
Softw Syst Model (2007) 6:317–347
DOI 10.1007/s10270-007-0051-2

SPECIAL SECTION PAPER

Event-driven grammars: relating abstract and concrete levels
of visual languages

Esther Guerra · Juan de Lara

Received: 18 February 2005 / Revised: 30 January 2007 / Accepted: 12 February 2007 / Published online: 29 March 2007
© Springer-Verlag 2007

Abstract In this work we introduce event-driven
grammars, a kind of graph grammars that are especially
suited for visual modelling environments generated by meta-
modelling. Rules in these grammars may be triggered by user
actions (such as creating, editing or connecting elements) and
in their turn may trigger other user-interface events. Their
combination with triple graph transformation systems allows
constructing and checking the consistency of the abstract
syntax graph while the user is building the concrete syn-
tax model, as well as managing the layout of the concrete
syntax representation. As an example of these concepts, we
show the definition of a modelling environment for UML
sequence diagrams. A discussion is also presented of meth-
odological aspects for the generation of environments for
visual languages with multiple views, its connection with tri-
ple graph grammars, the formalization of the latter in the dou-
ble pushout approach and its extension with an inheritance
concept.

Communicated by Dr. Francesco Parisi-Presicce.

This is a revised and extended version of a paper presented at the
ICGT’04 conference, see [21].

E. Guerra
Departamento Ing. Informàtica, Universidad Carlos III,
Madrid, Spain
e-mail: eguerra@inf.uc3m.es

J. de Lara (B)
Escuela Politécnica Superior, Ing. Informática,
Universidad Autónoma, Madrid, Spain
e-mail: jdelara@uam.es

Keywords Graph Grammars · Triple Graph
Transformation ·Meta-Modelling · Visual Languages ·
Consistency · UML

1 Introduction

Traditionally, visual modelling tools have been generated
from descriptions of the Visual Language (VL) given either
in the form of a graph grammar [2] or as a meta-model [10].
The former approach requires the construction of a creation
or a parsing grammar. The first kind of grammar gives rise to
syntax directed environments, where each rule represents a
possible user action and the user selects the rule to be applied.
The second kind of grammars (for parsing) tries to reduce the
model into an initial symbol in order to verify its correctness.
Both kinds of grammars are indeed encodings of a procedure
to check the validity of a model.

In the meta-modelling approach, the VL is defined by
building a meta-model. This is a kind of type graph [8]
with inheritance [3], multiplicities and other—possibly tex-
tual—constraints. One of the most prominent examples of
the meta-modelling approach is the definition of the UML
language by the OMG [31]. The meta-modelling environ-
ment has to check that the model built by the user is con-
formant to the meta-model. This can be done by finding a
typing morphism between model and meta-model, and by
checking the defined constraints on the model. Most of the
times, the concrete syntax is given by assigning graphical
appearances to both classes and relationships in the meta-
model [10]. For example, in the AToM3 tool [10], this is
done by means of a special attribute that both classes and
relationships have. In this approach the relationship between
concrete (the appearances) and abstract syntax (the meta-
model concepts) is one-to-one. Therefore, it is difficult to

123

318 E. Guerra, J. de Lara

provide the meta-model with a concrete syntax that is struc-
turally different from the abstract syntax. Moreover, for some
applications, one is interested in having several concrete syn-
tax representations for a single meta-model. For example,
in the UML1.5 [31], sequence and collaboration diagrams
are two different visualizations of the same abstract syntax
elements.

In this paper we present a novel approach for VLs defini-
tion that combines the meta-modelling and the graph gram-
mar approaches. To overcome the restriction of a one-to-one
mapping between abstract and concrete syntax elements, we
define separate meta-models for both kinds of syntax. In
a general case, both kinds of models can be very differ-
ent. For example, in the definition of UML 1.5 class dia-
grams [31], the meta-model defines abstract syntax concepts
Association and AssociationEnd1, which are graphically rep-
resented together in a single concrete syntax concept (a line).
In general, one can have abstract syntax concepts that are not
represented at all, represented with a number of concrete
syntax elements, and finally, concrete syntax elements with-
out an abstract syntax representation. To maintain the corre-
spondence between abstract and concrete syntax elements,
we create a correspondence meta-model whose nodes have
pairs of morphisms to elements of the concrete and abstract
meta-models.

In our approach, the concrete syntax part works in the
same way as in the pure meta-modelling approach, but we
define triple graph transformation rules [27,23] to automati-
cally build the abstract syntax model from the concrete one,
and check the consistency of both kinds of models. The nov-
elty is that we explicitly represent the user interface events in
the concrete syntax part of the rules (creating, editing, con-
necting, moving, etc.). Events can be attached to the concrete
syntax elements to which they are directed. In this way, rules
may be triggered by the events that the user generates when
working with the editor. These event-driven grammars are a
very useful specification technique for user interaction and
dialog with the generated modelling environment [4].

Additionally, we take advantage of the inheritance
structure in the meta-model, and allow the definition of
inheritance-extended triple rules [3]. Some of the nodes in
these inheritance-extended rules may be instances of classes
with subtypes (i.e. classes from which a number of children
classes inherit). These rules are equivalent to a number of
concrete rules obtained from the valid substitutions of such
nodes by instances of the sub-classes in the meta-model. We
extend this concept to allow refinement of relationships.

As a proof-of-concept, we present a non-trivial example
based on AToM3. We define the concrete and abstract syntax

1 In the UML2.0 version AssociationEnd is no longer present, and the
Property metaclass is used instead (see the UML2.0 superstructure spec-
ification [31]).

of sequence diagrams, a grammar to maintain the consistency
of both syntaxes, with additional rules for concrete syntax
layout, and consistency rules to check the sequence diagram
against other existing diagrams.

The main contribution of the paper is proposing a for-
mal method (based on graph transformation) to overcome
the limitations of current approaches to handle concrete and
abstract syntaxes, especially when they are very different.
Our approach has the advantage of being graphical and for-
mal, so there is no need to code in low-level languages. In
contrast, in other approaches [33], the VL designer needs to
know the implementation language and the API (Application
Program Interface) of the tool. Moreover, in our approach,
the behaviour of the tool itself is modelled by graph transfor-
mation rules (the event-driven grammars), which promotes
flexibility and makes tool evolution easier. Thus, the user
has the possibility to change the tool behaviour, for exam-
ple to support the “action-object” paradigm of interaction
(first selecting an operation and then the object to which the
operation is performed), or the “object-action”. Moreover,
the formal definition of graph transformation makes tool
behaviour subject to analysis. This can be useful to detect
for example if a given action (modelled by rules) may yield
different results or is terminating. Finally, another important
contribution of this work is the formalization and extension
of triple graph grammars [27] to triple graph transforma-
tion systems with node and edge inheritance [23] as well
as application conditions using the double pushout approach
(DPO) [13] to graph transformation. This formal basis is
essential, as triple graph grammars are becoming increas-
ingly popular for expressing model transformation
[28].

The rest of the paper is organized as follows. In Sect. 2 we
introduce meta-modelling in the context of the AToM3 tool.
Section 3 presents triple graph grammars with our extensions
to include application conditions and typing with respect to a
type graph with node and edge inheritance. This section intro-
duces the concepts in an intuitive way, by means of examples.
The rigorous definitions of the theory are left to Appendix
A. Section 4 introduces the main concepts of event-driven
grammars, while Sect. 5 presents an example to define the
abstract and concrete syntax of sequence diagrams (accord-
ing to the UML 1.5 specification). Here we also present lay-
out and some consistency rules that check that the elements
in the diagram are consistent with already existent elements,
defined in other diagrams. Section 6 discusses the implemen-
tation of the presented concepts in the AToM3 tool. Section 7
compares the present work with related research. Finally,
Sect. 8 ends with the conclusions and future work. Two addi-
tional appendices present the main concepts of the theory we
have developed for triple graph transformation and event-
driven grammars. For a complete presentation of the theory,
the reader is referred to [23].

123

Event-driven grammars: relating abstract and concrete levels of visual languages 319

Fig. 1 The AToM3 tool

2 Meta-modelling in AToM3

AToM3 [10] is a meta-modelling tool that was developed in
collaboration with McGill University. The tool allows the
definition of VLs by means of meta-modelling and model
manipulation by means of graph transformation rules. The
meta-modelling architecture is linear, and a strict approach
is followed where each element of the meta-modelling level
n is an instance of exactly one element of the level n+12 [1].
Starting from the meta-model of a VL, and assigning visual-
ization information to each element in the meta-model, the
tool is able to generate a customized modelling environment
for the VL.

As an example, the upper part of Fig. 1 shows the AToM3

tool containing the meta-model of a subset of sequence dia-
grams. We have included the main visualization concepts of
a sequence diagram (messages, objects, activation boxes, life
lines) in the meta-model. We have also added attributes to the
concepts, including their graphical representation. For exam-
ple, the graphical representation of an object is shown in the
upper-right window in the figure. The modelling environment
automatically generated from this definition is shown below.
Note that should we have used the meta-model proposed in
the UML 1.5 standard specification, it would have been diffi-

2 This is not exactly true, as for implementation we allow instances to
inherit from some base classes (see Fig. 2) that do not have a corre-
sponding concept at the upper meta-level.

cult to generate such environment using meta-modelling. The
reason is that the concepts in the standard UML specification
are quite different from the real visualization. For example,
there is no notion of activation boxes or life lines in this stan-
dard meta-model. In addition, in the standard meta-model,
messages are related through successor and activator rela-
tions, which are not explicitly set by the user when using
a tool with the concrete-syntax elements. Similar problems
arise in the UML 2.0 [31] specification for sequence, time
and other diagrams.

Next, we explain the AToM3 design structure concern-
ing meta-modelling, as it will be used in the following sec-
tions. Figure 2 shows an example with three meta-modelling
levels. The upper part shows a meta-metamodel for UML
class diagrams, very similar to a subset of the core package
of the UML 1.5 standard specification. It can be noted that
Associations can also be refined, and that the types of attri-
butes are specific AToM3 types. Instances at a lower meta-
level of some of the concepts in this meta-metamodel inherit
from a common class. This is the case of Class, Association
and AssociationEnd, whose instances inherit from ASGN-
ode and ASGConnection. Classes ATOM3AppearanceIcon,
ATOM3AppearanceSegment and ATOM3AppearanceLink
are special types, which provide the graphical appearance
of classes, association ends and associations. Their instances
at a lower meta-level inherit from abstract classes Entity,
LinkSegment and Link. The user can define the visual appear-
ance of these instances with a graphical editor (such as the
one shown in the upper-right corner in Fig. 1). Instances of
ATOM3AppearanceIcon are icon-like, and they may include
primitive forms such as circles, lines and text, and show
attribute values of the object associated with the instance
through relationship Appearance. Instances of ATOM3Ap-
pearanceLink are similar to the previous one, but are associ-
ated with two ATOM3AppearanceSegment instances, which
represent the incoming and outgoing segments to the link
(which is itself drawn in the center). Finally, the ATOM3-
Attribute class implements a special kind of attribute type,
which is used to define attribute types (relation “type”). At
a lower meta-level, the instance of an AT O M3Attribute
is of the type pointed to by relation “type” at the upper
meta-level. As “type” may point to an AT O M3Attribute,
it is possible to have an arbitrary number of meta-modelling
layers.

The second level in Fig. 2 shows a part of the meta-model
presented in Fig. 1. In this second level we have used an
abstract syntax notation, instead of the common graphical
appearance of UML class diagrams that we have used in the
upper meta-metamodel. In this level, nodes are labelled with
the elements of the upper meta-level from which they are
instances. Only two classes are shown, ActivationBox and
Object, together with the attributes for defining their appear-
ances. In AToM3, by default, the name of the appearance

123

320 E. Guerra, J. de Lara

isSource: true

Generalization

ATOM3List

ATOM3String

ATOM3Type

ATOM3AppearanceLink

instance of ActivationBox

ABox1

GObject1
instance of Graph_Object

instance of Graph_ObjectLifeLineS

GLLS1

instance of Graph_ObjectLifeLineT

GLLT1

instance of Graph_ActivationBox

GABox1

A Sequence Diagram Model

Visual Representation
connections

segments

segments

connections

Object1

LLS1
instance of ObjectLifeLineS

LL1
instance of ObjectLifeLine

LLT1
instance of ObjectLifeLineT

instance of Graph_ObjectLifeLine

GLL1

instance of Object

EntityLink

instance of

Graph_ObjectLifeLineS

ATOM3AppearanceSegment

instance of Association

ObjectLifeLine
instance of

Graph_ObjectLifeLine

ATOM3AppearanceLink

instance of Class

ActivationBox

ASG

ASGNode

ASGConnection

instance of

Graph_ObjectLifeLineT

ATOM3AppearanceSegment

instance of

Graph_ActivationBox

ATOM3AppearanceIcon

ATOM3Attribute

1

se
gm

en
tA

pp
ea

ra
nc

e

A
pp

ea
ra

nc
e

child
0..* 0..*

parent
11

isAbstract : Boolean

GeneralizableContainer

0..*

1

1

participant

1

ATOM3AppearanceIcon

Class

Association

1

isSource: Boolean

multiplicity: Multiplicity

AssociationEnd

1

ATOM3Constraint
0..*

list_type1

0..*

constraints1

fe
at

ur
e

0..1

0..*

AToM3 Meta−metamodel (Partially shown)

ModelElement
name : String

ATOM3AppearanceSegment
1

1associationAppearance

2

connection

initialValue: Expression
1type

0..*

y: Integer
x: Integer

VisualObject

selected: Boolean=false

0..*

LinkSegment

direction: {e2l, l2e}

1 1

0..*

segments

connections

segmentAppearance

connection

connection

associationAppearance

instance of

Graph_Object

ATOM3AppearanceIcon
instance of Class

Object Appearanceparticipant

Meta−model for the Concrete Syntax of

participant Appearance

Base Classes for Visual Appearance

0..*

0..* out_connections

in_connections

0..*

0..*

Sequence Diagrams

non−Graphical Entities
Base Classes for

instance of
AssociationEnd

segmentAppearance ObjectLifeLineT
multiplicity: "0..1"
isSource: false

instance of
AssociationEnd

ObjectLifeLineS
multiplicity: "0..1"

Fig. 2 Meta-modelling levels in AToM3

associated with a class or association begins with “Graph_”
followed by the name of the class or association. In the case
of an AssociationEnd instance it is similar, but followed by
an “S” or “T”, depending if the end is source or target.

Finally, the lowest meta-level shows to the left (using an
abstract syntax notation) a simple sequence diagram model.

To the right, the same model is shown using a visual rep-
resentation, taking the graphical appearances designed for
Graph_Object, Graph_ActivationBox, Graph_ObjectLife
Line, Graph_ObjectLifeLineS and Graph_ObjectLifeLineT.
The graphical forms are in a one-to-one correspondence with
the non-graphical elements (Object1, LL1, LLS1, LLT1 and

123

Event-driven grammars: relating abstract and concrete levels of visual languages 321

ABox1). The non-graphical elements can be seen as the
abstract syntax model and the graphical ones as the concrete
syntax. Nonetheless, as stated before, the one-to-one rela-
tionship is very restrictive. Therefore we propose building
two separate meta-models, one for the concrete syntax rep-
resentation (whose concepts are the graphical elements that
the user draws on the screen) and another one for the abstract
syntax one. Both of them are related using a correspondence
graph. For example, in the case of UML sequence diagrams,
the abstract syntax meta-model contains the standard UML
1.5 definition. In the concrete meta-model we place visualiza-
tion concepts such as activation boxes or life lines (as shown
in the meta-model of Fig. 1). The user builds the concrete syn-
tax model, and a (triple, event-driven) graph grammar builds
and checks the consistency of the abstract syntax model. The
main concepts of graph grammars and triple graph transfor-
mation systems are introduced in the following section.

3 Attributed typed triple graph grammars with node
and edge inheritance

In this section, we show in an intuitive way the main exten-
sions we have made to triple graph grammars in order to
be able to relate arbitrary concrete and abstract syntax. The
main concepts are presented in a theoretical way in Appendix
A. For a full description of the formalization, the interested
reader can consult [23].

Triple graph grammars (TGGs) were introduced by Schürr
[27] as a means to specify translators of data structures, check
consistency, or propagate small changes of a data structure as
incremental updates into another one. TGGs manipulate tri-
ple graphs; therefore we introduce this structure in Sect. 3.1.
Then, in Sect. 3.2, we present the main ideas of triple graph
transformation with node and edge inheritance.

3.1 Attributed typed triple graphs

Triple graph grammar rules model the transformations of
triple graphs made of three separate graphs: source, target
and correspondence. As originally defined, nodes in the cor-
respondence graph had morphisms (mappings) to nodes in
the source and target graphs. We have extended the notion
of triple graph by allowing attributes on nodes and edges
(as for example in UML both classes and associations have
attributes). Moreover, the relation between source and tar-
get graphs is more flexible, as we allow the morphisms from
nodes in the correspondence graph to be undefined, or to
lead either to a node or an edge. Finally, we also provide
triple graphs with a typing by a triple type graph (similar to a
triple meta-model), which may contain inheritance relations
between nodes or edges.

Figure 3 shows an example of an attributed typed triple
graph (short ATT-graph). The three graphs making the triple
graph are separated by dotted lines. The lower graph is called
source or concrete, the upper one is called target or abstract,
while the graph in the middle is called correspondence and
is used to relate elements in the other two graphs. Nodes in
the correspondence graph are provided with two morphisms
(called correspondence functions) which can reach either a
node or an edge of the source and target graphs, or be unde-
fined. For a precise definition of ATT-graph, see Definition 7
in Appendix A.

Using a UML-like notation, the lower graph in the figure
depicts a small sequence diagram that uses the visualization
concepts shown in the meta-model of Fig. 1. In particular, it
shows two objects (“object1” and “object2”) having an acti-
vation box each. The first activation box receives the start
message “msg0” and sends message “msg1” to the second
one. Note that messages are represented as links with attri-
butes (i.e. attributed edges). The upper graph uses concepts
of the UML 1.5 meta-model (Stimulus, Object, Class, etc.).
The correspondence graph in between relates the elements
in both graphs. More in detail, nodes with type Correspon-
denceObject in the correspondence graph relate nodes of type
Object in the other two graphs, while CorrespondenceMes-
sage nodes relate messages of any kind (edges) with Stimulus
objects (nodes).

Being able to relate links with both nodes and links through
correspondence graph nodes is crucial in our approach. For
example, suppose we have two attributed edges with the same
source and target nodes in the concrete graph, that we want to
relate with other attributed edges in the abstract graph. Relat-
ing only the source and target nodes is not enough, as then
we do not know which edge in the concrete graph is related
to which one in the abstract graph. Therefore it is necessary
to be able to directly map edges. Moreover, sometimes it is
necessary to relate edges in one graph to nodes in the other
(and therefore a regular graph morphism from the correspon-
dence graph to the other two graphs is not enough either). For
example, in model transformation, if we translate state auto-
mata into Petri nets, we may model automaton transitions
as edges and Petri net transitions as nodes. For this trans-
formation, we map states into places and state automaton
transitions into Petri net transitions. This kind of heteroge-
neous mapping has been necessary in many other cases, such
as in [24], where we transformed the structure of a web sys-
tem into a coloured Petri net, where hyperlinks (edges) were
mapped into Petri net transitions (nodes). Figure 3 is also an
example of heterogeneous mapping.

On the other hand, as the user interacts with the concrete
graph, he may delete elements which are already related
to elements in the abstract graph. When such operation is
performed, the mapping from the correspondence node to
the concrete graph node becomes undefined. Keeping the

123

322 E. Guerra, J. de Lara

Fig. 3 Attributed typed triple
graph example

: CorrespondenceMessage : CorrespondenceObject : CorrespondenceMessage : CorrespondenceObject

: SynchronousInvocationAction

: Stimulus

name:"msg0"

: Message

name:"object1"

: Object

name:"class1"

: Class

: SynchronousInvocationAction

name:"msg1"

: Message

: Stimulus
name:"object2"

: Object

name:"class2"

: Class

: action

: conformingStimulus : classifier

: sender

: action

: conformingStimulus : classifier

: receiver : receiver

name:"object2"

: Object

class:"class2"

: ActivationBox

name:"object1"

: Object

class:"class1"

: ActivationBox

name:"msg1"

: Message

type:synchronousname:"msg0"

: StartMessage

: StartPoint

: objectLifeLine : objectLifeLine

correspondence node with just one mapping is useful as we
may later want to delete the element in the abstract graph,
and probably some others related to it. Note that this feature
facilitates designing incremental transformations. Moreover,
being able to know that a mapping is undefined is a very use-
ful negative test in TGG rules.

The ATT-graph in Fig. 3 is typed over the attributed type
triple graph with inheritance (or meta-model triple) shown in
Fig. 4 (see Definition 12 in Appendix A for a precise defini-
tion of meta-model triple). The upper part (abstract syntax) of
the meta-model triple depicts a slight variation of the UML
1.5 standard meta-model proposed by OMG for sequence
diagrams3 [31]. The lowest meta-model in the figure declares
the concrete appearance concepts and their relations. Its ele-
ments are in direct relationship with the graphical forms
that will be used for graphical representation. Abstract class
ConcreteElement has two abstract edges AbsMessage and
AbsLifeLine. ConcreteElement has three children: StartPoint,
ActivationBox and Object. Message, StartMessage and cre-
ateMessage refine abstract edge AbsMessage. They restrict
the kind of ConcreteElement types that can be connected
through a message: StartPoint and ActivationBox, Activa-
tionBox with itself and ActivationBox and Object. A similar
situation happens for AbsLifeLine.

The correspondence meta-model specifies the possible
relations between elements of the concrete and abstract syn-
tax. This is done by means of classes Correspondence-
Message and CorrespondenceObject. The correspondence
functions for the former node go to Stimulus and AbsMes-
sage. As the latter is an abstract edge, this means that corre-

3 This has been changed in the 2.0 version of UML, as now the con-
cept of LifeLine is part of the meta-model. However, similar problems
remain for the ordering of messages. Moreover, sequence diagrams have
become more complex with the inclusion of combined fragments.

spondence nodes with type CorrespondenceMessage can
have correspondence functions to each one of the AbsMes-
sage children edges. Note that including the AbsMessage
abstract edge simplifies the correspondence graph. Other-
wise we would need three node types in the correspondence
graph, to relate StartMessage, createMessage and Message
links with Stimulus objects.

Next subsection shows how ATT-graphs can be rewritten
by means of TGG rules.

3.2 Attributed typed triple graph transformation with
inheritance

This section presents the basic concepts of attributed typed
triple graph transformation in the DPO approach in an intu-
itive way. See Appendix A.2 for an introduction to the basic
theory, and [23] for a complete presentation. In [27] TGGs
are defined following the single pushout [13] (SPO) approach
and are restricted to be monotonic (its LHS must be included
in its RHS). Here we use the DPO approach and do not take
the restriction of monotonicity. Moreover, we allow rules to
have application conditions.

The main idea in the DPO approach is that rules are mod-
elled using three components: L , K and R. The L compo-
nent contains the necessary elements to be found in the graph
(called host graph) to which the rule is applied. K (the kernel)
contains the elements that are preserved by the rule applica-
tion. Finally, R contains the elements that should replace the
identified part in the structure that is being rewritten. There-
fore, L − K are the elements that should be deleted by the
rule application, while R − K are the elements that should
be added. In the DPO approach, graph transformation is for-
malized using category theory. In this way, not only graphs
can be rewritten but objects in any (weak) adhesive HLR

123

Event-driven grammars: relating abstract and concrete levels of visual languages 323

Fig. 4 A meta-model triple
example

Asynchronous
InvocationAction

Create
ObjectAction

Destroy
ObjectAction

Synchronous
InvocationAction

Feature

visibility: enum = {private,
 public,protected}

name : string

name : string

Message

Action

Stimulus

Classifier

name : string

Class BehaviouralFeature

name : string

Object OperationInstance

Abstract Syntax Meta−Model

*

*

* action

* * sender

receiver

0..1 feature

activator

successor

conforming
Stimulus

1

* 0..1

*

1

1*

*

classifier
1..*

*

CorrespondenceMessage CorrespondenceObjectCorrespondence Meta−Model

name : string

Message

type : enum =
{ synchronous,
asynchronous,
destroy }

StartPoint

name : string

StartMessage

ActivationBox

class : string
name : string

Object

Concrete Syntax Meta−Model

*

0..1

 0..1

lifeLine

1

0..1

0..1

0..1

 0..1

*
*

ConcreteElement*AbsMessage AbsLifeLine

objectLifeLine

createMessage

 0..1

0..1

category [14] such as graphs, hypergraphs, Petri nets or triple
graphs (see the end of Appendix A.1 and [23]). In our case,
L , K and R are ATT-graphs. In the figures of the paper we
omit the K component, and elements in L and R are labelled
with numbers. Elements having equal numbers in L and R
are preserved by the rule, and thus belong to K . The upper
part of Fig. 5 shows a triple rule that connects one object and
its classifier in the abstract graph.

A triple rule can be applied to a host ATT-graph if an occur-
rence (a match) of the rule’s left hand side (LHS) is found
in it. If such occurrence is found, then it can be substituted
by the rule’s right hand side (RHS). Such rule application is
called direct derivation. Figure 5 shows an example of direct
derivation, in which a TGG rule is applied to ATT-graph G,
yielding graph H (written G �⇒ H). Match m identifies
the elements of the rule’s LHS in G, and the occurrence is
depicted using numbers.

In order to apply a rule, the DPO approach requires two
additional conditions. The first one is known as “dangling
edge” condition [13] and forbids rule application if deleting
a node causes some edge to become dangling (i.e. the deleted
node is the source or target of an edge in the host graph, and
the edge is not explicitly included in the rule’s LHS). The
second requirement is called the “identification condition”,
and states that if two different elements in the LHS are iden-
tified by the match (through a non-injective matching) then
they should be preserved by the rule.

A triple graph grammar (TGG) is made of a set of triple
rules and an initial ATT-graph T ri AS. The language gen-

erated by the grammar are all possible ATT-graphs derived
from zero or more applications of the rules in the set starting
from T ri AS, written L(T GG) = {T riT AG|T ri AS ⇒∗
T riT AG}.

In order to avoid creating twice the link between the object
and the classifier, the rule in Fig. 5 should also check that
the link has not been created before. This kind of negative
test can be done by providing rules with application con-
ditions, which further restrict rule applicability. One of the
most common kinds of application conditions are negative
application conditions (NACs). They consist of an extra ATT-
graph (related to the LHS) that should not be present in the
host ATT-graph (related to the LHS occurrence) for the rule
to be applied. Figure 6 shows two rules with NACs. The first
rule creates an object in the abstract syntax (label 6) if an
object has been created in the concrete syntax. The rule can-
not be applied if the object in the concrete syntax (label 1) is
already related to an abstract syntax object. This additional
condition is tested with the NAC. The second rule connects
an object with its classifier in the abstract syntax. The rule
cannot be applied if they are already connected. The latter
rule is in fact the complete version of the one shown in Fig. 5.

In this paper we also use a more complex kind of applica-
tion conditions, made of an ATT-graph X and a set of ATT-
graphs Y j (see Definition 11 in Appendix A). In this case,
a rule can be applied if, given a match of the LHS, if an
occurrence of X is also found, then an occurrence of some
Y j should also be found. NACs are a particular case of this
kind of conditions where the Y j set is empty.

123

324 E. Guerra, J. de Lara

Fig. 5 A direct derivation
example

m *m

name = "object_1"

: Object

: Correspondence
Object

: Correspondence
Object

name = "object_2"

: Object

class = "class_1"

name = "object_1"

: Object

class = "class_1"

name = "object_2"

: Object

3

2

4

G

name = "class_1"

: Class

1

to object
assign classifier

: Correspondence
Object

class = className

name = objectName

: Object

name = objectName

: Object

name = className

: Class

1

2

3

4

L

: Correspondence
Object

class = className

name = objectName

: Object

name = objectName

: Object

name = className

: Class

1

2

3

4

R

5

name = "object_1"

: Object

: Correspondence
Object

: Correspondence
Object

name = "object_2"

: Object

class = "class_1"

name = "object_1"

: Object

class = "class_1"

name = "object_2"

: Object

3

2

4

H

5

name = "class_1"

: Class

1

In order to benefit from the inheritance structure of the
meta-model triples, we allow triple rules to contain instances
of abstract classes (“abstract objects”) in the LHS (following
a similar approach to [3,16], but for triple graphs and con-
sidering also edge inheritance). Of course a host ATT-graph
cannot contain abstract objects. However, abstract objects
(and in general any object whose classifier has children) in
the rule’s LHS can be matched to instances of any subclass of
the abstract object classifier. We call this kind of rule inher-
itance-extended triple rules, or IE-triple rules. This kind of
rules are indeed equivalent to a number of concrete rules,
resulting from the valid substitutions of each node and edge
in the IE-triple rule by all the concretely typed nodes and
edges in its inheritance clan (i.e. subnodes and subedges). If
the set of equivalent rules of an IE-triple rule has cardinality
greater than one, the IE-triple rule is called IE-triple meta-
rule. Therefore, this kind of rules allows expressing com-
putations in a more compact way than regular TGG rules.
The application of an IE-triple meta-rule is equivalent to the
application of one of its concrete rules (see [23] for details).
Nodes and edges abstractly typed are thus allowed to appear
in the LHS of an IE-triple rule. However, if an abstract node
appears in the RHS, then it must also appear in the LHS.

That is, we do not allow creating elements with an abstract
typing. This could be done in principle, and the meta-rule
would be equivalent to a number of concrete rules resulting
from the substitution of the elements with abstract types by
elements with concrete one in the inheritance clan. However,
this could result in non-determinism when applying the meta-
rule, which we want to avoid. See Definition 15 in Appendix
A for a formal definition of IE-triple rule.

The top row of Fig. 7 shows an IE-triple meta-rule exam-
ple. The rule identifies the activator message of another one,
creating an edge in the abstract graph (the rule is simplified,
we do not include application conditions for clarity). Nodes
7, 8 and 9 and edges 10 and 11 of the concrete graph have an
abstract typing. The meta-rule is equivalent to four concrete
rules. Node 7 can take types StartPoint or ActivationBox in
the concrete rule, node 8 has to be an ActivationBox, and
node 9 can be an Object or an ActivationBox. Thus, four
combinations are possible, where the edge types are deter-
mined by the choice of node types. The figure also shows a
direct derivation example, where abstract elements 7, 8, 9, 10
and 11 in the rule take concrete types StartPoint, Activation-
Box, ActivationBox, StartMessage and Message in the triple
graph G.

123

Event-driven grammars: relating abstract and concrete levels of visual languages 325

Object Creation (post−rule)

:CreateEvent

y = yp

x = xp

type = ’Object’

:Object

name = objectName

class = className

:Graph_Object

LHS:

5

3 2

1

4

:Object

name = objectName

:Correspondence
Object

:CreateEvent

y = yp

x = xp

type = ’Object’

:Object

name = objectName

class = className

:Graph_Object

RHS:

8

6

7

9

5

3 2

1

4

:Object

name = objectName

:Correspondence
Object

:Object

name = objectName

class = className

NAC:

12

10

11

13 1

:Class

name = className

:Object

name = objectName

NAC:

8

1

2

:Correspondence
Object

:Class

name = className

:Object

name = objectName

:Object

name = objectName

class = className

LHS:

5

6

1

2

3

4

:Correspondence
Object

:Class

name = className

:Object

name = objectName

:Object

name = objectName

class = className

RHS:

5

7

6

1

2

3

4

Assign Classifier to Object (post−rule)

Fig. 6 Example of TGG rules with NACs

Once we have defined the basic concepts regarding triple
graphs and triple rules, next section presents event-driven
grammars.

4 Event-driven grammars

In this section we present event-driven grammars as a means
to formalize some of the user actions and their consequences
when using a visual modelling tool. We have defined event-
driven grammars to model the effects of editing operations
in AToM3 [10], although the approach can also be applied
to other tools. The actions a user can perform in AToM3 are
creating, editing, deleting and moving an entity or a link, and

connecting and disconnecting two entities. All these events
occur at the concrete syntax level.

The main idea of event-driven grammars is to make
explicit these user events in the rules. This is very different
from the syntax directed approach, where graph grammar
rules are defined for VL generation and the user chooses the
rule to be applied. In our approach, the VLs are generated by
means of meta-modelling, and the user builds the model as
in regular environments generated by meta-modelling. The
events that the user generates may trigger the execution of
some rules. In this work, rules are IE-triple rules and are used
to build the abstract syntax model, to perform consistency
checking and for concrete syntax layout.

An event-driven grammar contains three sets of predefined
rules. The first one, called event-generator rules (depicted
as evt in Fig. 8) models the generation of events by the
user. Another set of rules (action rules, depicted as sys-act
in Fig. 8) models the actual execution of the event (creat-
ing, deleting entities, etc.). Finally, an additional set of rules
(called consume rules, depicted as del in Fig. 8) models the
consumption of the events once the action has been per-
formed. In addition, the VL designer can define his own rules
to be executed after an event is generated by the user and
before the execution of the action rules (depicted as pre in
Fig. 8), or after the action rules and before the consume rules
(depicted as post in Fig. 8). These rules model pre- and post-
actions, respectively. In the pre-actions, rules can delete the
produced events if certain conditions are met. This is a means
to specify pre-conditions for the event to take place. Addi-
tionally, in the post-actions, rules can delete the event actions,
which is similar to a post-condition. The working scheme of
an event-driven grammar is shown in Fig. 8. All the sets of
rules (except the event-generator rules in evt, which just pro-
duce a user event) are executed as long as possible (note the
asterisk on the derivation arrow).

All the models in Fig. 8 Mi , Mevt , Mevt−pre, Mact ,
Mact−post and M f are attributed triple graphs typed by a
meta-model triple. However, the sets of rules evt , sys − act
and del are restricted to modify the concrete graph only,
which represents the concrete syntax. On the other hand,
rules in pre and post are unrestricted IE-triple rules, which
can be used to propagate the changes due to user events to
the abstract syntax model (abstract graph). A direct deriva-
tion by an event-driven grammar (caused by a user event) is
depicted as Mi �� �� M f . The formal definitions of event-

driven grammar and derivation are given in definitions 16
and 17 in Appendix B.

Figure 9 shows the AToM3 base classes for the concrete
syntax. We already showed some of these classes in the sec-
ond meta-level of Fig. 2. As stated before, all concrete syntax
symbols inherit either from Entity (if they are icon-like enti-
ties) or from Link (if they are arrow-like entities). Both Entity

123

326 E. Guerra, J. de Lara

Fig. 7 An example of IE-triple
meta-rule and derivation

AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

L 1

46

16

35

14 12 13

7 8 915 17

2

10 11

m

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

G

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

H

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

activator

18

AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

AbsMessage

: Concrete
Element

: Concrete
Element

: Concrete
Element

R 1

46

16

35

14 12 13

7 8 915 17

2

10 11

18

activator

m*

create
activator

AbsMessage

Mi

evt

Mf

Mevt

pre∗
Mevt−pre

sys−act∗
Mact

post∗
Mact−post

del∗

Fig. 8 Direct derivation of event-driven graph grammar

and Link inherit from VisualObject, which has information
about the object’s location (x and y) and about if it is being
dragged (selected). Links are connected to Entities via Link-
Segment objects. These can go either from Entities to Links
(e2l) or the other way round (l2e).

Abstract class ATOM3Event in Fig. 9 models the events
that can be generated by the user, and can be associated
to a VisualObject. Some concrete events have additional
information, such as CreateEvent, which contains the type
of the VisualObject to be created and its position. Move-
Event contains the position where the object has been moved.
When connecting two Entities, two ConnectEvent objects
are generated, one associated to the source and another
one associated to the target. ErrorEvent signals an error
associated with a certain object, in such a way that AToM3

presents the text of the error and highlights the object.

receives

LinkEntity

ErrorEvent

msg: String

UserEvent

type: String DragEvent DropEvent

EditEvent

DeleteEvent

AToM3Event

MoveEvent

x: Integer
y: Integer CreateEvent

type: String
x: Integer
y: Integer

LinkSegment

direction: {e2l, l2e}

y: Integer
x: Integer

VisualObject

selected: Boolean=false

DisconnectEvent ConnectEvent

LinkEvent

which: {Source, Target}

0..*
connections

1 1

0..*
segments

0..1 0..*

Fig. 9 AToM3 base classes for concrete syntax objects and user events

Finally, the UserEvent class can be used to define new
events.

From now on, we assume that the classes in Fig. 9 (together
with classes ASG Node and ASGConnection, see Fig. 2)
are the base classes for the concrete syntax graph of meta-
model triples, in a similar way as in the second meta-level
of Fig. 2. In the following, we present some event-driven
rules for the evt , sys − act and del sets. They model the

123

Event-driven grammars: relating abstract and concrete levels of visual languages 327

CONDITION

DropEvent

Drop

LHS 1 RHS 1

selected=true

VisualObject

selected=true

VisualObject

DragEvent

RHS 1

selected=false

VisualObject

Drag

LHS 1

selected=false

VisualObject

CreateEvent

type=oType
x=xp
y=yp

RHSLHS

Create(oType: String;
xp, yp: Integer)

Delete

LHS
VisualObject

RHS
VisualObject DeleteEvent

1 1

Entity

x=x1
y=y1

Entity

x=x2
y=y2

Entity

x=x1
y=y1

ConnectEvent

which=Source

1

CreateEvent

type=cType
x=(x1+x2)/2
y=(y1+y2)/2

ConnectEvent

which=Target

Entity

x=x2
y=y2

2LHS
Connect(cType: String)

1 2 RHSLHS

cType <> None

Fig. 10 Some of the event-generator rules

behaviour of the AToM3 tool. As the correspondence and
abstract graphs are empty in these rules, we omit them and
show only the concrete graph.

Figure 10 shows some of the event-generator rules
(depicted as evt in Fig. 8), which model the generation of
events by the user. The Create rule is triggered when the user
clicks on the button to create a certain entity, and then on
the canvas. The type of the object to be created is given by
the button that the user clicks, and the x and y coordinates
by the position of the cursor in the canvas. In AToM3, a but-
ton is created for each non-abstract class in the meta-model.
The Delete rule is triggered when the user deletes an object.
Finally, the Connect rule is invoked when the user connects
two Entities. In AToM3 this is performed by clicking in the
connect button and then on the source and the target entities.
AToM3 infers (with the meta-model information) the type
of the subclass of Link that must be created in between. If
several choices exist, then the user selects one of them. The
type is then passed as a parameter of the rule, and the cor-
responding creation event is generated. On the other hand,
if the entities cannot be connected, then the type is empty
(None), and the rule cannot be executed (see the application
condition). Note that all these are meta-rules, as we do not
care about the exact type of the graphical elements. That is,
these rules are general, valid for any VL.

For simplicity, the event-generator rules presented in this
paper are triggered by a specific sequence of user actions
(e.g. by clicking a button and then the canvas for the
Create rule). However, in [4], it is shown how the trigger

action can be made explicit in the rules in order to handle
different interaction possibilities (e.g. the selection of a menu
option instead of a button click). Supporting more complex
interaction patterns as triggers is up to future work.

Figure 11 shows some of the rules that model the real
execution of the events (depicted as sys-act in Fig. 8). The
first rule models the actual creation of an instance (subclass of
ASGNode, see Fig. 2), together with its associated visual rep-
resentation (whose type name is the same as the non-visual
instance, but starting by “Graph_”). Three of the following
rules model the execution of a delete event. In the first case
(DeleteUnConnectedObject rule) the object has no connec-
tions. The rule is not applicable (due to the DPO dangling
condition4) if the ASGNode to be deleted has any connec-
tion. In the second case (DeleteConnectedEntity rule), the
icon-like object has connections, so a delete event is sent
to the connected link, and the segment is erased. The third
case (DeleteConnectedLink rule) models the deletion of a
link, which erases one of the associated segments. Please
note that all the rules are executed as long as possible (see
Fig. 8). Therefore, when no more segments are connected to
the link, the link itself is deleted by rule DeleteUnConnect-
edObject, which can delete Entity and Link objects (as they
are subclasses of VisualObject).

The Connect rule models the connection of a link to two
entities. Rule Connect in Fig. 10 generates a CreateEvent for
the link. In this way rule Create in Fig. 11 is executed first,
creating the link with the correct type. Next, rule Connect in
Fig. 11 can be applied, as classes Entity and Link are the base
classes for all graphical objects. The appropriate types for the
segments in between links and entities are obtained (from
the AToM3 API) through function TypeOf, which searches
the information in the meta-model. The function takes two
objects as arguments and returns the type of the object that
can connect them.

The Move rule simply modifies the position attributes of
the object, in case the new position is valid in the canvas.
The Move event does not need to be propagated to the adja-
cent elements, as we have modelled links and entities to be
connected through segments, and these do not hold position
information, but are drawn from the link to the entity. How-
ever, a propagation of the move event from entities to links
could also be modelled (by adding several extra pre- and
post-rules) if useful for certain VLs, or if we want to model a
multiple selection and then moving several graphical objects
at the same time. In fact, being able to express different tool
behaviours in a flexible way was one of the goals of the
event-driven grammars approach. In the same way, AToM3

allows object overlapping. However, it could be possible to
forbid object overlapping by providing a negative applica-

4 Which forbids rule application if deleting a node produces dangling
edges, see [13].

123

328 E. Guerra, J. de Lara

Fig. 11 Some of the action
rules

1

type=oType

CreateEvent

x=xp
y=yp

1

type=oType

CreateEvent

x=xp
y=yp

x=xp
y=yp

"Graph_"+oType

RHSCreate LHS

1

oType

app.

1NAC

type=oType

CreateEvent

x=xp
y=yp

"Graph_"+oType

ASGNode

Link

CreateEvent

type=cType

ASGNode ASGNode

ConnectEvent

which=Source

Entity

ConnectEvent

which=Target

RHS

direction: l2e
3

5

98

TypeOf(n(10),n(11))

TypeOf(n(1),n(5))

direction: e2l

TypeOf(n(11),n(12))

TypeOf(n(5),n(2))Entity1

7 4

10 11 12

2

6

ConnectEvent

which=Target

Entity

CreateEvent

type=cType

ConnectEvent

which=Source

Entity

ASGNode ASGNode

Entity LinkSegment Link

Connect
LHS

469
8

3 7

Link1 5 2

10 11 12

14 1513

ASGNode

app. assoc.app. app.

NAC 1 5

13 15

14

DeleteEvent

LinkSegmentLink Entity

DeleteEvent

Link

ASGNode ASGNode

Entity

4

ASGNodeASGNode

3

12

4 3

12

DeleteConnectedLink
LHS

ASGConnection

RHS5
5

6
6

LHS 1

VisualObject

MoveEvent

x=xnew
y=ynew

x=xold
y=yold

Move

RHS 1

VisualObject

MoveEvent

x=xnew
y=ynew

x=xnew
y=ynew

CONDITION

2 23 3

((xnew<>xold) or (ynew<>yold)) and

(0<=xnew<=MAX_CANVAS+n(1).sizeX()) and

(0<=ynew<=MAX_YCANVAS+n(1).sizeY())

DeleteEvent

LinkSegmentEntity Link

DeleteEvent

Entity

DeleteEvent

Link

ASGNode ASGNode ASGNode ASGNode

3

12

4 3

12

4

DeleteConnectedEntity
LHS

ASGConnection

RHS5 6 5 6

DeleteEventASGNode

VisualObject

DeleteEvent

DeleteUnConnectedObject

RHS 1LHS

tion condition for the Move rule. This NAC would contain
one VisualObject placed in a position that overlaps with the
new position of the object being moved. Modelling other spa-
tial relationships, such as containment or adjacency is also
possible. This could be done by means of post-rules created
by the VL designer. The rules might check that, when an
object of some specific type has been moved, all the con-
nected objects of a certain type should also be moved, in
order to maintain them adjacent. An example of this kind
of rules is presented for sequence diagrams in Sect. 5.3,
which shows how, when moving an object, all its activa-
tion boxes are moved as well. These mechanisms to deal
with spatial relations between graphical elements could be
generalized by extending the AToM3 meta-metamodel with
special relations (in the style of [5]) between VisualObjects,
and adding the corresponding action rules. This is up to future
work.

Finally, a last set of predefined rules (shown in Fig. 12,
and depicted as del in Fig. 8) models the deletion of the
events. Rule ConsumeEventFromObject deletes any event
that is connected to a VisualObject. Rule ConsumeEvent
deletes any unconnected event. Again, this rule cannot be

LHS

AToM3Event

LHS
VisualObject

1 RHS

AToM3Event

ConsumeEventConsumeEventFromObject
RHS

VisualObject

1

Fig. 12 All the consume rules

applied if the event is connected due to the dangling edge
condition.

Figure 13 shows an example with a derivation sequence.
We use the meta-model triple of Fig. 4, which defines the
abstract and concrete syntax of sequence diagrams. Some of
the post-rules for the example are shown in Fig. 6. More-
over, we assume the meta-model triple has been created with
AToM3. Thus, the elements in the concrete part of the meta-
model triple in Fig. 4 inherit from the AToM3 base classes.
Therefore they can receive events, according to the meta-
model in Fig. 9. The resulting concrete graph of the meta-
model triple is very similar to the one found in the second
meta-level of Fig. 2.

The example starts with an empty concrete syntax and
assume there is an already defined class in the abstract

123

Event-driven grammars: relating abstract and concrete levels of visual languages 329

Fig. 13 A fragment in the
execution of an event-driven
grammar

Object

:Class

name = ’class1’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Class

name = ’class1’

:Object

name = ’ ’
class = ’ ’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Graph_Object

y = 10
x = 10

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

:Object

name = ’obj1’

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

:Object

name = ’obj1’

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:Object

name = ’obj1’

:Class

name = ’class1’

(Step 1)

Create
(evt)

(Step 2)

Create
(sys−act)

:Correspondence
Object

:Object

name = ’ ’
class = ’ ’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Graph_Object

y = 10
x = 10

:Object

name = ’ ’

:Class

name = ’class1’

(Step 3)

Object
Creation

(post)

:Correspondence
Object

:Object

name = ’ ’

:Object

name = ’ ’
class = ’ ’

:Graph_Object

y = 10
x = 10

:Class

name = ’class1’

:Correspondence
Object

:Class

name = ’class1’

:Object

name = ’ ’
class = ’ ’

:Graph_Object

y = 10
x = 10

:Object

name = ’ ’

:EditEvent

(Step 4)

Consume

(del)

Event from
Object

:Correspondence
Object

:Class

name = ’class1’

:Object

name = ’ ’

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

(Step 5)

(evt)
Edit

(Step 6)

(sys−act)
Edit

(Step 8)

Assign
Classifier
to Object
(post)

(Step 9)

Consume
Event from
Object
(del)

(Step 7)

Editing
(post)

syntax (created by a class diagram). We model the creation
and editing of an object by the user. In the first step, the
user generates a creation event by clicking on the “create
object” button of the user interface and then on the canvas
(at coordinates (10, 10)). Thus, a CreateEvent object appears
in the concrete syntax. As there is no applicable “pre-” rule,
the “sys-act” rules can be applied. These rules implement
the event semantics, and therefore an object is created in
the concrete syntax in step 2. No additional “sys-act” rule
is applicable; consequently the grammar execution enters in
the “post-” rules step. Here, rule “Object Creation” (shown
in Fig. 6) can be applied. In this way, in the third step an
object is created in the abstract syntax, linked to the object
in the concrete syntax by a correspondence object. No addi-
tional “post-” rule is applicable and the execution enters in
the “del” step. Thus, in step four, the CreateEvent is deleted.

In step five, we model a user editing action on the pre-
viously created object. This is performed by clicking on the
“Edit” button of the user interface and then on the visual

object to be edited. Thus, an EditEvent object is created and
connected with the selected visual object. In step six, we
model the execution of such editing action. Thus, the value
of the attributes (name and class) changes in the object asso-
ciated to the visual representation. Then a “post-” rule is
triggered, that modifies the name attribute of the abstract
syntax object. Moreover, in step eight, an additional “post-”
rule (“Assign Classifier to Object” in Fig. 6) is executed that
associates the object with its classifier at the abstract syn-
tax. Finally, the execution reaches the “del” step, where rule
“Consume Event from Object” is fired. The rule erases the
EditEvent object.

5 Example: sequence diagrams

As an example of the developed techniques, we describe
an environment to define the abstract and concrete syntax
of UML sequence diagrams. We use the meta-model triple

123

330 E. Guerra, J. de Lara

in Fig. 4, and assume—as in the previous example—that
the elements of the concrete graph of the meta-model tri-
ple inherit from the AToM3 base classes. Starting from this
triple meta-model, AToM3 generates a tool where the user
can build models according to the concrete syntax. The user
creates the diagrams at the concrete syntax level, therefore
some automatic mechanism to generate the abstract syntax
of the diagrams and support its mutual coherence has to be
provided. With this aim we have built a set of event-driven
rules triggered by user actions. Additionally, another set of
event-driven rules models specific spatial relations between
the elements drawn in the concrete syntax layout (such as the
automatic alignment of the activation boxes that belong to the
same object). Finally, a set of triple rules checks the consis-
tency between the sequence diagram and existing diagrams.
The three different sets of rules are presented in the follow-
ing subsections; but first, we briefly present our approach to
the visual modelling of systems with multiple views (such as
UML).

5.1 Multi-view modelling

In order to cope with the complexity of system modelling,
one may have to use partial views for the specification of their
different aspects (structure, behaviour, etc.). A different mod-
elling language is usually used for the specification of each
view. This is the case of UML [31], where system structure
and behaviour can be described using several modelling nota-

tions. Although these notations can be independently used,
they were defined and related by a single meta-model, to
complement each other. Thus, one can refer to the same con-
cept in different diagrams, and model different aspects of a
given entity. For example, a class may appear in several class
diagrams, it can be assigned a statechart, and then be refer-
enced as the classifier of a number of instances in object or
sequence diagrams.

This situation is depicted in Fig. 14. The figure shows
how the user can model a system using several views and
the different concrete syntaxes of the views at the “Mod-
els” level. Each view is specified with a diagram type, using
a given concrete syntax, and being conformant to its cor-
responding meta-model. The latter is represented with the
relation instance-of in the figure. In addition, each view has
also an associated abstract syntax. The different views are
related at this abstract syntax representation. In fact, it is
possible to obtain a unique abstract syntax model (called
repository), which is the result of “gluing” the abstract syn-
tax of the different views. Thus, fragments of the abstract
syntax obtained from each concrete syntax view may over-
lap. Methods should be provided to connect and assure con-
sistency between the different views at the abstract syntax
level. Here we propose using triple graph transformation for
this purpose. We use it in combination with event-driven
grammars to build the abstract syntax model. Moreover, we
can use it for consistency checking, in order to make sure
that the new elements added by a concrete syntax view are

Fig. 14 Modelling a
multi-view system with UML
(instance-of relations of
correspondence graphs are
omitted for clarity)

<<instance−of>>

Class Diagrams
Meta−Model for

Concrete Syntax
Sequence Diagrams
Meta−Model for

Concrete Syntax
Statecharts
Meta−Model for

Concrete Syntax

C
o

n
cr

et
e

S
yn

ta
x

A
b

st
ra

ct
S

yn
ta

x
C

o
n

cr
et

e
S

yn
ta

x

Complete VL

Correspondence

...

"M
et

a−
M

o
d

el
s"

 le
ve

l

User−Defined

"Glued" System
Model (repository)

Correspondence
Graphs

Partial Views

......

Class Diagram−1 Class Diagram−2 Statechart−1Sequence
Diagram−1

......

"M
o

d
el

s"
 le

ve
l

Meta−Model

Graphs

...
Collaboration Diagrams
Meta−Model for

Concrete Syntax

S
yn

ta
x

A
b

st
ra

ct

<<instance−of>>

<
<

in
st

an
ce

−
of

>
>

<<instance−of>>

<<instance−of>>

123

Event-driven grammars: relating abstract and concrete levels of visual languages 331

consistent with the already existing elements at the abstract
syntax. An example is shown in Sect. 5.4. Note that in order
to build an environment for UML with this approach, at
the abstract syntax one should provide the full UML meta-
model, while at the concrete syntax different meta-models
for each of the diagram types should be given. Fig. 4 pre-
sented only the abstract syntax of a small part of the UML
meta-model (together with its concrete syntax) relevant for
sequence diagrams.

5.2 Abstract and concrete syntax of sequence diagrams

We have defined the abstract and concrete syntax of sequence
diagrams using the meta-model triple in Fig. 4. In this subsec-
tion, we provide event-driven rules to construct the abstract
syntax from the user actions at the concrete level. These rules
manage the creation, editing and deletion of Objects, the
creation, editing and deletion of Messages, and the creation
and deletion of Life Lines. The graphical actions that do not
change the abstract syntax (like creating an Activation Box
or moving an element) do not need the definition of extra
rules apart from the ones provided by AToM3 (Figs. 10, 11
and 12). In addition, we have provided some rules for layout
management, which are shown in Sect. 5.3.

Rules for the creation, editing and deletion of Objects are
the simplest of the set. These rules create, edit and delete
Objects at the abstract syntax level (once the user generates
the corresponding event at the concrete level). Objects at the
abstract syntax are related to the concrete syntax Objects
(which received the user event) through an element in the
correspondence graph. Rules for creating objects (both post-
actions) are shown in Fig. 6. The top-most rule creates the
object at the abstract syntax level, while the rule below con-
nects (at the abstract syntax level) the object with its corre-
sponding class. If the second rule cannot be applied, it means
that such class has not been created in any class diagram
yet. This inconsistency is tolerated at this moment (we do
not want to put many constraints in the way the user builds
the different diagrams), but we have created some rules to
check and signal inconsistencies. These rules are explained
in Sect. 5.4 and can be executed at any moment in the mod-
elling phase. For the deletion of an object (rules not shown
in the paper), we ensure that it has no incoming or outgoing
connection. This is done by a pre-action rule that erases the
delete event on an object and presents an error message if
it has some connection. This is the main idea of pre-action
rules: checking if some condition is not met, and in that case,
inhibiting the event execution by deleting the event itself.

The creation of a message is equivalent to connecting two
elements belonging to the concrete syntax (ConcreteElement,
see Fig. 4) by means of a relationship of type AbsMessage.
Obviously users cannot instantiate neither abstract entities
nor abstract relationships, but only concrete ones. Therefore,

at the user level, the action to create messages includes three
concrete cases: the connection of two ActivationBoxes by
means of a Message relation, the connection of a StartPoint
to an ActivationBox by means of a StartMessage relation, and
the connection of an ActivationBox to an Object by means of
a createMessage relation. The event-driven rules for manag-
ing the first two concrete cases are very similar. That is, we
should have a first rule to create a Message relationship if its
source and target are activation boxes and another similar one
except for the relationship type (StartMessage) and its source
(StartPoint). Since the two rules have the same structure, we
use instead the IE-triple meta-rule shown in Fig. 15. The rule
generates the abstract syntax of a new message created by
the user, adding a relation between the concrete syntax of the
new message and its respective abstract syntax. In this par-
ticular case the message concrete syntax is related to more
than one abstract syntax entity: three abstract syntax entities
(one Message, one Stimulus and one Action) are graphically
represented using a single symbol on the concrete syntax.
On the other hand, the same rule has to process the relations
between the newly created abstract syntax message and the
rest of the abstract syntax model. That is, the successor, pre-
decessor and activator messages of the created one have to be
computed (relations successor and activator, see Fig. 4), as
well as the objects sending and receiving the message (rela-
tions sender and receiver in the same figure). Additionally,
we have to check if the new message activates in its turn
another block of messages. To make easier such complex
process, we have broken down the creation event in a set of
six user-defined events, each performing one step. The user
events are created in the RHS of the rule, and are processed
by some additional rules. Processing a createMessage can-
not be included in this meta-rule, as in the abstract syntax a
CreateObjectAction object should be created, whereas in the
meta-rule of Fig. 15 a SynchronousInvocationAction object
is created for both Messages and startMessages. Therefore
an additional, similar rule is needed for processing create-
Message objects.

Figure 16 shows the rule for processing the user event
“Process Successor”. The successor of a message is the next
message in the same activation block of an object. An acti-
vation block is made of one or more ActivationBox objects
linked through life lines. The first activation box has an
incoming message, and the rest have at most one outgoing
message and no incoming messages. The activation block
is visually represented by gluing together all the activation
boxes. Note that the user event is associated to the activation
box which is source of the message. Thus, given a message
for which its successor has to be calculated, the rule searches
for a message going out from the next activation box in the
same life line. The next activation box of “1” in the rule’s
LHS is the object labelled with “8”, and its outgoing mes-
sage is labelled with “11”. In addition, the second activation

123

332 E. Guerra, J. de Lara

Fig. 15 Meta-rule for creating
messages and startMessages

Message Creation (post−rule)

:ConnectEvent

which = Source

:Entity

:AbsMessage

:CreateEvent

type = cType

:Link

:ConnectEvent

which = Target

ActivationBox

:Graph_

LHS:

5

2

9

1

6

3

10

8

11

4

7

:AbsMessage

ActivationBox

:Graph_

:Message

name = ’’

:Stimulus
InvocationAction

:Synchronous

:CorrespondenceMessage

:Entity

:CreateEvent

type = cType

:Link

:UserEvent

type = ’Process
 Successor’

:UserEvent

type = ’Process
 Predecessor’

:UserEvent

type = ’Process
 Sender’

:UserEvent

type = ’Process
 Activator’

:UserEvent

type = ’Delete
 Activator’

:UserEvent

type = ’Process
 Receiver’

31 1

4

RHS: 24
25

27 28

26

30

29

2

6
10

8 3

18

21

20

19

12

13

14

15

23

22

17

16

box has to be in the same activation block, that is, it can-
not be the beginning of a new activation block (i.e. it cannot
receive an incoming message). This is checked by NAC2,
which forbids an incoming message to the second activation
box. Finally, the NAC1 checks that a successor relation does
not exist yet. If all these conditions are met, the rule creates
a successor relation (label 36) between the first message and
the following one at the abstract syntax, and deletes the user
event. The rule for handling the user event “Process Prede-
cessor” is very similar to this, but in this case the previous
message in the same block of activation is searched, not the
next.

A total of 15 rules have been defined to manage the cre-
ation, editing and deletion of Objects and Messages. Some
other rules, similar to the previous ones, manage the creation
and deletion of lifeLines. In this way, some of the user events
shown in Fig. 15 (and their corresponding rules) have been
reused. Thus the number of rules has been highly reduced.
Due to space limitation, we do not show all the rules, which
are 38 in total.

Note that starting from the meta-model triple, it could be
possible to automatically generate a skeleton for some of
these rules. Full generation for all the rules was achieved
in [22], but in the restricted case in which the concrete graph
of the meta-model triple is a restriction (a subset) of the
abstract syntax part of the meta-model, and thus the relation
between concrete and abstract elements is one-to-one. The
problem we are dealing with in this article is more general as
we do not have such restriction. However, we can generate a
skeleton for the creation, editing and deletion rules. We just

have to generate such rules for each connected elements in
the concrete and abstract meta-models through a correspon-
dence node. Nonetheless, rules generated in this way are not
fully complete as in general we cannot know how the attri-
bute mapping is done. Moreover, often not only an element
should be created in the abstract syntax, but it also has to
be connected to other elements (as rule Assign Classifier to
Object in Fig. 6 does). In addition, sometimes these skele-
tons should also be completed with additional elements as,
for example, an element in the concrete syntax may be related
to more than one element in the abstract syntax (as in the case
of rule Message Creation in Fig. 15).

5.3 Concrete syntax layout

Event-driven grammars can also be used to model the behav-
iour of the tool in the concrete syntax layout. They can help in
handling complex spatial relations between the elements in a
model, such as adjacency, containment or alignment. Obvi-
ously, in these cases rules should only modify the concrete
syntax model, although its application could be restricted by
certain conditions taking into account both abstract and con-
crete syntax elements. As an example, Fig. 17 shows a couple
of rules to maintain aligned in the same vertical line all the
activation boxes corresponding to the same object (that is,
those related through a life line relation).

The first rule, “Aligned Life Lines Connection”, is a pre-
rule. It will be tried when connecting an object with its first
activation box through an objectLifeLine relation, or two

123

Event-driven grammars: relating abstract and concrete levels of visual languages 333

Fig. 16 Meta-rule for
assigning message successors

(post−rule)

:Graph_ActivationBox

:LinkSegment

direction = l2e

:Link

:AbsMessage

NAC2:

8

3841

42
39

4043

:Message

name=n2

:Message

name=n1

NAC1: 25

26
37successor

:Stimulus :Message

name=n1

:Message

name=n2

 Message
:Correspondence

 Message
:Correspondence

:Graph_ActivationBox :Link :AbsMessage

:LinkSegment

direction = l2e

:Graph_ActivationBox

:LinkSegment

direction = e2l

:Graph_LifeLine

:LinkSegment

direction = e2l

:Link

:LinkSegment

direction = e2l

type = ’ProcessSucessor’

:UserEvent

:AbsMessage

32

28
24

34

:Stimulus
29

27

33

25 26LHS:

30 31

1

13 14

3

15

4

16

19 8

7

5

17
6

10

9

20 21

2

18

23

11
22

3512

:Stimulus :Message

name=n1

:Message

name=n2

 Message
:Correspondence

:Graph_ActivationBox :Link :AbsMessage

:LinkSegment

direction = l2e

:Graph_ActivationBox

:LinkSegment

direction = e2l

:Graph_LifeLine

:LinkSegment

direction = e2l

:Link

:LinkSegment

direction = e2l

:AbsMessage

 Message
:Correspondence

24
28

32

36

successor

34

:Stimulus
29

2725 26

33

13 14 15

16

19 8

7

5

17
6

10

9

20 21

2

18

1 3 4 35

22
11

30

RHS:

31

Successor
Process

activation boxes of the same object through a lifeLine rela-
tion. In order to be able to treat both cases, the LHS of the
rule contains the abstract class Entity (labelled as “1”) that
is source of the new relation. This can be matched either to
an Object or to an ActivationBox concrete object. Any other
possible matching is forbidden by the condition, which pre-
vents the application of the rule when the creation event is
neither for an objectLifeLine nor for a lifeLine relation. If the
rule is applied, the life line relation and the target activation
box are aligned in the same x coordinate as the source entity
(centered in the middle of the width of the source entity).

The second rule, “Aligned Life Lines Movement”, is also
a pre-rule. Its purpose is to maintain aligned an object with
all its activation boxes when the user moves any of them in

the concrete syntax. Thus, the LHS of the rule detects entities
related through a life line, where one of them has received a
MoveEvent. The abstract class AbsLifeLine (labelled as “3”)
can be matched to both concrete objectLifeLine and lifeLine
links. In this way, we compress in only one rule the cases of
moving an object and moving an activation box. The RHS
of the rule propagates the MoveEvent properly to the related
link and entity. The rule can be executed in an iterative way
(as long as possible), so the event is propagated to all the acti-
vation boxes in the same life line. Besides, since the rule does
not restrict the link segment direction (e2l or l2e), the event
will be propagated up and down the row of activation boxes.
That is, it does not matter whether the entity that received
the MoveEvent is source or target of the life line relation.

123

334 E. Guerra, J. de Lara

Fig. 17 Rules for the
alignment of life lines

Aligned Life Lines Movement (pre−rule)

:Link

y = y_lnk

x = x_lnk

:MoveEvent

y = any_y_lnk

x = any_x_lnk

NAC1:

4

19 18

:Entity

y = y_ent

x = x_ent

:MoveEvent

y = any_y_ent

x = any_x_ent

21 20

6

NAC2:
:Link

y = y_lnk

x = x_lnk

:MoveEvent

y = ynew

x = xnew

:Entity

y = y_ent

x = x_ent

:LinkSegment

:Entity

:LinkSegment

y = y_ent

x = (xnew + n(1).sizeX() − sizeX()) / 2

:MoveEvent

:MoveEvent

y = y_lnk

x = (xnew + n(1).sizeX()) / 2

:AbsLifeLine

RHS:

4

7

6

17

15

2

5

12

11

9

8

13
1

16

14

3

10

:LinkSegment

:LinkSegment

:MoveEvent

y = ynew

x = xnew

:Entity

y = y_ent

x = x_ent

:Entity

:AbsLifeLine:Link

y = y_lnk

x = x_lnk

LHS:

2

5

7

6

1

3
10

4

13

8

9

11

12

:MoveEvent

y = any_y

x = any_x

11 10

 ActivationBox

y = yt

x = xt

:Graph_ :ConnectEvent

which = Source

:CreateEvent

y = yl

x = xl

type = cType

:ConnectEvent

which = Target

 ActivationBox

y = yt

x = xt

:Graph_

:Entity

y = ys

x = xs

 ActivationBox

y = yt

x = xt

:Graph_
:ConnectEvent

which = Target

:MoveEvent

y = yt

x = (xs + n(1).sizeX() − sizeX()) / 2

:Entity

y = ys

x = xs

:ConnectEvent

which = Source

:CreateEvent

y = yl

x = (xs + n(1).sizeX()) / 2

type = cType

CONDITION
(cType == objectLifeLine) or
(cType == lifeLine)

Aligned Life Lines Connection (pre−rule)
NAC: LHS: RHS:

2

7

3

4

5
2

1

6

9 8

7

5

1

6

3

4

2

Finally, the NACs forbid applying the rule twice to the same
entity. Note that this rule will also be tried after applying
the rule “Aligned Life Lines Connection”. In this way, if the
activation box source of the connection has a row of already
connected activation boxes, all of them will get aligned with
the newly connected element.

Additional layout rules control the adjacency (in the verti-
cal direction) of all the activation boxes making an activation
block. Note that for the running example we use a simplified
concrete syntax meta-model for UML 1.5 sequence diagrams
(see Fig. 4). In particular, we do not allow the branching of
life lines, as the cardinality of the lifeLine relation is 0 or
1. However, this feature could be modelled with additional
event-driven rules.

5.4 Consistency checking

Triple rules can be used not only to maintain coherence
between concrete and abstract syntax, but also to check con-
sistency between different diagrams. The present work is
part of a more general project with the aim to formalize
the dynamic semantics of UML [20] by means of transfor-
mations (at the abstract syntax) into semantic domains (up
to now Petri nets). Before translation, consistency checking
should be performed between the defined diagram (in this
case a sequence diagram) and existing ones, such as class
diagrams.

As stated before, while the user builds the concrete syntax
of a sequence diagram, some event-driven rules add abstract

123

Event-driven grammars: relating abstract and concrete levels of visual languages 335

syntax elements to a unique abstract syntax model (the repos-
itory). In this way, one has a unique abstract syntax model
and possibly many concrete syntax models, one for each
defined diagram (of any kind). Using triple rules we can per-
form consistency checking between the sequence diagram
and the existing abstract syntax model generated by previ-
ously defined diagrams. For example, we may want to check
that the classes of the objects used in a sequence diagram have
been defined in some of the existing class diagrams; that if an
object invokes a method of another object, the method should
have been defined in the class of the invoked object; and in
addition, that such invoked method should be visible from
the calling class and there should be a navigable relationship
between both object classes.

We have defined consistency triple rules in such a way
that their LHSs contain conditions sought in the defined dia-
gram (a sequence diagram in our case), possibly in both the
concrete and abstract parts. They contain application condi-
tions as patterns to be sought in the complete abstract syntax
model with which we want to check consistency. If the rule is
applied, its RHS sends an event of type ErrorEvent to some
of the concrete objects matched by the LHS. As an exam-
ple, Fig. 18 shows a couple of consistency triple rules. Rule
“Check Classes” displays an error if the class specified for
an object in the sequence diagram has not been defined in
some class diagram, so it is not present in the abstract syn-
tax model (NAC). Note that this inconsistency was allowed
during the modelling phase since we want flexible environ-
ments. However it is an error so it must be pointed out and
fixed. Similarly, rule “Check Methods” displays an error if
the classifier of the object that receives a method invoca-
tion does not define the corresponding Operation. This is
modelled in the NAC (i.e. the rule cannot be applied and
therefore the error is not given if the class defines such oper-
ation). Moreover, if the visibility of the operation is private,
the classifier of the sender object should be the same as the
classifier of the receiver object (labelled as “1”). This is mod-
elled in the application condition (X1 → Y1). Please notice
that, at the concrete level, only a message (Abs Message)
and its target activation box (Graph_ActivationBox) are
selected. Thus the rule is applicable to messages of types
createMessage and Message. That is, we do not want to
consider createMessage objects, as we assume each class
has at least a default constructor.

6 Implementation in AToM3

A prototype implementation of triple graph transformation
was built in AToM3. In this way, AToM3 can now work either
with regular graphs or with triple graphs. The user can define
meta-model triples. In any component (abstract, concrete or
correspondence) the user can edit a class diagram or load

an existing one. Thus, regular meta-models can be reused in
meta-model triples. From a meta-model triple, an environ-
ment is generated that allows the user to manipulate any of
the three graphs. Nonetheless, the correspondence and the
abstract graphs can be hidden to the user, who is then only
able to use the concrete syntax elements.

Figure 19 shows a picture of the generated environment
from the meta-model triple in Fig. 4. The three components of
the graph are visible and can be edited using the correspond-
ing set of buttons to the left. However, the correspondence
and abstract graphs are usually hidden, and user interaction
takes place only in the concrete graph. In the picture, the con-
crete syntax graph shows a simple model where msg0 is the
starting message, which is received by object object1, and
then sends message msg1 to object object2.

With respect to the presented graph transformation tech-
niques, AToM3 already allowed the possibility to define graph
grammar rules with the inheritance concept defined in [3].
Nonetheless, the tool did not allow the graphical modelling
of application conditions. They had to be encoded as Python
code. We have provided rules with application conditions as
defined in [25]. Thus, they are available for regular and tri-
ple graph grammars. We have implemented the same scheme
used in the paper to simplify the conditions. In this way, as
the morphism from LHS to X (and from X to each Yi) is total,
if any element in the LHS (resp. X) does not have an image in
X (resp. Yi), it is copied and appropriately connected in the
X (resp. Yi) graph (but this is kept transparent to the user).

Figure 20 shows a snapshot of AToM3 being used to edit
the TGG rules for consistency checking. In particular, one
of the application conditions of rule Check Methods (the one
labelled as Y1 in Fig. 18). The main AToM3 window is shown
in the background. The dialog above is used to declare the
rules of the grammar (in this case, named CheckConsisten-
cySD) and shows two rules in the list. Note that with this
dialog we can define a graph grammar or a parallel rule [9]
amalgamating all the rules in the list. In the dialog above,
rule Check Methods is being edited. Here we have speci-
fied that we want to use the inheritance concept (check but-
ton labelled as “Subtypes Matching”). Then, in the dialog
above, we have declared two application conditions for this
rule: “Exists Operation” and “Private Operation”. The latter
condition is being edited in the above dialog, where we have
declared a “consequent graph” (the Yi graph in the definition)
named “Same Classifier”. The next dialog is used to edit this
graph. It has two buttons to edit the graph and the attribute
conditions. Finally, the actual graph is shown at the bottom.

7 Related work

At a first glance, the present work may resemble the syntax
directed approach for the definition of a VL. In this approach

123

336 E. Guerra, J. de Lara

Fig. 18 Some triple rules for
consistency checking

Check Methods

:Object

name = objectName

class = className

:Graph_Object

LHS:

1

3 2

:Class

name = className

NAC: 6

:Object

name = objectName

class = className

:Graph_Object "is not defined"
msg = "Class"+className+

:ErrorEvent

RHS:

1

3 2
5

4

Check Classes

:Class

name = className

NAC:

:Operation

20

visibility = anyVisibility

name = messageName

21

1

:Class

name = className

X1: 1

:Operation

22

visibility = ’private’

name = messageName

23

:Class

name = className

:Stimulus

:Object

name = objectName

Y1: 1

:Operation

22

visibility = ’private’

name = messageName

23

4

24

25

26sender

:Class

name = className

:Object

name = objectName

:Message

name = messageName

:Stimulus

:CorrespondenceMessage

:AbsMessage :Graph_ActivationBox

:LinkSegment

direction = l2e

:Link

LHS: 1 2

3 12 4

16

5

15

14

13

17

8
9

76

receiver

10

11

:Class

name = className

:Object

name = objectName

:Message

name = messageName

:Stimulus

:CorrespondenceMessage

:AbsMessage :Graph_ActivationBox

:Link
:LinkSegment

direction = l2e

:ErrorEvent

"not accesible in"+className
msg = "Method"+messageName+

RHS:

3
4

1 2

16

5

6

15

14

17

9
8

13

19

18

7

receiver

10

11

12

Fig. 19 Generated
environment with AToM3 for
sequence diagrams

123

Event-driven grammars: relating abstract and concrete levels of visual languages 337

Fig. 20 Modelling the
application condition of rule
Check Methods

a rule is defined for each possible editing action, and the user
builds the model by selecting the rules to be applied. Our
approach is quite different, as we use a meta-model for the
definition of the VL. The meta-model (which may include
some constraints) provides all the information needed for
the generation of the VL. The user builds the model by inter-
acting with the user interface, and some events are produced
as a result of such interaction. In our approach we explicitly
represent these events in the rules. Rules are triggered by the
events, but the user may not be aware of this fact. In the exam-
ples, we have shown the combination of event-driven gram-
mars with triple graphs to build the abstract syntax model, to
perform consistency checks and for layout management.

The present paper improves previous work of the authors.
For example in [11], we proposed to build visual front-ends
for OOCSMP (an object-oriented simulation language) using
AToM3, and concentrated in generating OOCSMP code from
visual models (indeed using graph grammars). However, that
work did not consider event-driven grammars, triple graph
transformation or multiple views (however, we allowed attri-
butes of entities to be models). Therefore in these previous
works, the concrete syntax of the environment had to be in

one-to-one correspondence with the abstract syntax. More-
over, the new concept of event-driven grammars allows the
specification of much richer interaction possibilities with the
modelling environment [4].

In the approach of [6], a restricted form of Statecharts was
defined using a pure graph grammar approach (no
meta-models). For this purpose, they used a low level (LLG,
concrete syntax) and a high level (HLG, abstract syntax)
representation. To verify the correctness, the LLG had to
be transformed into an HLG (using a regular graph gram-
mar), and a parsing grammar had to be defined for the latter.
Another parsing approach based on constraint multiset gram-
mars is the one of CIDER [26].

In [5], a set of meta-models was identified for the defi-
nition of classes of VLs. The approach is based on a core
meta-model with the basic elements regarding visualization.
They extended this meta-model for different families of VLs
by refining the graphical elements and by adding spatial
relations (like containment) between them. Note how, our
approach can be a complement to this idea, as we can
define by means of rules the semantics of these spatial
relations.

123

338 E. Guerra, J. de Lara

In [19], an approach to the rewriting of partial algebras
and its application to VLs is presented. The idea is to have
an internal algebra rewriting, and arbitrary external com-
ponents. The abstract syntax of the VLs is transformed by
rewriting rules (the internal algebra rewritings), while the
concrete syntax layout is obtained using a constraint solver
(the external component). Our approach is somehow more
general in its application to VLs, as we do not restrict the
abstract elements to be in one-to-one correspondence with
concrete syntax elements. Moreover, we do not follow a
syntax-directed approach, but represent interaction events
explicitly, and these are handled by the rules.

Other approaches for the definition of environments for
the different UML diagrams usually concentrate either on the
concrete or the abstract syntax, but not on both. For exam-
ple, in [7], graph transformation units are used to translate
from sequence diagrams into collaboration diagrams. As both
kinds of diagrams share the same abstract syntax, in our case
a translation is not necessary, but we have to define triple
rules to build the abstract syntax from the concrete one.

With respect to triple graph grammars, they were origi-
nally proposed in [27] as a means to derive lower-level, oper-
ational rules to perform forward or backwards translations,
incremental updates or so called consistency observing ana-
lyzers. In the present paper, we provide a richer graph concept
and a formalization of triple graph transformation in the DPO
approach. However, the algorithms for derivation of opera-
tional rules for these richer graphs we propose are up to future
work.

In the area of multi-view modelling, the ViewPoints
approach [17] proposes a method for the integration of mul-
tiple perspectives in system development. A ViewPoint is
an agent with partial knowledge about the system and has a
style (the used notation); a domain (the area of concern); the
actual specification and the work plan (available actions to
build the specification). In particular, two of the work plans
are In- and Inter-ViewPoint check actions. These are used to
validate the consistency of a single ViewPoint or between
multiple ViewPoints. The ViewPoint approach has been for-
malized using distributed Graph Transformation [18]. In our
approach a common meta-model relates the different mod-
elling notations that can be used, and the work plans are
indeed graph transformation rules. The In- and Inter-View-
Point check actions can be expressed as rules similar to the
ones presented in Sect. 5.4. The Pounamu tool [33] supports
multiple views, which are related to a “glued” model via
events (whose semantics are encoded in Java). This approach
is quite similar to ours, but they don’t consider abstract/con-
crete levels and is less formal as they do not use graph
grammars, but the observer design pattern. Other very recent
tool proposals [32] also consider structures similar to triple
graphs in order to handle concrete and abstract syntax (e.g.
the “bridge models” in [32]). The recent GMF (Graphical

Modeling Framework) project [12] under Eclipse also con-
siders different meta-models for concrete and abstract rep-
resentations, together with an additional static model for
mapping both syntaxes. This mapping also takes into account
a tool model (which defines a buttons palette). In our
approach, the mapping is richer, as in addition to a corre-
spondence graph meta-model, the designer can specify triple
rules to specify domain-specific behaviours. Moreover, we
believe our work may serve as a theoretical foundation for
other approaches.

Finally, note that although we have presented an example
using the 1.5 version of the UML standard, these techniques
are also applicable to UML 2.0, as similar problems can be
found in many of the proposed diagrams.

8 Conclusions

In this paper we have presented event-driven grammars in
which user interface events are made explicit, and system
actions in response to these events are modelled as graph
grammar rules. Their combination with IE-triple meta-rules
and meta-modelling is an expressive means to describe the
relationships between concrete and abstract syntax models
(formally defined through meta-models). Rules can model
pre- and post-conditions and actions for events to take place.
Furthermore, we can use the information in the meta-models
to define meta-rules, which are equivalent to a number of
concrete ones, where nodes and edges are replaced by each
element in its inheritance clan. In this work, we have formal-
ized triple graph grammars in the DPO approach, adapted the
original work in [3] (regarding inheritance) to triple graphs,
and extended it to allow edge refinement and application con-
ditions (see Appendix A). These ideas are naturally applica-
ble to the processing of VLs with multiple views.

The applicability of these concepts has been shown by
an example, in which we have defined a meta-model triple
for the abstract and concrete syntax of sequence diagrams
(according to the UML 1.5 specification). Additionally, we
have presented some rules to check the consistency of
sequence diagram models with an existing abstract syntax
model, generated by the previous definition of other dia-
grams. Event-driven rules have also been useful for layout
management at the concrete syntax level. Besides event-
driven grammars and the theoretical concepts, we have also
presented other novel contributions from a practical point of
view, such as an implementation of application conditions,
inheritance concepts in rules, and triple rules in the AToM3

environment.
Regarding future work, we want to derive validation tech-

niques for triple, event-driven grammars. We also plan to use
triple graph grammars to describe heuristics for the creation
of UML diagrams, and improve the automatic generation of

123

Event-driven grammars: relating abstract and concrete levels of visual languages 339

environments for VLs with multiple views. The extension of
the AToM3 meta-model with spatial relations (in the style
of [5]) is under consideration, also taking into account the
OMG meta-model proposal for diagram definition and inter-
change [30].

Acknowledgments This work has been partially sponsored by the
Spanish Ministry of Education and Science with projects MOSAIC
(TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678). The
authors gratefully thank the referees for their useful and detailed sug-
gestions.

A Appendix: Theoretical concepts of triple graph
transformation with node and edge inheritance

This Appendix introduces the main theoretical concepts of
triple graph transformation with node and edge inheritance
in the DPO approach. For a full presentation, see [23].

A.1 Attributed typed triple graphs

In order to define triple graphs, we start by using the concept
of E-graph (extended graph) proposed in [15], which allows
graphs to be attributed in their nodes and edges. Attribute
values are stored in set VD , and in addition to graph edges,
two additional kind of edges are introduced to model attri-
butes: node and edge attribution edges. The first ones allow
nodes to have attributes, while the second ones model edge
attributes.

Definition 1 (E-graph) An E-graph is a tuple G = (VG, VD,

EG , EN A, EE A, (source j , target j) j∈{G,N A,E A}), where
VG and VD are sets of graph and data nodes respectively;
EG is a set of graph edges; EN A and EE A are sets of node
and edge attribution edges; finally, source j and target j are
functions defining the source and target of edges, defined as
follows:

– sourceG : EG → VG , targetG : EG → VG .
– sourceN A : EN A → VG , targetN A : EN A → VD .
– sourceE A : EE A → EG , targetE A : EE A → VD .

Figure 21 shows a diagrammatic representation of an
E-graph, which depicts a sequence diagram (similar to the
one in Fig. 1) containing two objects with an activation box
each.

In addition to E-graphs, we also define mappings between
two E-graphs. An E-graph morphism is a tuple of set mor-
phisms, one for each set component in the E-graph (VG , VD ,
EG , EN A, EE A). In addition, the structure of the E-graph
should be preserved, that is, the source j and target j func-
tions must commute with the morphisms.

objectLifeLine1

"msg1"

"object1" "class1"

class1oname1

Object1

"msg0" synchronous

"object2" "class2"

class2oname2

Object2

Edge Attribution

EAEdges (E)

Data Nodes (V)D

Graph Edges (E)G

Node Attribution

NAEdges (E)

Graph Nodes (V)G

startMessageStartPoint ActivationBox1 message

name type

ActivationBox2

objectLifeLine2
mname

Fig. 21 An E-graph

Definition 2 (E-graph morphism) Given two E-graphs G1

and G2, an E-graph morphism f : G1 → G2 is a tuple
(fVG , fVD , fEG , fEN A , fEE A) with fVi : V 1

i → V 2
i and

fE j : E1
j → E2

j with i ∈ {G, D}, j ∈ {G, N A, E A}, where
f commutes for all source and target functions.

E-graphs together with E-graph morphisms form category
EGraph. Next, we use E-graphs to build our notion of triple
graphs (TriE-graph).

TriE-graphs are made of three E-graphs (source, corre-
spondence and target) and two correspondence functions c1

and c2. The correspondence functions are defined from the
nodes in the correspondence graph to a node or an edge in the
other two graphs. In addition, the functions can be undefined,
and this is modelled with a special element in the codomain
(named “·”). Therefore, we have extended the previous notion
of triple graphs [27] in several ways. First, we use a defini-
tion that contemplates attributes in nodes and edges. Second,
our correspondence functions are more flexible, as the co-
domain includes nodes and edges, and the special element
for modelling that the function is undefined.

Definition 3 (TriE-graph) A TriE-graph T riG = (G1, G2,

GC , c1, c2) is made of three E-graphs Gi = (VGi , VDi , EGi ,

EN Ai , EE Ai , (source ji , target ji) j∈{G,N A,E A}) for i ∈ {1,

2, C}, with VD1 = VD2 = VDC and two functions c j : VGC→
VG j ∪ EG j ∪ {·} (for j = 1, 2).

Graph G1 is called source or concrete, graph G2 is called
target or abstract, and GC is called correspondence. Func-
tions c1 and c2 are called source and target correspondence
functions respectively. We use the auxiliary sets edgesi =
{x ∈ VGC |ci (x) ∈ EGi }, nodesi = {x ∈ VGC |ci (x) ∈ VGi }
and unde fi = {x ∈ VGC |ci (x) = ·} for i = 1, 2. The
latter set is used to denote that the correspondence func-
tion ci for an element x is undefined. The previous two sets
are used to denote that the codomain of the correspondence
function ci for an element x are edges or nodes, respectively.
Morphisms c1 and c2 represent m-to-n relationships between
nodes and edges in G1 and G2 via GC in the following way:

123

340 E. Guerra, J. de Lara

Fig. 22 TriE-graph with the
abstract and concrete syntax of a
sequence diagram

SynchronousInvocationAction1

Message1

Stimulus1

"object1"

Object1

"class1"

Class1

"msg0"

Message2

Stimulus2

Class2

"class2"

"object2"

SynchronousInvocationAction2

"msg1"

Object2

action1

receiver1

conformingStimulus1

oname1

cname1

classifier1

mname1

action2

receiver2

conformingStimulus2

mname2

oname2

cname2

classifier2

sender

Corr_StartMessage Corr_Object1 Corr_Message Corr_Object2

Object1

"object1" "class1"

Object2

"object2" "class2"

synchronous"msg1"

ActivationBox1

"msg0"

ActivationBox2StartPoint

class1oname1

objetcLifeLine1

class2oname2

typemname

startMessage

name

message

objetcLifeLine2

x ∈ VG1 ∪ EG1 is related to y ∈ VG2 ∪ EG2 ⇐⇒ ∃z ∈
VGC | x = c1(z) and y = c2(z).

Figure 22 shows a TriE-graph, which contains the abstract
and concrete syntax of a UML sequence diagram. The tar-
get graph G2 in the upper part corresponds to the abstract
syntax, the source graph G1 in the lower part corresponds to
the concrete syntax, and the correspondence graph GC in the
middle contains elements relating both by means of the cor-
respondence functions. Although the three E-graphs making
a TriE-graph have the same data sets VDi , we have repeated
the elements in each E-graph for clarity (i.e. element “class1”
in VG1 and VG2 is the same). Moreover, we have only shown
those data elements used for attribution.

Mappings between two TriE-graphs are made of three E-
graph morphisms plus additional constraints regarding the
preservation of the correspondence functions.

Definition 4 (TriE-graph morphism) Given two TriE-graphs
T riG1 and T riG2, a TriE-graph morphism f : T riG1 →
T riG2 is a tuple f = (f 1, f 2, f c) made of three E-graph
morphisms f i : G1

i → G2
i (i ∈ {1, 2, C}) such that:

– f i
VGi
◦ c1

i |nodes1
i
= c2

i ◦ f C
VGC
|nodes1

i
for i = 1, 2 5.

– f i
EGi
◦ c1

i |edges1
i
= c2

i ◦ f C
VGC
|edges1

i
for i = 1, 2.

– c1
i |unde f 1

i
= c2

i ◦ f C
VGC
|unde f 1

i
for i = 1, 2.

TriE-graphs and TriE-graph morphisms form category
TriEGraph (see [23]), where the former are the objects, and

5 c1
i |A is the restriction of function c1

i of T riGi to the elements in set
A.

the latter the arrows. It is indeed a category, as the identity
arrow is the identity TriE-graph morphism, and the com-
position of TriE-graph morphisms is associative. Now, we
provide TriE-graphs with an algebra over a suitable signa-
ture, in order to provide a structure to the data values (an
organization into sorts) as well as operations.

Definition 5 (Attributed triple graph) Given a data signature
DSI G = (SD, O PD) which contains sorts for attribution
S′D ⊆ SD , an attributed triple graph T ri AG = (T riG, D)

consists of a TriE-graph T riG = (G1, G2, GC , c1, c2) and
one algebra D of the given DSI G signature with

⊎
s∈S′D Ds=

VDi for i ∈ {1, 2, C}.
Mappings between two attributed triple graphs are made

of a TriE-graph morphism and an algebra homomorphism.
Again, attributed triple graphs together with attributed triple
morphisms form the category TriAGraph (see [23]).

Now, we provide a typing to triple graphs by defining a
triple type graph (similar to a meta-model triple). This is a
special attributed triple graph, where the algebra is final. That
is, the carrier set for each sort has a unique element, the sort
name.

Definition 6 (Attributed type triple graph) An attributed type
triple graph is an attributed triple graph T ri AT G =
(T riT G, Z), where Z is the final algebra of the DSI G sig-
nature with carrier sets Zs = {s} ∀s ∈ SD .

Figure 23 shows an attributed type triple graph for the defi-
nition of both abstract and concrete syntax of UML sequence
diagrams. The data signature is given by DSI G = Char +

123

Event-driven grammars: relating abstract and concrete levels of visual languages 341

i = {1, 2, C}

String

ActivationBoxStartPoint Object

MessageType

name message

startMessage createMessage

objectLifeLine

typemname

lifeLine

class

oname

Corr_StartMessage Corr_Message Corr_CreateMessage Corr_Object

String

Message

SynchronousInvocationAction

AsynchronousInvocationAction

CreateObjectAction

DestroyObjectAction

Stimulus Object Class

oname cnameconformingStimulus

mname

activator

successor

action_del

action_crea

action_async

action_sync

sender

receiver

classifier

Types for
Graph Nodes (V)G i

Data Nodes (V)D i

Graph Edges (E)G i

Node Attribution

NAEdges (E)i

Edge Attribution

EAEdges (E)i

Correspondence
Functions (c1, c2)

Fig. 23 Attributed type triple graph for the abstract and concrete syn-
tax of sequence diagrams

String + MessageT ype, where Char is an auxiliary sort,
and only String and MessageT ype are used for attribution.
The target graph in the upper part of the triple graph corre-
sponds to the abstract syntax (similar to the UML standard
definition), the source graph in the lower part contains the
concrete syntax, and the correspondence graph in the mid-
dle relates concepts of both sides. There are edge types in
the concrete syntax (such as startMessage, message and cre-
ateMessage) which are related to node types in the abstract
syntax. Moreover, ActivationBox, lifeLine and StartPoint in
the concrete syntax do not have an associated abstract syn-
tax element. Finally, there are elements in the abstract syntax,
such as Message (and the successor and activator edge types)
and all the actions, which do not have an associated concrete
element.

The typing of a triple graph is represented as a morphism
from the graph to the type graph. That is, from now on, we
work with objects that are tuples, storing information about
the graph and the typing. This in fact can be formalized as a
slice category.

Definition 7 (Attributed typed triple graph) An attributed
typed triple graph (short ATT-graph) over T ri AT G is an
object T riT AG = (T ri AG, t) in the slice category TriA-
Graph/TriATG, where T ri AG = (T riG, D) is an attrib-
uted triple graph and t : T ri AG → T ri AT G is an attributed
triple graph morphism called the typing of T ri AG.

Figure 24 shows an ATT-graph over the attributed type
triple graph in Fig. 23. In this figure, we use a UML-like
notation, in which nodes and edges are labelled with their
type (in the usual UML notation for instances), and their attri-
butes are shown in a box. This is the notation that was used
throughout the paper and that will be used in the remaining
of the Appendix.

Mappings between ATT-graphs (called ATT-morphisms)
are like mappings between attributed triple graphs, but the
morphism has to preserve the typing of the source triple
graph. ATT-graphs over an attributed type triple graph
T ri AT G, together with ATT-morphisms, form category
TriAGraphTriATG (see [23]).

Category TriAGraph is indeed isomorphic to a comma-
category ComCat(V1, V2; Id), where V1 and V2 are forget-
ful functors. The first one goes from category TriEGraph to
category Set and “forgets” the triple graph structure, taking
just the set of data values of one of the graphs (as all the VDi

sets are equal). The second functor V2 goes from category
DSIG− Alg to Set, p lacing together in a set the elements
of the carrier sets for attribution (disjointly). The resulting
comma-category has objects (T G, D, op : V1(T G) →
V2(D)) which satisfy V1(T G) = V2(D) and op = id. This
category, and therefore TriAGraphTriATG, can be proved to
be an adhesive HLR category [23]. This means that we can
use the main results of graph transformation theory, as they
have been lifted from graphs to adhesive HLR
categories [14].

A.2 Attributed typed triple graph transformation

This section presents the main concepts and definitions of
attributed typed triple graph transformation in the DPO
approach. We start by defining the concept of triple rule.

Definition 8 (Triple rule) Given an attributed type triple
graph T ri AT G with data signature DSI G, a typed attrib-

uted triple graph rule (triple rule in short), p = (L
l← K

r→
R) consists of three ATT-graphs L , K and R (typed over
T ri AT G) with a common DSI G-algebra TDSI G(X) (which
is the DSI G-termalgebra with variables X), and injective
ATT-morphisms l : K → L , and r : K → R.

In order to apply a triple rule p to an ATT-graph G (called
host ATT-graph), an occurrence of the LHS should be found
in the graph. That is, an ATT-morphism m : L → G needs to
be found. Once the morphism is found, the rule is applied in
two steps. In the first one, the elements in m(L − l(K)) are
deleted from G, yielding graph D. In the second step, the ele-
ments from R − r(K) are added to D, resulting in graph H .
These two steps are modelled by two pushouts. A pushout
is the gluing of two structures through some common ele-
ments. In TriAGraph and TriAGraphTriATG pushouts are

123

342 E. Guerra, J. de Lara

Fig. 24 Attributed typed triple
graph, with respect to the
attributed type triple graph in
Fig. 23

: Corr_StartMessage : Corr_Object: Corr_Message: Corr_Object

oname:"object2"

: Object

class:"class2"

: ActivationBox

oname:"object1"

: Object

class:"class1"

: ActivationBox

mname:"msg1"

: message

type:synchronousname:"msg0"

: startMessage

: StartPoint

: objetcLifeLine: objetcLifeLine

: SynchronousInvocationAction

: Stimulus

mname:"msg0"

: Message

oname:"object1"

: Object

: SynchronousInvocationAction

oname:"object2"

: Object
: Stimulus

mname:"msg1"

: Message

cname:"class1"

: Class

cname:"class2"

: Class

: action

: conformingStimulus : classifier

: sender

: action

: receiver : receiver

: conformingStimulus : classifier

L

m (1)

K
l r

d (2)

R

m∗

G
l∗ r∗

HD

Fig. 25 Direct derivation as DPO construction

built componentwise, by calculating the pushout of each set
in each one of the three E-graphs (see [23]).

Definition 9 (Direct derivation) Given a triple rule p =
(L

l← K
r→ R), an ATT-graph T riT AG and an ATT-

morphism m : L → G (called match), a direct derivation

G
p,m�⇒ H from G is given by the double pushout (D P O)

diagram in category TriAGraphTriATG shown in Fig. 25,
where (1) and (2) are pushouts.

Figure 26 shows an example of direct derivation. The rule
is typed over the attributed type triple graph shown in Fig. 23.
It simply connects an object with its corresponding class, cre-
ating an edge (labelled “5” in R and H) in the abstract syntax
model. For this purpose, the rule’s LHS locates a class in the
abstract syntax named as attribute “class” of the object in the
concrete syntax.

Next, we define the concept of grammar and language.

Definition 10 (Triple graph grammar and language) A triple
graph grammar T GG = (DSI G, T ri AT G, P, T ri AS) is
made of a data signature DSI G, and attributed type triple
graph T ri AT G, a set P of triple rules, and an initial ATT-
graph T ri AS, typed over T ri AT G. The language generated

by T GG is given by L(T GG) = {T riT AG|T ri AS ⇒∗
T riT AG}.

In addition, we provide triple rules with application con-
ditions, in the style of [25]. We first define conditional con-
straints on ATT-graphs. An application condition is then a
conditional constraint on the L component of the triple rule.

Definition 11 (Triple conditional constraint) A triple condi-
tional constraint cc = (x : L → X, A) over an ATT-graph L
consists of an ATT-morphism x and a set A = {y j : X → Y j }
of ATT-morphisms. An ATT-morphism m : L → G satisfies
a constraint cc over L , written m |�L cc, iff ∀n : X → G
with n ◦ x = m∃o : Y j → G (where y j : X → Y j ∈ A) such
that o ◦ y j = n (see Fig. 27).

Roughly, the constraint is satisfied by morphism m if no
occurrence of X is found in G, or if some is found, then an
occurrence of some Y j should also be found. If the set A is
empty, then we have a negative application condition (NAC),
where the existence of an ATT-morphism n implies m �L cc.
Morphisms x and y j are total, but we use a shortcut notation.
In this way, the subgraph of L (resp. X) that does not have an
image in X (resp. Y j) is isomorphically copied into X (resp.
Y j) and appropriately linked with their elements.

We assign triple rules a set AC of triple conditional con-
straints (called application condition). For a rule to be
applicable at a match m, it must satisfy all the application
conditions in the set. Figure 6 shows an example of two tri-
ple rules with NACs (the set A in the application condition
is empty). Following the mentioned shortcut notation, in the
NAC only the additional elements to the LHS and their con-
text have been depicted.

123

Event-driven grammars: relating abstract and concrete levels of visual languages 343

Fig. 26 A direct derivation
example

r

l *

m

: Corr_Object

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

3

2

1L

4

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

oname = "object1"

: Object

cname = "class1"

: Class

3

4

G
1

2

oname = "object1"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

cname = "class1"

: Class

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

D

3

4

1

2

oname = "object1"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

cname = "class1"

: Class

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

2

H

5

1

3

4

: Corr_Object

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

3

4

2

1K

: Corr_Object

R

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

5

3

4

2

1

m*d

r*

= =

l

A.3 Edge and node inheritance for triple graph
transformation

For the approach to be useful in meta-modelling environ-
ments, we extend attributed type triple graphs with inheri-
tance relations. We use a similar approach to the one shown
in [3] and [16], but we have adapted it to ATT-graphs, and
extended it with edge inheritance. The extended type triple
graphs with inheritance are defined like a normal type tri-
ple graph with two additional graphs for the node and edge
inheritance hierarchies, and two sets of abstract nodes and
edges. For technical reasons related to the inheritance of the
correspondence function, multiple inheritance (for nodes) is
forbidden in the correspondence graph. As in [29], we only
allow an edge to inherit from another one, if the source and
target nodes of the child edge belong to the children nodes
of the source and target nodes of the parent edge. For this
purpose, we use the notion of clan (see Definition 13), which
is a function that applied to a node or edge returns the set of
all its children nodes or edges, including itself.

Definition 12 (Attributed type triple graph with inheritance)
An attributed triple type graph with inheritance (short meta-
model triple) T ri AT G I = (T ri AT G, (V Ii , E Ii , AVi ,

AEi)i∈{1,2,C}), consists of:

– An attributed type triple graph T ri AT G = (T riT G, Z).

Yj

o

X

n

yj

L
x

m

G

Fig. 27 A triple conditional constraint satisfied by m

– Three node inheritance graphs6 V Ii = (V I i
V , V I i

E , vsi :
→ V I i

E V I i
V , vt i : V I i

E → V I i
V) with V I i

V = V i
G , for

i ∈ {1, 2, C}. Multiple inheritance is forbidden in the
correspondence graph, therefore ∀n ∈ V I C

V , |{e ∈ V I C
E |

vsC (e) = n}| ≤ 1.
– Three edge inheritance graphs E Ii = (E I i

V , E I i
E ,

esi : E I i
E → E I i

V , eti : E I i
E → E I i

V) with E I i
V = Ei

G
for i ∈ {1, 2, C}. Moreover ∀e, e′ ∈ E I i

V , x ∈ E I i
E such

that esi (x) = e′ and eti (x) = e (i.e. e′ inherits from
e), we have sourceGi (e

′) ∈ clanV I i (sourceGi (e)) and
targetGi (e

′) ∈ clanV I i (targetGi (e)).
– Three sets AVi ⊆ V I i

V , for i = {1, 2, C}, called abstract
nodes.

– Three sets AEi ⊆ E I i
V , for i = {1, 2, C}, called abstract

edges.

6 A graph is made of a set of nodes (V), a set of edges (E) and source
and target functions for the edges (s and t).

123

344 E. Guerra, J. de Lara

Figure 4 shows an example meta-model triple, which is
an extension of the attributed type triple graph in Fig. 23.
We have collapsed each graph T Gi , node inheritance graph
V Ii and edge inheritance graph E Ii in a unique graph. The
edges of the inheritance graphs are shown with hollow edges
(following the usual UML notation) and the elements in AVi

and AEi are shown in italics. We treat “composition” edges
(the ones with a black diamond) as any other edge.

Having meta-model triples, it is still possible to use the
theory developed so far by “flattening” the attributed type tri-
ple graph with inheritance. This flattening operation makes
explicit the semantic meaning to both kinds of inheritance
(for nodes and edges) and leads to a normal attributed type tri-
ple graph. As usual, edges and attributes are inherited by sub-
classes, while only attributes are inherited by subedges. Thus,
in the flattening operation, the inherited elements are explic-
itly copied down the inheritance hierarchy. In the current
theory there is no support for attribute overriding, although
in the correspondence graph we allow overriding of the cor-
respondence functions. In this way, if a correspondence func-
tion is undefined for some node in the correspondence graph,
then its value is obtained from the nearest node in the (node)
inheritance path for which the function is defined.

But in order to use this approach, we do not want to use
the flattened version of the type graphs. Instead, we have
defined the typing directly from attributed triple graphs to
meta-model triples (in a similar way as in [16]). These typing
morphisms are no longer attributed triple morphisms, but a
more general kind of morphism called triple clan morphism.
These morphisms take into account the node and edge inher-
itance relations and correspond uniquely to the typing by the
flattened type graph. We only define formally the inheritance
clan concept; the interested reader can consult [23].

Definition 13 (Node and Edge Inheritance clan) Given a
meta-model triple T ri AT G I = (T ri AT G, (V Ii , E Ii , AVi ,

AEi)i∈{1,2,C}), the node inheritance clan for each node n ∈
V I i

V , is defined as clanV I i (n) = {n′ ∈ V I i
V | ∃ path n′ ∗→

n in V Ii } ⊆ V I i
V wi th n ∈ clanV I i (n). In a similar way,

for each edge e ∈ E I i
V , the edge inheritance clan is defined

as clanE I i (e) = {e′ ∈ E I i
V | ∃ path e′ ∗→ e in E Ii } ⊆

E I i
V wi th e ∈ clanE I i (e).

For example, in Fig. 4, the node inheritance clan of node
ConcreteElement is clanV I 1(ConcreteElement) =
{ConcreteElement, ActivationBox, Start Point,
Object}. The edge inheritance clan for Abs Message is
clanE I 1(Abs Message)= {Abs Message, createMessage,
Message, Start Message}.

Then, we can extend triple rules with the inheritance con-
cept. We call these rules inheritance-extended triple rules, or
IE-triple rules. In this way, nodes and edges in an IE-triple
rule can be typed by node and edge types (also called clas-

ses and associations) in the meta-model triple, which may be
refined by a number of sub-classes and sub-associations. As
mentioned in Sect. 3.2, an IE-triple rule typed in that way
is equivalent to a set of concrete IE-triple rules, resulting by
the valid substitutions of each node and edge in the IE-triple
rule by all the concretely typed nodes and edges in its inher-
itance clan. If the set of equivalent rules of an IE-triple rule
has cardinality greater than one, the IE-triple rule is called
IE-triple meta-rule. We first define type refinement and then
define IE-triple rules.

Definition 14 (Type refinement) Given attributed triple
graph T ri AG = (T riG, D) with T riG = (G1, G2, GC ,

c1, c2) and Gi = (V G
Gi

, V G
Di

, EG
Gi

, EG
N Ai

, EG
E Ai

, (sourceG
ji
,

targetG
ji
) j∈{G,N A,E A}) for i ∈ {1, 2, C}, and two clan mor-

phisms t ype : T riG → T ri AT G I and t ype′ : T riG →
T ri AT G I , t ype′ is called a type refinement of t ype, written
t ype′ ≤ t ype7 if:

– t ype′iVG
(n) ∈ clanV I i (t ypei

VG
(n)), ∀n ∈ V G

Gi
, for i ∈

{1, 2, C}.
– t ype′iEG

(n) ∈ clanE I i (t ypei
EG

(n)), ∀n ∈ EG
Gi

, for i ∈
{1, 2, C}.

– t ype′iX = t ypei
X , for X ∈ {VD, EN A, EE A}, i ∈ {1, 2, C}.

– t ype′D = t ypeD .

Definition 15 (Inheritance-extended triple rule) An inheri-
tance-extended triple rule (short IE-triple rule), is a triple rule
typed by a meta-model triple T ri AT G I = (T ri AT G, (V Ii ,

E Ii , AVi , AEi)i∈{1,2,C}) and is given by p = (L
l←− K

r−→
R, t ype, AC). The first element is an attributed triple graph
rule (l and r are attributed triple morphisms); t ype =
(t ypei : i → T ri AT G I)i∈{L ,K ,R} is a triple of typing tri-
ple clan morphisms, one for each part of the triple rule;
AC = {cci = (xi : L → Xi , t ypeXi , Ai = {(yi j : Xi →
Yi j , t ypeYi j)})} is a set of application conditions where
t ypeXi : Xi → T ri AT G I and t ypeYi j : Yi j → T ri AT G I
are triple clan morphisms, such that the following conditions
hold:

– t ypeL ◦l = t ypeK = t ypeR ◦r (the type of the preserved
elements is the same in L , K and R).

– t ypei
R,VG

(V ′RGi
)∩AVi =∅, where V ′RGi

:= V R
Gi
−r i

VG
(V K

Gi
),

for i ∈ {1, 2, C} (no new node in R is abstractly typed).
– t ypei

R,EG
(E ′RGi

) ∩ AEi = ∅, where E ′RGi
:= E R

Gi
− r i

EG

(E K
Gi

), for i ∈ {1, 2, C} (no new edge in R is abstractly
typed).

– t ypeYi j ◦ yi j ≤ t ypeXi and t ypeXi ◦ xi ≤ t ypeL for all
cci ∈ AC (the typing of Yi j is finer than the typing of Xi ,
and this is finer than the typing of L).

7 We say that t ype′ is finer than t ype.

123

Event-driven grammars: relating abstract and concrete levels of visual languages 345

Fig. 28 An example of
IE-triple meta-rule and
derivation

=m d

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

D

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

m*

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

H

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

activator

18

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

G

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

l * *r

l r

AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

L 1

46

16

35

14 12 13

7 8 915 17

2

10 11
AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

K 1

46

16

35

14 12 13

7 8 915 17

2

10 11
AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

AbsMessage

: Concrete
Element

: Concrete
Element

: Concrete
Element

R 1

46

16

35

14 12 13

7 8 915 17

2

10 11

18

activator

=

– t ypei
L ,VG
◦ cL

i ◦ lC
V C

G
|nodesK

i
= t ypei

K ,VG
◦ cK

i |nodesK
i
=

t ypei
R,VG
◦ cR

i ◦ rC
V C

G
|nodesK

i
for i = 1, 2 where cK

i , cL
i

and cR
i are the correspondence functions of K , L and

R (the typing of the target nodes of the correspondence
functions in K are the same in L and R).

– t ypei
L ,EG
◦ cL

i ◦ lC
V C

G
|edgesK

i
= t ypei

K ,EG
◦ cK

i |edgesK
i
=

t ypei
R,EG
◦cR

i ◦rC
V C

G
|edgesK

i
for i = 1, 2 (the typing of the

target edges of the correspondence functions in K are the
same in L and R).

– The datatype part of L , K , R, Xi and Yi j is TDSI G(X), the
term algebra of DSI G with variables X , and
lD, rD, xiD , yi jD are identities (data preserving).

The top row of Fig. 28 shows a simple IE-triple meta-rule
example (a detailed version of the one shown in Fig. 7). The
rule identifies the activator message of another one, creating
an edge in the abstract graph. Nodes 7, 8 and 9 and edges
10 and 11 of the concrete graph have an abstract typing.
The meta-rule is equivalent to four concrete rules. Node 7
can take types StartPoint or ActivationBox in the concrete
rule, node 8 has to be an ActivationBox, and node 9 can be
an Object or an ActivationBox. Thus, four combinations are
possible, where the edge types are determined by the choice
of node types (see the comments for the simplified rule in
Sect. 3.2).

In order to apply an IE-triple meta-rule to a triple graph,
a structural match with respect to the untyped rule has to
be found. The typing of the match should be concrete and
finer than the type of the rule’s LHS. Moreover, the typing of
the target of the correspondence functions in the host graph

should also be finer than in the rule’s LHS. Finally, the match
should satisfy the application conditions. The direct deriva-
tion can be built by first constructing the double pushout in
TriAGraph, yielding the attributed triple graph H . Then,
the typing is added. The preserved elements by the rule do
not change their type. The new elements take their type from
R, as the elements added by the rule should have a concrete
typing. Figure 28 shows a direct derivation example, where
abstract elements 7, 8, 9, 10 and 11 in the rule take con-
crete types StartPoint, ActivationBox, ActivationBox, Start-
Message and Message in graph G.

The application of a meta-rule is equivalent to the appli-
cation of one of its concrete rules. Moreover, it is possible
to show that the language generated by an IE-extended triple
graph grammar is the same as the language generated by a
triple graph grammar without inheritance. The latter gram-
mar uses as the type graph the flattening of the meta-model
triple, and as rules the concrete rules of each meta-rule in the
former grammar (see [23] for the details).

B Appendix: Formal definitions for event-driven
grammars

This appendix shows the precise definitions of event-driven
graph grammar and derivation that was used in Sect. 4.

Definition 16 (Event-driven graph grammar) An event-
driven graph grammar edGG = (DSI G, T ri AT G I, evt,
pre, sys − act, post, del, Mi) is made of a data signature
DSI G, a meta-model triple T ri AT G I , five sets of
IE-triple rules and an initial attributed triple graph Mi typed

123

346 E. Guerra, J. de Lara

by T ri AT G I . The following constraint holds:∀p = (L
l←−

K
r−→ R, t ype, AC) ∈ evt ∪ sys−act ∪del, X L

j = X K
j =

X R
j = ∅, for X = {VG, EG , EN A, EE A}, j ∈ {2, C}. That

is, the abstract and correspondence graphs of rules in evt ,
sys − act and del are empty.

Definition 17 (Event-driven graph grammar derivation)
Given an event-driven graph grammar edGG = (DSI G,

T ri AT G I, evt, pre, sys − act, post, del, Mi), a direct
event-driven graph grammar derivation starting from Mi is
depicted as Mi �� �� M f , and consists in the composition

of the attributed typed triple derivations shown in Fig. 8.
An event-driven graph grammar derivation is depicted as

Mi
∗ �� �� M f and consists of zero or more direct event-

driven graph grammar derivations.

References

1. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastruc-
ture. ACM Trans. Model. Comput. Simul. 12(4), 290–321 (2002)

2. Bardohl, R.: A visual environment for visual languages. Sci. Com-
put. Prog. 44, 181–203 (2002)

3. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta
modelling aspects with graph transformation for efficient visual
language definition and model manipulation. In: Proceedings of
ETAPS/FASE’04, LNCS 2984, pp. 214–228. Springer, Heidelberg
(2004)

4. Bottoni, P., Guerra, E., de Lara, J.: Metamodel-based definition
of interaction with visual environments. In: Proceedings of the
MDDAUI’06, pp. 43–46 (2006)

5. Bottoni, P., Costagliola, G.: On the definition of visual languages
and their editors. Proceedings of DIAGRAMS’02, LNAI 2317, pp.
305–319. Springer, Heidelberg (2002)

6. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual lan-
guages based on critical pair analysis and contextual layered graph
transformation. In: Proceedings of VL’2000, pp. 59–60 (2000)

7. Cordes, B., Hölscher, Kreowski, H.-J. 2004.: UML interaction dia-
grams: correct translation of sequence diagrams into collaboration
diagrams. In: Proceedings of AGTIVE’03, LNCS 3062, pp. 275–
291. Springer, Heidelberg

8. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Funda-
menta Informaticae, vol. 6(3–4), pp. 241–265. IOS Press (1996)

9. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel graph trans-
formation for model simulation applied to timed transition petri
nets. In: Proceedings of GT-VMT’04, Electronic Notes in Theoret-
ical Computer Science, vol. 109, pp. 17–29. Elsevier, Amsterdam
(2004)

10. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-for-
malism modelling and meta-modelling. In: Proceedings of
ETAPS/FASE’02, LNCS 2306, pp. 174–188. Springer, Heidel-
berg. See the AToM3 page: http://atom3.cs.mcgill.ca
(2002)

11. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and
graph grammars for multi-paradigm modelling in AToM3. Softw.
Syst. Model. 3(3), 194–209 (2004)

12. Eclipse Graphical Modeling Framework (GMF) home page at:
http://www.eclipse.org/gmf/

13. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook
of Graph Grammars and Computing by Graph Transformation. (1).
World Scientific, Singapore (1999)

14. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level
replacement categories and systems. In: Proceedings of ICGT’04.
LNCS 3256, pp. 144–160. Springer, Heidelberg (2004)

15. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed
attributed graph transformation. In: Proceedings of ICGT’04.
LNCS 3256, pp. 161–177. Springer, Heidelberg (2004)

16. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Formal integration
of inheritance with typed attributed graph transformation for effi-
cient VL definition and model manipulation. In: Proceedings of
2005 IEEE VL/HCC, pp. 71–78. Dallas (USA) (2005)

17. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goe-
dicke, M.: ViewPoints: a framework for integrating multiple per-
spectives in system development. Int. J. Softw. Eng. Knowl.
Eng. 2(1), 31–57 (1992)

18. Goedicke M., Enders B.E., Meyer T., Taentzer G. (1999) Towards
integrating multiple perspectives by distributed graph transforma-
tion. In: Proceedings of AGTIVE’99, LNCS 1999, pp. 369–377.
Springer, Heidelberg

19. Grosse-Rhode M., Bardohl R., Simeoni, M.: Interactive rule-based
specification with an application to visual language definition. In:
Proceedings of WADT’01, LNCS 2267, pp. 1–20. Springer, Hei-
delberg (2001)

20. Guerra, E., de Lara, J.: A framework for the verification of UML
models. Examples using petri nets. In: Proceedings of JISBD’03.
Alicante, Spain, pp. 325–334 (2003)

21. Guerra, E., de Lara, J.: Event-driven grammars: towards the inte-
gration of meta-modelling and graph transformation. In: Proceed-
ings of ICGT’04, LNCS 3256, pp. 54–69. Springer, Heidelberg
(2004)

22. Guerra, E., Díaz, P., de Lara, J.: Supporting the automatic gen-
eration of advanced modelling environments with graph transfor-
mation rules. In: Proceedings of JISBD’05, pp. 67–74. Thomson
(2005)

23. Guerra, E., de Lara, J.: Attributed typed triple graph transforma-
tion with inheritance in the double pushout approach. In: Tech-
nical report UC3M-TR-CS-06-01 of the Universidad Carlos III
(Madrid). Available at http://www.ii.uam.es/∼jlara/
investigacion/techRep_UC3M.pdf (2006)

24. Guerra, E., de Lara, J.: Model view management with triple graph
transformation systems. In: Proceedings of ICGT’06, LNCS 4178,
pp. 351–366. Springer, Heidelberg (2006)

25. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph
rewriting—a constructive approach. In: Proceedings of SEGRA-
GRA, ENTCS, vol. 2 (1995)

26. Jansen, A.R., Marriott, K., Meyer, B.: CIDER: a component-based
toolkit for creating smart diagram environments. In: Proceedings
of 9th conference on distributed and multimedia systems, pp. 353–
359 (2003)

27. Schürr, A.: Specification of graph translators with triple graph
grammars. In: LNCS 903, pp. 151–163. Springer, Heidelberg
(1994)

28. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Lev-
endovszky, T., Prange, U., Varró, D., Varró-Gyapay, S.: Model
transformation by graph transformation: a comparative study. In:
Model Transformation in Practice Workshop at MODELS’05.
Jamaica (2005)

29. Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-
based models with type inheritance. In: Proceedings of FASE’05,
LNCS 3442, pp. 64–79 (2005)

30. Unified Modeling Language: Diagram interchange version 2.0.
June 2005. Available at: http://www.omg.org/docs/
ptc/05-06-04.pdf

31. UML specification at the OMG’s home page: http://www.
omg.org/UML

32. Vargas, F., Roda, J.L., Estévez, A., Avila, O., Sánchez,
E.V.: Generación de Editores Gráficos de Modelos para una

123

Event-driven grammars: relating abstract and concrete levels of visual languages 347

Herramienta MDA. In: Proceedings of DSDM’06 work-
shop at JISBD’06. Sitges (Spain). http://www.dsic.upv.
es/workshops/dsdm06 (2006)

33. Zhu, N., Grundy, J.C., Hosking, J.G., (2004) Pounamu: a meta-
tool for multi-view visual language environment construction. In:
Proceedings of IEEE VL/HCC, pp. 254–256

Author’s Biography

Esther Guerra is an assis-
tant professor at the Computer
Science Department of the Uni-
versidad Carlos III of Madrid.
Her research interests include
meta-modelling, graph transfor-
mation, and their application to
the generation of environments
for domain specific visual lan-
guages including advanced fea-
tures, such as consistency of
multi-view languages, metrics
specification and analysis mech-
anisms. She has been a doc-
toral researcher at the institute

of theoretical computer science (TU Berlin) and the department
of computer science of the University of Rome. Her e-mail
address is eguerra@inf.uc3m.es and her web-page is http://www.dei.
inf.uc3m.es/espanyol/miembros/eguerra/

Juan de Lara is an associate profes-
sor at the Computer Science Depart-
ment of the Universidad Autónoma
in Madrid, where he teaches Soft-
ware Engineering, Model-Driven
Development, and Automata The-
ory. He holds a Ph.D. degree in
Computer Science, and works in
areas such as modelling and simu-
lation, meta-modelling, visual lan-
guages and graph transformation. He
has been a post-doctoral researcher
at the MSDL lab (McGill Univer-
sity), the institute of theoretical com-
puter science (TU Berlin) and the

department of computer science of the University of Rome. His e-
mail address is jdelara@uam.es and his web-page is http://www.ii.
uam.es/ jlara

123

	Event-driven grammars: relating abstract and concrete levelsof visual languages
	Abstract
	Introduction
	Meta-modelling in AToM3
	Attributed typed triple graph grammars with node and edge inheritance
	Attributed typed triple graphs
	Attributed typed triple graph transformation with inheritance
	Event-driven grammars
	Example: sequence diagrams
	Multi-view modelling
	Abstract and concrete syntax of sequence diagrams
	Concrete syntax layout
	Consistency checking
	Implementation in AToM3
	Related work
	Conclusions
	Acknowledgments
	Appendix: Theoretical concepts of triple graph transformation with node and edge inheritance
	Attributed typed triple graphs
	Attributed typed triple graph transformation
	Edge and node inheritance for triple graph transformation
	Appendix: Formal definitions for event-driven grammars

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

