.3 Practical limitations

	8 Prototype tool support
	9 Related work
	10 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

