
Softw Syst Model (2008) 7:103–124
DOI 10.1007/s10270-007-0049-9

REGULAR PAPER

A metamodeling language supporting subset and union properties

Marcus Alanen · Ivan Porres

Received: 4 September 2006 / Revised: 20 December 2006 / Accepted: 20 February 2007 / Published online: 14 June 2007
© Springer-Verlag 2007

Abstract In this article, we describe successive versions
of a metamodeling language using a set-theoretic formaliza-
tion. We focus on language extension mechanisms, partic-
ularly on the relatively new subset and union properties of
MOF 2.0 and the UML 2.0 Infrastructure. We use Liskov
substitutability as the rationale for our formalization. We
also show that property redefinitions are not a safe language
extension mechanism. Each language version provides new
features, and we note how such features cannot be mixed arbi-
trarily. Instead, constraints over the metamodel and model
structures must be established. We expect that this article pro-
vides a better understanding of the foundations of MOF 2.0,
which is necessary to define new extensions, model transfor-
mation languages and tools.

Keywords Subsets · Unions · Redefinitions · UML ·
Package merges · Extension mechanisms · Graphs · Graph
theory · Software modeling languages · Metamodeling ·
MOF

1 Introduction

Modeling is a fundamental approach to problem solving in all
engineering disciplines, including software engineering. The

Communicated by Dr. Jean-Michel Bruel.

M. Alanen (B) · I. Porres
TUCS Turku Centre for Computer Science,
Department of Information Technologies,
Åbo Akademi University,
Joukahaisenkatu 3–5, 20520 Turku, Finland
e-mail: marcus.alanen@abo.fi

I. Porres
e-mail: ivan.porres@abo.fi

role of software modeling and software modeling languages
has become more significant in the software industry thanks
to initiatives such as the Unified Modeling Language [39] and
the Model Driven Architecture [43]. These two approaches
are defined by a series of standards created and maintained
by the Object Management Group (OMG).

The OMG software and system modeling standards are
based on the concept of metamodeling. A metamodel is a
description of a modeling language. A metamodeling lan-
guage is thus a language used to describe metamodels. The
Meta Object Facility 1.4 (MOF) [35], the Eclipse Model-
ing Framework (EMF) [16,20] and the Graph eXchange
Language (GXL) [55] are well-known examples of meta-
modeling languages. Most of the concepts found in these
languages are strikingly similar since they are all based to
some extent on the object-oriented (OO) software paradigm.
In these approaches, a metamodel is defined as a collection
of classes and properties while a model is an instance of such
classes and properties.

However, two new metamodeling languages have recently
emerged with the advent of the UML 2.0 Superstructure [39]:
MOF 2.0 [41] and the UML 2.0 Infrastructure [42]. These
two metamodeling languages share most of the features of
previous languages such as MOF 1.4, but they also intro-
duce several new concepts not found in traditional modeling
and OO programming languages, mainly: subset properties,
strict union properties and property redefinitions. These new
concepts can be used to define a new modeling language as
an extension of an existing one. This is exploited in the defi-
nition of UML 2.0 itself, where the language is defined as
a relatively small core that is extended and specialized into
different modeling views or diagrams.

Unfortunately, very little is told in the standards [41,42]
about the actual meaning of these new features. This is a
critical omission since these concepts are heavily used in the

123

104 M. Alanen, I. Porres

definition of UML 2.0. A precise definition of the UML 2.0
metamodel is necessary in order to ensure interoperability
of software modeling tools, such as model editors, model
transformation and code generation tools.

In this article, we present a set-theoretic formalization of
a metamodeling language that supports what we consider to
be the core structural features of MOF 2.0 and the UML 2.0
Infrastructure, including multiple class specialization and the
new subset properties. The work presented in this article can
also be applied to the definition of new domain-specific mod-
eling languages (DSML) [21]. Although this article presents
a theoretical framework, we believe it represents an important
contribution that can influence the practical implementation
of model repositories and transformation tools for UML 2.0
and other languages.

This paper is an extended and thoroughly revised version
of the paper presented in [4]. The research presented in this
article is based on the study of the relevant OMG documents
and research papers on related topics and also on the expe-
riences obtained by developing an experimental modeling
tool. A comparison of the main modeling languages studied
by us can be found in [1]. Also, the experimental modeling
tool Coral [2] has been extended to implement and validate
the ideas presented in this article and it is available as open
source.

We proceed as follows: Sect. 2 describes informally the
new language extension mechanisms and presents the main
motivations for our work. Section 3 presents the most basic
formalism that will be developed and extended during the
paper. Section 4 introduces property characteristics such as
multiplicity and composition, while Sects. 5 and 6 deal with
class and property specialization, edf, respectively. Alterna-
tive approaches to property specialization proposed by other
authors such as covariant specialization and property redefi-
nition are described in Sect. 7. Finally, Sect. 8 contains related
work while Sect. 9 contains some concluding remarks. We
also provide two appendices: Appendix A summarizes the
final metamodeling language, and Appendix B summarizes
the mathematical notation used in the paper.

2 Extension mechanisms in MOF 2.0 and the UML 2.0
Infrastructure

MOF 2.0 and the UML 2.0 Infrastructure propose mainly four
extension mechanisms: class specializations, property sub-
sets and unions, property redefinitions and package merges.
Class specialization is identical to class inheritance in OO
languages. A specialized class inherits all the properties of
its base classes, and it can define new properties. Subset and
union properties are two mechanisms to specialize a prop-
erty defined in a base class. Property redefinition allows us
to arbitrarily replace a property with another one. Finally,

Fig. 1 Metamodel for a UML class diagram using subset and union
properties

various package merges allow us to combine different doc-
uments describing different (parts of) metamodels into one.
These mechanisms allow a metamodel to be developed and
extended by different parties. The extension mechanisms can
also be useful to define very large metamodels, such as the
UML 2.0 Superstructure, even when the definition is pro-
vided by one party.

2.1 Class and property specialization

Figure 1 contains an example class diagram metamodel of
the use of these concepts. The Element class represents any
kind of element in a UML model. It has one property name
of type string. A Namespace is a specialization of Element
that can contain other elements. Since a Namespace is also an
Element it also has a property called name. It also has a prop-
erty named ownedElement to refer to the elements contained
by it.

A Namespace is an abstract container that does not appear
as such in any model. However, it is useful to define many
other elements such as a class that can contain attributes and
operations or a package that can contain classes and other
packages. We can define concepts such as Class and Pack-
age as direct specializations of Namespace.

Each specialization of Namespace can contain other ele-
ments. However, the types of elements that can be contained
depends on the specialization. For example, in UML a Class
can contain attributes and operations while a Package can
contain classes and other packages. As a consequence, the
specialized classes should not use the original ownedElement
property, because otherwise a Class could contain any other
element such as another Package.

The solution is to use the new property features to spe-
cialize the ownedElement property of Namespace. In the
example, we specialize Namespace into a Class and add two

123

A metamodeling language supporting subset and union properties 105

Fig. 2 Top Base language for electronic circuits. Bottom Example
extension of the digital circuit metamodel by specialization of Com-
ponent and its properties into Transistor

subset properties called ownedAttribute and ownedOpera-
tion to keep attributes and operations. These properties are
subsetting the ownedElement property. Since the new subset
properties point to Operation and Attribute, they can only
contain elements of such type (or their subtypes).

Figure 2 contains an example of the use of subset prop-
erties in a domain-specific modeling language. We abstract
electronic components and their interconnecting wires in a
digital electronic circuit into three classes, Wire, Pin and
Component. An example specialization of Component is
Transistor, which represents a transistor connecting to three
pins: base, collector and emitter. While a generic component
may have an arbitrary number of pins, a transistor may only
have three specific pins.

This example also shows that subsetting does not parti-
tion the subsetted property with respect to classes; several
subset relations can be built between the same two classes.
We should also note that subset properties can be useful even
when they are not used in combination with class specializa-
tion. That is, we can define a property and its subsets in the
same class. We should note that the pins property needs to
be a strict union. Otherwise we could connect a transistor to
other pins that are not the base, collector or emitter.

2.2 Criteria for language extensions

Most of the artifacts that compose a model-driven develop-
ment method such as model transformations, model queries
and code generators depend on a specific modeling language,
such as the UML 2 Superstructure. Since it is now possible
to extend and modify metamodels we should consider what
is the impact of these extensions in model transformations,
model queries and code generators.

Our main criteria for language extensions is that artifacts
defined for the original language should still be usable in any
of its extensions. This concept is similar to the Liskov sub-
stitutability [30] used in program type systems. This is not a
surprise since a modeling language can be seen as a type for
a model transformation program. As a consequence, a lan-
guage extension should not be able to arbitrarily redefine or
remove classes or properties from a language since existing
artifacts may depend on them.

As an example of Liskov substitutability, consider Fig. 2
and a transformation that takes a Component as its input
parameter, producing as output the various pins that the Com-
ponent has. If we were to pass in a subclass of Component, for
example Transistor as a parameter to this transformation, we
would still expect it to work as intended. But if the Transis-
tor class could somehow remove the pins property between
itself and Pin, our transformation would fail. In that hypo-
thetical case, a Transistor would not be Liskov-substitutable
for a Component.

Specialization is a very strict and limiting concept as it
implies a tight coupling between classes. Therefore, Liskov
substitutability is also equally limiting. However, it does pro-
vide a clear mathematical foundation which makes reasoning
about programs and models easier.

2.3 Package merge

We should note that MOF 2.0 and the UML 2.0 Infrastructure
contain other related concepts to define language extensions
such as package merges.

We consider that package merges, albeit important, only
influence the division of a metamodel into different docu-
ments. They do not influence the relationship between model
elements. A metamodel using package merges can always
be transformed into a metamodel without package merges.
Thereby its semantics are defined by this transformation oper-
ation and as such do not provide a new relationship construct
to metamodel developers. This has already been noted by Jim
Steel and Jean-Marc Jézéquel in [47]. This does not mean that
package merging is not useful, just that it is not necessary to
discuss it within the scope of this paper.

Therefore, we do not study in this article the concept of
package merges and we focus on the semantics of subset
properties since we consider that these are the main novelties
in MOF 2.0 and the core mechanism for language extension.

2.4 Why do we want metamodeling languages anyway?

We have seen in the previous examples that property special-
ization is an interesting addition to the UML 2 Infrastructure.
However, we need to consider what its impact on the UML 2
Superstructure is, or even what the role of metamodeling
languages in model-based software development is. On one

123

106 M. Alanen, I. Porres

hand, many UML practitioners are not even aware of the
existence of the UML metamodel and therefore new addi-
tions to it such as the subset properties do not affect them
directly. On the other hand, the UML Infrastructure and the
UML metamodel play an important role in the development
of model-based development environments, including model
repository components, metamodel zoos, model transforma-
tion languages and related tools.

A model repository is a reusable software component that
is used to manage models described in user-defined mod-
eling languages. It provides the basic functionality to cre-
ate models, add, retrieve, update and delete elements in an
existing model and to store and retrieve models in an XML-
based document. Some examples of these components are
the Eclipse Modeling Framework (EMF) [20], the Netbeans
Metadata Repository (NMR) [32] and Andrew Sutton’s Open
Modeling Framework (OMF) [49]. These components are
often used by interactive editors and model transformation
components in order to build complete model-driven devel-
opment tools. In order to ensure interoperability between
components, they should have a common understanding of
the underlying metamodeling language.

A metamodel zoo such as the Atlantic Zoo [50] is an
online collection of metamodels available to tool developers.
The Atlantic Zoo is based on the KM3 [27] metamodeling
language, but other metamodeling languages are supported
using automated model transformations. A precise definition
of the metamodeling languages used in a zoo is necessary in
order to reuse the metamodels and to define the transforma-
tion mappings.

Also, we should note that a metamodel works as a type for
model transformations [48]. Model transformation languages
and tools are therefore based on the type system defined by a
specific metamodeling language. Examples of model trans-
formation languages related to the OMG modeling standards
are [14,19,28,38,44,51,52].

Finally, XMI [36,37,40] is used to interchange models
between modeling tools. Different authors have observed
that many of the issues that appear when interchanging mod-
els in practice between tools are a consequence of different
implementations of the UML metamodel by different tools
[3,26,31].

3 Metamodels and models

In this section, we discuss a simple metamodeling language
based on simple classes and properties. This simple language
does not include any extension mechanism, but it will serve
to explain the most basic concepts that appear in MOF and
UML in detail. We will denote our basic language with a
subscript B in the names of various structures and functions.
In the following sections we will add generalizations (class

Fig. 3 A UML class diagram representing a (part of a) metamodel for
Statecharts

specializations) and property subsets as successive features
in languages G and S, respectively. We proceed in this fash-
ion in order to simplify the exposition of these concepts in
this paper. Also, we want to show how each new concept in
a metamodeling language interacts with the existing ones,
sometimes in rather unexpected ways.

3.1 A basic metamodeling language

Metamodels are composed of classes and properties. A class
represents a kind of abstraction that can appear in a model
such as a state or a transition in a Statechart [24], while a prop-
erty represents a basic relationship between these abstrac-
tions such as the fact that each transition has a source state
and a target state. Models, on the other hand, are described
using elements and slots, where each element conforms to
one single class and each slot conforms to one single
property.

UML and MOF use the UML class diagram notation to
describe modeling languages visually. Figure 3 shows a part
of a metamodel for a Statechart that we will use as our run-
ning example. This metamodel contains two classes: State
and Transition, and two properties, outgoing and incoming.
These two properties belong to State and have Transition as
their type. A property may also contain several annotations
that we call property characteristics. In the figure, we can see
the multiplicity characteristic of the properties as the label
“0..*”.

3.2 Metamodel formalization

Formally, we define a modeling language in our basic meta-
modeling framework as a tuple M L B = (C, P, owner, type,
characteristics) where C is a finite set of classes, P is a finite
set of properties and C ∩ P = ∅. In our example, the set of
classes is C = {State, Transition}, while the set of properties
is P = {incoming, outgoing}.

Each property has a class as an owner, and this fact is
indicated by the function owner : P → C . The function
properties : C → P(P) gives the properties that belong
to a specific class such that (∀c ∈ C · properties(c) =
{p · c = owner(p)}). In our running example, we have
owner (incoming) = State and owner (outgoing) = State,
while the properties of the classes are properties (State) =
{incoming, outgoing} and properties (Transition) = ∅.
Finally, the function type : P → C denotes the type of

123

A metamodeling language supporting subset and union properties 107

Fig. 4 The metamodel from Fig. 3 as a graph of classes and properties

elements in the property. In our example, both properties have
the class Transition as their type, therefore type(incoming) =
type(outgoing) = Transition. We define the characteristics
of a property in detail in Sect. 4.

We can represent a modeling language M L B as a labeled
directed graph G = (V, A, l). The set of vertices V is the
union of the set of classes and properties, V = C ∪ P . The set
of arcs A contains two arcs for each property, one from the
owner of a property to it and one from the property to its type:
A = {(owner(p), p) · p ∈ P} ∪ {(p, type(p)) · p ∈ P}.
The property characteristics are represented as labels l over
the nodes of the graph.

An example of this representation of Fig. 3 is shown in
Fig. 4. To facilitate the comprehension of the graph, we
represent classes as rectangles and properties as octagons.
Although this notation is less compact than UML class dia-
grams, it maps better to the structures defined by M L B . Addi-
tionally, we explicitly refrain from using UML in order to
make it clear that UML is not a prerequisite for the meta-
modeling language described in this paper.

Understanding modeling languages and models as graphs
brings many benefits to our approach since graph theory [45]
provides a solid foundation to many modeling approaches
and model transformation languages as described for exam-
ple in [8,13,54].

3.3 Model formalization

We define a model as the tuple M = (E, class, S, property,

slotOwner, contents), where E is a finite set of elements, S
is a finite set of slots and E ∩ S = ∅. Each slot has one ele-
ment as its owner as represented by the function slotOwner :
S → E . For convenience, we can also define the slots of
a given element as the function slots : E → P(S), where
(∀e ∈ E · slots(e) = {s · e = slotOwner(s)}).

A slot may refer to a number of elements as its contents.
This is represented by the function contents. The value of
this function is either a set of elements if the order of ele-
ments does not matter, and thus contents : S → P(E);

Fig. 5 An example Statechart represented in the UML notation

otherwise, the function returns a sequence of elements and
we say contents : S → (E,≺). We discuss the ordered char-
acteristic in more detail in Sect. 4.2. We define the size of
a slot to be the amount of elements referenced by that slot:
(∀s ∈ S · #s = #contents(s)).

Figure 5 shows an example model based on a Statechart
language. In the example, the set of elements is E ={S1, S2,

S3, T1, T2} and S ={in1, out1, in2, out2, in3, out3}. Also,
slotOwner = {in1 → S1, in2 → S2, in3 → S3, out1 →
S1, out2 → S2, out3 → S3}. Since the two properties are not
ordered, we have contents(out1)={T1, T2}, contents(out2)=
contents(out3) = contents(in1) = ∅, contents(in2) = {T1}
and contents(in3) = {T2}.

Each element in a model conforms to a class in a lan-
guage and each slot conforms to a property. This confor-
mance is represented by the functions class : E → C and
property : S → P in a model. Together these functions
link a model to its metamodel, thereby establishing a certain
set of constraints that must be satisfied for any valid model,
e.g., what are the slots owned by an element, the class of the
elements in a slot and the amount of elements in a slot.

If a model satisfies all these constraints, we say that the
model conforms to its metamodel. We should note there is no
reason to separate a model from its metamodel by disregard-
ing the class and property functions. Such a model would
merely be a graph of nodes connected by directed edges and,
in most cases, would not contain enough information to be
understood.

Models are usually depicted using their own concrete syn-
tax. For example, in a UML Statechart, states are represented
as rounded rectangles and transitions as arcs. In this article,
we use a generic syntax where all models are represent in an
uniform way, independent of their modeling language.

We can represent a model as a labeled directed graph G =
(V, A, l). The set of vertices V is the union of the set of ele-
ments and slots, V = E ∪ S. The set of arcs A contains an
arc for each slot and for each element reference in a slot,
A = {(slotOwner(s), s) · s ∈ S} ∪ {(s, e) · s ∈ S ∧ e ∈
contents(s)}}. The relation between between elements and
slots at the model layer are represented as labels l.

We depict each model element as rounded rectangle and
each slot as a circle. Figure 6 shows the example model as
such a graph.

123

108 M. Alanen, I. Porres

Fig. 6 An example Statechart
model represented using the
generic model notation

3.4 Model constraints

The effective properties of a class is the set of all properties
that can be used in an element conforming to that class. In
a simple modeling language that does not support class spe-
cialization, the effective properties are simply the properties
defined directly by the class. In Sect. 5, we will review this
definition to take into account properties defined in super-
classes.

effectivePropertiesB(c) = properties(c), ∀c ∈ C

The function effectivePropertiesB is specific to the meta-
modeling language M L B . Nevertheless the constraints we
write use the generic function effectiveProperties : C →
P(P). Depending on the metamodeling language used, we
can substitute different definitions in its stead. We do simi-
larly for other functions as well, but will henceforth omit this
explanation.

The effective properties of a class introduce two con-
straints over the elements conforming to that class. First, an
element cannot have slots that do not conform to the effective
properties of its class.

Model Constraint 1 Valid slots in element (1): (∀e ∈ E ·
(∀s ∈ slots(e) · (property(s)) ∈ effectiveProperties
(class(e))))

Second, an element must have exactly one slot for each
effective property in its class:

Model Constraint 2 Valid slots in element (2): (∀e ∈ E ·
(∀p ∈ effectiveProperties(class(e)) · (∃!s ∈ slots(e) ·
property(s) = p)))

The function effectiveType : P → P(C) denotes the
effective types of a property, i.e., the set of all allowed types

for that property. In this simple language, the effective types
of a property is defined explicitly by the type characteristic.

effectiveTypeB(p) = {type(p)}, ∀p ∈ P

The set of effective types of a property constrains the class
of the elements that can be in a slot conforming to the prop-
erty:

Model Constraint 3 Class of elements in a slot: (∀s ∈ S ·
(∀e ∈ contents(s) · class(e) ∈ effectiveType(property(s))))

Figure 7 shows the example metamodel for Statecharts
together with a part of the example model. We have repre-
sented the class and property functions with dashed lines.
Since models and metamodels are finite, we can easily check
that the previous constraints hold for the example.

3.5 Metamodel constraints

Since a metamodel defines a set of constraints over a model,
it can be possible to define a metamodel in such a way that
there is no nontrivial model that conforms to it. Similarly, it
may be possible to define a class so that there is no element
that conforms to it, or a property so that there is no nontriv-
ial slot that conforms to it. In these cases, we say that the
metamodel, class or property is void.

Void metamodels or metamodels with void classes or prop-
erties are not useful in software development. For this reason,
we will define metamodel constraints in our metamodeling
approach. A metamodel constraint is a predicate over a meta-
model that should hold in order to exclude void definitions.

3.6 Primitive values

Hitherto, the models that can be described can only consist
of elements interconnected via slots. It is often the case that
we need to use primitive data values such as strings, inte-
gers, floating-point values and enumeration values. However,

123

A metamodeling language supporting subset and union properties 109

Fig. 7 Conformance of a
model to its modeling language

we consider the expressiveness of a framework to be in the
various property characteristics; primitive values are fairly
uninteresting. Nevertheless, we will give a brief description
of how they can be added to the framework, but we will not
consider them any further in this article.

We can add various classes that represent primitive data
types to C . For example, we can say that Z ∈ C and S ∈ C
denote the class of integers and the class of strings, respec-
tively. Then, we add a partial function from elements to data
values, value : E � Z∪S. It maps an element to its primitive
value if said element is of the correct class. For example, an
element e such that class(e) = S can be mapped to a string
value, and thus value(e) returns a string. Modifying primitive
values is done by modifying the function value.

Thus, our primitive values are also elements and can tech-
nically contain slots as well, referencing other elements.
While this is not common in for example programming lan-
guages, we feel this arrangement to be conceptually easier
as it avoids further constraints.

4 Property characteristics

In the previous section, we have studied how properties can
be used to relate model elements together. In this section, we
discuss how different property characteristics such as multi-
plicity or composition can be used to constrain even further
how elements can be related via slots. We define the charac-
teristics of a property as a tuple:

characteristicsB = (lower, upper, ordered, composite,
opposite)

This tuple describes additional features of properties using
several functions:

– lower : P → Z
0+ \ ∞ represents the lower multiplicity

constraint of a property (0, 1, 2, . . ., excluding infinity).
– upper : P → Z

+ represents the upper multiplicity con-
straint (1, 2, . . . ,∞).

– composite : P → B is true if a property denotes compo-
sition.

– ordered : P → B is true if a property denotes an ordered
collection of elements.

– opposite : P → P ∪ {�} denotes the optional opposite of
a property in a relation between two classes.

The rest of this section explains the semantics of these
functions and how they effect several constraints on models.

4.1 Multiplicities

One of the simpler but more important concepts is the mul-
tiplicity constraint. The lower and upper characteristics con-
strain the amount of elements that can be referenced by a
slot:

Model Constraint 4 Valid amount of elements in a slot:
(∀s ∈ S · lower(property(s)) ≤ #s ≤ upper(property(s)))

Since the amount of elements in a slot is bounded by the
multiplicity characteristics of its property, the lower value
should be less than the upper value. Otherwise, the multi-
plicity constraint cannot be satisfied by any slot:

Metamodel Constraint 1 Property Multiplicity: (∀p ∈ P ·
lower(p) ≤ upper(p))

Multiplicities are used extensively in the UML and
MOF language. These languages support the concepts of

123

110 M. Alanen, I. Porres

Fig. 8 Top A metamodel using the ordered property characteristic. Bot-
tom A model conforming to this metamodel

multiplicity ranges, and the valid amount of elements in a slot
is a subset M of Z

0+. In practice, UML and MOF describe a
multiplicity constraint as a set I of intervals (l, u) such that
M = {x · (∃(l, u) ∈ I · l ≤ x ≤ u)}.

4.2 Ordering

The ordering characteristic is used to model ordered collec-
tions of elements. An example of the usage of an ordered
property is the parameters in a method of a class. Another
more interesting example is shown in Fig. 8. The top of the
figure shows a metamodel for a modeling language for the
ports of an active event-based component. A port accepts a
number of events and this is modeled using an ordered prop-
erty. The bottom of the figure shows an example model where
ports P1 and P2 accept events E1 and E2. However, port P1
considers that event E1 has priority with respect to event E2,
while P2 gives priority to event E2.

This example remarks the fact that the ordering character-
istic does not define an ordering of elements but an ordering
of the elements referenced by one particular slot. We should
also note that the ordering as such does not introduce new
constraints in a model, although ordering should be taken
into consideration in all the model constraints.

4.3 Bidirectionality

We have seen that a property can be used to define a UML
or MOF 2 relation that is navigable by only one of its partic-
ipants. However, we can also define bidirectional relations,
by defining the opposite of a property.

Formally, the characteristic opposite : P → P ∪ {�} is a
function that yields the opposite of a property, or the special
constant �, which means that no opposite is defined. At the
metamodel layer, we require that a property has itself as the
opposite property of its opposite (iff it exists):

Metamodel Constraint 2 Opposite properties: (∀p ∈ P ·
opposite(p) �= � ⇒ p = opposite(opposite(p))

Fig. 9 Top Metamodel for a Statechart using navigable relations. Bot-
tom The same metamodel as a graph of classes and properties

Figure 9 depicts a reviewed metamodel for a statechart. In
the example, each property has another property as its oppo-
site: source and outgoing are opposites and form a relation, as
well as target and incoming. In a model, this relation means
that when a State s has a Transition t in its outgoing slot, the
Transition t will have State s in its source slot. In Fig. 10,
state S1 refers to transitions T1 and T2 in its outgoing slot,
where the transitions refer to S1 in their source slot.

At the model layer, we need to reflect that the contents of
two opposite slots always refer to each other. This is captured
in the following constraint for opposite slots:

Model Constraint 5 Bidirectionality of slots: (∀s ∈ S ·
opposite(property(s)) �= � ⇒ (∀e′ ∈ contents(s) ·
(∃!s′ ∈ S · slotOwner(s′) = e′ ∧ opposite(property(s′)) =
property(s) ∧ slotOwner(s) ∈ contents(s′))))

Our interpretation of relations is also shared by other
authors, including Génova et al. [22]. However, according
to some researchers, bidirectionality of two properties does
not imply a bidirectionality requirement at the model layer.
That is, model constraint 5 does not need to hold.

To see why this belief does not lead to a useful concept
in a modeling language, consider Fig. 11. It is a valid model
according to the statemachine metamodel presented earlier
in Fig. 9, except for the fact that model constraint 5 does not
hold. There are two cases where the constraint does not hold.

123

A metamodeling language supporting subset and union properties 111

Fig. 10 Left Example Statechart. Right Statechart represented as elements and slots, conforming to the metamodel from Fig. 9

Fig. 11 A statemachine model
without bidirectional slots. In
the example T1 is an outgoing
transition of S2, but T1 source
state is S1

First, the outgoing connection between S2 and T1 does not
have a source connection from T1 to S2. Second, the target
connection from T1 to S1 similarly does not have an incoming
connection from S1 to T1.

We firmly believe this example is nonsensical. If for some
reason this is the intended interpretation of a modeling lan-
guage, the metamodel should reflect it, as shown in Fig. 12. In
this new metamodel, the properties source and outgoing are
not opposites, and therefore, there is no constraint between
their slots.

4.4 Composition

A very important property characteristic is composition.
Composition is used to denote hierarchy and ownership in
a model. It is a very important concept that aids us in orga-
nizing models as a collection of smaller parts. A composition
property imposes a rather restrictive constraint over its slots:
an element can only be referenced by one composition slot
at a time and it should not be possible to create cyclic com-
positions.

Figure 13 shows an example of the use of composition in a
metamodel. The top of the figure contains a simplified meta-

model, in both UML and our notation, for a class modeling
language containing a package and a class. A package may
contain classes and each class may contain inner classes.
However, a class should not be directly owned by both a pack-
age and by a class simultaneously, and neither can an inner
class directly or transitively be an inner class of itself. The
bottom of the figure contains a model that presents these two
cases: class C1 is owned by package P1 and class C3 simul-
taneously and there is a composition cycle between classes
C1, C2 and C3. Therefore the model at the bottom of the
figure does not conform to the metamodel at the top of the
figure.

Formally, we say that an element x is the owner or parent
of an element e if e is referenced by a composite slot s of x .
We define the function parent : E → P(E) to return either
the empty set if no parent for an element exists, or a set con-
sisting of all the parent elements. Thus, the size of this set
should be at most one.

parent(e) = {x · x ∈ E ∧ (∃s ∈ S · slotOwner(s) = x
∧ composite(property(s)) ∧ e ∈ contents(s))}

Thus, an element cannot be owned by the same element
via two different composite slots:

123

112 M. Alanen, I. Porres

Fig. 12 Top Metamodel for a Statechart using non-bidirectional rela-
tions. Bottom The same metamodel as a graph of classes and properties

Model Constraint 6 Only in one composite slot: (∀e ∈ E ·
¬(∃s1, s2 · slotOwner(s1) = slotOwner(s2) ∧ composite (

property(s1)) ∧ composite(property(s2)) ∧ e ∈ contents(s1)

∧ e ∈ contents(s2))

As stated previously, an element cannot be the owner of
itself, directly or transitively:

Model Constraint 7 Composition is acyclic: (∀e1, . . . , en,

en+1 ∈ E · (∀i · 1 ≤ i ≤ n ⇒ ei ∈ parent(ei+1)) ⇒
e1 �= en+1), ∀n ≥ 1

This also implies that a relation at the metamodel level
cannot be made from two composite properties, since such
slots would be void.

Metamodel Constraint 3 Both properties in a relation can-
not be composite: (∀p ∈ P · composite(p)∧opposite(p) �=
� ⇒ ¬composite(opposite(p)))

Defining metamodels using both composition and multi-
plicity range characteristics has an interesting consequence.
It is possible to declare a chain of several classes such that
it is mandatory for an instance of a class to own at least one
instance of the next class, et cetera, until a cycle is created.
Thereby all classes would be void, since only an infinite chain
of elements could conform to them. We can prohibit this with
the following constraint:

Fig. 13 Example of composition. The model at the bottom does not
conform to the metamodel at the top

Metamodel Constraint 4 No infinite chain of compositions:
(∀c1, . . . , cn, cn+1 ∈ C · (∀i · 1 ≤ i ≤ n ⇒ (∃p ∈
effectiveProperties(ci) · composite(p) ∧ owner(p) = ci ∧
ci+1 = type(p)∧lower(p)≥1)) ⇒ c1 �= cn+1), ∀n ≥ 1

Composition is used extensively in the definition of UML
and MOF and it also appears in the Graph eXchange Lan-
guage [55]. Its semantics in the context of UML has been
studied by Barbier et al. [12,25]. Composition brings many
advantages when building tools that need to traverse or trans-
form models. If we only take slots of a composite property
and elements into account, the resulting graph forms a tree
(or a forest). This allows us to use efficient traversal algo-
rithms. Also, this arrangement maps well to the XMI, since
an XML document has a tree structure.

In this paper, we use the concept of strict composition or
“black diamonds” as described in [25]. Another alternative
interpretation of composition is shared composition. In this
case, the composition links should be acyclic, but an element
can have more than one parent. To achieve this interpreta-
tion of a modeling language, model constraint 6 should be
removed. The resulting graph forms a directed acyclic graph.

4.5 Attributes

We should note that our metamodeling language does not
have any special provision to model attributes such as in MOF
or EMF. This is due to the fact that we can model an attri-
bute by using a combination of the property characteristics

123

A metamodeling language supporting subset and union properties 113

that we have already defined. In our approach, we consider
an attribute definition equivalent to a property that is a com-
position and does not have an opposite. This reduces the
amount of defined concepts at the metamodeling layer and
thus simplifies the structure of metamodels and models. We
have validated this idea in our modeling tool and found no
problems.

5 Class specialization

In this section, we introduce the concept of class specializa-
tion as a mechanism to organize and simplify large meta-
models. Class specialization is the same concept as class
inheritance in OO programming languages. A class can be
a specialization of one or more base classes and as a con-
sequence it inherits all the properties of its base classes.
Without class specialization, the definition of UML would
require many additional properties and model transforma-
tions would be more complex and cumbersome to create and
maintain. Therefore, class specialization is used extensively
in the definition of UML and MOF.

As an example, the UML 1.x metamodels use class spe-
cialization to model state hierarchy. Figure 14 shows a simpli-
fied Statechart model where we specialize the State class into
CompositeState. In UML, class specialization is represented
diagrammatically as an edge between the base class and
the specialized class with a triangular arrow head pointing
to the base class. In our example, a CompositeState inherits
all the properties of a normal state but adds an additional
property to model substates. A substate can be a State or
a CompositeState.

We should also note that a metamodeling language should
support multiple inheritance since it is used extensively in
MOF. This has already been noticed by for example
Kleppe [29]. In order to formalize class specializations we
will need to extend our definition of a metamodel by adding
the concept of generalizations of a class. A modeling lan-
guage supporting class specialization is then defined by the
tuple:

M LG=(C, generalizations, P, owner, type, characteristics)

We define the generalizations of a class with the func-
tion generalizations : C → P(C). We denote by ⊆c the
extended generalization between classes that is defined as
the reflexive transitive closure of the generalization rela-
tion: ⊆c= {(c, d) · d ∈ generalizations(c)}∗. Intuitively,
given two different classes c and d, we say that c is a sub-
class of d iff c ⊆c d. We also note that characteristicsG =
characteristicsB , since no new property characteristics need
to be added.

We should now review the concept of effective properties
of a class for a metamodeling language supporting class spe-

Fig. 14 A metamodel using class specialization

cialization. The effective properties of a class shall include
all the properties owned directly by that class and all the
effective properties of its superclasses:

effectivePropertiesG(c) = properties(c)
∪⋃{effectivePropertiesG(d) · d ∈ generalizations(c)}

We should also review what the effective types of a prop-
erty in a language supporting class specialization are. In this
language, slots are covariant: a slot may contain elements
whose class is the basic type of its property or any subclass
of that type.

effectiveTypeG(p) = {c ∈ C · c ⊆c type(p)}
We can see an example of these definitions in the meta-

model shown in Fig. 14. From it, we can see that:

effectivePropertiesG(CompositeState) =
{outgoing, incoming, subStates}

That is, the effective properties of CompositeState are the
two properties owned by State and the additional property
directly owned by CompositeState. Similarly, we have:

effectiveTypeG(subStates) = {State, CompositeState}
An example model using this metamodel can be seen in

Fig. 15.
Because the effective properties of a class are defined by

itself and its transitive superclasses, we require the gener-

123

114 M. Alanen, I. Porres

Fig. 15 Example model using specialization. A CompositeState is a specialization of State

alization relation to be acyclic. Otherwise all classes in a
generalization hierarchy would have the same set of effective
properties and they would for all practical purposes be indis-
tinguishable from each other. This leads to the following
metamodel constraint:

Metamodel Constraint 5 Generalization is acyclic: ¬(∃e
∈ C · (e, e) ∈ {(c, d) · d ∈ generalizations(c)}+)

6 Property subsetting

In this section, we introduce the concept of property subset-
ting to our metamodeling language, one of the most intriguing
concepts introduced in MOF 2.0 and the UML 2.0 Infrastruc-
ture. Property subsetting allows us to specialize an existing
property into a new property with a different basic type and
different characteristics, while still retaining the old, exist-
ing property. The intuition is that the specialized property is
a subset of the original property. Therefore, elements in a slot
of a subset property should also be included in the slot of the
original property.

As an example, we present yet another version of a sim-
plified metamodel for UML class diagrams in Fig. 16. We
first provide a general concept of a container and its children
elements using the Namespace and Element classes. Each
Namespace element has a slot named ownedElement repre-
senting its contents.

Then we specialize Namespace into a Class and add two
subset properties called ownedAttribute and ownedOpera-
tion to keep attributes and operations. These properties are
subsetting the ownedElement property. We also add two sub-
set properties of ownedAttribute to Class, called ownedPub-
licAttribute and ownedPrivateAttribute. This example also
shows how a subset and a union property may be in the same
class.

We introduce a new property characteristic to our meta-
modeling language in order to support subset properties:

Fig. 16 Example metamodel for UML Class diagrams using subset
properties

– supersets : P → P(P) represents the properties of
which a property is a subset.

We will also introduce the characteristic strictUnion later.
Thereby, we can define a modeling language supporting prop-
erty subsetting as the tuple:

M L S =(C, generalizations,P, owner,type,characteristicsS)

characteristicsS = (lower, upper, ordered, composite,
opposite, supersets, strictUnion)

We denote subsetting between properties by the ⊆p rela-
tion, i.e., ⊆p= {(p, q) · q ∈ supersets(p)}∗. The relation
⊆p is a partial order on P .

In a model, we say that a slot r is a subset of another slot s
if property(r) ⊆p property(s) and they have the same owner.

123

A metamodeling language supporting subset and union properties 115

Fig. 17 Example model based on the metamodel shown in Fig. 16

The slot subsetting relation is thus defined by:

⊆s= {(r, s) · slotOwner(r) = slotOwner(s) ∧ property(r)

⊆p property(s)}∗
It can be split into several partial orders, one for each slot

and its super- and subsets.
The contents of a slot r subsetting another slot s must be

a subset of the contents of s. Also, MOF [41, p. 56] tells us
that “The slot’s values are a subset of those for each slot it
subsets.”. In the case of unordered slots, this is formalized
using the following constraint:

Model Constraint 8 Unordered slots: (∀r, s ∈ S · r ⊆s

s∧¬ordered(property(s)) ⇒ contents(r) ⊆ contents(s))

We can see an example model based on subset proper-
ties in Fig. 17. The model represents a UML class with one
public attribute, one private attribute and one operation. The
element representing the class has five different slots and the
elements referenced in each slot is constrained by the sub-
set properties. In the example, we have s5 ⊆s s1 ∧ s4 ⊆s

s2 ∧ s3 ⊆s s2 ∧ s2 ⊆s s1.

6.1 Subsets and ordering

For ordered slots we also wish to preserve order. That is,
when elements occur in a specific order in r , they should
occur in the same order in s, although s might contain more
elements in between.

Model Constraint 9 Ordered slots: (∀x, y ∈ E, r, s ∈ S ·
x ∈ contents(r) ∧ y ∈ contents(r) ∧ x �r y ∧ r ⊆s s
∧ ordered(property(s)) ⇒ x ∈ contents(s) ∧ y ∈
contents(s) ∧ x �s y)

6.2 Union properties

A property is called a union property if it has one or more
properties that subset it. In our framework, it is not necessary
to declare a property as a union, since a designer of a meta-
model cannot know in advance if a new subset property will
be defined in the future, possibly in some other metamodel.

6.3 Strict unions

The UML 2.0 Infrastructure also introduced the concept of
strict union. The standard states on p. 126 that “This means
that the collection of values denoted by the property in some
context is derived by being the strict union of all of the values
denoted, in the same context, by properties defined to subset
it. If the property has a multiplicity upper bound of 1, then
this means that the values of all the subsets must be null or the
same.”. In other words, a derived union property can be seen
as the strict union of its subsets. A slot with a property that
is a strict union cannot contain elements that do not appear
in any of its subsets.

We introduce a new property characteristic to our meta-
modeling language in order to support strict unions:

– strictUnion : P → B is true if a property is a strict union.

The UML uses the qualifier “{union}” to denote a property as
a strict union. Since all our properties are unions, we use the
qualifier “{strict union}” to avoid confusion. In the example,
the contents of ownedElement and ownedAttribute slots are
strict unions of the contents of the subsetting slots.

The concept of strict unions implies that a new model
constraint needs to be defined:

Model Constraint 10 Elements in a strict union: (∀s ∈ S ·
strictUnion(property(s))⇒contents(s)=⋃{contents(r) ·
r �s s}

6.4 Subsets and substitutability

The rationale for the proposed model constraints is to allow
type substitutability in model transformations, queries and
code generators. A specialized class has the same properties
with the same characteristics as its base classes, while con-
taining new definitions to specialize these properties. Thus,
subsetting preserves Liskov substitutability.

As an example, Fig. 18 shows a model based on the exam-
ple metamodel for circuits shown in Fig. 2. Here, a given
transistor can be seen as a generic component with a num-
ber of pins or as an element of type Transistor that has three
specific pins. The benefit is that it is possible to define algo-
rithms and transformations which work on the base abstract
circuit; that is, only considering wires, pins and components,

123

116 M. Alanen, I. Porres

Fig. 18 Example of a model: top as interpreted according to the base
language. Bottom the extended language

without caring for the details, whereas algorithms that are
targeted to specific components can rely on a more refined
abstract syntax.

In the rest of this section, we review how the concept
of subset properties interacts with the other concepts in our
metamodeling language.

6.5 Subsets and multiplicities

It can easily be seen that a property subsetting another prop-
erty should have a lower (or the same) upper limit than the
other property. This can be formalized with the following
metamodel constraints:

Metamodel Constraint 6 Upper multiplicity in subset
properties: (∀p ∈ P · (∀q ∈ supersets(p) · upper(p) ≤
upper(q)))

The justification for this constraint can be shown with
slots r and s such that r ⊂s s, property(r)= p, property(s) =
q and upper(p) > upper(q), and by filling the slot r with
elements so that #r = upper(p). Then #s ≥ #r =
upper(p) > upper(q) ⇒ #s > upper(q), which vio-
lates the upper limit of q.

Property subsetting does not raise any new restrictions
on the lower limits of the properties. This is because more

elements can always be inserted into a slot until its size is at
least that of the greatest lowest limit in any transitive sub- or
superset. Thus, model constraint 4 is sufficient for the lower
multiplicity constraints.

6.6 Subsets and class specialization

A property should only subset another property if the effec-
tive types of it are a subset of the effective types of the other.
The same remark is also stated in the UML 2.0 Infrastruc-
ture [42, p. 125]: A property may be marked as a subset of
another, as long as every element in the context of the subset-
ting property conforms to the corresponding element in the
context of the subsetted property.

The left side of Fig. 19 shows a (nonsensical) metamodel,
in which property d of class C subsets property b of class A.
The type of b is class B and the type of d is class D; however,
D is not a subclass of B.

We should explore how the existing constraints affect the
elements in the slots of a model based on the metamodel in
the left side of Fig. 19. Since the elements in a slot sd con-
forming to property d should be of type D, the elements in
slot sb conforming to property b should be of type B and the
elements in sd should also be in sb, the slot sd cannot have any
elements. This is shown in the following derivation, based on
the structured derivation approach in [11]:

sd , sb ∈ S ∧ property(sd) = d ∧ property(sb) = b
∧sd ⊆s sb ∧ effectiveType(d) = {D}
∧effectiveType(b) = {B}

⇒ {introduce class of elements in slot, unordered
slot constraints, simplify}

(∀e ∈ contents(sd) · class(e) ∈ {D})∧
(∀e′ ∈ contents(sb) · class(e′) ∈ {B})∧
(contents(sd) ⊆ contents(sb))

⇒ {definition of subset, membership in a singleton set}
(∀e ∈ contents(sd) · class(e) = D)∧
(∀e′ ∈ contents(sb) · class(e′) = B)∧
(∀e′′ ∈ contents(sd) · e′′ ∈ contents(sb))

⇒ {elements in d should also satisfy the constraint for b}
(∀e ∈ contents(sd) · class(e) = D ∧ class(e) = B)

⇒ {D �= B}
contents(sd) = ∅

Based on this discussion, we consider an additional con-
straint over a metamodel: the fact that a property can subset
another property only from the reflexive transitive superclass
closure of its owner:

Metamodel Constraint 7 Subset only from owner or its
superclasses (∀p, q ∈ P · p ⊆p q ⇒ owner(p) ⊆c

owner(q)).

However, this restriction is not strong enough. It would
still be possible to cyclically subset a property within the

123

A metamodeling language supporting subset and union properties 117

Fig. 19 Example of the
interaction of subsets and
subtyping: property d is void

Fig. 20 Example of the interaction of subsets and opposite properties

same class. This is not a useful construct since any slots of
the properties in the cycle would consist of the exact same
elements. Thus, property subsetting must be acyclic:

Metamodel Constraint 8 The property superset relation is
acyclic: ¬(∃e ∈ P · (e, e) ∈ {(p, q) · q ∈ supersets(p)}+)

It can be noted that multiple inheritance forms very com-
plicated inheritance hierarchies, among them the diamond
inheritance structure. This leads to a possibility where prop-
erty subsetting also has a diamond (or even more compli-
cated) structure.

6.7 Subsets and opposite properties

We should now study the possible interactions between sub-
set and opposite properties. Let us consider the metamodel
in Fig. 20. In this metamodel, the subset property d has an
opposite property c which is not a subset.

Let us assume that there is a model with two elements ec

and ed conforming to classes C and D, respectively. Accord-
ing to the metamodel, element ec has two slots that we name
sd and sb conforming to properties d and b, respectively.
Similarly, element ed has two slots sc and sa . We wish to add
element ed to the slot sd . This is shown in bold in the right
side of Fig. 20. Since the property d has an opposite, we also

need to add ec to the slot sc of ed in order to satisfy model
constraint 5 regarding bidirectional slots. Since d ⊂s b, we
also need to include ed in the slot sb to satisfy model con-
straint 8 about unordered subset slots. Finally, since property
b has an opposite property named a, we should include ed

in the elements of sa . Thus, ed is in sa and in sc, and the net
effect is as if c were a subset of a anyway, even though that
was not stated in the metamodel.

The conclusion is that we claim that c needs to subset a,
if for nothing else than documentation purposes. There are
several faults in MOF 2.0 and UML 2.0 where this rule is vio-
lated. Fortunately, the correction is simple by saying that (in
our example) c needs to subset a. In any case, this example
emphasizes the need for the following constraint:

Metamodel Constraint 9 The opposite of a subset property
must be a subset: (∀p, q ∈ P · p ⊆p q ∧ opposite(p) �=
� ⇒ opposite(p) ⊆p opposite(q))

6.8 Subsets and composition

We need to redefine the composition constraints to take into
account the subset properties. Due to the subset constraints,
an element may be in more than one composition slot at a
given time, as long as these slots are not independent. This
replaces model constraint 6:

Model Constraint 11 (Subset) Only in one composite slot:
(∀e ∈ E · ¬(∃s1, s2 · slotOwner(s1) = slotOwner(s2) ∧
(property(s1) ||p property(s2))∧composite(property(s1))∧
composite(property(s2)) ∧ e ∈ contents(s1) ∧ e ∈
contents(s2))

In Fig. 21, we see different cases with composite and non-
composite properties. Cases (1) and (2) are legal and quite
self-explanatory: in the first case, all A and C elements own
their B and D elements via the a–b relation, and in the sec-
ond case the c–d relation can be used to own some of the

123

118 M. Alanen, I. Porres

Fig. 21 Subsetting with
composite and noncomposite
properties

(1) (2)

(3) (4)

D elements and the rest can be referenced via only the a–b
relation, and can thus be owned by some other element.

Case (3) can be considered legal by discounting the com-
position at the c–d relation without any loss in information,
since any elements owned via the c–d relation must also be
owned via the a–b relation. This is what model constraint 11
allows. Case (4) is void since any elements of types C and D
that are connected at the c–d relation are also connected at
the a–b relation, thereby creating a cyclic composition and
therefore violating a model constraint. Thereby the following
metamodel constraint should be defined:

Metamodel Constraint 10 No circular transitive composi-
tion with subsets: (∀p ∈ P · composite(p) ⇒ ¬(∃q ∈
P · opposite(q) �= �∧ p ⊂p q ∧composite(opposite(q))))

We can find examples of the three first cases in UML 2.0,
all in Fig. 11.5 of [42, p. 109]. Case (1) can be found in
the association–memberEnd relation, case (2) is found in the
owningAssociation–ownedEnd relation and case (3) in the
class–ownedAttribute relation.

7 Alternative language extension mechanisms

In this section, we briefly go through various additional lan-
guage extension mechanisms. We also provide a motivation
on why we do not include them in our framework.

7.1 Covariant specialization

Covariant specialization is similar to subsetting in that it
relates two relations at the metamodel layer. However the
semantics are different. In a covariant environment, the

Fig. 22 Notation for covariant specialization

specialized relation cannot be modified for elements which
are instances of the subclasses.

As an example of covariant specialization, let us assume
that ec is an element of type C shown in Fig. 22. It is not
possible to insert elements of type B into the b slot of ec,
only elements of type D into the d slot. The c–d relation is
a covariant specialization of the a–b relation. The a–b rela-
tion has been rendered obsolete (or at least read-only) in the
context of element ec.

Covariance is a subject that often comes up in the seman-
tics of methods of OO programming. Function parameter
type contravariance and return type covariance are rather
inconvenient in practical situations and thus a type-unsafe
function parameter type covariance is used for specialization.
A similar argument also holds for element slots. Property
subsetting aims to provide a new way to represent relation-
ships between elements. It must nevertheless be noted that as
Giuseppe Castagna has asserted, there are uses for a covariant
environment when compared with a contravariant or invariant
environment. Thus subsetting and covariance are not oppos-
ing but complementing constructs in OO programming and
thus in modeling [17].

123

A metamodeling language supporting subset and union properties 119

The major difference between covariance and subsetting
is that in a covariant environment, substituting an element of
a specific type with an element which is a covariant special-
ization of that type can result in programs no longer working.
Thereby covariant specialization breaks Liskov substitutabil-
ity and that is the reason we do not include it in our frame-
work, although we realize it is an important concept. On the
other hand, subsetting allows the slots defined by the prop-
erties in a superclass to be used in an instance of a subclass.

We note that contrary to subsetting, it might be neces-
sary for the metamodel developer to explicitly declare the
possibility of covariant specialization, instead of leaving the
decision open for the future. This is because metamodel users
need to realize that slots conforming to covariantly special-
ized properties may not be available in the future when their
algorithm or function receives instances of the subclasses.
That is, in the example it might be necessary to state a pri-
ori that the a–b relation can be covariantly specialized, as
a warning mechanism for users and tools. Subsetting can
be declared when required, whereas covariant specialization
must be planned beforehand.

7.2 Property redefinition

MOF 2.0 introduces the concept of property redefinition. It is
our understanding that a property redefinition is an arbitrary
replacement of the characteristics of a property in a subclass
that overrides the subsetted property and renders it unusable
in the subclass.

We can formalize this concept in our framework by intro-
ducing a new property characteristic redefines : P → P(P),
and by defining the set of effective properties of a class as
follows:

effectiveProperties(c) =
⋃{properties(s) · c ⊆c s}
\⋃{redefines(p) · p ∈ properties(s) ∧ c ⊆c s}

Usually, the redefining property has the same name as the
redefined property, and exists in a subclass of the class of the
redefined property. In data modeling terms, this means that
programs will obtain the redefining property when they use
an element of the subclass type.

However, we should note that there are no constraints
between a property and its redefinition. A redefinition could
be covariant or contravariant in some characteristics, and oth-
erwise compatible or incompatible in others with respect to
its redefined property. Using property redefinitions in a lan-
guage extension breaks Liskov substitutability and therefore
transformations and tools based on the original language.
Therefore, we consider that property redefinition is not a safe
construct and it should not be included in a metamodeling
language.

8 Related work

Several other researchers have formalized metamodeling lan-
guages and model layers. For example, Thomas Baar has
defined the CINV language [10] using a set-theoretic
approach, but our approach is more general in that we also
support generalizations. The benefits of a set-theoretic
approach is that it avoids a metacircularity whereby one (par-
tially) needs to understand the language to be able to learn the
language. Álvarez et al. [7] describe such a static OO metacir-
cular modeling language, and the Metamodeling Language
Calculus [18] by Clark et al. is another very sophisticated
one. Nytun et al. present in [34] a modeling framework in
which all model layers are represented uniformly.

Akehurst et al. present in [19] the structure of a metamod-
el and its semantics using OCL. Our rationale for not using
OCL to define the model and metamodel constraints is that
the definition of the navigation in OCL expressions actually
depends on the metamodeling framework.

More recently, Jouault and Bézivin have presented
KM3 [27], a metamodeling language targeted towards
domain-specific modeling languages. This is one of the most
influential works for this article since the notion of model
conformance presented here is based on it.

However, the main contribution of this article comes from
the definitions of property subsets in a language with multiple
inheritance, which neither metamodeling nor traditional OO
language descriptions explain. Several authors use relation
inheritance without defining exact semantics, and some say
that it denotes covariance. An example of this covariant spe-
cialization is the multilevel metamodeling technique called
VPM by Varro and Pataricza [53], which also limits itself to
single inheritance. We argue that property subsetting is not
the same concept as covariant specialization, and requires
different semantics.

Carsten Amelunxen, Tobias Rötschke and Andy Schürr
are authors of the MOFLON tool [8] inside the Fujaba frame-
work [33]. MOFLON claims to support subsetting, but no
description of the formal semantics being used is included.
It is not clear if their tool works in the context of subsets
between ordered slots, or with diamond inheritance with sub-
setting. Markus Scheidgen presents an interesting discussion
of the semantics of subsets in the context of creating an imple-
mentation of MOF 2.0 in [46]. To our knowledge, this has so
far been the most thorough attempt to formalize subsetting.

The OO and database research communities are also
researching a similar topic, although it is called relationship
or association inheritance, or first-class relationships. In [15],
Bierman and Wren present a simplified Java language with
first-class relationships. In contrast with our work, they do
not support multiple inheritance, bidirectionality or ordered
properties; all of these constructs are common in model-
ing and in the UML 2.0 specification. However, relationship

123

120 M. Alanen, I. Porres

links are explicitly represented as instances, and they can
have additional data fields (just like the AssociationClass of
UML). As the authors have noticed, the semantics of link
insertion and deletion is not without problems.

Albano et al. present in [6] a relationship mechanism for a
strongly typed OO database programming language. It also
handles links as relationship instances, but without additional
data fields. Multiple inheritance is supported, but ordered slot
contents are not.

Finally, we should note there is an important ongoing dis-
cussion on the conceptual role of metamodeling and meta-
modeling languages in articles such as [9,23]. These works
describe the conceptual relationship between different meta-
modeling levels or layers. Our work focuses on the concrete
constraints between two specific levels and it clearly exhibits
the two metadimensions described in [9], where every model
element logically conforms to a given metamodel class while
it is physically represented as an element.

9 Conclusions

In this article we have explored the main concepts used in
a metamodeling approach that supports class specialization
and property subsetting. We have achieved this by building
the metamodeling framework from the ground up using suc-
cessive set-theoretic definitions of the structural semantics.
Each definition adds a concept to our modeling framework:
multiplicities, bidirectionality, ordering, composition, class
specialization, subsetting, unions and strict unions.

We have also briefly discussed other language extension
mechanisms. We have argued that covariant specializations
make classes nonsubstitutable, that arbitrary property redefi-
nitions are not a safe extension mechanism and that package
merges do not provide anything fundamentally new as they
can be described in terms of previous mechanisms. There-
fore, we have not included these concepts in our approach.

The contribution of this paper is important because it
emphasizes the need for all new metamodel language con-
cepts to form an integrated whole and because it defines
the new property characteristics of subsets and unions from
MOF 2.0. We realize that all new metamodeling constructs
interact with all the old metamodeling constructs. We have
to ensure that the semantics of all combinations of these
constructs make sense by declaring suitable metamodel and
model constraints.

The OMG modeling standards do not describe subset and
union properties in detail, not even informally, and there-
fore they cannot be applied in practice. In this article, we
have formalized a simple modeling framework that supports
subsets and derived unions. It discusses the relevant model
constraints that must be upheld by any valid model.

There are some limitations in the work presented in this
article. The framework and especially subsetting as proposed
is restricted to slots with unique elements. Slots where the
same element can occur several times (bags) are not consid-
ered. Although bags can be defined in MOF 2.0, they are
not used in the definition of the UML 2.0 Superstructure. It
must also be stressed that we do not cover several important
aspects of MOF 2.0, such as association end ownership or
navigability.

We have implemented the metamodeling language defined
in this article in our modeling tool Coral. Coral is open source
and available at http://www.mde.abo.fi/. An important exten-
sion to our framework is the semantics of the operations that
can be performed on models while satisfying the model con-
straints. These basic model operations over models contain-
ing subset and union properties are defined in [5].

Unfortunately, we know of no modeling tools that sup-
port subsets as extensively as discussed in this article. At the
time of writing, the Eclipse EMF model repository does not
implement subset properties, although the feature is planned.
It is not clear what the semantics will be, though.

In conclusion, we consider that there is a need in the mod-
eling community to standardize on one intuitive explana-
tion and a rigorous formalization of subset properties and
derived unions, so tools based on MOF 2.0 and UML 2.0 can
be implemented and be interoperable. This article presents
a proposal in this direction that we hope it can help other
researchers and tool developers to define a common under-
standing for MOF 2.0 and UML 2.0.

Acknowledgments The authors would like to thank Patrick Sibelius
for insightful discussions. Marcus Alanen would like to acknowledge
the financial support of the Nokia Foundation.

Appendix A: A simple metamodeling language

This appendix lists a summary of the final structure of meta-
models and models as well as their constraints.

The metamodels

The metamodels are defined by:

M L S =(C, generalizations, P, owner, type, characteristics)
effectivePropertiesS(c) = properties(c)∪

⋃{effectivePropertiesS(d) · d ∈ generalizations(c)}
effectiveTypeS(p) = {c ∈ C · c ⊆c type(p)}

The characteristics of the properties, including subsets and
strict unions, is defined by:

characteristicsS = (lower, upper, ordered, composite,
opposite, supersets, strictUnion)

123

A metamodeling language supporting subset and union properties 121

such that:

– lower : P → Z
0+ \ ∞ represents the lower multiplicity

constraint of a property (0, 1, 2, . . ., excluding infinity).
– upper : P → Z

+ represents the upper multiplicity con-
straint (1, 2, . . . ,∞).

– composite : P → B is true if a property denotes compo-
sition.

– ordered : P → B is true if a property denotes an ordered
collection of elements.

– opposite : P → P ∪ {�} denotes the optional opposite of
a property in an association between two classes.

– supersets : P → P(P) represents the set of properties of
which a property is a subset.

– strictUnion : P → B is true if a property is a strict union.

The metamodel constraints

Metamodel Constraint 1 Property Multiplicity: (∀p ∈ P ·
lower(p) ≤ upper(p))

Metamodel Constraint 2 Opposite properties: (∀p ∈ P ·
opposite(p) �= � ⇒ p = opposite(opposite(p))

Metamodel Constraint 3 Both properties in a relation can-
not be composite: (∀p ∈ P · composite(p)∧opposite(p) �=
� ⇒ ¬composite(opposite(p)))

Metamodel Constraint 4 No infinite chain of compositions:
(∀c1, . . . , cn, cn+1 ∈ C · (∀i · 1 ≤ i ≤ n ⇒ (∃p ∈
effectiveProperties(ci) · composite(p) ∧ owner(p) = ci ∧
ci+1 = type(p)∧lower(p)≥1)) ⇒ c1 �= cn+1), ∀n ≥ 1

Metamodel Constraint 5 Generalization is acyclic: ¬(∃e
∈ C · (e, e) ∈ {(c, d) · d ∈ generalizations(c)}+)

Metamodel Constraint 6 Upper multiplicity in subset
properties: (∀p ∈ P · (∀q ∈ supersets(p) · upper(p) ≤
upper(q)))

Metamodel Constraint 7 Subset only from owner or its
superclasses (∀p, q ∈ P · p ⊆p q ⇒ owner(p) ⊆c

owner(q)).

Metamodel Constraint 8 The property superset relation is
acyclic: ¬(∃e ∈ P · (e, e) ∈ {(p, q) · q ∈ supersets(p)}+)

Metamodel Constraint 9 The opposite of a subset property
must be a subset: (∀p, q ∈ P · p ⊆p q ∧ opposite(p) �=
� ⇒ opposite(p) ⊆p opposite(q))

Metamodel Constraint 10 No circular transitive composi-
tion with subsets: (∀p ∈ P · composite(p) ⇒ ¬(∃q ∈
P · opposite(q) �= �∧ p ⊂p q ∧composite(opposite(q))))

The models

The models are defined by:

M = (E, class, S, property, slotOwner, contents)

The model constraints

Model Constraint 1 Valid slots in element (1): (∀e ∈ E ·
(∀s ∈ slots(e) · (property(s)) ∈ effectiveProperties
(class(e))))

Model Constraint 2 Valid slots in element (2): (∀e ∈ E ·
(∀p ∈ effectiveProperties(class(e)) · (∃!s ∈ slots(e) ·
property(s) = p)))

Model Constraint 3 Class of elements in a slot: (∀s ∈ S ·
(∀e ∈ contents(s) · class(e) ∈ effectiveType(property(s))))

Model Constraint 4 Valid amount of elements in a slot:
(∀s ∈ S · lower(property(s)) ≤ #s ≤ upper(property(s)))

Model Constraint 5 Bidirectionality of slots: (∀s ∈ S ·
opposite(property(s)) �= � ⇒ (∀e′ ∈ contents(s) ·
(∃!s′ ∈ S · slotOwner(s′) = e′ ∧ opposite(property(s′)) =
property(s) ∧ slotOwner(s) ∈ contents(s′))))

Model Constraint 6 Overridden by model constraint 11.

Model Constraint 7 Composition is acyclic: (∀e1, . . . , en,

en+1 ∈ E · (∀i · 1 ≤ i ≤ n ⇒ ei ∈ parent(ei+1)) ⇒
e1 �= en+1), ∀n ≥ 1

Model Constraint 8 Unordered slots: (∀r, s ∈ S · r ⊆s

s∧¬ordered(property(s)) ⇒ contents(r) ⊆ contents(s))

Model Constraint 9 Ordered slots: (∀x, y ∈ E, r, s ∈ S ·
x ∈ contents(r) ∧ y ∈ contents(r) ∧ x �r y ∧ r ⊆s s
∧ ordered(property(s)) ⇒ x ∈ contents(s) ∧ y ∈
contents(s) ∧ x �s y)

Model Constraint 10 Elements in a strict union: (∀s ∈ S ·
strictUnion(property(s))⇒contents(s)=⋃{contents(r) ·
r �s s}

Model Constraint 11 (Subset) Only in one composite slot:
(∀e ∈ E · ¬(∃s1, s2 · slotOwner(s1) = slotOwner(s2) ∧
(property(s1) ||p property(s2))∧composite(property(s1))∧
composite(property(s2)) ∧ e ∈ contents(s1) ∧ e ∈
contents(s2))

123

122 M. Alanen, I. Porres

Appendix B: Mathematical notation

This appendix summarizes the notation used in this article,
with some small examples.

We use naive set theory throughout the article. Sets of
primitive data values are denoted with calligraphic letters:
B is the set of boolean values, Z

0+ is the set of integers
0, 1, 2, . . . and Z

+ is set of the set of integers 1, 2, 3, . . .

The expression #S is the amount of elements in a finite
set S.

We use the notation A ⊂ B to denote that A is a strict
subset of B. We use A ⊆ B to denote the possibility that A
is a subset of or equal to B.

The expression P(A) is the powerset of a set A, i.e., the set
of all possible subsets. For example, the powerset of {1, 2, 3}
is {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Set comprehensions are denoted with {g(x) · f (x)}, which
returns a set of values g(x) where f (x) is true (for all possi-
ble legal values of x). The notation

⋃{g(x) · f (x)} denotes
the set consisting of all elements in all sets g(x) where f (x)

is true.
A function f : A → B maps an element of the set A to

an element of the set B. A partial function f : A � B is not
necessarily defined for all elements of A.

A binary relation R is a set of pairs (a, b). A reflexive
relation is such that (∀a · (a, a) ∈ R). A transitive relation
is defined by (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R.

If we have a set of pairs R whose values are of the same
domain A, we can create the transitive closure R+ by tak-
ing the smallest transitive relation over the domain of the
values that still contains R. The reflexive closure of R is
R= = R ∪ {(a, a) · a ∈ A}. The reflexive transitive closure
of R is R∗ = R+=.

A partial order (A,⊆A) is a set A and a binary opera-
tor ⊆A. The operator determines the partial ordering of ele-
ments; given a ∈ A and b ∈ A, the operation a ⊆A b is
true if a occurs before b in the ordering, otherwise false. The
expression a ||A b = ¬(a ⊆A b) ∧ ¬(b ⊆A a) means that a
and b are independent and cannot be compared in the partial
order.

We denote by a �A b the fact that a is a “directly below”
b in a partial order, i.e., a �A b = a ⊂A b ∧ ¬(∃c · c �=
a ∧ c �= b ∧ a ⊂A c ⊂A b).

The partial order should not be confused with the subset
operator ⊆. The former is an arbitrary function that deter-
mines the partial order, whereas the latter has only one defi-
nition in set theory.

An array (A,≺) is an ordered set of elements A. It is essen-
tially like a set of elements, except that all elements have a
unique position in the array. We denote a ≺x b if element a
precedes element b in a specific array x . We denote a �x b
if a precedes b or if a = b. Note that two elements can be in
different orders in different arrays.

References

1. Alanen, M., Lundkvist, T., Porres, I.: Comparison of mod-
eling frameworks for software engineering. Nord. J. Com-
put. 12(4), 321–342 (2005)

2. Alanen, M., Porres, I.: Coral: a metamodel kernel for transforma-
tion engines. In: Akerhurst, D.H. (ed.) Proceedings of the Second
European Workshop on Model Driven Architecture (MDA), num-
ber 17, pp. 165–170. University of Kent (2004)

3. Alanen, M., Porres, I.: Model Interchange Using OMG Standards.
In: Werner, B. (ed) Proceedings of the 31st Euromicro Conference
on Software Engineering and Advanced Applications, pp. 450–
458. IEEE Computer Society, Aug 2005. ISBN 0-7695-2431-1

4. Alanen, M., Porres, I.: A metamodeling language supporting sub-
set and union properties. In: Prinz, A., Tveit, M.S. (eds.) 4th Nor-
dic Workshop on the Unified Modeling Language NWUML’2006,
Jun 2006

5. Alanen, M., Porres, I.: Basic operations over models containing
subset and union properties. In: Oscar Nierstrasz, D.H., Whittle, J.,
Reggio, G. (eds) Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS
2006), vol. 4199 of Lecture Notes in Computer Science, pp. 469–
483. Springer, Berlin, Oct 2006

6. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a
strongly typed object-oriented database programming language.
In: Proceedings of the 17th Conference on Very Large Databases.
Morgan Kaufman Publishers Inc. (1991)

7. Álvarez, J., Evans, A., Sammut, P: MML and the metamodel archi-
tecture. In: Whittle, J. (ed) WTUML: Workshop on Transforma-
tion in UML 2001, April 2001

8. Amelunxen, C., Rötschke, T., Schürr, A.: Graph Transformations
with MOF 2.0. In: Holger Giese, Albert Zündorf (eds.) Fujaba
Days 2005, September 2005

9. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastruc-
ture. ACM Trans. Model. Comput. Simul. 12(4), 290–321 (2002)

10. Baar, T.: Metamodels without metacircularities. L’Objet 9(4), 95–
114 (2003)

11. Back, R.-J., Grundy, J., von Wright, J.: Structured calculational
proof. Technical Report 65, Turku Center for Computer Science,
November 1996

12. Barbier, F., Henderson-Sellers, B., Le Parc, A., Bruel, J.-
M.: Formalization of the Whole-Part Relationship in the Unified
Modeling Language. IEEE Trans. Softw. Eng. 29(5), 459–470
(2003)

13. Baresi, L., Heckel, R.: Tutorial introduction to graph transfor-
mation: a software engineering perspective. In: Corradini, A.,
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Proceedings of
Graph Transformation—First International Conf., ICGT 2002,
Barcelona, Spain, vol. 2505 of LNCS. Springer, Heidelberg (2002)

14. Bézivin, J., Breton, E., Dupé, G., Valduriez, P.: The ATL Transfor-
mation-based Model Management Framework. Technical Report
03.08, University of Nantes, France (2003)

15. Bierman, G., Wren, A.: First-class relationships in an object-ori-
ented language. In: Workshop on Foundations of Object-Oriented
Languages (FOOL 2005), January 2005

16. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose,
T.J.: Eclipse Modeling Framework. Addison Wesley Professional,
August 2003

17. Castagna, G.: Covariance and contravariance: conflict without a
cause. ACM Trans. Program. Lang. Syst. 17(3), 431–447 (1995)

18. Clark, T., Evans, A., Kent, S.: The metamodelling language calcu-
lus: foundation semantics for UML. In: Proceedings of the Fun-
damental Aspects of Software Engineering (FASE), pp. 17–31
(2001)

123

A metamodeling language supporting subset and union properties 123

19. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to
defining and implementing transformations between metamod-
els. Softw. Syst. Model. 2(4), 215–239 (2003)

20. EMF development team. The Eclipse Modeling Framework web-
site. http://www.eclipse.org/emf

21. France, R., Rumpe, B.: Domain specific modeling, Editorial.
Springer Int. J. Softw. Syst. Model. 4(1) (2005)

22. Génova, G., del Castillo, C.R., Lloréns, J.: Mapping UML
Associations into Java Code. J. Object Technol. 2(5), 135–162
(2003)

23. Gonzalez-Perez, C., Henderson-Sellers, B.: a powertype-based
metamodelling framework. Softw. Syst. Model. 5:72–90 (2006).
doi:10.1007/s10270-005-0099-9

24. Harel, D.: Statecharts: a visual formalism for complex sys-
tems. Sci. Comput. Program. 8(3), 231–274 (1987)

25. Henderson-Sellers, B., Barbier, F.: Black and white diamonds.
In: France, R., Rumpe B. (eds) UML’99—The Unified Modeling
Language. Beyond the Standard. Second International Confer-
ence, Fort Collins, CO, USA, October 28–30. 1999, Proceedings,
vol. 1723 of LNCS, pp. 550–565. Springer, Heidelberg (1999)

26. Jiang, J., Systä, T.: Exploring differences in exchange formats—
tool support and case studies. In: Seventh European Conference
on Software Manteinance and Reengineering. IEEE Computer
Society, March 2003

27. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification.
In: Proceedings of 8th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems, Bologna,
Italy (2006)

28. Kalnins, A., Barzdins, J., Celms, E.: Basics of model transforma-
tion language MOLA. In: Workshop on Model Transformation
and Execution in the Context of MDA (ECOOP 2004), June 2004

29. Kleppe, A.: April 2003. Discussion on the mailing-list puml-
list@cs.york.ac.uk

30. Liskov, B.: Keynote address—data abstraction and hierar-
chy. SIGPLAN Not 23(5), 17–34 (1988)

31. Lundell, B., Lings, B., Persson, A., Mattsson, A.: UML model
interchange in heterogeneous tool environments: an analysis of
adoptions of XMI 2. In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoD-
ELS 2006), volume 4199 of Lecture Notes in Computer Science.
Springer, Berlin (2006)

32. Netbeans. Netbeans Metadata Repository (NMR). Available at
http://mdr.netbeans.org/

33. Nickel, U.A., Niere, J., Zündorf, A.: Tool demonstration: the
FUJABA environment. In: Proceedings of the 22nd International
Conference on Software Engineering (ICSE), pp. 742–745. ACM
Press (2000)

34. Nytun, J.P., Prinz, A., Kunert, A.: Representation of levels and
instantiation in a metamodelling environment. In: Proceedings of
the 2nd Nordic Workshop on the Unified Modeling Language
NWUML’2004, pp. 1–17 (2003)

35. OMG. Meta Object Facility, version 1.4, April 2002. Document
formal/2002-04-03. Available at http://www.omg.org/

36. OMG. XML Metadata Interchange (XMI) Specification, version
1.2, January 2002. Available at http://www.omg.org/

37. OMG. XML Metadata Interchange (XMI) Specification, version
2.0, May 2003. Available at http://www.omg.org/

38. OMG. MOF 2.0 Query/View/Transformation Final Adopted
Specification, November 2005. OMG Document ptc/05-11-01.
Available at http://www.omg.org/

39. OMG. UML 2.0 Superstructure Specification, August 2005. Doc-
ument formal/05-07-04. Available at http://www.omg.org/

40. OMG. XML Metadata Interchange (XMI) Specification, version
2.1, September 2005. Available at http://www.omg.org/

41. OMG. Meta Object Facility (MOF) Core Specification, ver-
sion 2.0, January 2006. Document formal/06-01-01. Available at
http://www.omg.org/

42. OMG. UML 2.0 Infrastructure Specification, March 2006. Docu-
ment formal/05-07-05. Available at http://www.omg.org/

43. OMG Architecture Board. Model Driven Architecture—A Tech-
nical Perspective, 2001. OMG Document ormsc/01-07-01. Avail-
able at http://www.omg.org/

44. Octavian Patrascoiu. YATL:Yet Another Transformation Lan-
guage. In: Proceedings of the 1st European MDA Workshop,
MDA-IA, pp. 83–90. University of Twente, The Nederlands
(2004)

45. Rozenberg, G. (ed.): Handbook of Graph Grammars and Comput-
ing by Graph Transformations, vol. 1. Foundations. World Scien-
tific (1997)

46. Scheidgen, M.: On Implementing MOF 2.0—New Features
for Modelling Language Abstractions. July 2005. Available at
http://www.informatik.hu-berlin.de/ scheidge/

47. Steel, J., Jézéquel, J.-M.: Typing Relationships in MDA. In:
Akehurst, D.H. (ed) Proceedings of the Second European
Workshop on Model Driven Architecture (EWMDA), number 17,
Canterbury, Kent CT2 7NF, UK, Sep 2004. University of Kent

48. Steel, J., Jézéquel, J.-M.: Model typing for improving reuse in
model-driven engineering. In: MoDELS, pp. 84–96 (2005)

49. Sutton, A.: Open Modeling Framework. Available at
http://www.sdml.info/projects/omf/

50. ATLAS Team. Atlantic Metamodel Zoo (2006). http://www.
eclipse.org/gmt/am3/zoos/atlanticZoo/

51. Tratt, L.: The MT model transformation language. In: Proceed-
ings of ACM Symposium on Applied Computing, pp. 1296–1303,
April 2006

52. Varró, D.: Automatic program generation for and by model trans-
formation systems. In: Kreowski, H.-J., Knirsch, P. (eds) Proceed-
ings of AGT 2002: Workshop on Applied Graph Transformation,
pp. 161–173, Grenoble, France, April 12–13 (2002)

53. Varró, D., Pataricza, A.: VPM: a visual, precise and multilevel
metamodeling framework for describing mathematical domains
and UML. J. Softw. Syst. Model. 2(3), 187–210 (2003)

54. Varró, D., Varró, G., Pataricza, A.: Designing the automatic trans-
formation of visual languages. Sci. Comput. Program. 44(2), 205–
227 (2002)

55. Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL
graph exchange language. In: Revised Lectures on Software Visu-
alization, International Seminar, pp. 324–336. Springer, London
(2002)

123

124 M. Alanen, I. Porres

Author’s Biography

Marcus Alanen received his M.Sc.
degree in Computer Engineering in
2002 at Åbo Akademi University,
Finland. He is currently working on
his Ph.D. at the same university,
researching metamodeling concepts,
diagram interchange, difference cal-
culation and serialization of models.

Ivan Porres received his M.Sc.
degree in Computer Science in 1997
at the Polytechnic University of
Valencia, Spain and in 2001 his Ph.D.
in Computer Engineering at Åbo Aka-
demi University in Turku, Finland.
His thesis, “Modeling and Analyzing
Behavior in UML”, shows how to use
different formal methods to ensure the
correctness of software modeled using
the UML. Currently, he is a docent
in Software Engineering and works
as acting professor at the Department
of Information Technologies at Åbo

Akademi University where he researches the topics of model-driven
software development and software process improvement.

123

	A metamodeling language supporting subset and union properties
	Abstract
	Introduction
	Extension mechanisms in MOF 2.0 and the UML 2.0 Infrastructure
	Class and property specialization
	Criteria for language extensions
	Package merge
	Why do we want metamodeling languages anyway?
	Metamodels and models
	A basic metamodeling language
	Metamodel formalization
	Model formalization
	Model constraints
	Metamodel constraints
	Primitive values
	Property characteristics
	Multiplicities
	Ordering
	Bidirectionality
	Composition
	Attributes
	Class specialization
	Property subsetting
	Subsets and ordering
	Union properties
	Strict unions
	Subsets and substitutability
	Subsets and multiplicities
	Subsets and class specialization
	Subsets and opposite properties
	Subsets and composition
	Alternative language extension mechanisms
	Covariant specialization
	Property redefinition
	Related work
	Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

