
Softw Syst Model (2007) 6:185–204
DOI 10.1007/s10270-006-0024-x

SPECIAL ISSUE PAPER

Tool support for refinement of non-functional specifications

Simone Röttger · Steffen Zschaler

Received: 15 February 2005 / Accepted: 30 November 2005 / Published online: 12 July 2006
© Springer-Verlag 2006

Abstract Model driven architecture (MDA) views
application development as a continuous transforma-
tion of models of the target system. We propose a
methodology which extends this view to non-functional
properties. In previous publications we have shown how
we can use so-called context models to make the specifi-
cation of non-functional measurements independent of
their application in concrete system specifications. We
have also shown how this allows us to distinguish two
roles in the development process: the measurement de-
signer and the application designer.

In this paper we use the notion of context models
to allow the measurement designer to provide mea-
surement definitions at different levels of abstraction.
A measurement in our terminology is a non-functional
dimension that can be constrained to describe a non-
functional property. Requiring the measurement
designer to define transformations between context
models, and applying them to measurement definitions,
enables us to provide tool support for refinement of non-
functional constraints to the application designer. The
paper presents the concepts for such tool support as well
as a prototype implementation.

Keywords Non-functional properties · Model
transformation · Refinement · CASE tool support

Communicated by Ana Moreira and Thomas Baar.

S. Röttger (B) · S. Zschaler
Technische Universität Dresden, Dresden, Germany
e-mail: Simone.Roettger@inf.tu-dresden.de

S. Zschaler
e-mail: Steffen.Zschaler@inf.tu-dresden.de

1 Introduction

Non-functional properties of a system – for example,
Quality of Service (QoS) or security aspects – need
to be considered as early as possible in the develop-
ment cycle to analyse the non-functional behaviour of
the system. This is especially true for component-based
systems because all context dependencies need to be
made explicit. In the context of the COMQUAD project1

we develop a methodology supporting the modelling
of component-based systems with particular emphasis
on non-functional aspects. In this paper we focus on the
models required by the methodology. Although they are
directly applicable to QoS properties only (such as re-
sponse time, delay, memory usage), we believe that they
can be extended to cover other non-functional product
properties–such as security–as well. For the purpose of
this paper we will consider the terms non-functional and
QoS to be synonyms.

The core concept of QoS specifications is the
measurement–or characteristic [15]. A measurement is a
mapping from states, objects, or events of a physical sys-
tem (e.g., an implemented and running application) to
a formal system (for example, the set of real numbers).
Examples for measurements are: response time (a map-
ping from an operation call in a running system to a real
number representing the time taken from invocation to
return), or confidentiality (a mapping from a channel
used to transfer information to a value indicating the
level of confidentiality achieved by this channel).

1 COMponents with QUantitative properties and ADaptivity
at Technische Universität Dresden and Friedrich-Alexander-
University Erlangen-Nuremberg, Germany; supported by Ger-
man Research Council; see http://www.comquad.org

186 S. Röttger, S. Zschaler

Measurements and constraints over them must be
modelled. Formally modelling a measurement can be
complicated and is thus not a task an application de-
signer would want to undertake. At the same time, the
same measurement may be relevant to different appli-
cations, so once a measurement has been modelled we
would like to be able to reuse it for different applica-
tions. In order to do so, measurement specifications must
be made independent of specific applications. We can
achieve this by using models of the relevant aspects of
target applications–we call these context models2 [31]–
in the definition of measurements. They will then be
applicable to any system model that can be viewed as an
instance of the context model used in the definition of
the measurement. We have thus ensured that the defi-
nition of measurements can be done independently of
the usage of those measurements, and vice-versa. We
can now separate two roles in the development process:
The measurement designer, who creates a library of mea-
surements, and the application designer, who uses these
measurements to annotate application models with non-
functional specifications.

The basic idea of existing development processes–
especially approaches based on the model-driven archi-
tecture (MDA) [19]–is the refinement of system models
from an abstract view of the system to a model close
to the real implementation. The application designer
creates, and thinks about, functional models at different
levels of abstraction. He should be able to do so for non-
functional models, too. This paper is about how different
context models can be used to represent different lev-
els of abstraction for a measurement, and how this can
be leveraged to provide tool support for the applica-
tion designer’s refinement of non-functional specifica-
tions. Two ideas form the basis for this: (a) we require
the measurement designer to describe the refinement
relations between different context models as transfor-
mations, and (b) we apply these transformations to the
more abstract measurement definitions to create refined
versions. The application designer can then reuse these
refinements as prompted by refinements in the func-
tional model of the system. We distinguish two kinds
of non-functional refinement: structural refinement and
measurement refinement, which will be explained later
in Sect. 3.

This paper is an extended and refined version of
[32,33]. It focuses on modelling issues related to
measurement refinement. In Sect. 2 we give a short
introduction to our overall development process and the

2 Note that these models are unrelated to models from context-
aware computation. They merely represent the context of a mea-
surement definition.

specification languages we use, which form the context
of this work. The following sections describe measure-
ment refinement and the related models in more detail:
from the application designer’s view (Sect. 3), from the
measurement designer’s view (Sect. 4), and from a more
technical, tool-oriented perspective (Sect. 5). Section 6
presents a prototype implementation of tool support for
our concepts. We use a simple example application with
response time constraints throughout the paper to illus-
trate our approach. Finally, the conclusion points out the
most important arguments of our work as well as issues
for further research.

2 A process for component-based systems
with non-functional properties

Figure 1 gives an overview of our overall software devel-
opment process for non-functional properties. After the
requirements analysis the application designer begins to
model the system. This includes modelling of non-func-
tional properties by specifying non-functional
constraints and attaching them to components and con-
nectors. The application designer switches between mod-
elling–and refining–non-functional properties of the
components (labelled “Application Modelling” in the
figure) and of the components’ environment (called
“Environment Modelling” in the figure).

Our approach separates measurement definition from
measurement usage–that is, specification of non-func-
tional properties of applications using these measure-
ments. Measurement definitions can be very complex,
but on the other hand will be developed only once.
Therefore, we separate the roles of measurement de-
signer and application designer in our process. Their
combined efforts lead to a specification of the system
fincluding its non-functional properties.

Our process comprises the following steps:

1. Definition of measurements at different levels of
abstraction, including provision of transformation
rules for context models by the measurement de-
signer (see Sect. 4). The measurement designer can
do so independently of application development
and even at a far earlier time. Remember that a
measurement is simply a non-functional dimension
that must be constrained to form a non-functional
property.

2. Use of measurements during the specification pro-
cess by the application designer. The application
designer constrains measurements and binds these
constraints to elements of the functional model.

3. Tool-supported refinement of measurements. The
application designer chooses one out of several

Tool support for refinement of non-functional specifications 187

<<attribute>> performingRole:Role

Measurement
Definition at

different levels
of abstraction

Definition of
Transformations

Requirements Analysis

Runtime-Specification
Generation

Monitoring-Code
Generation

Measurement Designer Application Designer

Measurement
Definition incl.
Context Models

Transformation
Specification

Environment Modelling

RefinementTool-Supported
Refinement

Constraint Specification/
Binding to Components

Application Modelling

Constraint Specification/
Binding to Connectors

Fig. 1 Development process for non-functional properties overview

refined measurements. These have been previously
provided by the measurement designer together with
an informal description of each measurement (see
first item).

4. Modelling and refinement of connectors between
components during the assembly process. The appli-
cation designer uses connectors to model the influ-
ence of the container on non-functional properties
of the application.

The resulting non-functional specification is used for
a variety of purposes. Apart from generating code for
runtime monitoring of QoS parameters, its main use is
in providing a base for QoS contract negotiation and
resource reservation in the running system–the compo-
nent container.

A third role–the component developer–is involved in
the software development process (Fig. 2). His task is to
provide appropriate component implementations. It is
essential to test the non-functional properties of these
component implementations in a test container [24]. The
component developer then translates the test results
into a non-functional specification for each component
implementation. For this purpose he uses the predefined
measurements from the measurement repository. The
component implementations and the respective non-
functional specifications are stored in a component
implementation library. The application designer can
query the library to find component implementations
fulfilling the non-functional requirements of the
application system specification. The verification of the
components’ functionality is beyond the scope of this
paper.

We use two specification languages: for functional
modelling we primarily use the component model ele-
ment from UML 2.0 [29] extended with a stereotype
for interfaces which allows us to distinguish between
operational interfaces, offering a set of operations to be
invoked, and streaming interfaces for data-flow based
communication. We added graphical representations for
modelling streaming ports as shown in Fig. 3: inter-
faces marked up as �sources�–that is, ports emitting
data packages–are displayed as outgoing double arrows
(–�), �sinks�—ports accepting data packages–as
incoming ones (�—), respectively. Connections between
these ports are depicted as double lines (=). For the non-
functional specification we use CQML+ [31] an exten-
sion of (CQML) (the Component Quality Modelling
language) [1].

CQML+ builds on quality characteristics, which essen-
tially are definitions of measurements. Quality state-
ments are used to specify constraints on characteristics.
Both quality characteristics and quality statements are
parametrised and can, therefore, be reused in differ-
ent contexts. To actually attach the non-functional spec-
ification to the functional one, CQML+ provides the
construct of quality profiles. In such a profile current
parameter values–for example, streams or operations of
the component to which the non-functional constraint is
applied–replace the formal parameters of quality state-
ments. Quality statements can be associated to a com-
ponent as offers (provides), requirements (uses), or
resource demands (resources). CQML+–as CQML–
uses a slightly modified version of the object constraint
language (OCL) [27] for the specification of the formal
meaning of a characteristic.

188 S. Röttger, S. Zschaler

Defining
Measurements

and
Transformations

Measurement
Repository

Implementation of
Components

Component
Implementation

Library

uses

Application

Designer

Specifying the
Application System

Assembling of
Components

Measurement
Designer

Component
DeveloperMeasuring in

Test Container

Fig. 2 Roles involved in the development process for non-functional properties

Fig. 3 UML extensions for
graphical annotation of
non-functional properties

IVideoStream

<<comp spec>>
VideoServer ILogin

<<media-characteristic>>
videoQoS

framerate>25
delay<5

<<characteristic>>
response_time

value<500

IOrder

<<characteristic>>
response_time

value<600

[for ILogin:login]

[for_all_ops]

IAudioStream

For example, Listing 1 shows a CQML+ snippet
describing CD-quality audio transmission. It begins with
a quality characteristic specification of thesample_ra-
temeasurement. Thedomain-clause specifies the range
of possible values for the measurement–all real num-
bers greater or equal zero. The unit of measurement
is ‘samples per second’. The OCL expression in the
values-clause specifies that the current sample rate
is determined by counting the number of events that oc-
curred for a flow of samples in the last 1, 000 ms. Next, it

defines a quality statement cd_audio that constrains
sample_rate to the typical CD-audio rate for one
channel. Finally, this quality statement is associated with
the audioOut port of component AudioPlayer.

CQML+ is a textual language comprising both mea-
surement definition and measurement usage. For graph-
ical modelling of measurement definitions we plan to
use ideas proposed in [30]. For measurement usage we
have defined a graphical notation allowing to attach
constraints to parts of the functional model (Fig. 3).

Tool support for refinement of non-functional specifications 189

Listing 1 A sample CQML+specification of CD-quality audio
transmission

1 q u a l i t y _ c h a r a c t e r i s t i c sample_rate (af : Flow) {
domain : numeric r e a l [0 . .) samples / second ;

va lues : af . events . eventsInRange (1000)−> s i z e () ;
}

6 q u a l i t y cd_audio (af : Flow) {
sample_rate (af) >= 44100 ;

}

p r o f i l e d a t a _ d e l i v e r y f o r AudioPlayer {
11 p r o f i l e good {

prov ides cd_audio (audioOut) ;
}

}

Here the definition of the measurement is secondary.
As a simple example imagine a VideoServer com-
ponent providing ports for login and ordering and also
streaming ports for outgoing audio and video streams.
To constrain all operations offered via theIOrder inter-
face we only need the name of the measurement (here
response_time) and the value constraining it. As
depicted we concentrate these information in one
graphical element called characteristic. It is also
possible to define complex measurements, which we call
media-characteristics. These are template mea-
surement sets which are normally used together to char-
acterize a media stream. In our example the streaming
port IVideoStream is constrained by a media-charac-
teristic videoQos defined by the predefined values for
framerate and delay. The internal tool representa-
tion uses CQML+, merging measurement definition and
constraints into one specification. We will explain this in
Sect. 6.1.

For a more in-depth explanation, we describe the indi-
vidual models as seen from the application designer’s
view as well as from the measurement designer’s view
in the following sections.

3 The application designer’s view

The application designer obtains a target specification
from the requirements analysis. Using this artefact, he
begins modelling an adequate system which fulfils the
customer’s requirements. He creates a functional model
of the system, tagging non-functional aspects to it using a
system modelling tool supporting graphical modelling.
As he progresses in the development, the functional
model gets more and more detailed. Correspondingly,
the application designer must also refine the non-func-
tional specification. We distinguish two kinds of non-
functional refinement:

1. Structural refinement: The application designer adds
new model elements, as the functional model gets
more refined. In this process, he may have to reas-
sign non-functional property specifications that had
been tagged to one model element to some newly
added model element–or he may even have to dis-
tribute them to several new elements. For exam-
ple, at a very early stage the application designer of
a video server application may have modelled the
complete application as one monolithic component,
also tagging any non-functional specifications–for
example, response time constraints–to this big com-
ponent. Later, he refines the component by decom-
posing its functionality into several subcomponents.
In this step, he will also need to refine the non-func-
tional properties tagged to the monolithic compo-
nent by determining which of the subcomponents
have to provide each non-functional property.

2. Measurement refinement: With this type of refine-
ment the application designer uses a more precise
interpretation of the meaning of a certain measure-
ment. For example, he may wish to start out thinking
about response time simply as the time between start
and end of an operation call. Later he may wish to
make more precise statements about response time.
Figure 4 shows his options: the time between (1) the
reception of a request and the sending of the corre-
sponding response, or (2) the reception of a request
and the reception of the corresponding response,
or (3) the sending of a request and the sending of
the corresponding response, or (4) the sending of
a request and the reception of the corresponding
response.

request

response

4)

3)

1)

2)

client server

Fig. 4 A sequence diagram excerpt showing different kinds of
response time specification

190 S. Röttger, S. Zschaler

<<characteristic>>

response_time

value < 400
model = coarse

<<characteristic>>
response_time

value < 470
model = fine

<<characteristic>>
response_time

value < 500
model = fine

[for login][for checkPassWd]
[for check PassWd]

IUserMgt<<comp spec>>

:User Manager
ILoginIUserMgt <<comps pec>>

:VideoServer

Fig. 5 Sample screen shot

This paper focuses on measurement refinement. Struc-
tural refinement of non-functional properties is a com-
plete research area of its own and thus outside the
scope of this paper. As a simple example imagine the lo-
gin mechanism of our VideoServer component using
another component UserManager that manages user
data. At an early stage of development the application
designer decides that the video server component pro-
vides an interface ILogin and uses an interface called
IUserMgt. The UserManager provides this interface
IUserMgt. For operations of these interfaces he can
specify different response times depending on the inter-
nal execution times of the components. This corresponds
to Step 2 in Sect. 2.

However, so far he has not thought about response
time in detail, but only as the time between start and
end of an operation call. Here, our mapping support
is applied. If he wants to refine the response time of
the operation IUserMgt::checkPassWd used by the
VideoServer, the application designer can use the
CASE tool to refine this non-functional aspect. The
tool provides four different kinds of refined response
times using a library where the information about the
mapping is stored. Depending on what the application
designer wants to model, he will choose one of the re-
fined response times and the tool will update the internal
model representation and tag the treated characteristic
as refined. This is Step 3 from Sect. 2. Figure 5 shows
what the screen could look like after these two steps.
It shows the two components VideoServer and Us-
erManager, their used and provided interfaces, and
the attached non-functional constraints. Some of these
have already been refined—this can be seen from the

line ‘model = fine’.3 The application designer has
just opened the refinement dialogue for the last non-
functional constraint to be refined and selected one of
the possible refinements. Note that the application de-
signer is completely shielded from the formal intricacies
underlying the different response time definitions.

Once non-functional specifications have been cre-
ated and connected with a functional specification, it
becomes important to have analysis tools allowing for
determination of various properties of the system. One
property for which analysis is very important and helpful
is to determine whether a component satisfies the non-
functional demands of another component. For this it is
necessary to compare the used properties of the “cli-
ent” component with the provided properties of the
“server” component.

In the example such an analysis becomes necessary
between the VideoServer and the UserManager.
The VideoServer requires the response time for
checkPassWd to be less than 470 ms, while the User-
Manager provides a response time for checkPassWd
of less than 400 ms. Analysis can conclude that the of-
fered response time constraint is stronger than the re-
quired constraint. Thus, the two components can safely
be plugged together.

After a refinement of the response time, the situa-
tion may well be different. For example, the application
designer may have chosen variation 4 (cf. Fig. 4) for
refining response time in VideoServer and variation

3 fine is the name given to the context model by the measure-
ment designer (see Sect. 6.2). The line showing this name can be
hidden from diagrams.

Tool support for refinement of non-functional specifications 191

1 for UserManager. This corresponds to the principle
of locality in component-based software engineering: no
component specification makes constraining statements
about anything beyond its own boundaries.

Trying to analyse whether these two components can
cooperate yields no result as the two variations cannot
be compared directly. This is not a shortcoming of the
analysis, however, but a lack of the model. The applica-
tion designer needs to add information about the delay
of the communication channel between the two compo-
nents. In other words, the refinement of the non-func-
tional constraint prompts a refinement in the functional
model: the designer needs to consider aspects of the
communication between the components.

Communication between components is modelled us-
ing connectors in Architecture Description Languages
(ADLs) [22]. This concept can be extended to provide
non-functional properties of communication (cf., e.g., [9,
16,35]). In our example, we might model the container-
induced delay for communication to be 50 ms. Given this
additional information, the analysis tool should then be
able to conclude that the two components can safely
be used together. This concludes Step 4 as described in
Sect. 2.

In order to allow the application developer to con-
centrate on the business logic of his application, it seems
reasonable to provide him with a library of connectors
for different aspects of the container and of distribu-
tion. He would simply select an appropriate connector
from this library—or build a chain of connectors to com-
bine non-functional effects of different connectors like
distribution and encryption—and plug it into his model.

4 The measurement designer’s view

In the previous section we have had a look at the appli-
cation designer’s view. Now, let’s have a look behind
the scenes. This is where the measurement designer has
done his work to make handling of non-functional prop-
erties easy for the application designer. He has spec-
ified individual measurements using CQML+, defined
context models for each measurement specification and
level of abstraction, and performed transformations to
provide measurement specifications at different levels
of abstraction. This corresponds to Step 1 in Sect. 2.

Each CQML+ specification—and in particular each
definition of a quality characteristic—is written relative
to what in [1] is called a computational model. We prefer
the term context model, as it is really a model of the con-
text of the characteristic definition—that is, it comprises
the elements necessary for specifying the semantics of
the characteristic. For each context model and each com-

ponent model to be used, there needs to exist a mapping
relating the concepts of the component model to con-
cepts in the context model. For each concept of the com-
ponent model (e.g., the concept of component itself) we
need to identify the concept in the context model which
represents it.

As we have shown in Sect. 3, at different stages in
the development cycle it is helpful to use characteristics
defined at different levels of abstraction. In order for
this to be possible, we need to define context models
at all these levels of abstraction. In effect, each context
model represents the specification of a specific level of
abstraction. This is different from what was proposed in
[1], where one computational model was used for every
CQML specification, independent of level of abstrac-
tion. Instead, we use multiple context models to repre-
sent different levels of abstraction.

Figures 6 and 7 show two examples of context mod-
els. Figure 6 shows a rather coarse—or more abstract—
context model. All that one can talk about are com-
ponents, interfaces, and operations on the static side
and component instances and operation calls between
instances on the dynamic side. For each operation it
is possible to access the history of invocations of this
operation. Each operation call connects two operations,
one in the used interface of the calling component in-
stance (caller) and one in the provided interface of the
called component instance (callee). Although only
structure is shown in the figure, each context model also
has a behavioural aspect captured in a transition system.
These specifications have been left out for lack of space.
The term ‘dynamic’ in the diagrams refers to classes
of which instances are created in the course of execut-
ing the transition system, while ‘static’ refers to those
classes whose instances remain fixed over a complete
run.

Simple as it is, this context model already allows
us to define the response time of an operation. List-
ing 2 shows the corresponding CQML+ definition. The
domain clause defines response times to be real values
given in milliseconds. The values clause defines how
response time values can be measured. It relates to the
context model, using the start and end time of an oper-
ation call, which are stored in the attributes start and
end, respectively.

The context model in Fig. 7 is much more detailed. It
represents a much lower level of abstraction. In particu-
lar, it contains event sequences SE and SR for each oper-
ation. For each operation in a used interface, SE (short
for “service emission”) contains events fired whenever
a request for an operation call was issued by the calling
component; SR (short for “service reception”) contains
one event per result that was received by the calling

192 S. Röttger, S. Zschaler

2

provided_interfaces

1 0..*

used_interfaces1 0..*

1

caller

1 0..*

callee1
0..*

invocations0..*

instances0..*

Component OperationalInterface

+name:String

Operation

ComponentInstance
OperationCall

+end:Instant
+start:Instant

static

dynamic

Fig. 6 Abstract context model

0..*

caller
1 0..*

callee1
0..*

SE1

SR

invocations

2

0..*

provided_interfaces

1 0..*

used_interfaces1 0..*

instances

1

0..*

Component Operation

ComponentInstance
OperationCall

OperationalInterface

+name:String

EventSequence

Event

+time:Instant

dynamic

static

Fig. 7 More specialized context model

Listing 2 Abstract response time definition

1 q u a l i t y _ c h a r a c t e r i s t i c response_t ime (op :
Operation) {

domain : numeric r e a l [0 . .) m i l l i s e c o n d s ;

va lues : op . i n v o c a t i o n s −> l a s t () . end − op .
i n v o c a t i o n s −> l a s t () . s t a r t ;

6 }

component. On the other hand, for each operation in a
provided interface, SR contains one event per request
received, and SE one event per result sent out from the
called component. This context model is already very
close to Aagedal’s [1] computational model.

To perform the interactive refinement described in
Sect. 3, we must specify the transformation between
these two models. We need to say for each model ele-
ment in the coarser model which model element(s) it
should be mapped to in the finer model. This can be spec-
ified using a transformation language based on XML [5].
The transformation language and algorithm will be ex-
plained in more detail in Sect. 5.

After designing the finer context model and the trans-
formations, the measurement designer who specified the
response time characteristic in Listing 2 uses a transfor-
mation tool to apply the transformations to his specifi-
cation of response time, and to generate refined versions
of response time for the more detailed context model.
Section 6.3 discusses in detail the implementation of the
transformation tool.

Listing 3 shows two of the four resulting versions
of response time.4 Note that the numbers appended
to the characteristics’ names correspond to the num-
bers from Fig. 4. The relationship between the more
abstract response time definition and the newly created
refined versions is stored as another transformation in
the transformation specification. It remains the task of
the measurement designer to give a clear textual expla-
nation of the differences between the various types of
response time, so that they can be used easily by an
application designer. Of course, the measurement de-
signer can also define additional measurements which
could not be defined at the higher level of abstraction.

4 The remaining two versions have been left out for lack of space.

Tool support for refinement of non-functional specifications 193

Listing 3 Refined versions of response time definition

−− Time between r e c e i p t of r e q u e s t and sending of
response

q u a l i t y _ c h a r a c t e r i s t i c response_t ime1 (op :
Operation) {

domain : numeric r e a l [0 . .) m i l l i s e c o n d s ;
4

va lues : −− The f o l l o w i n g has been s u b s t i t u t e d f o r
−− op . i n v o c a t i o n s −> l a s t () . end
(l e t op1 : Operation

= op . i n v o c a t i o n s −> l a s t ()
9 . operat ion

−> s e l e c t (
o p e r a t i o n a l I n t e r f a c e
. component
. p r o v i d e d _ i n t e r f a c e s

14 −>c o n t a i n s (
o p e r a t i o n a l I n t e r f a c e
)

)
in

op1 . SE−> l a s t () . t ime ()) −
−− The f o l l o w i n g has been s u b s t i t u t e d f o r

19 −− op . i n v o c a t i o n s −> l a s t () . s t a r t
(l e t op1 : Operation

= op . i n v o c a t i o n s −> l a s t ()
. operat ion
−> s e l e c t (

24 o p e r a t i o n a l I n t e r f a c e
. component
. p r o v i d e d _ i n t e r f a c e s
−>c o n t a i n s (

o p e r a t i o n a l I n t e r f a c e
)

)
29 in

op1 . SR−> l a s t () . t ime ()) ;
}

34 −− Time between sending of r e q u e s t and r e c e i p t of
response

q u a l i t y _ c h a r a c t e r i s t i c response_t ime4 (op :
Operation) {

domain : numeric r e a l [0 . .) m i l l i s e c o n d s ;

va lues : −− The f o l l o w i n g has been s u b s t i t u t e d f o r
39 −− op . i n v o c a t i o n s −> l a s t () . end

(l e t op1 : Operation
= op . i n v o c a t i o n s −> l a s t ()

. operat ion
−> s e l e c t (

44 o p e r a t i o n a l I n t e r f a c e
. component
. u s e d _ i n t e r f a c e s
−>c o n t a i n s (

o p e r a t i o n a l I n t e r f a c e
)

)
49 in

op1 . SR−> l a s t () . t ime ()) −
−− The f o l l o w i n g has been s u b s t i t u t e d f o r
−− op . i n v o c a t i o n s −> l a s t () . s t a r t
(l e t op1 : Operation

54 = op . i n v o c a t i o n s −> l a s t ()
. operat ion
−> s e l e c t (

opera \− t i o n a l I n t e r f a c e
. component

59 . u s e d _ i n t e r f a c e s
−>c o n t a i n s (

o p e r a t i o n a l I n t e r f a c e
)

)
in

op1 . SE−> l a s t () . t ime ()) ;
64 }

Furthermore, application designers may require addi-
tional refinement patterns which they could communi-
cate back to the measurement designer who would then
provide the appropriate context models and transfor-
mation specifications.

5 The transformation language

In the previous section we explained that the measure-
ment designer specifies context models as well as the
transformations between them, and uses these transfor-
mations to generate characteristic specifications at lower
levels of abstraction from specifications at higher levels
of abstraction. In this section we will look at the lan-
guage used to describe the transformations as well as at
the actual transformation algorithm.

We have defined an XML-based language for the
specification of transformations between context mod-
els. It expresses mappings between elements of a more
abstract and a more detailed context model. An excerpt
from the transformation descriptor for our two sample
context models can be seen in Listing 4. Note that some
of the text in the transformation specification is OCL
code. These pieces are code templates which are to be
substituted for pieces of expressions in the more abstract
model. We have omitted most of the trivial mappings,
giving only the mapping for Component as an example.
It can be seen that we distinguish two kinds of transfor-
mations:

1. Classifier transformations (cf. Line 2 in Listing 4)
which are essentially type replacements.

2. Feature transformations which replace features—
such as, attributes, navigations, or operation calls—
from the more abstract model with expressions in
the finer model. The measurement designer specifies
expressions determining the value of features from
the coarser context model in terms of the elements
of the finer context model. This is used for features
which are no longer present in the finer model. For
example the transformation definition on Line 8 de-
fines expressions that can be used to determine the
value denoted by the start attribute of the Op-
erationCall classifier in the coarse model. The
fact that there are two target expressions indicates
that this aspect of the model has been enriched with
information in the refinement.

We are aware that there may be other types of trans-
formation, but so far all examples we have looked at
could be successfully handled with these two types. When
transforming the specification of a characteristic, the

194 S. Röttger, S. Zschaler

Listing 4 Sample transformation descriptor. The XML code has
been slightly simplified to enhance readability

1 <refinement_xform from=" coarse . xmi" to=" f i n e . xmi">
<transform c l a s s i f i e r ="Component">

< t a r g e t c l a s s i f i e r ="Component" / >
< / transform>

6 …

<transform f e a t u r e =" O p e r a t i o n C a l l : : s t a r t "
ownerRef="owner">

< t a r g e t _ e x p r e s s i o n >
l e t op : Operation

11 = owner . operat ion −> s e l e c t (
o p e r a t i o n a l I n t e r f a c e

. component

. p r o v i d e d _ i n t e r f a c e s
−>c o n t a i n s (o p e r a t i o n a l I n t e r f a c e

)
)

16 in
op . SR−> l a s t () . t ime ()

< / t a r g e t _ e x p r e s s i o n >
< t a r g e t _ e x p r e s s i o n >

l e t op : Operation
21 = owner . operat ion −> s e l e c t (

o p e r a t i o n a l I n t e r f a c e
. component
. u s e d _ i n t e r f a c e s
−>c o n t a i n s (o p e r a t i o n a l I n t e r f a c e

)
)

26 in
op . SE−> l a s t () . t ime ()

< / t a r g e t _ e x p r e s s i o n >
< / transform>

31 <transform f e a t u r e =" O p e r a t i o n C a l l : : e n d " ownerRef=
"owner">

< t a r g e t _ e x p r e s s i o n >
l e t op : Operation

= owner . operat ion −> s e l e c t (
o p e r a t i o n a l I n t e r f a c e

. component
36 . p r o v i d e d _ i n t e r f a c e s

−>c o n t a i n s (o p e r a t i o n a l I n t e r f a c e
)

)
in

op . SE−> l a s t () . t ime ()
41 < / t a r g e t _ e x p r e s s i o n >

< t a r g e t _ e x p r e s s i o n >
l e t op : Operation

= owner . operat ion −> s e l e c t (
o p e r a t i o n a l I n t e r f a c e

. component
46 . u s e d _ i n t e r f a c e s

−>c o n t a i n s (o p e r a t i o n a l I n t e r f a c e
)

)
in

op . SR−> l a s t () . t ime ()
51 < / t a r g e t _ e x p r e s s i o n >

< / transform>
< / refinement_xform>

transformation tool applies the transformations described
by eachtransform-tag to each usage of the element/fea-
ture specified by attribute element in the specification
of the characteristic. Because there is some indetermin-
ism in the mappings, the transformation will result in
more than one version of response time. In one gen-
erated version the choice of target expression must be

consistent for every transform-tag. Multiple occur-
rences of a feature in the original expression must be
replaced by the same expression in the refined version.

There is some difference in the way classifier and fea-
ture transformations are handled. While classifier trans-
formations are simple replacements of types by another
type, feature transformations require some more work:
here the transformation rule defines a template expres-
sion that is to be substituted for the expression refer-
encing the feature. Each expression referencing some
feature has the general form owner. feature, where
owner can be any expression and feature is the name
of a feature. During the transformation, the owner part
of this expression is inserted into the target expression at
the places indicated by the identifier declared to be the
ownerRef (see Line 8 of Listing 4) before the whole
expression is substituted. Another issue to be taken
into consideration is uniqueness of names. Names de-
fined in the target expression template may clash with
names defined or visible in the expression that is being
transformed. To avoid such clashes, all names defined
in let-statements in the target expression template are
appended the smallest positive number that makes them
unique.

The response time specifications in Listing 3 have
been generated from the definition in Listing 2 using
the algorithm and the sample transformation descriptor
above. The numbers correspond to Fig. 4. Note how the
start and end expressions have been replaced by the
corresponding target expressions. All combinations of
target expressions have been used in generation. How-
ever, to save space, only the two most important versions
have been included in this paper.

6 A toolkit for the specification and refinement
of non-functional properties

Specification of non-functional properties of application
systems is complex and error-prone. It is therefore desir-
able to provide tool support to the application developer
and the other roles participating in the development
of an application. In this section, we present a toolkit
which supports the specification concepts we have been
discussing so far.

We require the tool to provide support for all roles in
the development process. At the same time, we want to
be able to provide tailor-made support for each role, and
to be flexible to add further functionality as our research
progresses. We have therefore chosen to create a kit of
largely independent tools, which interoperate using a
common repository. Figure 8 shows an overview of the

Tool support for refinement of non-functional specifications 195

Fig. 8 Overview of the
COMQUAD toolkit

Measurement Repository

Measurement
Transformation Engine

Measurement Designer

Measurement Workbench

Measurement Designer

CASE-Tool Integration for
Application Development

Application Designer

Component Test Container

Component Developer

toolkit we have realised so far. The individual tools are
as follows:

Measurement workbench: a tool supporting the defini-
tion of new measurements, as well as their classifi-
cation into taxonomies of non-functional properties,
by the measurement designer. This classification can
be used to simplify search and retrieval later on.

Measurement transformation engine: a tool supporting
the refinement of measurements as described in the
previous section.

Component test container: a tool for component
developers which can be used to determine the non-
functional properties of actual component imple-
mentations.

CASE tool integration for application development: this
is the counterpart to the measurement workbench
and the transformation engine. It provides access to
the measurements previously defined by the mea-
surement designer to the application designer, and
enables him to use these measurements to constrain
models of the application under development.

All tools interact using a central measurement reposi-
tory, which contains both the CQML+ specifications and
some additional information to simplify search and re-
trieval of measurements. This repository has been devel-
oped using the Netbeans Metadata Repository (MDR)
[21], which is a repository generation and management
engine based on meta-modelling [8], the OMG’s
Meta-Object Facility (MOF) [28], and the Java Meta-
data Interfaces standard (JMI) [10]. We have developed
a MOF-based meta-model for CQML+, and generated
an MDR repository from this meta-model. A CQML+-
parser reads CQML+ specifications in plain text and
transforms them into instances of the abstract syntax in
the repository.

The following subsections first discuss the structure
of the repository, and then in turn look more closely
at the tools provided to the measurement designer and

the application designer. The component test container
is not treated in this paper; [24] explains some of the
required concepts and presents a prototype based on
Enterprise Java Beans (EJB) components.

6.1 A meta-model for CQML+

Because we are using a meta-model–based repository
framework, we needed a meta-model for non-functional
specifications. This meta-model is comparatively com-
plex, because it supports the complete range of
CQML+-specifications, and additionally provides ways
of structuring specifications such that they are easily
accessible for application developers. The latter struc-
tures are not relevant in the context of this paper. Hence,
we will not discuss them in further detail. Large parts of
the meta-model have originally been developed in [39].
Additional work has been performed in [4,23].

The meta-model is composed of four packages, which
can be seen in Fig. 9. Context models are represented by
instances of the classes in the contextmodels pack-
age. Building on this, the applicationmodels pack-
age provides model elements for the connection to
actual application models.

Actual CQML+ specifications are represented as in-
stances of the elements in CqmlP. Finally, the man-
agement package contains classes for the hierarchical
classification of measurements, and the representation
of refinements.

Figure 10 shows the key classes of the CQML+ meta-
model. All first-class elements are instances of sub-clas-
ses of ModelElement. These are: categories, profiles,
resource specifications, quality statements, and quality
characteristics. For the purposes of this paper, the qual-
ity characteristics are the most interesting. They are
composed from an invariant, a domain clause, defin-
ing the type, and a values clause giving the seman-
tics in the form of an OCL expression. Most of these
elements can be seen in their concrete syntax in the
example Listing 2. OCL expressions are stored in the

196 S. Röttger, S. Zschaler

Fig. 9 Packages of the measurement meta-model

ModelElement

+Apply (v: Visitor)

category

elements

1

1..*

ProfileResourceCategory SpecializableModelElement

Statement

InvariantClause

ValuesClause

DomainClause

Characteristic

ancestor
0..1

Fig. 10 Core classes of the CQML+ meta-model

Fig. 11 The meta-model for context models

repository as instances of a slightly adjusted version of
the OCL 2.0 meta-model. These adjustments where nec-
essary, because OCL as it is used in CQML+ does not
refer directly to UML models, but to context models,
instead. Every model element provides an operation
apply (v: Visitor)which can be used to add func-
tionality to the meta-model by implementing additional
visitors [11].

Context models are represented in a separate pack-
age of the meta-model. Figure 11 shows the key classes of
this package.5 Each context model has its own instance
of ContextModel, which serves to bundle all context

5 We only show the classes modelling the static parts of the con-
text model. The dynamic part requires additional structures for its
representation.

Tool support for refinement of non-functional specifications 197

params

0..*

1

formalparm1

0..*

type

1

type1

for

1

SpecializableModelElement
CqmlP.Statement

CqmlP.FormalParameter
SpecializableModelElement

CqmlP.Characteristic

CqmlP.StatementCall applicationmodels.ValueCqmlP.CurrentParameter

...ContextModelElement

...ApplicationModelElement

applicationmodels.ComponentModelElement
CqmlP.Profile

contextmodels.Type

M2

M1

Fig. 12 Elements for the complete specification. It can be seen
that specifications reference elements from the context model (i.e.,
the functional meta-modelling layer) as well as the application

model level (i.e., the functional model layer). The dashed line
indicates the boundary between these meta-modelling layers

model elements and associations in this context model.
Each characteristic has a link to its context model. The
actual elements of a context model are all instances of
ContextModelElement—we have used class boxes
in the example context models in Figs. 6 and 7. Context
model elements may be connected through generali-
sations (not shown in the figure) or Associations.
Context model elements, like classes in UML, have fea-
tures, which can be callable features. Callable features
are operations on meta-model elements that can be used
from characteristic definitions. They should not be con-
fused with business operations, which are application
specific. An example for a callable context model fea-
ture is an operation eventsInRange (time: int)
defined on EventSequence, which counts the number
of events in the last time milliseconds. Features have a
Type, which can be another context model element. In
addition to context model elements, types can also be
the standard primitive types.

Figure 12 summarises how a CQML+ specification
is represented in the meta-model. The figure is only a
conceptual overview, there are actually some more clas-
ses involved, but we have abstracted from these for the
sake of clarity. The left side of the figure shows the ab-
stract syntax of the actual CQML+ specification, begin-
ning with the Characteristic, which is being used
in the Statement to formulate constraints over mea-
surements. Theses statements are then invoked (using
StatementCall instances) from a Profile to bind
the constraints to a specific Component. Components
are referenced by their corresponding Application-
ModelElement, which is a view on the functional

application model. Formal parameters of characteris-
tics (and statements) reference a ContextModelEl-
ement as their Type, current parameters reference an
ApplicationModelElement as their Value. Look-
ing at this scenario from the perspective of functional
specification using UML, we find that the context model
layer roughly corresponds to the M2 layer of the func-
tional specification (i.e., the UML meta-model), and
that the application model layer roughly corresponds to
the M1 layer (i.e., the actual UML application model).
This means that the CQML+ specification bridges meta-
model layers. Indeed, this is not an issue that arises
because of our specific way of modelling the abstract
syntax of CQML+, but it rather is a general issue with
languages like CQML+. Because they want to support
the definition of new measurements in the language it-
self, they need to provide access to the M2 layer. Because
they want to support constraints on actual models, they
need access to the M1 layer. This mixing of meta-levels
considerably adds to the complexity of a CQML+ spec-
ification. The new role of measurement designer solves
this problem by separating the usage of the two meta-
modelling layers, without compromising the flexibility
of the language.

6.2 Supporting the measurement designer:
the measurement workbench

To support the measurement designer in creating and
maintaining libraries of measurements, we developed
the measurement workbench, a tool based on the reposi-

198 S. Röttger, S. Zschaler

Fig. 13 Screen shot of the measurement workbench

Table 1 Mapping of UML concepts to context model meta-ele-
ments as performed by the measurement workbench when import-
ing context model definitions

UML concept Context model meta-element

Class ContextModelElement
Attribute Feature
Operation CallableFeature
Association Association

tory structures presented in the previous section.
Figure 13 shows a screen shot of the measurement
workbench’s central dialogue. The dialogue shows a
structured overview of the measurement repository in
the left tree panel. On selection of a measurement, cor-
responding information are displayed in the right pane.

To add a new measurement, the measurement de-
signer first needs to provide to the tool the context
model to be used. The measurement designer can use an
arbitrary case tool to design a UML representation of
the context model, which he then saves as an XMI file.
The measurement workbench automatically recodes the
context model into an instance of the context model
meta-model shown in Fig. 11 when the measurement
designer imports the context model using the corre-
sponding menu option. Table 1 shows how the UML
concepts are translated. The table completely lists all
concepts recognised by the measurement workbench.
All other contents of the context model—in particular
the dynamic specification—are ignored.

Now the measurement designer can add new mea-
surements by selecting ‘New Characteristic’ from the
‘Characteristics’ menu. This opens the dialogue window
in Fig. 14 where the measurement designer can enter
all information regarding the new measurement. The
top compartment contains information which is used
to classify the measurement for later retrieval. Based
on work reported in [15,20,37] we have defined a set
of generic dimensions that can be used to characterise
measurements. We plan to report on this characterisa-
tion in another publication. In the second compartment,
the measurement designer enters an intuitive descrip-
tion capturing the meaning of the measurement in terms
understandable by the application designer. It is this
description that the application designer will use mainly
to decide for a measurement to use when specifying the
non-functional properties of his application. The next
section is where the measurement designer puts the
complete CQML+-specification of the measurement.
Last but not least, the measurement designer selects
the context model relative to which he has defined the
measurement. Once the measurement designer has fin-
ished entering the definition of the new measurement,
he is ready to store the information in the repository.
Instead of entering each measurement via the graphi-
cal user interface, the measurement designer can also
describe them in an XML file (based on a simple DTD
we defined) and have the measurement workbench read
in this script. This is particularly convenient when large

Tool support for refinement of non-functional specifications 199

Fig. 14 Screen shot of the
measurement workbench’s
measurement editor dialogue

amounts of measurement specifications must be put into
the repository.

6.3 Supporting transformation: the measurement
transformation engine

Now, let us discuss how we support the transformation
of measurements described in previous sections of this
paper. We have implemented the measurement trans-
formation engine, a tool physically integrated into the
measurement workbench to allow the measurement de-
signer to perform measurement transformations. We
will begin by examining the steps the measurement de-
signer performs to transform a measurement. Further
on, we will discuss some aspects of the implementation
of the transformation.

To perform the response time transformation, the
measurement designer must first enter the abstract mea-
surement definition from Listing 2. As discussed above,
he needs to load the context model in Fig. 6 into the
workbench and then add the measurement definition,
making sure it is connected to the context model just
loaded. Next, he loads the new context model (cf. Fig. 7)
into the workbench, and then uses the ‘Transform’ op-
tion from the ‘Transformations’ menu to define the trans-
formation. This opens another dialogue where the
measurement designer selects the source measurement,
target context model and transformation descriptor, and
finally starts the transformation.

What happens behind the scenes, when the measure-
ment designer starts the transformation? First, the trans-
formation descriptor is read into the workbench and
represented internally as an instance of a simple trans-

formation description meta-model. The OCL parts (i.e.,
the target expressions of feature transformations) are
parsed into instances of the OCL 2.0 meta-model us-
ing the Dresden OCL toolkit parser6 [14] and checked
for type correctness against the target meta-model. The
actual transformation is then performed by a set of visi-
tors (see Fig. 15), which we use to traverse the abstract
syntax graphs representing the original specification and
the transformation descriptor and to incrementally build
the transformation result. Just as there are different in-
put documents, there also exist different visitors, one for
each type of input: The TransformationVisitor is
used to extract the target expressions from the trans-
formation descriptor, and to manage alternative trans-
formations for the same source element. The Charac-
teristicVisitor walks through the complete mea-
surement definition and extracts the individual parts
to be transformed. It uses OCLVisitor instances to
actually transform OCL expressions. Finally, the Char-
acteristicGenerationVisitor goes over all the
resulting fragments and composes them into the result-
ing measurement definition(s).

Determining when the same alternative must be used
in transforming two subterms and when different alter-
natives may be used can be rather difficult. The objec-

6 For technical reasons this is currently only partly true. At the
time of writing this paper, the OCL 2.0 parser of the toolkit is in
the last throes of development. We are currently using an older
version of the parser, which parses OCL 1.x expressions and cre-
ates abstract syntax trees. We are, however, planning to switch to
the new parser when it becomes available. For the sake of clarity,
we have chosen to represent the algorithm as though it already
used the OCL 2.0 abstract syntax format.

200 S. Röttger, S. Zschaler

Measurement

OCL-
Block

Characteristic
Generation

Visitor

Transformation
Visitor

Characteristic
Visitor

Transformation
Descriptor

OCL
Visitor

OCL-
Block

OCL-
Block

OCL-
Block
OCL-
Block

transformed
Measurement

OCL-
Block

Fig. 15 Visitors used in the transformation of measurements. Ab-
stract syntax graphs (ASG) of OCL blocks from the measurement
definition are translated using the ASGs from the target expres-
sion definitions

tive is to ensure that references to the same object in
terms of the abstract context model will be transformed
to references to the same object in the refined context
model. Because to perform this analysis in full is prohib-
itively complex, we perform analysis on the type level
only; that is, for one transformation result we transform
references to the same feature using the same target
expression alternative.

6.4 Supporting the application designer: CASE tool
integration

The application designer’s task is to provide a sufficient
specification of software systems. For this, he needs tool
support for the design of non-functional system aspects,
as well as functional aspects. As an example, we have ex-
tended ArgoUml [3] to provide the means for modelling
non-functional properties using the concepts explained
in this paper. In this section we will describe the appli-
cation designer’s view of the measurement repository
and we will also have a closer look at the interaction be-
tween the internal model representation and the graph-
ical notation used by the application designer.

As shown in Fig. 16 we use a layered architecture
to separate the graphical interpretation and the inter-
nal representation of our model elements. The graphic
layer provides the user interface. Designing non-func-
tional aspects of applications is a complex task, which is
best approached from different viewpoints. The appli-
cation designer can choose between different types of
diagrams:

Table 2 Mapping of graphical model elements to CQML+

Specification diagrams for specifying the functionality
of individual components,

Implementation diagrams for the specification of func-
tional and non-functional properties of component
implementations,

Requirement diagrams for the description of non-func-
tional requirements of an implementation of a com-
ponent specification,

Assembly diagrams for describing the connections be-
tween components forming an application system.

Both the implementation diagram and the require-
ment diagram are used to specify non-functional
properties of the application. As mentioned before, the
application designer can use the information about
non-functional measurements previously defined by the
measurement designer and placed in the measurement
repository. To this end, we provide a search interface
as part of our workbench. It provides several retrieval
strategies and is responsible for their coordination and
execution.

The second main part of the COMQUAD CASE tool is
the model layer. Here, we have to distinguish between
functional and non-functional model elements. Func-
tional elements model a specific functionality whereas
non-functional elements describe non-functional prop-
erties of the modelled functionality. To realise the func-
tional model, we reuse the NSUML-based API [25]
provided in the ArgoUml project. To support non-func-
tional model elements we integrated the measurement
repository which was developed using MDR. ArgoUml
can only display model elements defined in NSUML. To
overcome this and to connect the two repositories, we
defined proxy elements working as adapters. So we are
able to visualize the non-functional elements defined on
the MDR-side of the repository. In addition, we need
a delegate mechanism in the other direction. Applica-
tion model elements have a delegate association to a

Tool support for refinement of non-functional specifications 201

Fig. 16 Architecture of the
COMQUAD CASE tool
(development based on
ArgoUml)

Measurement Repository

Graphical Interface (Diagrams, Search Interface)

Model

NSUML
(Functional Model

Elements)

MDR
(Non-Functional Model

Elements)

CASE -Tool Integration for Application Development

NSUML model element to realize the connection be-
tween CQML+ specification and application model.

Finally, we will have a look on the mapping between
the graphical model elements and the internal model
representation. Let us take our example. Imagine, the
application designer wants to constrain an operation of
a component port with a response time less than 500
ms. For this, we provide an appropriate menu option for
placing new constraints on a diagram. When the appli-
cation designer selects this option, a dialogue opens and
he is able to search in the measurement repository for a
characteristic matching his query. In our case he selects
response_time. The tool will then draw the graphi-
cal element as seen in Table 2 with the value set to zero.
The application designer can now enter the appropriate
value and select ‘<’ as the comparison relation. Last he
has to connect the constraint to the selected port and
select the appropriate operation. Internally, the reposi-
tory transforms this model element to the CQML+ code
in the second column of Table 2. To actually store it in
the repository structure the code is mapped to our meta-
model. The CQML+ definition of the response_time
measurement is taken directly from the measurement
repository. The association between the non-functional
and the functional model element defines the business
operation and the port to which the constraint is applied.
This can be seen in the second row of Table 2.

7 Related work

VEST [38] is a design toolkit for component-based sys-
tems which focuses on non-functional properties. It uses
an extended notion of aspects [18] to allow en-bloc mod-
ifications to the non-functional specifications of individ-
ual components, thus effecting changes to the global
non-functional specification of a system. Our work does

not use aspects, although they could probably be com-
bined with our approach. The major difference between
our approach and the VEST approach is that we use
context models at different levels of abstraction, while
all work in VEST is tied directly to the component
model provided by the target environment (Boeing’s
Bold Stroke in this case).

Model-Driven Architecture (MDA) [19] is an impor-
tant current development driven mainly by the Object
Management Group (OMG). Transformation
between models is at the heart of this technology. Our
work fits well into this larger view, although to the
best of our knowledge we are the first to apply model
transformations to measurement refinement. The new
Query/Views/Transformations specification for which a
request for proposals [26] has been issued by the OMG
will be of great importance for our work. We can use
the concept of views to relate context models and appli-
cation models, and we can use the transformation tech-
nologies defined to simplify the implementation of our
transformation tool. Simmonds et al. [36] describe an
MDA technology for the creation of QoS-aware appli-
cations. The main focus is on the transformation of
application models and weaving-in of non-functional
aspects. Refinement of non-functional specifications is
not considered. CoSMIC [12] is an MDA tool suite for
supporting model-driven middleware. The tool supports
only application development, deployment and config-
uration, but no refinement of non-functional models.

QCCS [34] describes a methodology for the develop-
ment of contract-aware components. This methodology
covers only the application design. Our refinement step
can be used both in requirements analysis and appli-
cation design. It is embedded in a process which reck-
ons with non-functional properties from requirements
to code [2,13]. QCCS also provides UML model trans-
formation based on aspect-oriented design [17]. The

202 S. Röttger, S. Zschaler

authors of [34] propose to weave non-functional con-
straints and functional aspects at application modelling
time. In contrast, our methodology keeps non-functional
and functional aspects separate until implementation
time.

Another systematic approach to deal with non-func-
tional system requirements (NFR) is the NFR frame-
work [7]. It proposes a modelling framework for non-
functional requirements inspired by the UML. NFRs
are decomposed into sub-requirements (so-called soft-
goals) following different criteria: by type or by topic.
An example for decomposition by type is the splitting
of performance of a system into time-performance and
space-performance. Decomposition by type is thus sim-
ilar to our classification of non-functional properties. In
contrast, decomposition by topic means that the func-
tional system is decomposed into different components
and the non-functional requirement for the whole sys-
tem is now required to hold for some or all components.
This is similar to our notion of structural refinement. The
use of the NFR framework leads to an analysis of differ-
ent non-functional requirements and how they depend
on each other at the design level. It leaves open, how
these requirements can be achieved by an application.
Our approach, in contrast, is focused on modelling non-
functional properties at design time and, thus, on the
realisation of specific non-functional properties through
a specific application design.

8 Conclusions and open questions

Non-functional properties must be considered through-
out the development cycle of an application system.
The application designer creates, and thinks about, func-
tional models at different levels of abstraction. He should
be able to do so with non-functional models, too. We
have introduced the concept of explicitly defined con-
text models of measurements which explicitly capture
the level of abstraction of a measurement. Addition-
ally, we enable tool support for the refinement of
non-functional specifications by requiring the measure-
ment designer to define transformations between con-
text models and applying them to measurement defini-
tions. We have discussed the way such transformations
are specified and explained in detail the structure of a
prototype implementation of a tool kit supporting appli-
cation and measurement designer.

Furthermore, we have outlined a software develop-
ment process which separates the roles of measurement
designer and application designer. It is the measure-
ment designer’s responsibility to specify measurements,
context models and transformations between context

models, all of which can then be used by the applica-
tion designer when developing an application. Thus, the
application designer is free to focus on the business logic.

The refinement process prompts for decisions when
they are needed. We have indicated two points where
this happens: (a) in the actual refinement step, where the
application designer needs to choose between different
refinements of a measurement, and (b) after a refine-
ment has taken place, when the analysis tool cannot com-
pare constraints on different refinements. In the latter
case, the application designer will also need to refine the
functional model by making explicit the effect caused by
communication between components. We have shown
how connectors can be used to model this. Defining these
connectors, building libraries, and integrating the con-
nectors into application models is still a research issue,
although some approaches can be found in the literature.
One important question, among others, is whether the
usage of connectors we have sketched for response time
also works for characteristics which are not time-related.
On a more general note, we would like to propose the
interaction of refinements to the functional and the non-
functional model as an interesting research area.

It is important to point out, that, although we have
explained our approach with two context models only,
it is intended to be generic. For any one measurement
there could be any number of context models and, cor-
respondingly, any number of different levels of abstrac-
tion. How this large number of models can be managed
in a way that further reduces the complexity for the
application designer and makes choosing the next model
for refinement easy, is an area for further research.

In this paper we have proposed an approach for the
refinement of non-functional properties at the model-
ling level. Before this approach can be called practi-
cal, further studies are required: (1) we need to study
more examples to improve our understanding of the
limitations and capabilities of the approach; some re-
lated issues have been discussed in [40], (2) we need to
provide support for the measurement designer in purge
unneeded or meaningless generated refinements; one
idea would be to specify dependencies between individ-
ual feature refinements so that certain combinations are
excluded a priori, and of course (3) we need to perform
an extensive case study to prove the applicability and
practical gain of our approach.

This paper has focused on measurement refinement.
Another important research topic is structural refine-
ment. We plan to investigate this in our future work.

Acknowledgements We want to thank everybody in the
COMQUAD project, Dr. Thomas Santen and the anonymous
reviewers for their helpful comments on different versions of this
paper.

Tool support for refinement of non-functional specifications 203

References

1. Aagedal, J.O.: Quality of Service Support in Development of
Distributed Systems. PhD thesis, University of Oslo (2001)

2. Aigner, R., Pohlack, M., Röttger, S., Zschaler, S.: Towards per-
vasive treatment of non-functional properties at design and
run-time. In: 16th International Conference on Software and
Systems Engineering and their Applications (ICSSEA’03).
Paris, CNAM-CMSL, 2–4 December 2003

3. ArgoUML website. http://argouml.tigris.org/
4. Bandelow, D.: Entwicklung einer CQML+-Basisbibliothek(in

German) Diplomarbeit, Department of Computer Science,
Technische Universität Dresden (2004)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Exten-
sible markup language (XML) 1.0 (2nd edition) . W3C Rec-
ommendation (2000)

6. Bruel, J.-M. (ed) Proc Leading of the 1st international Work-
shop on Quality of Service in Component-Based Software
Engineering, Toulouse, France. Cépaduès-Éditions (2003)

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-
Functional Requirements In Software Engineering. Kluwer,
Dordrecht (2000)

8. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied
Metamodelling – A Foundation for Language Driven
Development. version 0.1, published on-line at http://www.
xactium.com/ (2004)

9. Demairy, E., Anceaume, E., Issarny, V.: On the correctness of
multimedia applications. In: 11th EuroMicro Conference. on
Real Time Systems. IEEE, June 1999

10. Dirckze, R.: Java metadata interface(JMI) specification, ver-
sion 1.0. Java Community Process JSR 040 Final Specification,
June 2002. http://www.jcp.org/

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley, Reading (1995)

12. Gokhale, A., Natarajan, B., Schmidt, D.C., Nechypurenko, A.,
Gray, J., Wang, N., Neema, S., Bapty, T., Parsons, J.: Cosmic:
an MDA generative tool for distributed real-time and embed-
ded component middleware and applications. In: Proceedings.
ACM OOPSLA 2002 Workshop on Generative Techniques in
the Context of MDA. Seattle, WA, November 2002

13. Härtig, H., Zschaler, S., Aigner, R., Göbel, S., Pohlack, M.,
Pohl, C., Röttger, S.: Enforceable component-based real-
time contracts – supporting realtime properties from software
development to execution. Real Time Systems (to appear)

14. Hussmann, H., Demuth, B., Finger, F.: Modular architecture
for a toolset supporting OCL. In: Evans, A., Kent, S., Selic,
B. (eds) Proceedings of. 3rd International UML Conference.
2000 - The Unified Modeling Language. Advancing the Stan-
dard. volume 1939 of LNCS, pp. 278–293. Springer, Berlin
Heidelberg Newyork (2000)

15. Information technology – Quality of Service: Framework.
ISO/IEC 13236:1998, ITU-T X.641, 1998

16. Issarny, V., Bidan, C.: Aster: a framework for sound customiza-
tion of distributed runtime systems. In: International Confer-
ence on Distributed Computing Systems. pp. 586–593. IEEE
Computer Society, 1996

17. Jézéquel, J.-M., Plouzeau, N., Weis, T., Geihs, K.: From con-
tracts to aspects in UML designs. In: AOSD Workshop on
Aspect-Oriented Modeling with UML. Enschede, The Neth-
erlands (2002)

18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.-M., Irwin, J.: Aspect-oriented programming.
In: Akşit, M., Matsuoka, S. (eds.) 11th European Conference.
on Object-Oriented Programming, vol. 1241 of LNCS, pp.
220–242. Springer, Berlin Heidelberg Newyork (1997)

19. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison Wesley,
Reading (2003)

20. Malan, R., Bredemeyer, D., Defining non-functional require-
ments. Bredemeyer Consulting, White Paper. http://www.
bredemeyer.com/papers.htm, 2001

21. Matula, M.: Netbeans metadata repository, March 2003.
http://mdr.netbeans.org/MDR-whitepaper.pdf

22. Medvidovic, N., Taylor, R.N.: A framework for classifying and
comparing architecture description languages. In: Proceedings
of. 6th European Software Engineering Conf. together with
5th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC-FSE97). pp. 60–76, Zurich, Switzer-
land, September 1997

23. Meyer, L.: Werkzeugunterstützung für Verfeinerungen nicht-
funktionaler Eigenschaften In German. Großer Beleg,
Department of Computer Science, Technische Universität
Dresden, August 2004.

24. Meyerhöfer, M., Neumann, C.: TESTEJB – a measure-
ment framework for EJBs. In: Crnkovic, I., Stafford, J.A.,
Schmidt, H.W., Wallnau, K. (eds.) Proceedings. 7th Interna-
tional Symposium on Component-Based Software Engineer-
ing (CBSE’04). number 3054 in LNCS, pp. 294–301. Springer,
Berlin Heidelberg New York (2004)

25. NSUML and NSMDF website. http://nsuml.sourceforge.net/
26. Object Management Group. MOF 2.0 query, views, transfor-

mations request for proposals. OMG Document, April 2002.
URL http://www.omg.org/docs/ad/02-04-10.pdf

27. Object Management Group. UML 2.0 OCL specification.
OMG Document, October 2003. URL http://www.omg.org/
cgi-bin/doc?ptc/03-10-14

28. Object Management Group. Meta object facility specifi-
cation. OMG Document, October 2003. URL http://www.
omg.org/cgi-bin/doc?ptc/03-10-04

29. Object Management Group. Unified modeling language:
Superstructure version 2.0. OMG Document, July 2003. URL
http://www.omg.org/cgi-bin/doc?ptc/03-07-06.pdf

30. Object Management Group. UML profile for model-
ing quality of service and fault tolerance characteristics
and mechanisms. OMG Document, June 2004 URL
http://www.omg.org/docs/ptc/04-06-01.pdf.

31. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML.
In Bruel [6], pp. 43–56

32. Röttger, S., Zschaler, S.: A software development process
supporting non-functional properties. In: Proceedings of. IA-
STED International Conference. on Software Engineering
(IASTED SE 2004). ACTA Press (2004)

33. Röttger, S., Zschaler, S.: Model-driven development for non-
functional properties: Refinement through model transforma-
tion. In: Proceedings of . <<UML>> Conference, Lisbon,
Portugal, 2004. volume 3273 of LNCS, pp. 275–289. Springer,
Berlin heidelberg Newyork (2004)

34. Sassen, A.-M., Amorós, G., Donth, P., Geihs, K., Jézéquel, J.-
M., Odent, K., Plouzeau, N., Weis, T.: QCCS: a methodology
for the development of contract-aware components based on
aspect oriented design. In: AOSD Early Aspects Workshop.
Enschede, The Netherlands, (2002)

35. Shaw, M., DeLine, R., Zelesnik, G.: Abstractions and imple-
mentations for architectural connections. In: 3rd International
Conference. on Configurable Distributed Systems. IEEE
Press (1996)

36. Simmonds, D.M., Ghosh, S., France, R.: An MDA framework
for middleware transparent software development & quality
of service. In Bruel [6], pp. 1–7

37. Sommerville, I.: Software Engineering. Addison-Wesley,
Reading (2001)

204 S. Röttger, S. Zschaler

38. Stankovic, J.A., Zhu, R., Poornalingam, R., Lu, C.: Yu, Z.,
Humphrey, M., Ellis, B.: VEST: An aspect-based composition
tool for real-time systems. In: Proceedings of the. 9th Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS’03), Toronto, Canada, pp. 58–69. IEEE Press
(2003)

39. Tannhäuser, F.: Konzeption und prototypische Umsetzung
eines Spezifikationswerkzeugs für CQML+-Spezifikationen.
Diplomarbeit, Department of Computer Science, Technische
Universität Dresden, December 2003 (In German)

40. Zschaler, S.: Towards a semantic framework for non-func-
tional specifications of component-based systems. In: Stein-
metz, R., Mauthe, A. (eds) Proceedings of. EUROMICRO
Conference. 2004, Rennes IEEE Computer Society (2004)

Authors’ Biographies

Simone Röttger received her
Diploma in Softwaretechnol-
ogy from Technische Univer-
sität Dresden, Germany, in
2001. She is working as a re-
search assistant in the Soft-
ware Technology Group at
Technische Universität Dres-
den. Her research interests in-
clude software development for
component based systems and
the integration of non-func-
tional properties in software
development processes.

Steffen Zschaler obtained
his Dipl.-Inf. from Technische
Universität Dresden, Ger-
many, in 2002. He is one of the
co-organisers of the workshop
on Models for Non-functional
Aspects of Component-Based
Software (NfC) at the MoD-
ELS conference. Currently
he is working as a research
assistant in the Software Tech-
nology Group at Technische
Universität Dresden. His re-
search focuses on formal

models of non-functional properties of component-based
software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

