
Softw Syst Model (2009) 8:205–220
DOI 10.1007/s10270-007-0076-6

REGULAR PAPER

Use Case Maps as a property specification language

Jameleddine Hassine · Juergen Rilling ·
Rachida Dssouli

Received: 5 November 2006 / Revised: 23 July 2007 / Accepted: 19 October 2007 / Published online: 7 December 2007
© Springer-Verlag 2007

Abstract Although a significant body of research in the
area of formal verification and model checking tools of soft-
ware and hardware systems exists, the acceptance of these
tools by industry and end-users is rather limited. Beside the
technical problem of state space explosion, one of the main
reasons for this limited acceptance is the unfamiliarity of
users with the required specification notation. Requirements
have to be typically expressed as temporal logic formalisms
and notations. Property specification patterns were success-
fully introduced to bridge this gap between users and model
checking tools. They also enable non-experts to write formal
specifications that can be used for automatic model checking.
In this paper, we propose an abstract high level pattern-based
approach to the description of property specifications based
on Use Case Maps (UCM). We present a set of commonly
used properties with their specifications that are described in
terms of occurrence, ordering and temporal scopes of actions.
Furthermore, our approach also supports the description of
properties with respect to their architectural scope. We pro-
vide a mapping of our UCM property specification patterns in
terms of CTL, TCTL and Architectural TCTL (ArTCTL), an
extension to TCTL, introduced in this research that provides
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1 Introduction

Model checking has been widely used as a method to formally
verify finite-state concurrent systems, such as communica-
tion protocols. System properties are expressed as temporal
logic formulas, and efficient algorithms are used to traverse
the resulting model to check whether a system is consistent
with the specified properties. Many temporal logics, such
as linear-time temporal logic (LTL) [29], computational tree
logic (CTL) [13] and ACTL [32] have been suggested as
formal languages for property specifications. However, the
use of temporal logics is still limited to users with a good
mathematical background because temporal logic formulae
are difficult to understand and even more difficult to create.
To bridge this gap between practitioners and model checking
tools, many authors have proposed property specification pat-
terns [1,14,18,25,26] to guide users in expressing system
requirements directly in temporal logic.

Previously published pattern systems vary from simple
specification patterns dealing with occurrences of events or
states (describing what must occur) and scopes (describing
when the pattern must hold) [14], to real-time pattern proper-
ties considering information about time [18,26,43]. However,
to the best of our knowledge, the existing pattern systems
deal mainly with behavioral aspects of systems but fail to
capture the architectural scope of a system (describing where
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the pattern must occur). Applying an architectural scope
allows to describe architecture related issues, like “action P
is executed in component C”. Building a property pattern
system that considers functional, timing and architectural
aspects all together will improve the verification of distri-
buted real-time embedded systems. Such systems often are
based on an heterogeneous system architecture; they consist
of components that range from fully programmable proces-
sor cores to fully dedicated hardware components for time-
critical application tasks.

Our research builds upon previous work on property pat-
terns introduced in [14,15,18]. We propose an abstract high
level pattern-based approach that supports the description
of property specifications using Use Case Maps language
(UCM) [42].

In what follows, we present a novel approach that
addresses the following concrete issues:

− The UCM language was extended to simplify the writing
and understanding of properties, by providing a UCM
property pattern system with templates that explicitly
capture functional, timing and architectural property pat-
terns. The proposed UCM property patterns system offers
users a visual and an easy to learn framework for the
specification of complex properties without the use of
textual temporal logic formalisms.

− Describing both the requirement specification and the
properties with the same formalism (i.e., UCM) will
allow for a more detailed analysis while preserving a
high level of abstraction.

− A mappings for the UCM property specification patterns
in terms of CTL and TCTL temporal logics is provided.

− We provide an extension to the well-known TCTL [2]
temporal logic formalism by including additional archi-
tectural constraints. The proposed extension is named
Architectural TCTL (ArTCTL). However, the definition
of a general formal framework for architectural temporal
logic is left for future work.

The description of the formal semantics of UCM language
is outside the scope of this paper. We refer the reader to:

1. [19], which describes formal semantics of UCM lan-
guage in terms of Abstract State Machines (ASM).

2. [21], where the authors proposed an extension of UCM
language with time and presented the formal semantics
to the timed notation in terms of Clocked Transition Sys-
tems (CTS).

3. [20], which describes the formal semantics of timed
UCMs in terms of timed automata (TA) [3] formalism
that can be analyzed and verified with the UPPAAL
model checker tool [28].

UCMs [42] can be applied to capture and integrate func-
tional requirements in terms of causal scenarios representing

behavioral aspects at a high level of abstraction. They can also
provide the stakeholders with guidance and reasoning about
the system-wide architecture and behavior. UCM are part of
a new proposal to ITU-T for a User Requirements Notation
(URN) [22], and have been applied in a number of areas:
Design and validation of telecommunication and distributed
systems [7,8], detection and avoidance of undesirable feature
interactions [12,31], evaluation of architectural alternatives
[30] and performance evaluation [36]. UCM is not introduced
to replace UML, but rather complement it and help to bridge
the gap between requirements (use cases) and design (sys-
tem components and behaviour). UCM allows developers to
model dynamic systems, where scenarios and structures may
change at run-time [42]. A formal operational semantics of
UCM language in terms of abstract state machines (ASM)
was proposed in [19].

Our work has results in two main contributions. First, we
have presented a UCM based specification pattern that can
simplify creating specification of complex properties without
the use of textual temporal logic formalisms and therefore
make it available to the novice practitioners. The specifi-
cation pattern system uses templates to cover most com-
mon expected properties found in requirements specifica-
tions. Second, we extend the traditional real-time temporal
logics to include architectural aspects.

The remainder of the paper is organized as follows. The
next section provides an overview of existing pattern sys-
tems. In Sect. 3, an overview of Real-time temporal Logics
is given. Section 4 introduces the UCM notation and dis-
cusses these UCM elements that will be used in the construc-
tion of our property patterns. Section 5 presents our UCM
property pattern system, which extends real-time patterns to
include architectural aspects. In Sect. 6, we give a general
overview on how to extend a real-time temporal logic with
architectural aspects as well as the syntax and semantics of
ArTCTL, a proposed extension of TCTL formalism. In Sect. 7
we apply our pattern system to the case study introduced in
Sect. 4.4. Finally, Sect. 8 discusses the proposed UCM based
Specification–Verification framework. Conclusions are pre-
sented in Sect. 9.

2 Specification patterns

In this section, we overview the specification patterns by
Dwyer et al. [14,15], the timed property patterns by Gruhn
et al. [18] and the real-time property pattern by Konrad
et al. [26].

2.1 Untimed specification patterns

In [14], Dwyer et al. collected over 500 specifications from
several sources and observed that nearly all the properties
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Fig. 1 Pattern hierarchy by
Dwyer et al. [14]

could be classified into a hierarchy of basic patterns based
on their semantics. This hierarchy, illustrated in Fig. 1, distin-
guishes properties that deal with the occurrence and ordering
of states/events during a system execution. Each of these pat-
terns describes an intent (the structure of the specified beha-
vior), a scope (the extent of program execution over which the
pattern must hold), mappings into some specification forma-
lisms for finite-state verification tools (LTL [29], CTL [13],
QRE [35]), some known uses, and relationships to other pat-
terns. For instance, the intent of the Precedence pattern is a
relationship between a pair of events/states where the occur-
rence of the first is a necessary precondition for the occur-
rence of the second (also known as Enables).

In what follows we describe briefly the property patterns
and their scope as introduced by Dwyer’s et al. A more detai-
led description of these patterns can be found in [14].

− Absence. A given event/state P does never occur within
a scope.

− Universality. A given event/state P occurs throughout
a scope.

− Existence. A given event/state P must occur within a
scope.

− Bounded Existence. A given event/state P must occur
at least/exactly or at most k times within a scope.

− Precedence. An event/state P must always be preceded
by an event/state Q within a scope.

− Response. An event/state P must always be followed by
an event/state Q within a scope.

− Chain Precedence/Chain Response. A sequence of
events or states P1, . . . , Pn must always be preceded/
followed by a sequence of events/states Q1, . . . , Qn

within a scope.

Dwyer et al. identified five scopes, or segments of system
execution:

− Global. The pattern must hold during the complete sys-
tem execution.

− Before. The pattern must hold up to a given event/state Q.
− After. The pattern must hold after the occurrence of a

given event/state Q.
− Between. The pattern must hold from the occurrence

of a given event/state Q to the occurrence of a given
event/state R.

− After-Until. Like between, but the designated part of the
execution continues even if the second event/state R does
not occur.

The pattern catalogue allows for reasoning about occur-
rence and order of events. However, it does not support quan-
titative reasoning about time due to the fact that real-time
properties cannot be specified using these existing patterns.
In Dwyer’s pattern system, properties like “P must always
be followed by Q within k time units” cannot be expressed.
In the following section, we present an overview of the work
of Gruhn et al. [18] and Konrad et al. [26] who addressed this
shortcoming. We also survey some UML-based approaches
for property description.

2.2 Timed specification patterns

Konrad et al. [26] have proposed real-time specification pat-
terns that can be classified into three categories of real-time
properties: duration (captures properties that can be used to
place bounds on the duration of an occurrence), periodic (des-
cribes properties that address periodic occurrences), and real-
time order (captures properties that place time bounds on the
order of two occurrences). Figure 2 illustrates this pattern
classification.

The authors have also provided a pattern description tem-
plate similar to the one proposed in [14] consisting of a
pattern name and classification, a pattern intent, a mapping
to timed temporal logics (i.e., MTL [5,27], TCTL [2] and
RTGIL [4]), examples of known uses, relationships and a
structured English specification. The structured English spe-
cification captures the scope (globally, before, after, between,
or after-until) followed by the type (qualitative or real-time)
then the category (duration, periodic, or real-time order for
real-time properties, and for quality properties (occurrence
or order) of the property. An example of such an English

Real-time  

Duration  Periodic  Real -time Order  

Minimum  
Duration  

Maximum  
Duration  

Bounded  
Recurrence  

Bounded  
Response  

Bounded  
Invariance

Fig. 2 Real-time specification patterns by Konrad et al.
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description is: “Globally, it is always the case that if P holds,
then S holds after at most c time unit(s)”. Obtaining such
a description is the result of the execution of six rules (e.g.,
property, scope, specification, real-time Type, real-time order
category and bounded response pattern).

In [18], Gruhn et al. proposed another catalogue of pat-
terns for real-time requirements. For each pattern, a timed
observer automaton is constructed to describe the desired
behavior. The observer runs in parallel with the model under
verification. The observer reaches an Error state if and only
if the property can be violated. Therefore, in order to prove
that a property holds, it is sufficient to check that the observer
cannot reach some location. The catalogue adds the notion of
time constraints to the patterns introduced by Dwyer et al. to
be able to specify properties like: “Starting from the current
point of time, P must occur within k time-units”. The cor-
responding automaton is illustrated in Fig. 3. The catalogue
covers many interesting timed patterns and proposes their
corresponding timed automata. The use of temporal auto-
mata for specifying temporal properties have also been used
by several authors [10,34].

A similar observer concept is used in [1], where Alfonso
et al. introduced VTS, a visual language to define complex
event-based requirements such as freshness, bounded
response, event correlation, etc., and a tool that translates
these requirements into the input language of the model
checker KRONOS. The user has to graphically describe the
scenarios violating the requirements, which is in our opinion
a major drawback. Indeed, deriving all possible scenarios that
violate a given requirement is an error prone activity and the
resulting set of scenarios may be incomplete. Tsai et al. [43]
describe a testing approach based on scenarios and verifica-
tion/robustness patterns (SP, VP/RBP). These are temporal
patterns (or cause-effect relations) that allow the specifica-
tion of pre- and post-conditions as well as timing constraints
(e.g., optional timeout, time slices, etc.), and are expressed
both visually and in LTL temporal logic.

Several approaches for describing properties with UML
models have been proposed. These approaches either extend
OCL for temporal constraints specification or express beha-
vioral real-time constraints in UML diagrams. Ramakrishnan
et al. [37] extend the OCL syntax by additional grammar rules
with unary and binary future oriented temporal operators
(e.g., always and never) to specify safety and liveness
properties. Flake and Muller. [16] have developed a

Fig. 3 Timed automaton for time-bounded existence

temporal OCL extension that enables modelers to specify
state-oriented real-time constraints. This extension covers the
consecutiveness of states and state transitions as well as time-
bounded constraints.

Schäfer et al. [44] describe systems using UML state
machines and use UML collaboration diagrams to specify
properties. In order to verify properties using model checker
SPIN, state machines model is compiled into a PROMELA
model while collaborations are compiled into sets of Büchi
automata (i.e., “never claims”). Graf et al. [17] proposed a
mapping of UML models into a framework of communi-
cating extended timed automata (stereotyped as observers)
to serve as property specification language. Although, these
UML models have the advantage to be simpler and easier to
use for experienced UML users, they suffer from the same
drawback as other observer-based approaches. The models
require for example the user to describe manually all the
scenarios violating the requirements.

3 Real-time temporal logic

Temporal logic has been successfully used for modeling and
analyzing the behaviour of reactive and concurrent systems.
Standard temporal logics, such as CTL [13], ACTL [32] and
LTL [29] which are subset of µ calculus, are inadequate for
real-time applications because they only deal with qualitative
timing properties. Real-time temporal logics extend standard
temporal logics with temporal operators that allow the defini-
tion of quantitative temporal relationships—such as distance
among events in time units.

In [4,9] many real-time temporal logics have been sur-
veyed and a series of criteria for assessing their capabilities
was presented. Among these criteria are the logic expressive-
ness, the order of the logic, decidability of the logic, the use
of temporal operators, the fundamental time entity and the
structure of time. In the following we give a brief overview
of MTL and TCTL [2]. For a detailed description, we refer
the reader to [2,27].

− MTL. Metric temporal logic (MTL) [27] is an extension
to LTL [29] in which the temporal operators are repla-
ced by time-constrained versions (always (�), eventually
(�), next (◦), strong until (U) and weak until(W)). For
example, the formula �[0,k]ϕ expresses that ϕ holds for
the next k time units. MTL is interpreted over a discrete
time line and assumes integer time. MTL is undecidable
[5].

− TCTL. Timed computational tree logic (TCTL) pro-
posed by Rajeev Alur in 1991 [2] is a propositional
branching-time logic. TCTL extends CTL [13] by
allowing timing constraints on the temporal operators
(always (G), eventually (F), strong until (U ), and weak
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until (W ) operators, which are either existentially (E)
or universally (A) quantified). For example, the formula
AG(P ⇒ AFk(S)) expresses the time-bounded res-
ponse property “Globally, S responds to P within k time
units”. The semantics of TCTL is defined over a dense
time line.

In Sect. 6, we will introduce an architectural real-time
temporal logic to express architectural constraints for both
timed and untimed properties.

4 UCM language

The UCM notation [42] is a high level scenario based mode-
ling technique that can be used to specify functional requi-
rements and high-level designs for reactive and distributed
systems. UCMs are expressed by a simple visual notation
that allows for an abstract description of scenarios in terms
of causal relationships between responsibilities (e.g., event,
operation, action, task, function, etc.) along paths allocated
to a set of components. These relationships are said to be
causal because they involve concurrency, partial ordering of
activities, and they link causes (e.g., preconditions and trig-
gering events) to effects (e.g., post-conditions and resulting
events). In UCM, scenarios are expressed above the level
of messages exchanged between components, hence, they
are not necessarily bound to a specific underlying structure
(these types of UCMs are called Unbound UCMs). One of
the strengths of UCMs are their ability to integrate a number
of scenarios together (in a map-like diagram), and the ability
to reason about the architecture and its behavior over a set of
scenarios. In the following section, we describe and illustrate
the UCM notations that are used as part of our specification
pattern catalogue. For a detailed description of the all aspects
of the UCM notation the reader is refered to [11,42].

4.1 UCM basic notation

A basic UCM path contains at least the following constructs:
start points, responsibilities and end points (Fig. 4a). Start
points. The execution of a scenario path begins at a start
point. A start point is represented as a filled circle represen-
ting preconditions and/or triggering events. Responsibilities.
Responsibilities are abstract activities that can be refined in
terms of events, functions, tasks, procedures. Responsibili-
ties are represented as crosses. End points. The execution of
a path terminates at an end point. End points are represented
as bars indicating post conditions and/or resulting effects.

UCMs also provide additional constructs for structuring
and integrating scenarios sequences, using alternatives (with
OR-forks/joins as illustrated in Fig. 4b) or concurrently (with
AND-forks/joins as illustrated in Fig. 4c). OR-Forks.

Fig. 4 UCM basic notation

Represent a path where scenarios split as two or more alter-
native paths. Conditions (Boolean expression called guards)
can be attached to alternative paths. OR-Joins, capture the
merge of two or more independent scenario paths. AND-
Forks. Split a single control into two or more concurrent
controls. AND-Joins. Capture the synchronization of two or
more concurrent scenario paths. Loop. Captures explicitly a
looping path. An exit-condition attribute specifies the condi-
tion under which the loop is exit (Fig. 4d).

Note: When maps become too complex to be represented
as one single map, UCM provides a mechanism for defining
and structuring sub-maps (called plugins) in containers cal-
led stubs. For a detailed description of this UCM important
concept we refer the reader to [11].

4.2 UCM timed notation

The UCM language provides two explicit constructs for
expressing time constraints:

− Timer: A timer is a waiting place that is triggered by
the timely arrival of a specific event. It can also trigger
a time-out path when this event does not arrive in time.
Figure 5a illustrates the Timer construct, where a timer
should start after inserting an ATM card into the bank
machine. If the user enters his/her PIN within a 10 Time
Units (TU) time frame (EnterPIN(10TU)), the PIN will
be checked otherwise the card is returned to the user (i.e.,
time-out path is triggered).

− Time Stamp: Time stamps are start and end points for
response time requirements (Fig. 5b). In Sect. 5.2.2 we
present in more details two examples involving time
stamps.

Fig. 5 UCM timed notation
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4.3 UCM architectural notation

One of the strengths of UCMs resides in their ability to bind
responsibilities to components. The default UCM component
notation is abstract enough to represent dependencies (for
instance containment), different types (passive, active, etc.),
and it even allows to represent run-time instances (without
data). Components can be of different types and possess dif-
ferent attributes. Buhr in [11] suggests several types and
attributes that are relevant for complex systems (real-time,
object-oriented, dynamic, agent-based, etc.).

Figure 6 illustrates some of these component types and
attributes proposed by Buhr:

− Teams (boxes with sharp corners) are the most generic
component that are also most typically used in UCMs.
Teams are operational groupings of system-level com-
ponents.

− Objects (boxes with rounded corners) are data or pro-
cedure abstractions that are system-level components to
support the system comprehension. Processes (Parall-
elograms) are active components.

− Slots (boxes with dashed outlines) may be populated
with different instances of components at different times.
Slots are containers for dynamic components (DC) in
execution.

− Pools are containers that hold components in readiness
to occupy slots (e.g., not executing DC, they act as data).

− Dynamic components (see Fig. 6c) can be created,
moved, stored, and deleted with dynamic responsibilities
such as create, put, get, and move. Move arrows (small
arrows between paths and pools or slots) are used to indi-
cate the possibility of component movement that may
cause slots to become occupied or empty. Movement is
a metaphor for changing visibility. Moving a component

into a slot allows to make this component visible to those
who must interact with it at the slot location level.

The slot notation does not indicate whether slots are empty
or not—this requires an analysis of the corresponding paths.
Therefore, slots can be seen as places where different com-
ponents may play the same role at different times. The UCM
agent notation is not only used in the context of agent sys-
tems, but more generally to represent roles.

UCM are not an Architecture Description Language
(ADL), but a high level visual specification language that
helps the stakeholders to document and reason about a
system-wide architecture and behaviour. ADLs represent a
formal way of representing architecture with a primary mis-
sion of describing components and their connectivity. ADLs
permit analysis of architectures completeness, consistency,
ambiguity, performance and support automatic generation of
software systems. UCM focus on the behavior of the whole
system rather than on their parts.

UCM component relationships depend on scenarios to
provide the semantic information about their dependencies.
Components are dependent if they share the same scenario
execution path. To illustrate the fact that a responsibility is the
result of a collaboration among two components, the shared
responsibility construct is used (see Fig. 7a). The execution
of a shared responsibility requires message-like interactions
between the involved components. Figure 7b shows one pos-
sible refinement of the shared responsibility in terms of a
sequence diagram.

4.4 Case study: IP header compression feature

As networks evolve to provide more bandwidth, the appli-
cations, services and the consumers of those applications
are competing for that bandwidth. In many services and

Fig. 6 Component types, attributes and movement notation for dynamic components [6]
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C1 C2

Message1

Message2

Message3

(a) (b)

Fig. 7 Shared Responsibility and one possible refinement

applications, such as voice and video over IP, several fields in
the header of a given flow remain constant for the length of the
flow. IP header compression (IPHC) achieves major gain in
terms of packet compression because although some fields
in the header change in every packet, the difference from
packet to packet is often constant, and therefore the second-
order difference is zero. The decompressor can reconstruct
the original header without any loss of information. IPHC is
a hop-by-hop compression scheme (i.e., works on a point-to-
point link). IP header compression can improve throughput
and reduce packet loss and delay.

4.4.1 IPHC preconditions

Before any IP packets may be communicated, PPP (which
allows two machines on a point-to-point communication link
to negotiate various parameters for authentication) and IPCP
(responsible for configuring, enabling, and disabling the IP
protocol modules on both ends of the point-to-point link)
negotiations must be completed successfully. Figure 8 des-
cribes this negotiation phase using the shared responsibility
construct.

4.4.2 Compression/decompression types

Mainly three types of compression were presented in RFC
2507 [38], RFC2508 [39] and RFC1144 [40]: RTP (RTP
compression: Real Time Protocol), cUDP (UDP compres-
sion) and cTCP (TCP compression). For non-RTP traffic
another type of compression called non-TCP can be used
as well.

Compression/decompression takes place either in the fast
Path (ASIC forwarding) or the slow path (software forwar-
ding) depending on the type of traffic. A possible design of
IPHC may consider compressing/decompressing cRTP and
cUDP traffic on a fast path while compressing/decompressing

Fig. 8 PPP and IPCP negotiation

cTCP traffic on slow path since protocol packets over the TCP
transport would constitute a significantly lower percentage of
all traffic in typical application profiles that use IPHC.

4.4.3 IP header compression requirements

Compression scenario. Figure 9 illustrates a high level view
of the compression scenario. UCM start point Rec-Uncompr-
Packet denotes the reception of a non-compressed packet.
Then the router checks whether the egress interface (towards
the destination) is IPHC enabled. If the egress interface is not
IPHC-enabled, the packet is then forwarded uncompressed
towards its destination (i.e., Dynamic responsibility Send-
Uncompressed). Otherwise, the compressor checks the
packet type to distinguish compressible packets. The design
presented in Fig. 9 does not consider plain IP packets and IP
packets with options for compression. Compressible packets
(RTP, UDP and TCP) are looked up in a repository of packet
headers (i.e., UCM responsibility HeaderLookup). If a mat-
ching header (that corresponds to the context of a given flow)
is found, the incoming packet is compressed. If no match is
found, the packet header is copied into that repository and a
new context is defined. Then depending on the protocol type
the corresponding compression type is selected and applied to
the packet (i.e., cRTP, cUDP or cTCP). Compression latency
is expected to be within 100 µs.

Decompression scenario. Figure 10 illustrates a high level
view of the decompression scenario. The decompressor
should handle two types of packets: (a) Full Header and (b)
Compressed packet. The start of a compressed flow is indi-
cated by the arrival of a Full header. The decompressor will
store the contents of the header from the Full header packet
(i.e., responsibility StoreContextID). Subsequent compres-
sed packets will be decompressed by using the stored context
from the Full header packet (i.e., RetrieveContextID) and the
information present in the compressed packet. If there is no
matching with the stored context ID or the packet is out of
sequence, then the packet is discarded and a context state
packet (CS packet) is sent to the compressor to notify that
something wrong happened (i.e., GenerateCS-Packet).

5 UCM property pattern system

In this section, we present a graphical specification pattern
catalogue based on the UCM notation. Our proposed pattern
system covers all qualitative specification patterns introdu-
ced by Dwyer et al. [14] as well as real-time specification
patterns presented in [1,18,26]. The research is motivated
by the goal to capture both qualitative properties and quan-
titative timing requirements. Furthermore, as the structural
aspects of a system can be captured without the user having
to be familiar with temporal logic for the representation of
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Fig. 9 IPHC: compression scenario

Fig. 10 IPHC: decompression scenario

the properties and the description of scenarios that violate
the requirements [1,18].

Although, UCM is primarily a functional description lan-
guage (i.e., behavior oriented), it can be used to reason about
atomic propositions as well. In addition to the UCM repre-
sentation, we provide a mapping of our pattern catalogue
to temporal logics CTL and TCTL. When reasoning about
responsibilities/actions, our UCM-based pattern system can
be easily mapped to ACTL [32], which extends CTL with
actions. Like CTL, ACTL is a propositional branching-time
temporal logic. While CTL is interpreted over Kripke struc-
tures, ACTL is interpreted over labeled transition systems
(LTSs). A more detailed description of the relationship bet-
ween CTL and ACTL can be found in [33]. Real-time pro-
perties may also be mapped to a real-time version of ACTL
called ATCTL [23].

In the context of our research, one important aspect for
us was not to have to extend the existing UCM language by
introducing additional new notations. Instead, we extend the
use of existing UCM notations. For example we extended
the use of UCM labels that are typically applied to identify
different UCM constructs (e.g., construct’s name), by exis-
tential and universal quantifiers. These quantifiers can be then
applied to specify the scope of our specification patterns.

5.1 Patterns

In this section, we describe the qualitative properties of the
patterns introduced by Dwyer et al. [14] using an UCM based
representation and their mapping to CTL logic. Formulas in
CTL are composed of atomic propositions, boolean connec-
tors, and temporal operators. Temporal operators consist of
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forward-time operators (G globally, F in the future, X next
time, and U until) preceded by a path quantifier (A all com-
putation paths, and E some computation paths).

For clarity purpose we will use a “global scope” to
represent these properties. Temporal scopes will be discussed
in Sect. 5.2.1.

5.1.1 Absence

In order to describe that a given responsibility/event P never
occurs within a defined scope, we extend both the UCM res-
ponsibility labels with the negation operator not(P), which
represent any sequence of responsibilities not containing P.
The label “not(P1, . . . , Pn)” denotes any sequence of res-
ponsibilities that does not contain the set of responsibilities
P1, . . . , Pn .

Figure 11a illustrates this absence property.

Mapping to CT L : AG(¬P) (1)

5.1.2 Universality

Universality is a dual of the absence property stating that a
given responsibility/event P occurs (Fig. 11b). Adding, an
existential quantifier (i.e., there exists) to the start point label
shows that responsibility/event P should occur at least once
during a possible execution (e.g., at least one path).

Mapping to CT L : AG(P) (2)

5.1.3 Existence

The start point is labeled with the universal quantifier to state
that for all possible execution paths P must occur (Fig. 12a).

Mapping to CT L : AF(P) (3)

5.1.4 Bounded existence

Responsibility P must occur at least/exactly/most k times.
This is achieved by adding cardinalities to the responsibility
label. “P(n . . .m)” denotes that P is repeated at least n times
and at most m times (Fig. 12b).

Fig. 11 Absence and Universality

Fig. 12 Existence and bounded existence

One instance of the bounded existence pattern, where P
occurs at most 2 times, is represented by the following CTL
formula:

Mapping to CT L : ¬E F(¬P ∧ E X (P∧E F(¬P∧
E X (P ∧ E F(¬P ∧ E X (P)))))) (4)

5.1.5 Response

A directed arrow between responsibilities P and Q shows that
when P occurs then an occurrence of Q should follow. The
star in front of the responsibility label means: “if P occurs”
(Fig. 13a).

Mapping to CT L : AG(P ⇒ AF(Q)) (5)

Causality is always defined by construction in UCMs.
However, the arrow is added to distinguish the general res-
ponse property from a restricted response property (i.e., Q
should immediately follow P). In the later, the directed arrow
is omitted.

5.1.6 Precedence

The precedence property represents a restriction of the res-
ponse property in the sense that Q can only follow P
(Fig. 13b). The star in front of the responsibility label means
“if Q occurs”.

Mapping to CT L : ¬E[¬P U (Q ∧ ¬P)] (6)

Fig. 13 Response and precedence

5.1.7 Chain precedence/chain response

A sequence of responsibilities P1, …,Pn must always be pre-
ceded/followed by a sequence of responsibilities Q1, …,Qn .
In addition to its name, each responsibility is labeled with the
name of the chain it belongs to. Figure 14a, b illustrates the
chain Precedence/Response. P1,P2, …,Pn belong to chain
S1 while Q1,Q2, …,Qn belong to chain S2.

Note: The chain precedence/response makes only sense
for cases with non-overlapping chains.
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Fig. 14 Chain precedence and chain response

Fig. 15 Separated responses

The CTL mapping of the precedence chain “P1 precedes
Q1 and Q2” is as follows:

¬E[¬P1 U (Q1 ∧ ¬P1 ∧ E X (E F(Q2)))] (7)

The CTL mapping of the response chain “Q1,Q2 responds
to P1” is as follows:

AG(P1 ⇒ AF(Q1 ∧ AX (AF(Q2)))) (8)

We now have introduced the elements necessary to des-
cribe a more complex requirement:
Separated Response. Describes that a responsibility P is
followed by two responses Q and R, which are not separated
by S. An AND-Fork is used to specify that Q and R may occur
in any order (Fig. 15).

Mapping to CT L : AG(P ⇒ AF(Q ∧ ¬S∧
AX (A[¬S U R]))) (9)

5.2 Specification pattern scopes

5.2.1 Temporal scopes

The optional temporal scopes define when the above patterns
must hold. The scope is determined by specifying a start and
an end state/event for the pattern. Dwyer et al. [14] defi-
ned five different types of scope. For each temporal scope,
we present only the mapping of the precedence property in
terms of CTL. For a complete CTL mapping of the qualita-
tive properties with respect to all the described scopes, we
refer the reader to [41].

− Global: Start and end point labels are left blank to state
that the pattern must hold during the complete system
execution (Fig. 16a). The CTL Mapping for “S precedes
P” is given by

Fig. 16 Temporal scopes

A[¬PW S] (10)

− Before: The end point is labeled with the event X to state
that the pattern must hold up to a responsibility/event X
(Fig. 16b). The CTL mapping for “S preceded P Before
R” is

A[(¬P ∨ AG(¬R))W (S ∨ R)] (11)

− After: The start point is labeled with the event X to des-
cribe that the pattern must hold after the occurrence of a
responsibility/event X (Fig. 16c). The CTL mapping for
“S preceded P After Q” is:

A[¬QW (Q ∧ A[¬PW S])] (12)

− Between: The start point is labeled with X and the end
point is labeled with Y to describe that the pattern must
hold from the occurrence of X to the occurrence of Y
(Fig. 16d). The CTL mapping for “S precedes P Between
Q and R”:

AG(Q ∧ ¬R ⇒ A[(¬P ∨ AG(¬R))W (S ∨ R)]) (13)

− Until: The same as “between”, but the pattern must hold
even if Y never occurs. The end point is labeled with Y
having a cardinality of either 0 (in case Y never occurs)
or 1 (in case Y occurs) (Fig. 16e). The CTL mapping for
“S preceded P After Q until R”:

AG(Q ∧ ¬R ⇒ A[¬PW (S ∨ R)]) (14)

Note: A scope label may coexist with a pattern related label
on a start point. For instance, the start point of a UCM
describing “an existence property that should hold after the
occurrence of an event X”, is labeled with “There exists|X”.

5.2.2 Examples of timing requirements

− Bounded Response: Figure 17a describes a bounded
response, where P is followed by Q after 10 time units
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Fig. 17 Examples of Timing Requirements

and neither R1 nor R2 should occur between P and Q.
Its corresponding TCTL mapping is

AG(P → (AF≤10 Q) ∧ ¬R1 ∧ ¬R2) (15)

Figure 17b describes the same property but with a relaxed
interval for responsibility Q. Q is supposed to occur 20
TU after the occurrence of P but not more later than 30
TU. Its corresponding TCTL mapping is:

AG(P → (AF[20,30]Q) ∧ ¬R1 ∧ ¬R2) (16)

− Periodic Recurrence: Figure 17c illustrates a periodic
occurence of responsibility P where P occurs every δTU.

Mapping to T CT L : AG(AF≤δP) (17)

5.2.3 Architectural scopes

Architectural descriptions are playing an increasingly impor-
tant role in the ability of software engineers to describe and
comprehend software systems. Architecture is generally
considered to consist of components and the connectors
(interactions) between them. Architectural reasoning needs
to cope with evolving system requirements, where systems
evolve to migrate to new technologies or/and to include new
features. These changes may modify the assumptions on
which system functionalities are based. Therefore, test engi-
neers may want to:

− Ensure that the desired topology is preserved for a speci-
fic feature (e.g., feature functionalities should be bound
to a specific topology).

− Ensure that components that are intended to interact can
indeed do so (e.g., there exists a scenario that is divided
into many components).

In an effort to address these architectural issues, we introduce
architectural scopes with the goal to increase the understan-
dability and reasoning about architectural designs. At the
same time we allow for improved analysis and testing while
preserving a high level of abstraction. UCM have the benefit

of integrating both behavioural and architectural aspects in
one representation.

A user may for example want to express a response pro-
perty, where Q should follow the occurrence of P and this
should happen between any occurrence of X and Y. In addi-
tion, the property should hold only and only if the respon-
sibility/event P is executed by Process1 while responsibi-
lity/event Q is executed within Object1. This generic res-
ponse property can be described as shown in Fig. 18.

We can define five distinctive architectural scopes:

− Component Specific: The pattern must take place within
a pre-defined component. The architectural property is
violated when the responsibility/event occurs within a
different component. Figure 19 illustrates a generic pro-
perty where responsibility R should occur as a part of
process “Process 1”.

− Multiple Same Type Components: The Component
Specific scope is relaxed to give the user the possibility
to specify more than one component of the same type
for a certain event/responsibility. Figure 20 illustrates a
generic property where responsibility R should occur as
a part of either Agent1 or Agent2.

− Multiple Different Type Components: The Component
Specific scope is relaxed to give the user the possibility to
specify more than one component of different types for
a certain event/responsibility. Figure 21 illustrates such
a generic property where responsibility R should occur
as a part of either agent Agent1 or process Process1.

− Any Component: The property may occur within any
component of a predefined type. This is described by

Fig. 18 Property involving three scopes: Occurrence, temporal and
architecture

Fig. 19 Component Specific

Fig. 20 Multiple Same Type Components
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Fig. 21 Multiple Different Type Components

Fig. 22 Any Component

using “*” as the name of the component. Figure 22 illus-
trates a generic property, where responsibility R should
occur as a part of an actor. The actor name in this case is
not specified.

− Unbound: For unbound event/responsibility (i.e., not
attached to any component), the component name or type
are not relevant. The event/responsibility can take place
within any component of any type. The focus is on the
behaviour and timing aspects rather than the architectu-
ral aspect. Figure 23 illustrates a generic property, where
responsibility R is not attached to any other component.

Note: A component may be part of another component
(For instance a process can fork to have childs). This archi-
tectural containment dependency may be represented as part
of the property definition. Figure 24 illustrates a property
with a responsibility R performed by object1 which is part
of process Process1.

In the following Section, we give a general overview on
how to extend real-time temporal logics with architectural
aspects. We extend TCTL, one variant of real-time temporal

Fig. 23 Unbound

Fig. 24 Architectural Containment Dependency

logic, to include architectural constraints. We describe the
formal syntax and semantics of what we name ArTCTL.

The definition of a complete syntax and semantics for
architectural real-time temporal logics is out of the scope of
this paper.

6 Architectural real-time temporal logic

Labelled transition systems (LTSs) are used to reason about
non-real-time systems. For real-time systems, timed tran-
sition systems (TTS) are used, which can be seen as an
extension of labelled transition systems. The passing of time
is modelled by labelling transitions with non-negative real
numbers. Timed automata (TA) [3] have been defined to
describe timed languages. The semantics of a TA are usually
described in terms of a timed transition system (TTS).

We slightly modify the classical definitions related to TTS
and TA by adding the architectural scope.

Definition 1 (Architectural TTS) An Architectural timed
transition system T is a tuple 〈S, ι,Σ,Φ,→〉 where S is
a (possibly infinite) set of states, ι ∈ S is the initial state, Σ
is a finite set of labels, Φ is a finite set of components and
→⊆ S ×Σ ∪Φ ∪ R

≥0 × S is the transition relation where
R

≥0 is the set of positive real numbers. If (q, σ, q ′) ∈→, we
write q σ �� q ′ .

A trajectory of an Architectural TTST = 〈S, ι,Σ,Φ,→〉
is a sequence π = (s0, t0), . . . , (sk, tk) such that for 0 ≤
i ≤ k, (si , ti ) ∈ S × R and for ≤ i < k, si

σ �� si+1

and either σ ∈ Σ ∪ Φ and ti+1 = ti , or σ ∈ R
>0 and

ti+1 = ti + σ . A state s of T is reachable if there exists
a trajectory π = (s0, t0), . . . , (sk, tk) such that s0 = ι and
sn = s.

Definition 2 (Architectural TA) An Architectural timed
automaton is a tuple A = 〈Loc, C , q0, Lab, Comp, Edg〉
where:

− Loc is a finite set of locations representing the discrete
states of the automaton.

− C = {c1, . . . , cn } is a finite set of real-valued variables.
− q0 = (l0,v0) where l0 ∈ Loc is the initial location and v0

is the initial clock valuation.
− Lab is a finite alphabet of labels.
− Comp is a the set of architectural constraints.

Comp ⊆ CompId × CompType. Where CompId repre-
sents the explicit component Id or “*” (to denote the any
component scope) and CompType = { Process, Agent,
Actor, Slot, team, etc. }.

− Edg ⊆ Loc × Loc × G × Lab × Comp × 2C is a set of
edges. An edge (l, l ′, g, σ, c, R) represents a jump from
location l to location l′ with guard g, event σ , component
cp and a subset R ⊆ C of variables to be reset.
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Architectural constraints can be associated with any qua-
litative or quantitative temporal logic since no new operators
are introduced. In what follows, we present the syntax and
the semantics of what we name ArTCTL.

6.1 Architectural TCTL

We extend TCTL logic with an architectural dimension by
associating an architectural scope to atomic propositions.

Definition 3 (Syntax of ArTCTL formulas) Let A be a timed
automaton, AP a set of atomic propositions, Comp a set of
architectural constraints (as defined in Definition 2) and D a
non-empty set of clocks that is disjoint from the clocks of A,
i.e., C ∩ D = ∅. ∼ denotes one of the binary relations<, ≤,
=, ≥, >.

An ArTCTL formula φ has the following syntax rules.

φ ::= pcp | ¬φ | φ ∨ ψ | z

×φ | E[φU∼cψ] | A[φU∼cψ] (18)

where p ∈ AP , cp ∈ Comp, and z ∈ D. z is called the freeze
identifier and bounds the clock z in φ. For instance, using the
freeze identifier the formula A[φC1U≤5ψC2] can be defined
by: z in A[(φC1 ∧ z ≤ 5)UψC2]

Definition 4 (Semantics of ArTCTL) The satisfaction rela-
tion (A, s) |� φ (i.e., φ is satisfied at state s in TA A) is
defined inductively as follows:

− A, s |� pcp iff p is true in state s and satisfies constraint
cp (i.e., let cp = (cpType, cpId), p is true within com-
ponent cpId of type cpType)

− A, s |� ¬φ iff A, s � φ

− A, s |� φ ∨ ψ iff either A, s |� φ or A, s |� ψ

− A, s |� z.φ iff A, s{z} |� φ

− A, s |� E[φU∼cψ] iff there exists a run (s1, t1)(s2, t2)
. . . such that s1 = s in A and there exist an i ≥ 1 and a
δ ∈ [0, ti+1 − ti ] such that

− A, si + δ |� ψ

− for all j, δ′, if either (1 ≤ j < i) ∧ (δ′ ∈ [0, t j+1 −
t j ]) or ( j = i) ∧ (δ′ ∈ [0, δ), then A, s j + δ′ |� φ

− A, s |� A[φU∼cψ] iff for all runs (s1, t1)(s2, t2) . . . such
that s1 = s in A and there exist an i ≥ 1 and a δ ∈
[0, ti+1 − ti ] such that

− A, si + δ |� ψ

− for all j, δ′, if either (1 ≤ j < i) ∧ (δ′ ∈ [0, t j+1 −
t j ]) or ( j = i) ∧ (δ′ ∈ [0, δ)), then A, s j + δ′ |� φ

For instance, the absence property “P does never occur
within the component CpId of type CpType” can be expressed
in ArTCTL with: AG(¬P(CpI d,CpT ype)).

7 Applying property patterns to IPHC case study

In this section, we apply our pattern system to the case study
presented earlier in Sect. 4.4.

Requirement 1: An RTP packet is compressed in the
fast path (ASIC) and the latency is less than 150µs

This requirement is described in Fig. 25. Its corresponding
ArTCTL formula is:

¬E[¬RT Ppacket U (RT Ppacket(T eam,ASI C)

∧ EG≤150¬RT Pcompr)] (19)

The design shown in Fig. 9 satisfies this property since
RTP flows are compressed in the fast path (ASIC) and the
latency is wihin the acceptable range (100 < 150µs).

Fig. 25 Bounded existense property satisfying IPHC design

Requirement 2: A TCP packet is compressed in the
fast path (ASIC) and the latency is less than 50µs

This requirement is described in Fig. 26. Its corresponding
ArTCTL formula is:

¬E[¬T C Ppacket U (T C Ppacket(T eam,ASI C)

∧ EG≤50¬T C Pcompr)] (20)

In this case the design in Fig. 9 violates this property since
TCP flow compression takes place in slow path (software)
and the latency is higher (100 > 50µs) than the one specified
in the property.

Fig. 26 Bounded existense property violating IPHC design

Requirement 3: In the compression scenario, the
header lookup is followed by a protocol check

This requirement is described in Fig. 27. Its corresponding
CTL formula is:

AG(Header Lookup ⇒ AF(Check Protocol)) (21)

The design in Fig. 9 satisfies this property since responsibi-
lity HeaderLookup is followed by responsibility CheckPro-
tocol for all paths that contain HeaderLookup.

Fig. 27 Response property satisfies IPHC design
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Requirement 4: IP options are not compressed
This requirement is described in Fig. 28. Its corresponding

architectural CTL formula is:

AG(¬I P OptionsCompression(T eam,∗)) (22)

The design in Fig. 9 satisfies this property since IP options
packets are not compressed.

Fig. 28 Absence property satisfies IPHC design

Requirement 5: In the decompression scenario, packet
drop is always preceeded by context ID storage

This requirement is described in Fig. 29. Its corresponding
CTL formula is:

¬E[¬StoreContext I D U (dropPacket∧
¬StoreContext I D)] (23)

This property is not satisfied since responsibilities Store-
ContextID and dropPacket belong to two distinct paths in
Fig. 10.

Fig. 29 Precedence property violating IPHC design

8 UCM-based specification–verification framework

Our ultimate goal is to use UCM to build system models that
combine functional, architectural and temporal aspects of
real-time systems, and then check their correctness. However,
to the best of our knowledge none of the existing model che-
ckers tolls consider architectural aspects. Designing architec-
ture based model checking algorithms is left for future work.

Figure 30 illustrates the proposed UCM based Specifica-
tion Verification Framework. System specifcations are

UCM
Specification

Properties
(UCM)

jUCMNav

TA Network
TCTL

formulas

UPPAAL Model Checker

UCM-based
pattern system

Fig. 30 UCM-based specification–verification framework

expressed using the freely available UCM editing tool jUCM-
Nav [24](an eclipse based open-source tool for editing and
analysing URN models). These UCM models are then trans-
lated into a network of timed automata [20] that can be ana-
lyzed by the model checker UPPAAL [28]. We are currently
in the process of integrating UCM property templates into
jUCMNav. Users will be able to select properties from the
UCM pattern catalogue, that can be then translated into TCTL
formulas according to the UPPAAL format.

9 Conclusion

Specification building is one of the most difficult activities
of model-based verification. Our work has yielded two main
contributions. First, we have presented a UCM based spe-
cification pattern that can simplify this activity and make it
available to the novice practitioner. The specification pat-
tern system uses templates to cover most common expected
properties found in requirements specifications. We provide
a mapping of our UCM-based system to popular tempo-
ral logics CTL and TCTL. These templates combine qua-
litative, real-time and architectural properties into a single
graphical representation. To the best of our knowledge, no
existing pattern system has considered these three scopes
together. However, we do not claim that our real-time speci-
fication pattern system is complete. Second, we extend the
traditional real-time temporal logics to include architectural
aspects. We give an overview of the semantics of the systems
targeted by what we call “Architectural real-time temporal
logic”. We provide formal syntax and semantics of ArTCTL,
an extension of TCTL with architectural aspects. We believe
that having the requirement specification and properties des-
cribed using the same formalism will enable greater degrees
of analysis while preserving a high level of abstraction.

As part of our future work, we will evaluate the complete-
ness and the effectiveness of our pattern system by surveying
real-world specifications. We will also define a complete for-
mal semantics for architectural real-time temporal logic and
investigate the integration of architectural aspects into exis-
ting model checking algorithms.
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