
Softw Syst Model (2008) 7:329–343
DOI 10.1007/s10270-007-0058-8

REGULAR PAPER

MDA Tool Components: a proposal for packaging know-how
in model driven development

Reda Bendraou · Philippe Desfray ·
Marie-Pierre Gervais · Alexis Muller

Received: 21 April 2006 / Revised: 10 March 2007 / Accepted: 12 April 2007 / Published online: 23 May 2007
© Springer-Verlag 2007

Abstract As the Model Driven Development (MDD) and
Product Line Engineering (PLE) appear as major trends for
reducing software development complexity and costs, an
important missing stone becomes more visible: there is no
standard and reusable assets for packaging the know-how
and artifacts required when applying these approaches. To
overcome this limit, we introduce in this paper the notion
of MDA Tool Component, i.e., a packaging unit for encap-
sulating business know-how and required resources in order
to support specific modeling activities on a certain kind of
model. The aim of this work is to provide a standard way for
representing this know-how packaging unit. This is done by
introducing a two-layer MOF-compliant metamodel. Whilst
the first layer focuses on the definition of the structure and

Communicated by Prof. Miguel de Miguel.

This work is supported in part by the IST European project
“MODELWARE” (contract no 511731) and extends the work
presented in the paper entitled “MDA Components: A Flexible Way for
Implementing the MDA Approach” edited in proceedings of the
ECMDA-FA’05 conference.

R. Bendraou (B) · M.-P. Gervais · A. Muller
Laboratoire d’Informatique de Paris 6,
8 rue du Capitaine Scott, 75015 Paris, France
e-mail: Reda.Bendraou@lip6.fr

A. Muller
e-mail: Alexis.Muller@lip6.fr

P. Desfray
Softeam, 144 Av. des Champs Elysées, 75008 Paris, France
e-mail: Philippe.Desfray@softeam.fr

M.-P. Gervais
Université Paris X, 144 Av. des Champs Elysées,
75008 Paris, France
e-mail: Marie-Pierre.Gervais@lip6.fr

contents of the MDA Tool Component, the second layer
introduces a language independent way for describing its
behavior. An OMG RFP (Request For Proposal) has been
issued in order to standardize this approach.

Keywords MDD · Packaging of know-how · MDA Tool
Component · Reusability

1 Introduction

In software industry, growing expectations for reliable soft-
ware in a short time to market makes development processes
increasingly complex. The continuing evolution of technolo-
gies and the need for sophisticated information systems will
not improve this situation. Then, it becomes more and more
difficult for companies to respect deadlines and to provide
software with the expected functionalities. According to the
Standish Group CHAOS study report, in 2004, when 29%
of projects succeeded (time, budget and required functions),
among 53% are challenged (late, over budget and/or with
less than the required features and functions); and 18% have
failed (cancelled prior to completion or delivered and never
used) [19]. Moreover, if we look closer at the development
processes, we can notice that a convergence exists in the
practice of software production. Most of the time, develop-
ers and designers apply the same steps, handle similar tools
and apply the identical tests. Unfortunately, this know-how is
generally scattered and is not capitalized. To face these chal-
lenges, model based approaches have emerged. Nowadays,
models can be explicitly manipulated through meta-model-
ing techniques, dedicated tools and processes or model trans-
formation chains. This set of activities is known as: “Model
Driven Development”.

123



330 R. Bendraou et al.

The main motivation behind Model Driven Development
(MDD) is the reduction of delays and costs by the capi-
talization of design efforts (models) at each stage, and the
automation, as far as possible, of transitions between these
stages. Then, it would be possible to separate high level busi-
ness oriented models from low level architectural and tech-
nological ones and to reuse them from one application to
another. A primary example of MDD is the OMG’s (Object
Management Group) Model Driven Architecture (MDA) ini-
tiative [10]. The MDA advocates the distinction between
models designed independently of any technical consider-
ations of the underlying platform i.e. PIM (Platform Inde-
pendent Model) and models that include such considerations
i.e. PSM (Platform Specific Model). In order to facilitate a
model driven approach for software development, a growing
family of standards for representing variety of domain spe-
cific models emerged. Examples of such standards are UML
(Unified Modeling language) [20,21], MOF (Meta Object
Facility) [12], SPEM (Software Process Engineering Meta-
model) [17], EDOC (Enterprise Distributed Object Comput-
ing) [5], etc. Besides, panoply of tools claiming compliance
with MDA is shown on the OMG’s website [9]. Nevertheless,
the expert’s know-how, domain specific features i.e. help-
ers, configuration parameters, libraries etc, and customized
actions and knowledge applied on these models are provided
neither by MDA standards nor by existing MDA-compliant
tools. Indeed, model driven approaches enable one to capital-
ize business or technical models but it does not tell anything
about how to define these models or how to build systems
with these models. It becomes obvious that currently, MDD
lacks of reusable and standard entities that can capitalize
and encapsulate the knowledge and required resources when
promoting these approaches, a key condition for a more cost-
effective software production.

To overcome this limit, we introduce in this paper the
notion of MDA Tool Component (MDATC), i.e., a packag-
ing unit which encapsulates business know-how and required
resources in order to support specific modeling activities on
a certain kind of models. One objective of MDATCs is to
provide industrial enterprises with a tool and platform inde-
pendent formalism for representing their know-how. Thus,
by using MDATC as means to describe know how, soft-
ware processes, design methodologies and modeling activ-
ities can then be represented and exchanged in a standard
format. Another objective of MDATCs is that tools can be
customized according to the modeling activities supported
by the MDATC. They will be able to support new function-
alities, access design artifacts and all the required material
simply by integrating MDATCs to their environment. Thus,
tool-vendors would have to integrate one MDATC related to
every new context or domain rather than redesigning their
tools in order to take this context into account. Indeed, in
order to support modeling features needed for a specific

domain, tool venders customize their tools. Nevertheless,
most often this is done in a proprietary way and this know-
how can not be exported/shared with other tools. This lead
them to adapt their tools every time a new profile, a new
standard, operation on models or a new platform appears.
This cannot be a long term solution. MDATCs are autono-
mous, platform-independent and promote MDA standards.
MDATCs are not business components; they are not assem-
bled to build a system. They aim to be used by tool providers
and method engineers to customize existing tools for a spe-
cific domain. An RFP has been issued at the OMG in order
to promote this approach and five companies have already
manifested their intention to participate in the standardiza-
tion process [15].

An MDATC comes in form of two-layers MOF-compli-
ant metamodel. The first layer, called MDATC Infrastruc-
ture extends main UML2.0 Infrastructure classes in order
to define the structure and contents of MDATCs. The sec-
ond layer is based on the UML2.0 Superstructure. It extends
key constructs of the UML2.0 Superstructure required for
the definition of the modeling activities supported by the
MDATC and which apply on its contents. We also discuss
primary requirements, basis and challenges for the deploy-
ment and execution of such know-how packaging unit and
we introduce a framework for MDATC coordination.Previ-
ous efforts were done in an ITEA (Information Technology
European Advancement) research project called Families [6],
from which several publications emerged: Bézivin et al. [1]
and [4] in introducing the notion of MDATC.

This paper is organized as follows; in order to avoid any
confusion with software components, Sect. 2 presents how
MDATCs relate to them. Section 3 gives an overview of
the MDATC architecture and sets some of the requirements
that should be satisfied in order to support their deployment.
In Sect. 4, we present our MOF-compliant metamodel for
MDATC. It is composed of two parts; the former describes
MDATC structure and contents and the latter specifies the
concepts used to describe its behavior and the activities it
supports. To this end, the latter makes use of UML2.0 Activ-
ity and Action constructs. A Framework for MDATC coor-
dination is introduced in Sect. 5 and Sect. 6 presents related
work. Finally, Sect. 7 highlights some perspectives.

2 MDA Tool Components versus software component

Because the term of Component is widely used with differ-
ent meanings in the software area, we find it necessary to
start by clarifying how MDA Tool Components relate to
it. Grady Booch et al., define a component as “a physi-
cal and replaceable part of a system that conforms to and
provides the realization of a set of interfaces. Typically, it
represents the physical packaging of otherwise logical

123



MDA Tool Components 331

elements, such as classes, interfaces, and collaborations”
[3]. One property that MDA Tool Components share with
software components is their ability to package the logical
units necessary for an activity achievement. However, unlike
software components, first class citizens of MDATC are mod-
els. We mean here by model any instance—at first or second
level—of the MOF metamodel e.g. the UML metamodel,
its model instances or Profiles. Likewise, an MDATC pack-
ages all required artifacts for its deployment and its execu-
tion. A non exhaustive list of such artifacts could be libraries
(e.g. Java, C++, etc.), guidelines, model transformation rules,
configuration parameters, consistency rules in form of OCL
code attached to models, icons, etc. While the principal goal
of the software component discipline is to enable practical
reuse of software parts and amortization of investments over
multiple applications, the MDATC vision aims at enabling
reuse of a certain kind of know-how applied on models.
For example, in the context of MDA, we can imagine an
MDATC—one or a collaboration of MDATCs—for specify-
ing the PIM of an application domain, one for transforming
that PIM to a PSM and another one for generating code from
that latter. Sequencing these three MDATCs then constitutes
an MDATC-based production line. Of course, this would
be one possible way but not the unique one of sequencing
MDATCs in order to realize an application with respect to
MDA recommendations.

To complete the comparison with software components,
we address the notion of services required or provided by
MDATCs. During its execution, an MDATC provides ser-
vices and may require some. Services offered by MDATCs
represent operations to be applied on models e.g. model
editing, model consistency checking, model transformation,
model comparisons and so on. The catalogue of services pro-
vided or required by MDATC is equivalent to software com-
ponent interfaces. They represent the behavior offered by the
MDATC. The interface of a software component is realized
i.e. implemented by a set of operations in a specific program-
ming language. As for MDATC, services provided might be
defined either independently of any technological consider-
ations or by using a specific language e.g. C++, Java, etc.
One advantage of doing this is to keep service specifications
platform independent and less vulnerable to the continuing
evolution of technologies. Then, service specifications can
evolve, are easily maintainable and analyzable.

3 MDA Tool Component

We give here an overview of the MDA Tool Component by
providing the motivation of introducing such a notion, defin-
ing it in a formal way by means of a metamodel and describ-
ing some features that must be supported in order to deploy
and to execute MDATCs

3.1 Rationale

In order to implement an MDA approach for a particular
domain or context, one has to:

1. Define the appropriate modeling abstractions. Using the
MDA related technologies, this means that specific
metamodels or UML profiles are established, and that
consistency checks for models are specified.

2. Implement production automation rules that will trans-
late a given level of abstraction into another level of
abstraction, or produce some development artifact.

3. Identify reusable model artifacts that represent software
concepts applicable in different projects in the same
domain or technology.

4. Define the steps and activities that have to be conducted
and how they relate to the set of artifacts used or produced
during the implementation of the MDA approach

In absence of a standardized method for implementing
MDA, the above steps represent our view on how to
implement an MDA approach. Actually, there may be more
activities to conduct depending on the project’s context and
objectives. The MDA approach should be supported by all
sorts of services in order to be easily adopted by software
developers who will need to apply it. Services such as wiz-
ards, on line help, consistency checks and connection to plat-
form development tools are necessary for the good usage
and acceptance of an MDA approach. Each abstraction layer,
represented by a model type, must be defined with a meta-
model or profile and benefits from a complete modeling envi-
ronment (GUI, checks, Help, process, generators, etc.). The
MDATC is the proposed means to reach this objective. Meth-
odological or process related rules can also be attached to the
MDATC through specific additional functionalities: Guide-
lines, rules, descriptions of work products to be delivered,
roles participating in the usage of the MDATC are examples
of such process related aspects. The result is that many kinds
of elements need to be packaged together, in order to provide
a complete solution for implementing an MDA approach.
That single unit of packaging is called “MDA Tool Compo-
nent” (MDATC). An MDATC contains all necessary material
to customize an existing modeling environment in order to
help engineers to apply an MDD process for a specific domain
or context.

3.2 Definition

An MDA Tool Component is a deployable and packaging
unit of know-how for the definition of a certain kind of mod-
els with dedicated tools, services and resources. The types
of model can for example be a PIM or a PSM, defined in
the form of a metamodel or a UML profile. The MDATC

123



332 R. Bendraou et al.

MDA Tool Component

cmd1 

cmd2 

cmd3 

FileA 
Resources (help, icons,
executables libraries, etc.) 

Invocation points
(Commands, notifications, etc.)

Metamodels or UML Profiles, 
constraints, Model Transformations, 
Behavior, etc.

Fig. 1 An MDA Tool Component packages model definitions,
attached services and resources

concept, in essence, aims at customizing an existing mod-
eling tool, or group of tools. MDATCs are for tool provid-
ers and method engineers, not for those developing business
systems. By buying or using an MDA Tool Component, an
MDA tool owner can perform, for instance, a model editing,
a model transformation or code generation according to the
rules, scope and process specified by the component inside
its MDA tool. An MDATC does not necessarily define a new
kind of model. It can provide services for a model defined
in another component or by modeling tools, like checking
an UML diagram. It can also provide services not directly
focused on models, like compiling source code. An MDATC
needs to be connected to the customized toolset, and to be
executed accordingly in order to extend the behavior and
services provided by the host toolset. When deployed, the
MDATC has to be executed in an MDA Container, which is
a dedicated execution environment that can load the attached
artifacts and descriptions, and that can execute the attached
behaviors according to a predefined lifecycle. The MDA Con-
tainer is embedded in a hosting tool (e.g., UML Case tool):
it binds the hosting tool functionality to the loaded MDATC.
MDATCs include the definition of “invocation points”, which
abstract the different mechanisms by which the MDATC can
be solicited by the environment, such as provided services,
events on which the MDATC reacts or menu entries provided
to the end user (see Fig. 1.). These interaction points define
the connection between the MDATC’s external environment
(e.g., end users, other tools or MDATCs) and the MDATC’s
implementation. In Sect. 5 we address in more details how
MDATCs, MDA Container and the Hosting tool may interact
and we give an architectural view of the ensemble.

3.3 Steps from the definition to the usage of MDATCs

The following steps and tools are necessary to support the
definition, deployment and usage of MDATCs (see Fig. 2):

1. Modeling and definition of an MDATC: In this stage, a
dedicated modeling tool called MDATC Modeler is used
to define the profiles or metamodels supported by the
MDATC. The modeling support includes the modeling
of profiles or metamodel or the capacity to import these
definitions using XMI, the modeling or definition of the
invocation points of the MDATC, the modeling or defi-
nition of the behavior, and the modeling or definition of
the packaging of the MDATC.

2. Producing and packaging an MDATC: The definition of
the MDATC needs to be checked, compiled and pro-
duced into a packaged form. The MDATC Modeler tool
also supports this step. The result is a file in a specific
format, storing the implementation of the MDATC.

3. Deploying an MDATC: Using the MDATC packaging
unit, the MDATC is made accessible to a modeling tool,
and can be selected by users. The targeted tools must
embed an MDA Container to be capable of loading and
executing MDATCs.

4. Applying an MDATC: Once deployed, the users can select
the MDATC in their modeling environment, and it will
be executed. At this stage, the MDA Container loads and
executes the MDATC that will customize the modeling
environment and adds a new functionality. The profiles
packaged by the MDATC will be applied to the model
in the user’s current work context, or the metamodels
packaged by the MDATC will be interpreted to type the
models created under the hosting tool.

5. Maintaining existing MDATCs: to make the MDATCs
reusable, an organization should maintain libraries of
MDATCs that can be applied in projects of this organiza-
tion. These MDATCs can evolve to support new assets,
consistency checks and modeling extensions.

In practice, these steps must be iterated many times before
producing valuable components. Indeed, building an MDA
tool chain for a specific domain is a long and hard task, need-
ing both domain and modeling experts. But once built, such
tool chains can provides a high degree of automation as dem-
onstrated in [16]. The goal of MDATCs is to capture this know
how in order to reuse it for new projects in the same domain.

3.4 Constituents of MDATCs

Typically, an MDA Tool Component can be used to define,
partially or entirely, one or several specific CIMs, PIMs or
PSMs. Each MDATC must provide some technical features
used by the hosting tool to load and manage it:

• A predefined lifecycle interface implementation that
allows the MDA Container to manage the MDATC;

123



MDA Tool Components 333

Fig. 2 MDA Tool Component
use case process

Producing and
packaging of an MDATC

Maintaining existing
MDATC

Modeling and definition
of an MDATC

Deploying
an MDATC

Applying
an MDATC

MDA Tool Component
Library

• Provided services that connect end user interactions as
received by the MDA Container environment to the
behavior packaged within the MDATC.

• Required services that specify the services that are
requested from another MDATC, or from the external
environment.

• Deployment parameters that provide a means of custom-
izing an MDATC to its deployment environment or to its
global end user options;

• Resources necessary for the execution of MDATC. These
can be libraries, icons, on-line help, user manuals, etc.;

• Elements related to the distribution policy, such as the
licensing scheme, or the protection of MDATC sources.

Each MDATC also provides some valuable artifacts and fea-
tures for its specific domain:

• Definitions of models, in the form of a metamodel or a
profile;

• Consistency rules attached to the model definitions. They
can be implemented by executable code (e.g. Java) or
OCL code;

• Model transformations that can be applied to the pack-
aged model definitions. They can be implemented by exe-
cutable code (e.g. Java or ‘J’ [8]) or QVT [13];

• Functionalities or behavior attached to the model defini-
tions that can be expressed in any executable language,
and that can typically provide such additional services as
a dedicated GUI or the usage of external libraries;

• Other elements that can be attached to an MDATC, and
that may depend on a development methodology, such as
design documentation, models, tests, etc.;

Of course, MDATC constituents are not restricted to those
defined above and vary depending on the purpose and domain
the MDATC is used for.

Hosting Tool

MDA Container

MDA
runtime

MDA Components

Modeling MDA 
Components

Package

Load

MDA Component

Fig. 3 Running MDATCs into MDA Containers

3.5 Runtime support of MDATCs: the MDA Container

The MDATC execution has to be supported by a layer inde-
pendent of the tool that executes it. The objective is to pro-
vide an infrastructure that is capable to be embedded within
model-based tools (such as Case Tools, Meta Case Tools, or
any other tool providing model oriented services) and which
provides in a uniform—and hopefully standardized—way
the services provided by the hosting tool. This kind of archi-
tecture is well supported by the “container pattern” widely
used by component based architectures such as CCM or EJB.
Figure 3 below shows an MDATC embedded within an MDA
Container which isolates the MDATC from the hosting tool,
allowing thus to run the same MDATC on several kinds of
hosting tools.

Invocation points defined by the MDATCs are the mech-
anisms by which the MDA Container will run the MDATC,
and let the MDATC cooperate with the hosting tool. User
interactions, events, required services can be transmitted from
the hosting tool to the MDATC through the MDA Container.
Provided and required services can also be used to establish
a dialog between several loaded MDATCs. There are prede-
fined services requested by containers, that every MDATC
shall implement, in order to let containers manage the life-
cycle of the loaded MDATCs. It is not expected that any
hosting tool is capable of providing every requested environ-
ment and services to any MDATC. MDATCs can therefore

123



334 R. Bendraou et al.

express requirements on the capacities of the hosting tools.
For example, some tools are capable to interpret metamod-
el definitions, other support profiles for a certain version of
UML, some have a strong GUI capacity, etc. It is up to the
MDA Container to check that the hosting tool fits to the
requirements expressed by the MDATC to be loaded. Con-
cerns like distribution or versioning are not directly taken into
account by MDATCs but can be supported by the hosting tool
[4b].

In order to be used together and/or in different tools,
MDATCs must be defined with a common and standard lan-
guage. MDATCs are defined using the MOF standard. In the
next section, we provide a more formal definition of MDATC
in form of a metamodel.

4 The MDATC metamodel

The definition of the MDATC we propose comes in form of
two-layers metamodel, namely the MDATC Infrastructure
layer and the MDATC Behavior layer. The MDATC Infra-
structure layer is a MOF-compliant metamodel. It extends
the UML2.0 Infrastructure concepts in order to specify the
structure of the MDATC, whilst the Behavior layer takes
advantage of the recently adopted UML2.0 Superstructure
constructs in order to provide a platform and language inde-
pendent way for specifying the behavior of MDATCs. Below
we introduce both layers in more details.

4.1 The MDATC Infrastructure layer

Figure 4 shows the part of the MDATC metamodel corre-
sponding to the Infrastructure layer. A specific effort has
been conducted to align this metamodel to the UML2.0 Infra-
structure standard. This metamodel contains the definition of
an MDATC and its related classes.

MDATCs are defined in terms of related model definitions,
expressed as packages, dependencies on other MDATCs,
packaged physical units, and provided services. MDATCs
are a kind of NameSpace. They act as a namespace for each
aggregation where the opposite role subsets “ownedmem-
ber”. The model definition is a kind of package, correspond-
ing to the OMG metamodel definitions. These packages can
be profiles, or packages representing metamodels. When the
MDATC refers to standards, the model definition packages
are referenced through an uri, using the OMG identification
mechanism as defined in the MOF standard. MDATCs are
represented as an aggregation of the elements to be packaged.
A Service is the formal declaration of an exposed function-
ality that a tool or a MDATC can provide, and that a tool or
an MDATC can require. MCServices can be called internally
through commands, internal calls, or event reception. Arti-
facts represent in general the resources or artifacts related

to the MDATC. They can for example be libraries, docu-
ments, test models, user guides, icons, etc. Their exact kinds
shall be defined by creating subclasses of Artifact in more
concrete subPackages. These configurations are very spe-
cific to the methodology recommended for building MDATC
and can vary widely. The intent behind MDATC Artifact is
close to the semantics of UML2.0::SuperStructure::Artifact.
Therefore, in order to match both semantics (using pack-
age merge), the name has been deliberately chosen to be
the same. InvocationPoint describes how an MDATC can
be activated and which MDATC service is activated. It is
then up to the execution container to provide the adequate
mechanism to support the specified extension point and acti-
vate the service when required. An MDATC can assemble
other MDATCs. The assembly can be specified as a reference
to another MDATC. In that case, the assembled MDATC is
requested for the execution of the assembly. The assembly
can be specified as “Embedded”. In that case, the assembled
MDATC is packaged within the assembly one, and deployed
before the assembly in the local execution space.

It is expected that each language used for expressing the
behavior of an MDATC has an OO structure: It can be struc-
tured by packages that own classes having operations in
which the language instructions are expressed as implemen-
tation. This is the case for QVT [13], Java, and “J”[8], but
also for a vast majority of languages. As we will see below,
we also propose a language independent way to specify the
behavior of an MDATC, but still we leave the possibility open
to use a specific language, at the cost of reducing the hosting
tool independence level.

4.2 The MDATC Behavior layer

As introduced above, MDATCs have a behavior that might
be specified independently of any specific language. Devel-
opers will have the possibility to define the MDATC behavior
either in a specific language or in an independent way. By
choosing the latter solution, they will overcome the problem
of the continuing technology changes and business evolu-
tions. Indeed, when having a platform-independent behavior
description, then it becomes easier to maintain, to evolve and
to generate the behavior into a specific platform or language.
To this end, we propose the MDATC Behavior layer that is
a UML2.0 Superstructure-based metamodel which extends
UML2.0 Activity and Action constructs by adding the prop-
erties and semantics required for the description of MDATC
behaviors. Then, the “packageMerge” facility offered by the
UML 2.0 standard can be used in order to merge the two lay-
ers, i.e., MDATC Infrastructure and MDATC Behavior (see
Fig. 5). As a result, we obtain a full specification that allows
the definition of both structural and behavioral aspects of
MDATCs.

123



MDA Tool Components 335

Fig. 4 A global overview of the MDATC infrastructure layer

MDATC_Infrastructure

<<merge>>

MDATC_Behavior 

Fig. 5 The MDATC metamodel: package merge of MDATC layers

The metamodel representing the MDAC Behavior layer
comes in form of package hierarchies. The outermost level
contains two packages: the Behavior_Foundation package
and the Behavior_Extensions package (see Fig. 6).

The Behavior_Foundation package contains all UML2.0
packages required as a basis for MDATC behavior descrip-
tions. Main ones are those related to Activities, Actions,
and the Kernel package, the core of UML2.0. The Behav-
ior_Extensions package holds classes that extend UML2.0
constructs introduced in the Behavior_Foundation package.
Figures 7, 8, 9 point out how concepts of both packages
are interconnected. They represent a global overview of the

MDATC Behavior layer. Lighted boxes in figures represent
UML2.0 classes. Shaded boxes represent those we specified
and that inherit UML2.0 classes.

The main class of the Behavior_Extensions package is
the MDATComponent class. An MDATComponent inherits
the UML2.0::BehavioredClassifier class (Fig. 7). A Behavi-
oredClassifier is a Classifier that has behavior specifications
defined in its namespace. One of these may specify the classi-
fier’s behavior itself which will be invoked when an instance
of the BehavioredClassifier is created. One advantage is that
the MDATC’s behavior can be represented by state machines;
this adds more control on the MDATC lifecycle. Another
advantage is, being a Classifier, an MDATC can encapsu-
late, i.e., own other classifiers such as Artifacts as well as
ActivityPerformer on these artifacts. An Artifact is the spec-
ification of a physical piece of information that is produced,
consumed, or modified by an MDATC.

An MDATC provide Services and may require some. Ser-
vices offered by the MDATC are realized by Operations
(Fig. 7). Operations are described in terms of Activities which
contain a set of Actions with an executable semantics. An
Action takes a set of inputs and converts them into a set
of outputs, though either or both sets may be empty. Input
to, respectively, output from, an action is a typed element. It

123



336 R. Bendraou et al.

Fig. 6 MDATC Behavior layer: package hierarchies

represents the Pin of the action. A Pin is typed by a Classifier.
Actions consume and produce artifacts. The relation between
an action and artifacts it handles is made through the fact that
artifacts are Classifiers and Inputs and Outputs of an action
have a type which is specified by a Classifier too (Figs. 7 and
8). This would allow actions to manipulate artifacts as easily
as calling a method while passing it parameters in usual OO
programming languages.

Activities have one or more ActivityPerformer who are
in charge of the activity and more particularly of actions
owned by it. An ActivityPerformer can be a Responsible-
Role or a SoftwareTool (e.g. compilers, model transforma-
tion engines. . .) (Fig. 8). A ResponsibleRole describes
rights and responsibilities of the Human who will interact
with the MDATC during its execution. A Human may be
an agent or a team; it has a name, a (set of) skill(s) and an
authority.

Finally, having in mind that an MDATC may need some
tool facilities during execution-time, we decide to extend the
Actions model. The CallToolServiceAction is a CallAction
(see Fig. 9). It has InputPins which represent the arguments of
the call and OutputPins as call results. We make the assump-
tion that a ToolService has a name and a set of typed param-
eters. One constraint on the CallToolServiceAction, would
be that CallToolServiceAction arguments fit to ToolService
parameters (in number and type). The model of the tool (list of
services, parameters of services, binding mode. . .) is outside
the scope of this work, you will find more details in [2,18].

5 MDA Tool Component framework

After having defined MDATC, in this section we address
the concern of their coordination. MDA Tool Components
shall have a predefined protocol in order to behave in a man-
ageable way, and to be able to cooperate together and with
their environments. This protocol will in particular be used
by the MDA Container that will manage accordingly each
MDA Tool Component. We will see in this section that the
protocol needs indeed to support more complex situations,
where external participants or other MDATCs can intervene,
and need to be coordinated. Once the protocol is formalized,
an API which supports this protocol can be defined, which
will allow the MDA Container to interact with the MDA Tool
Components. In the following, we focus on a Java implemen-
tation, and provide a Java based API to manage the MDA Tool
Components, and the MDAC Container but first; we start by
giving the different use cases of MDATCs coordination.

5.1 Use cases for MDA Tool Component coordination

An MDA Tool Component interoperates with the MDA Con-
tainer, with the MDA Container’s environment, and with
other MDA Tool Components.

• The basic coordination use case: is when an MDATC is
loaded, one command is activated, and then the MDATC
is unloaded. This use case contains the major protocol
aspects, and the fundamental coordination required for
an MDATC.

• MDATC/external world cooperation use case: in this
use case, the external world (e.g. an end user or third
party tools) will interoperate with the MDATC, through
several requests, and the MDATC may have to react to
these requests that may be parallel or interleaved.

• MDATC interaction use case: several MDATCs interact,
and send requests to each others. This use case is indeed
very close to use case 2. There is no fundamental differ-
ence between an MDAC sending a request to another
MDAC, or an external participant sending a request to an

123



MDA Tool Components 337

Fig. 7 MDATComponent
inherits UML2.0
BehavioredClassifier

Pin
(from BasicActions)

Classifier
(from Kernel)

TypedElement
(from Kernel) Input Pin

(from BasicActions)

Output Pin
(f rom BasicActions)

Action

effect : String

*

1

+input Pin

*
{filters input}

+action

1
{filters owner}

*

1

+output
*

{ordered, union
subsets ownedElement}

+action

1

{filters owner}

BehavioredClassifier
(from BasicBehaviors)

MDATComponent

CallMDACBehavior()

MCService

name : String

1..*

+providedServices

1..**

+requiredServices

*

Behavior
(from Basic Behaviors)

*

0. 1

+ownedBehavior
*

{subsets owned Member}

+context

.

0..1

0..1+classifier Behavior0..1

{subsets owned Behavior}

Operation
(f rom BasicBehav iors)

*

*

+/feature*

+/featuringClassifier

*

/behavioral Feature

1..*

+realized By

1..*

*

0..1

+method
*

+specification

0..1

Activity
(from Intermediate Activities)

0..1

0..*

0..1

+action 0..*

Fig. 8 An MDATComponent
encapsulates Artifacts and
Activity Performer
specifications (Roles, Tools)

Classi fier
(from Kernel)

SoftwareTool

name:String
is Batch : Boolean= true

Human

name:String
authority : String
skill : String

Responsible Role

responsability : String
Rights : String

0..*

1..*

+agent 0..*

+Role 1..*

Activity
(from Intermediate Activities)

Activity Performer

0..*

0..*

+performer

0..*

+activity

0..*

Artifact

is Deliverable : Boolean

0..*

0..1

+artifacts
0..*

+Activity Performer

0..1

0..*

+impacts

0..*

Behaviored Classifier
(from Basic Behaviors)

MDAT Component

CallMDACBehavior()

MC Service

name:String

1..*

+provided Services

1..**

+required Services

*

Behavior
(from Basic Behaviors)

*
0..1

+owned Behavior
*

{subsets owned Member}
+context

0..1

0..1

0..1

+classifier Behavior
0..1

{subsets owned Behavior}

123



338 R. Bendraou et al.

Fig. 9 The
CallToolServiceAction

OutputPin
(from BasicActivities)

Call Action*

+result

*

{ordered,
subsets output}

Invocation Action
Value Specification

*

+argument

*

{ordered,
subsets input}

Tool Service

name:String

Call Tool Service Action

is Synchronous: Boolean= false

(from kernel)

Fig. 10 The main constituents
of an MDATC environment

MDAC. Indeed, the architecture shall be defined in such
a way that these two use cases are similar. In addition,
these two use cases can be mixed, so that an MDATC
receives requests simultaneously from third party tools
and from other MDATCs. In the case of MDATC, the
usage between MDATCs can and shall be previously mod-
eled. This allows the MDATC Container to make sure that
the required MDATCs are pre-loaded, when the requester
MDATC is loaded. That requirement cannot be set to third
party tools.

5.2 Architectural view on MDA Tool Components
coordination

In Fig. 10 we can see the main constituents of an MDATC
environment. We notice that an MDA Container can man-
age several MDA Tool Components. The MDA Container is
hosted by the hosting tool. Each of these constituents imple-
ments a specific set of interfaces that standardize their coop-
eration. The MDA Container exposes two interfaces, one
devoted to its interaction with the MDA Tool Component,
and the other one devoted to its interaction with the hosting
tool. The “Host” interface specifies the services that a host-
ing tool shall provide to an MDA Container. A hosting tool
embeds at most one MDA Container.

Figure 11 shows the assembly of the MDATC constituents.
It represents the connection between required and provided
interfaces of each component. We see here the independence
provided by the respective interfaces defined by the archi-
tecture: there is no direct awareness of the concrete hosting
tool for the MDA Container (at least in its standard part), and
this applies for each of these elements. In addition, there is no
direct connection between the hosting tool and the MDATC,
thus guaranteeing their total independence.

5.3 The MDATC lifecycle

After it has been packaged, an MDA Tool Component is
deployed. The first deployment step simply consists of mak-
ing the packaged MDAC available, in some convenient place
accessible from the network or the local disk. It can then be
loaded and deployed in the runtime environment of the MDA
Container. After the start of the MDATC, it goes into the
“idle” state. It is considered that the “start” transition cannot
fail. Services are provided to the MDATC that can imple-
ment a specific behavior during the start transition. Whether
it works or not, does not change the resulting state “Idle”.
During the start transition, the MDATC has the opportunity
to set up its runtime initial configuration, such as GUI appear-
ance or specific global initialization procedures. When it is
invoked from the idle state, the MDATC becomes active (see

123



MDA Tool Components 339

Fig. 11 Assembly of the MDATC constituents

Fig. 12 MDATC lifecycle

Fig. 12). From the idle state, an MDA Tool Component can
be uninstalled, which will bring it back to the packaged state.
From the idle state, an MDATC can finally be stopped. The
MDATC is aware of these state changes, and can process
some code for each one of them.

The MDA Container provides the mechanism to handle
the lifecycle by calling the following set of predefined oper-
ations on the MDATC metaclass. MDATCs can then provide
specific behavior for each of these predefined operations. The
following transitions are triggering a call to services provided
by the MDA Tool Components of the same name:

• Install: the MDA Tool Component is added to a cur-
rent model environment. The install service provided by
the MDATC will do the necessary processing to initial-

ize the environment required for its execution. Typically,
elements related to file setting, register initialization and
other global settings are initialized there.

• Uninstall: the MDA Tool Component is removed from the
current model environment. Elements created or
changed in the global setting by the install service are
typically cancelled.

• Start: the hosting tool is starting, the start service of the
deployed MDA Tool Components are called. Typically,
dynamic initialization is realized there, such as adding
GUI elements to the hosting tool.

• Stop: The hosting tool is stopping, and all associated
MDA Tool Components will be stopped through their
“stop” service.

• Upgrade: a new version of the MDA Tool Component
is being installed. The “upgrade” service of MDATCs is
called. This service typically does the same kind of job
as “install”, but in an updating perspective. Issues such as
backward compatibility, upgrading tools and MDA Tool
Components are managed through this transition.

The MDA Container will manage the MDA Tool lifecy-
cle by invoking these operations, according to the lifecycle
defined in Fig. 12. The “activate” and “deactivate” transitions
do not have a single service match. The “activate” transition
corresponds to an invocation point triggering, that the MDA
Container will transfer to the MDATC, by calling a specific
service. The end of the service processing will correspond to
the “deactivate” transition.

5.4 APIs for the MDATC Framework

As shown in the architectural view on MDA Tool Compo-
nents coordination (cf. 5.2), four interfaces have been defined,
that shall support the services necessary for an MDATC
to interact with the host tool, and that shall support the
MDATC/MDATC Container cooperation, according to the

123



340 R. Bendraou et al.

Fig. 13 Interfaces and their API

MDATC lifecycle. In the following, we detail each of them
(see Fig. 13):

The Host interface defines the services provided by the
hosting tool.

• SetMetamodelOrProfile: the metamodel or profile
provided by a loaded MDA Tool Component must be
applied to the hosting tool. A service is provided for that
purpose. This service may not be capable of setting sev-
eral metamodels. In that case an error is returned to the
caller.

• UpdateMetamodelOrProfile: When a new version of an
MDA Tool Component is loaded, then the hosting tool
shall update its metamodel or profile. That is a high level
capacity. The new metamodel must be backward compat-
ible or transformation rules must be provided to update
existing instances. A tool may send an error on this, if
this service is not supported by its infrastructure.

• DeclareInvocationPoint: Invocation points defined for the
MDA Tool Component are declared to the hosting tool,
which may have very specific ways of attaching them
to its GUI. The invocation point instance, which will be
used by the MDA Tool Component later as an identifica-
tion of the invocation to handle, is passed as a parameter.
Some GUI preferences are provided: they can express if
the invocation point is to be managed as an event, as a
menu entry, or as another kind of interaction, and GUI
preferences that are very specific to the hosting tool.

• GetModelElement: the Hosting tool shall be capable of
providing access to handle model elements. This service
is very under specified, but shows that a service set is to
be provided there.

The “ContainerToHost” interface defines the services
that the container provides to the hosting tool.

• Activate: activates an invocation point. The hosting tool
has received an invocation through its GUI or API that
has been declared as related to an invocation point. It then
asks the MDA Container to manage the proper MDA Tool
Component, and to execute the related behavior.

• Start: start of the MDA Container. This happens at the
hosting tool launch time. The MDA Container shall ini-
tiate all the declared MDA Tool Components, and run its
behavior.

• Stop: The MDA Container is requested to stop when the
hosting tool stops. It is asked to properly stop all the active
MDA Tool Components.

The ContainerToMDATC interface provides all the nec-
essary services for the MDA Tool Component to run.

• GetModelElement: the Container shall be capable of pro-
viding access to handle model elements. This service is
very under specified, but shows that a service set is to be
provided there.

• DeclareInvocationPoint: Invocation points defined for the
MDA Tool Component are declared to the Container,
some aspects that must be generically managed are spe-
cific to the hosting tool. The invocation point instance,
which will be used by the MDA Tool Component later as
an identification of the invocation to handle, is passed as
a parameter.

123



MDA Tool Components 341

Finally, the MDATC interface defines the services that an
MDATC shall implement to be managed by the MDA Con-
tainer. Most of these services are implementing the MDATC
lifecycle as described before. Its services are already
explained in the MDATC lifecycle. If the MDATC has to
be installed or upgraded, then the service “getMetamodelOr-
Profile” is called, in order to set accordingly the container.

6 Related works

At the technical level, MDATCs can be compared to EMF
(Eclipse Modeling Framework) based plug-ins or Objecteer-
ing modules. They aim to improve tool functionalities. But,
EMF plug-ins and Objecteering modules are tool specific
and their requirements are defined in term of tool and library
versions. On the contrary MDATCs requirements are at the
conceptual level. MDATCs services are defined related to
a metamodel that can be provided by the hosting tool or
by another MDATC. Furthermore MDATCs themselves are
defined using a model driven approach, Eclipse plug-ins or
Objecteering modules can be considered as targeting plat-
forms. Like MDA proposes platform independent business
models we propose, with MDATCs, tool independent meta-
model and service definitions. MDATCs aim to capitalize
know-how in a packaged form independent of tool evolu-
tions.

One of the main contributions in the literature that relates
to the MDA Tool Component is the Microsoft’s Software
Factories vision. A Software factory (SF) is a product line
that configures extensible development tools e.g. Microsoft
Visual Studio Team System (VSTS) with packaged con-
tent and guidance, carefully designed for building specific
kinds of applications [7]. Main concepts in SF are the soft-
ware factory schema and the software factory template. A
SF schema lists artifacts like source code, SQL files, etc. and
how they should be combined to create a product. It specifies
which Domain Specific Languages (DSLs) should be used
and defines the product line architecture. As for SF template,
it packages all the artifacts described in the SF schema. It pro-
vides patterns, guidance, templates, DSL editing tools, etc.
used to build the product. Then, an extensible development
environment will be configured by the SF template in order
to become a SF for a product family.

Looking at these definitions of SF, one can deduce that
Microsoft’s Software Factories and MDA Tool Components
address the same problem. Indeed, SF and MDATC promote
the same vision of reusing software skills for the sake of a
more cost-effective software production and short time-to-
market. However, when MDATC first class entities are MOF
instance models, SF promotes the use of DSLs. This is, in
our opinion, a delicate issue. In [7], authors argued that in
some cases, UML profiles or MOF are not well suited for

modeling some business concepts which are more naturally
expressed in a specialized syntax. They also support that
DSLs are easy to create, to evolve and can be used to imple-
ment solutions based on these DSL. Our vision is different.
In our case, the primary reason why we chose a standard way
(i.e. MOF instances such like UML) for representing mod-
els is to be independent of any platform or language. Using
a DSL for making models more expressive is not a prob-
lem in itself. The problem is that it requires that the DSL
semantics be understandable by tools and project stakehold-
ers. Then, even if tools are compatible within the same SF
template (package), how do we deal when these tools need
to exchange models with other tools using different DSLs?
Moreover, if the behavior of a software factory is defined
through thousands of code source lines, how the SF customer
could maintain or customize the SF? We believe that mech-
anisms like stereotypes and tagged values offered by UML
profiles as well as OCL (Object Constraint Language) [22]
are expressive enough to capture the characteristics of a spe-
cific domain context. The OMG already provides Profiles for
Software Process Engineering (SPEM), System engineering,
test modeling, QOS modeling, and the already long existing
list of profiles will proliferate within the coming years [14].
For those who may find limitations of using UML profile,
MOF can be used as formalism for defining domain specific
language metamodels. This allows leveraging UML standard
tools and training. Thus even if SF and MDATCs share the
same vision of promoting software production lines, they do
not follow the same approach. However, MDA Tool Com-
ponents can be used by Software Factories as a standard
mean for representing certain knowledge and for packaging
required artifacts and tools for applying it.

7 Conclusion

In this paper, we introduced the notion of MDA Tool Compo-
nent, i.e., a packaging unit for encapsulating business know-
how and required resources in order to support specific
operations on a certain kind of model. A standard formalism
for representing MDA Tool Components was proposed in
form of MOF-compliant metamodel, requirements for their
deployment and execution was established and a framework
for their coordination is proposed. Most of the work which
has contributed to this paper has been done within the Mod-
elware IST project [11]. Tooling and Use Cases are currently
underway and a first implementation is in finalization phase.
It relates to an MDA Tool Component providing and pack-
aging all the essential know-how and material required for
the design of a CCM (CORBA Component Model) applica-
tion. That latter makes use of UML according to the UML
profile for the CCM standard. In parallel, there is an OMG
effort to standardize the notion of MDA Tool Component.

123



342 R. Bendraou et al.

Currently the writing of an RFP is underway. We believe that
the MDA Tool Component notion, once standardized and
tooled will provide its full power to the MDA technique, in
order to capitalize, share, reuse, improve and automatically
apply software development know-how. Still there is work to
do in MDATC. It mainly relates to the packaging issue and
the possibility to use the Reusable Asset Specification [14]
at this aim is under investigation.

The goal of MDATCs is not to build a full automated tool
chain but helping developer to add to his usual modeling tool
all necessary assets and knowledge (metamodels, guidelines,
model-checker, transformations,...) for a specific domain.

For now, as we mentioned it in Sect. 3.5, technical con-
cerns of modeling process (model serialization, model con-
currency editing, versioning, etc.) are not managed by
MDATCs but by the hosting tool. It will be interesting to
study integrating such concerns into MDATCs, maybe by
managing each technical concern by an MDATC, and thus
applying MDATCs idea to the modeling domain itself.

References

1. Bézivin, J., Gérard, S., Muller, P.-A., Rioux, L.: MDA compo-
nents: challenges and opportunities. In: Metamodelling for MDA,
York, England (2003)

2. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus: towards
the interoperability of modelling tools. In: Proceedings of the
MDAFA’04. Linköping University, Sweden (2004)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling lan-
guage user guide. Addison-Wesley Professional; 2 edn, (2004)

4. Desfray, P.: Techniques for the early definition of MDA arti-
facts in a UML based development. Enterprise UML & MDA,
London May 12 and 13 at: http://www.enterpriseconferenc-
es.co.uk/programme.pdf

5. EDOC: UML profile for enterprise distributed object computing,
OMG Document ptc/02-02-05, 2002 http://www.omg.org

6. Families ITEA Project at: http://www.esi.es/en/Projects
/Families/

7. Greenfield, J., Short, K.: Software factories:assembling applica-
tions with patterns, models, frameworks and tools. In: Proceedings
of the 18th conference on object oriented programming systems
languages and applications (OOPSLA), Anheim, CA, USA, ACM
press, New York (2003)

8. J language, at: http://www.objecteering.com/pdf/whitepapers/us/
uml_profiles.pdf

9. MDA Development tools, at: http://www.omg.org/mda/commit-
ted-products.htm

10. MDA Guide: Model driven architecture (MDA), OMG TC docu-
ment ormsc/2001-07-01, July 2001, at http://www.omg.org

11. MODELWARE Project, at http://www.modelware-ist.org
12. MOF 1.4.: Meta-Object Facility, OMG document formal/2002-

04-03, April 2002, at http://www.omg.org
13. OMG, MOF2.0 QVT (Query /Views/Transformations), Final

Adapted Specification, OMG document ptc/05-11-01, November
2005, at http://www.omg.org

14. OMG specifications at: http://www.omg.org/technology/
documents/modeling_spec_catalog.htm

15. OMG TC Work in Progress http://www.omg.org/schedule/

16. Presso, J.M., Belaunde, M.: Applying MDA to voice applications:
an experience in building an mda tool chain. In: Proceedings
of the model driven architecture - foundations and applications
(ECMDA-FA), LNCS 3748 (2005)

17. SPEM1.1: Software process engineering metamodel. OMG doc-
ument formal/02-11/14, November 2002, at http://www.omg.org.

18. Sriplakich, P., Blanc, X., Gervais, M.-P.: Supporting collaborative
development in an open MDA environnement, IEEE Int’l confer-
ence on software maintenance (ICSM) (2006)

19. Standish Group: 2004 Third quarter research report. at:
http://www.standishgroup.com. Page last visit: June 13 (2005)

20. UML2.0 Infrastructure: Unified modelling language, Final
Adopted Specification, OMG document ptc/03-09-15, December
2003, at http://www.omg.org

21. UML2.0 Superstructure: Unified modelling language, Available
Specification, OMG document ptc/04-10-02, October 2004, at
http://www.omg.org

22. UML2.0 OCL Specification: Unified modelling language 2.0
object constraint language. Adopted Specification, OMG docu-
ment formal/03-10-14, October 2003, at http://www.omg.org

Author’s Biography

Reda Bendraou is a PhD
candidate at the LIP6 com-
puter science laboratory of the
Pierre & Marie Curie Univer-
sity, Paris. His research interests
focus on Model Driven Devel-
opment approaches applied to
software process modeling and
execution, OO methodologies
and UML model executability
and semantics. He is also an
OMG member. He participates
at the standardisation efforts of
SPEM2.0, the OMG standard
dedicated to software process
modeling.

Philippe Desfray, is an expert
in object oriented method, and
VP for R&D in the SOF-
TEAM company. He has cre-
ated an object oriented method
in 1990, published three books,
and has conducted the devel-
opment of the Objecteering
Case tool. In 1994, he has
introduced a technique called
�Hypergenericity� close to
the UML profile technique,
supporting model transforma-
tion. His continuous work on
Model driven engineering has
conducted him to heavily influ-
ence the �UML Profile stan-

dard�, and to drive the development of MDA based evolutions of the
Objecteering case tool. Since 1994, Philippe Desfray represents SOF-
TEAM as a Contributing Member at the OMG, and actively participates
to the UML definition. In particular, Philippe has been leading the defi-
nition of the UML Profile mechanism for UML1.4, and UML2.0.

123



MDA Tool Components 343

Marie-Pierre Gervais is a Full
Professor of computer science at
the University of Paris X (UFR
SEGMI). She doing her research
work in the “Modeling & Veri-
fication” team at the Laboratoire
d’Informatique de Paris 6 (LIP6).
She is leading the ODAC pro-
ject, a project which main con-
cerns deal with the modeling of
open and complex applications
in a distributed environment. Her
research interests focus on the
construction of open and distrib-

uted applications, Model Driven Development and Model Composition.
She is also an OMG member and participated in the RM-ODP working
group.

Alexis Muller received his PhD
degree in computer science from
Lille University, France in 2006.
He is currently occupying a post-
doc position at LIP6, University
of Pierre & Marie Curie. His
research interests focus on model
driven development, model com-
position and formalization.

123


	MDA Tool Components: a proposal for packaging know-howin model driven development
	Abstract 
	1 Introduction
	2 MDA Tool Components versus software component
	3 MDA Tool Component
	3.1 Rationale
	3.2 Definition
	3.3 Steps from the definition to the usage of MDATCs
	3.4 Constituents of MDATCs
	3.5 Runtime support of MDATCs: the MDA Container

	4 The MDATC metamodel
	4.1 The MDATC Infrastructure layer
	4.2 The MDATC Behavior layer

	5 MDA Tool Component framework
	5.1 Use cases for MDA Tool Component coordination
	5.2 Architectural view on MDA Tool Components coordination
	5.3 The MDATC lifecycle
	5.4 APIs for the MDATC Framework

	6 Related works
	7 Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


