
Software & System Modeling (2006) 5(2): 172–186
DOI 10.1007/s10270-006-0004-1

SPECIAL ISSUE PAPER

Hong Mei · Wei Zhang · Haiyan Zhao

A metamodel for modeling system features and their refinement,
constraint and interaction relationships

Received: 30 April 2005 / Revised: 10 June 2005 / Accepted: 10 June 2005 / Published online: 10 February 2006
c© Springer-Verlag 2006

Abstract This paper presents a metamodel for modeling
system features and relationships between features. The
underlying idea of this metamodel is to employ features
as first-class entities in the problem space of software and
to improve the customization of software by explicitly
specifying both static and dynamic dependencies between
system features. In this metamodel, features are organized
as hierarchy structures by the refinement relationships,
static dependencies between features are specified by the
constraint relationships, and dynamic dependencies between
features are captured by the interaction relationships. A
first-order logic based method is proposed to formalize
constraints and to verify constraints and customization. This
paper also presents a framework for interaction classifica-
tion, and an informal mapping between interactions and
constraints through constraint semantics.

Keywords Feature model · Relationships between
features · Refinement · Constraint · Interaction ·
Customization

1 Introduction

Software development is increasingly under the pressure
of variable, various and evolving business requirements, as
well as shortened time-to-market, rigorous product quality
and growing competition.

One possible approach to resolving this problem is
to produce general purpose software artifacts, followed
by customization to accommodate different situations
[1]. Considering this customization approach generally,
elements in software artifacts should be cohesive enough,
and dependencies between elements should be specified

Communicated by Bernhard Schärtz and Ingolf Krüger

H. Mei (B) · W. Zhang · H. Zhao
Institute of Software, School of Electronics Engineering and Computer
Science, Peking University, Beijing 100871, China
E-mail: meih@pku.edu.cn, {zhangw, zhhy}@sei.pku.edu.cn

clearly. Furthermore, traceability between artifact elements
at different stages should also be well established.

Software reuse is an instance of the customization ap-
proach. In software reuse, customization is limited to spe-
cific software domains. Customizable artifacts of specific
software domains are produced in the development for reuse
phase through commonality and variability analysis, and
then customized/reused in the development with reuse phase
according to the current reuse context.

Generally, artifacts produced in software development
can be classified into two spaces, i.e. the problem space
and the solution space. Artifacts in the solution space can
be viewed as an implementation of artifacts in the problem
space. Based on the above knowledge, two important prob-
lems relevant to customization-oriented artifact production
can be deduced. One problem is how the problem space of
software can be structured in a highly customizable way.
The other problem is how this customizable structure of the
problem space can be maintained in the solution space. Still
another problem connected to the previous two problems
is the verification problem of customized artifacts. That is,
how the completeness and consistency of those customized
artifacts can be checked conveniently and in an automated
way.

In the software reuse approach, feature-oriented domain
analysis methods [2–5] have been proposed to resolve the
customization problem of the problem space. These methods
treat features as the basic elements in the problem space, and
use features, relationships (i.e. refinements and constraints)
between features (called domain feature models) to struc-
ture the problem space. In the later development with reuse
phase, domain feature models are customized into applica-
tion feature models according to different reuse contexts.
Constraints specified in the domain feature model then pro-
vide criteria to verify the completeness and consistency of
those application feature models. In such a way, customiza-
tion of the problem space is operated.

However, most of these feature-oriented methods only
use two kinds of binary constraints (i.e. require and exclude)
to capture constraints between features. The two kinds of

A metamodel for modeling system features and their refinement, constraint and interaction relationships 173

binary constraints are too simple to describe complex con-
straints involving three or more features.

All these feature-oriented methods also lack effective
measures to verify partial customized feature models. A real
customization process often includes a series of phases (or
binding times), in each of which, certain customizing reso-
lutions are decided and a partial customized feature model
is obtained. If these partial results in each phase can not be
verified immediately, any error in the current phase will be
spread implicitly to the later phases. In this sense, the diffi-
culty of customization increases because of the inability to
verify partial customized feature models.

All these feature-oriented domain analysis methods also
lack a systematical way to propagate the customizable struc-
ture of the problem space to the solution space. Constraints
only describe static dependencies between features, but tell
little about how these features interact dynamically with
each other at run-time. If the interaction context of each fea-
ture is not explicitly identified at a high level, the boundary
of each feature will still remain unclear, which further causes
such a problem that responsibilities of features are not sepa-
rated clearly from each other in the solution space. The result
is that the solution space loses a highly customizable struc-
ture corresponding to the structure of feature models.

Besides these feature-oriented methods in software
reuse, many researches have brought features into the gen-
eral software development process. FDD [6] is a feature-
driven approach to iterative software development which
takes features as basic increment units in and milestones
of each iteration process. [7] presents a method to facili-
tate legacy system evolution by reengineering a feature im-
plementation, which often scatters in source code, into a
so-called fine-grained component. For a long time, features
(also called services) have been used as the basic units to
structure requirements in telecommunication systems [8, 9].
The DFC method [10] models features in telecommunica-
tion systems as components, and composes these compo-
nents into pipe-and-filter architectures to analyze system be-
havior. Feature Engineering [11] even promotes features as
“first-class objects throughout the software life cycle”. How-
ever, all these methods lack a systematic way to model fea-
tures and relationships between features at a high level. In
most cases, the correct implementation of requirements de-
clared by a feature not only depends on the feature itself, but
often depends on the correct interactions with other features.
Such a lack reduces, to a high degree, the understandability
of the whole behavior of systems at a high level, which is
also one of the causes of feature interaction problems [8].

This paper presents a metamodel for modeling system
features and relationships between features. The underlying
idea of this metamodel is to employ features as first-class
entities in the problem space of software and to improve
the customization of the problem space and the solution
space, by explicitly specifying both static and dynamic de-
pendencies between system features. Based on the idea, this
metamodel defines three important relationships between
features, namely refinement, constraint and interaction,

and clarifies connections between the three relationships.
The refinement provides a way to explore various system
features from high levels to low-levels of abstraction, and
to organize features as hierarchy structures. The constraint
provides a way to specify static dependencies between
features. And the interaction provides a way to express dy-
namic dependencies between features. Connections between
these relationships offer the capability to identify one kind
of relationships based on other kinds of already identified
relationships. In addition, this metamodel defines three
properties, namely satisfiability, usability and suitability,
to verify both the constraints and the partially-customized
feature models at any binding phase.

The idea of adopting features as the basic units in in-
teractions is compatible with the “3C model” of reusable
software components [12, 13]. In our approach, a feature’s
requirements correspond to the concept of a reusable com-
ponent in the 3C model, a feature’s interaction context
(see Sect. 2.4) corresponds to the conceptual context of
a reusable component, and a feature’s specification corre-
sponds to the content of a reusable component. The 3C
model really points out the importance of feature interac-
tion analysis. That is, the conceptual contexts of features are
identified through feature interaction analysis, which further
triggers the exploration of the operational contexts and the
implementation contexts of features. In this sense, interac-
tions between features can be treated as a bridge between
the problem space and the solution space of software.

The main contribution of this paper includes: a meta-
model for modeling features and relationships between
them; a visual notation for modeling constraints; A first-
order logic based method to constraint formalization and to
both constraint and customization verification; a framework
for binary interaction classification; an informal mapping
between constraints and interactions through constraints
semantics.

The rest of this paper is organized as follows. Section 2
gives an overview of the metamodel. Sections 3–5 presents
the refinement, constraint and interaction relationships be-
tween features, respectively. A case study of this metamodel
is presented in Sect. 6. Related work is discussed in Sect. 7.
Section 8 concludes this paper with a summary and possible
future work.

2 The metamodel

In this section, we give an overview of concepts involved in
the metamodel, particularly of the two entity concepts (the
feature and the resource container) and their attributes. Rela-
tionships between entities will be discussed in the following
three sections.

2.1 An overview

This metamodel (Fig. 1) is based on four basic concepts:
Entity, Refinement, Constraint and Interaction. All these

174 H. Mei et al.

Feature

Entity

name
requirements
specification
optionality
binding-time
binding-state

1
1

*
*

+trigger

+triggee

2..*
0..1* 2

* 2..*

*
2..*

BinaryConstraint

GroupConstraint

Invoke

Notify

Flow

Mutex

+parent

+child

*
0..1

1
1

1..2

0..1

1..2

1..*

Meta-LevelConfigure

ResourceConfigure

Influence

IndirectImplicitInteraction

DirectImplicitInteraction

IndirectExplicitInteraction

DirectExplicitInteraction

Relationship Classifier

Interaction

Decomposition

Characterization

SpecializationRefinement

ResourceContainer

ComplexConstraint

Constraint

Fig. 1 The metamodel of feature models

concepts are subclasses of the two concepts in UML Core
Package, namely Classifier and Relationship.

Entity is a subclass of Classifier and has two subclasses:
Feature and Resource Container.

Refinement is a subclass of Relationship and has three
subclasses: Decomposition, Characterization and Special-
ization. Through refinements, features at different levels of
abstraction form hierarchy structures.

A constraint describes static dependencies between fea-
tures and/or resource containers. This metamodel defines
three kinds of constraint, namely binary constraints, group
constraints and complex constraints.

An interaction describes dynamic dependencies between
features and/or resource containers. This metamodel defines
an interaction classification framework. All interactions are
classified into four general kinds: direct explicit interactions,
direct implicit interactions, indirect explicit interactions and
indirect implicit interactions. Based on this classification,
this metamodel further defines seven kinds of more specific
interaction.

This metamodel also identifies connections between the
three relationships (i.e. refinement, constraint and interac-
tion). A refinement between features implies one or two con-
straints on features. Every interaction between entities also
associates with one or two constraints. These associations
between different relationships provide useful guidelines on
feature modeling. That is, the identification of one kind of re-
lationships will further trigger the exploration of other kinds
of relationships.

2.2 Feature

Generally, the definition of a concept can be considered
from two aspects: intension and extension. The intension
describes the intrinsic qualities of a concept, while the ex-
tension characterizes the external embodiment. Many re-
searches have given their definitions of features from either
of the two aspects. For example, [7, 11, 14] focus much on
the intension aspect, defining a feature as a set of related re-
quirements, while [2, 15] emphasize the extension aspect,

stating that a feature is a software-characteristic in the user
or customer view.

In this paper, we do not introduce any novel idea about
features, but just combine these two aspects and give the fol-
lowing definition of features.

In intension, a feature is a cohesive set of indi-
vidual requirements. In extension, a feature is a
user/customer-visible characteristic of a software
system.

2.3 Resource container

Resource containers contain resources which are produced,
consumed or accessed by features in their execution. The
essentials of resource containers are a way to structure re-
sources used by features. With respect to the visibility of
users, resource containers are classified into two categories:
user-visible and user-invisible. One example of user-visible
resource containers is the various email boxes in email-
client software, i.e. received-box, copy-box, sending-box,
and other user-defined boxes. User-visible resource con-
tainers are directly related to a set of user requirements,
that is, the capabilities to classify, view or retrieve re-
sources. In this sense, user-visible resource containers can
be viewed as another kind of first-class objects in feature
models.

User-invisible resource containers store resources which
are invisible to users. This kind of resource container is not
directly related to user requirements. Their existence de-
pends on features. That is, if a user-invisible resource con-
tainer is not accessed by any feature, this resource container
will be useless in software. User-invisible resource contain-
ers can be viewed as second-class objects in feature mod-
els, since they are noteworthy only at the specification level.
Separating resource containers from specification of features
makes these features’ specification more concentrating on
the behavior description of themselves. Generally, we can
see features as a kind of computation units, while resource
containers as storage units.

A metamodel for modeling system features and their refinement, constraint and interaction relationships 175

In addition, resource containers often play as the
medium of interaction between features. For instance, by
employing resource containers as buffers, two features can
form a producer-consumer interaction pattern.

The responsibilities assigned to resource containers is to
passively accept features/users’ requests for resource stor-
ing, querying or retrieving. Thus, whether a resource con-
tainer can fulfill these responsibilities is independent of fea-
tures.

2.4 Basic attributes of feature and resource container

Feature and Resource container also contain a set of
attributes: name, requirements, specification, optionality,
binding-time and binding-state.

Name is a short character string. Its main purpose is to fa-
cilitate the communication between stakeholders. All names
in a feature model form a vocabulary of communication.

Requirements are a description of entities in user/customer
view. For those user-invisible resource containers, the value
of this attribute is null.

Specification is a description of entities’ inner-behavior.
Particularly, an entity’s specification describes its running
logic and its interaction with other entities. This metamodel
doesn’t restrict the format of requirements and specification.
Informal, semi-formal (for instance, UML diagrams) or for-
mal techniques can be employed according to the real con-
text.

Optionality describes whether an entity has the chance to be
removed when its parent entity (if has) has been bound. This
attribute has two values: mandatory and optional. Removing
entities from feature models should not violate constraints
on entities (see Sect. 2.3). For example, if an entity is still
depended by other entities which are not removed from the
feature model, then the entity should not be removed.

Binding-time is an attribute related to optional entities. It
describes a phase in the software life-cycle when an optional
entity should either be bound or removed. Binding-time re-
flects the demand for system flexibility, and thus influences

mandatory feature

optional feature

Legend

decomposition characterization

specialization specialization

Fig. 2 Example of refinements

the complexity of system architectures. Typical binding-
times include reuse-time, compile-time, deploy-time, load-
time, and run-time. There may be different binding-time sets
related to different kinds of software.

The attribute binding-state has three values: bound,
removed and undecided. A bound feature means that if
its trigger conditions (for instance, users’ requests or user
indirect-caused events) and pre-conditions are satisfied, its
requirements will be satisfied. Obviously, if a feature is in
the bound state, all the resource containers it depends on
will also be in the bound state. A bound resource container
means that other entities can correctly access it. A removed
entity means that it will never be bound again. If an entity is
removed, all entities depended on it will also never be in the
bound state. An undecided entity means that it is currently
not in the bound state, but still has the chance to be bound
or removed in later binding-times.

According to the three values of the binding-state, en-
tities in a feature model can be partitioned into three sets:
BFSet, UFSet and RFSet. The definition of these three set is:

– BFSet = {e | e.binding − state = bound};
– UFSet = {e | e.binding − state = undecided};
– RFSet = {e | e.binding − state = removed};

For an undecided entity, it will be either bound or removed
in certain later binding time. That is, this entity will finally
be moved from UFSet to BFSet or RFSet.

3 Refinement

Refinements are a kind of binary relationships between fea-
tures, which integrate features at different levels of abstrac-
tion into hierarchy structures. Hierarchy structures provide
an effective way to describe complex systems, since it is eas-
ier to understand a complex system from general to specific
and from high levels to low levels.

Refinements can further be classified into three more
concrete subclasses: decomposition, characterization, and
specialization.

Refining a feature into its constituent features is called
decomposition [12]. For example, the feature edit in many
software applications is often decomposed into three sub-
features: copy, paste and delete (see Fig. 2).

176 H. Mei et al.

Table 1 Roles in refinements

Refinement Parent-Role Child-Role

Decomposition Whole Part
Characterization Entity Attribute
Specialization General-Entity Specialized-Entity

Refining a feature by identifying its attribute features is
called characterization. For example, in graph-editor appli-
cations, feature graph-move can be characterized by two at-
tribute features: moving-mode and moving-constraint.

Refining a general feature into a feature incorporating
further details is called specialization [12]. For instance, fea-
ture moving-mode can be specialized by more concrete fea-
tures: outline-moving and content-moving. Specialization is
often used to represent a set of variants of a general feature.
A general feature is also called a variation point feature (vp-
feature) in [4].

The three kinds of refinement can be differentiated by
roles of features involved in them. Suppose a and b are two
features involved in a refinement, we call the feature at a
higher level of abstraction the parent, and the other feature
the child. Table 1 shows the different roles played by parents
and children in different kinds of refinement.

Features with different levels of abstraction form hi-
erarchy structures through refinement relationships. More
strictly, this metamodel limits this hierarchy structure to be
one or more feature trees. That is, a feature is either a root
feature or refined exactly from one feature. This limitation
contributes to the simplicity and understandability of the
refinement view of feature models. [16] and [17] present
guidelines on maintaining tree structures in feature modeling
process and transforming general structures into tree struc-
tures.

4 Constraint

Constraints are a kind of static dependencies among fea-
tures, and more strictly among binding-states of features.
It provides a way to verify the results of requirements cus-
tomization and release planning [18, 19]. Only those results
that do not violate constraints on features can be treated as
candidates of valid requirements subsets or releases.

4.1 Formal definition of constraint

We have identified three important constraint categories,
namely binary constraints, group constraints, and complex
constraints.

Binary constraints are constraints on the binding-states
of two features. Table 2 shows three kinds of binary con-
straint and their formal definitions.

Group constraints are constraints on a group of fea-
tures. These constraints are extensions of binary constraints.

Table 2 Binary constraints

Binary constraint Definition

requires (a, b: Feature) bound (a) → bound (b)
m-requires (a, b: Feature) requires (a, b) ∧ requires (b, a)
excludes (a, b: Feature) ¬(bound (a) ∧ bound (b))

Where: bound (a: Feature)=def (a. binding-state = bound);

Table 3 Group constraints

Group Constraint Definition

mutex-group (P: set Feature) ∀ a ∈ P, b ∈ P, a �= b • excludes (a, b)
all-group (P: set Feature) ∀ a ∈ P, b ∈ P • m-requires (a, b)
none-group (P: set Feature) true

Table 4 Group constraints

Group Predicate Definition

single-bound (P: set Feature) ∃one a ∈ P • bound (a)
all-bound (P: set Feature) ∀ a ∈ P • bound (a)
multi-bound (P: set Feature) ∃some a ∈ P • bound (a)
no-bound (P: set Feature) ∀ a ∈ P • ¬bound (a)

Table 5 Complex constraints

Complex Constraint Definition

requires (x, y: Group-Predicate) x → y
m-requires (x, y: Group-Predicate) (x → y) ∧ (y → x)
excludes (x, y: Group-Predicate) ¬(x ∧ y)

Table 3 shows three kinds of group constraint and their for-
mal definitions.

Before talking about complex constraints, we first in-
troduce four important predicates on a group of features,
namely group predicates, which extend the parameter of the
predicate bound(a: Feature) (see Table 2) to a feature set.
Their formal definitions are given in Table 4.

Complex constraints are constraints between two feature
sets, which extend the parameters of binary constraints to
group predicates. Table 5 shows complex constraints and
their formal definitions.

For convenience of constraint modeling, we develop a
visual constraint notation (Fig. 3) to represent all aforemen-
tioned constraints in a graphical manner. This notation will
be used in the remainder of this paper to visualize constraints
on features.

4.2 Refinement-imposed constraints

Refinements implicitly impose constraints on features. We
call these constraints refinement-imposed constraints. These
constraints are caused by the following rules when binding
or unbinding features:

A metamodel for modeling system features and their refinement, constraint and interaction relationships 177

(requires) (m-requires) (excludes)

(single-bound) (multi-bound) (all-bound)

Constraints:
requires(A, E), excludes(C, F),
mutex-group(A, B, C),
requires(single-bound(A, B, C), D).

Visual Notation:
Complex Constraints:

Basic Constraints:

Group Constraints:

Group Predicates:

(mutex-group) (none-group) (all-group)

Example

Fig. 3 Visual constraint notation

Table 6 Refinement imposed constraints

A. A pre-condition of binding a feature is that its parent
must have been bound.

B. A post-condition of binding a feature is that all its
mandatory children must also be bound.

C. A pre-condition of unbinding a feature is that all its chil-
dren must have been unbound.

D. A post-condition of unbinding a mandatory feature is
that its parent must also be unbound.

These rules essentially reflect constraints imposed by
refinements. Table 6 shows two examples of refinement
scenarios, and their implied constraints on features. By
tool support, those refinement imposed constraints can be
automatically extracted for further analysis of them.

4.3 Constraint and customization verification

Constraint verification here means to check the consistency
of constraints. Customization verification means to verify
binding resolutions in customization. Customization is a
process of changing undecided entities’ binding-states to
bound or removed, which may occur at each binding time.

We propose three properties (i.e. satisfiability, usabil-
ity and suitability) to solve both the constraint and the cus-
tomization verification problem.

Suppose C1, C2, . . ., Cn is the set of logic sentences cap-
turing all constraints in a feature model and CRSet denotes
the set of all possible customizing resolutions to features in
UFSet. After customization at each binding time, entities in
UFSet should satisfy the following three properties to en-
sure the rationality of binding resolutions in the current cus-
tomization.

– Satisfiability:

∃I ⊂ CRSet, I | = ∩i=1,...,nCi

There exists at least one set of customizing resolutions
to all features in UFSet, which can satisfy all constraints
in C1, C2, . . ., Cn.

– Usability:

∀ f ∈ UFSet, ∃ I ⊂ CRSet, I | = (∩i=1,...,nCi) ∩ f

To every feature f in UFSet, suppose f is bound, there
exists at least one set of customizing resolutions to all
other features in UFSet, which can satisfy all constraints
in C1, C2, . . ., Cn.

– Suitability:

∀ f ∈ UFSet, ∃ I ⊂ CRSet, I | = (∩i=1,...,nCi) ∩ (¬ f)

To every feature f in UFSet, suppose f is removed, there
exists at least one set of customizing resolutions to all
other features in UFSet, which can satisfy all constraints
in C1, C2, . . ., Cn.

The satisfiability ensures the consistency of constraints
and the consistency of binding resolutions in the current cus-
tomization. If this property is not satisfied, constraints on
entities or binding resolutions in the current customization
should be revised to eliminate inconsistencies.

For example, suppose a, b and c are three features in a
partially-customized feature model. The current feature par-
tition is:

BFSet = {a}, UFSet = {b, c}, RFSet = {}.
Constraints on the three features are:

C1 : a require b; C2 : a require c; and C3 : b exclude c.

178 H. Mei et al.

We can find that such a partially-customized feature model
violates the satisfiability, because there exists no customiz-
ing resolution on b and c, which can satisfy C1, C2 and C3
at the same time. The possible cause of the violation may be
that C1 or C2 or C3 should not exist.

The usability ensures that every entity in UFSet has the
possibility of being bound in some future binding time. If
this property is not satisfied, it means that there are one or
more entities that will never have chances to be bound af-
ter the current binding time. These violations can be elim-
inated by putting these entities into RFSet, or by revising
those binding resolutions in the current customization.

For example, suppose d and e are two features in a
partially-customized feature model. The current feature par-
tition is:

BFSet = {}, UFSet = {d}, RFSet = {e}.

A constraint on the two features is:

C4 : d require e.

We can find that such a partially-customized feature model
violates the usability, because d has no chance to be bound;
otherwise, the C4 will not be satisfied. The possible cause of
the violation may be that C4 should not exist, or the reuser
forgot to remove d, or e should not be removed.

The suitability ensures that every entity in UFSet has the
possibility of being removed in some future binding time. If
this property is not satisfied, it means that there are one or
more entities that will not have the chances to be removed
after the current binding time. These violations can be elim-
inated by putting these entities into BFSet, or by revising
those binding resolutions in the current customization.

For example, suppose f and g are two features in a
partially-customized feature model. The current feature par-
tition is:

BFSet = { f }, UFSet = {g}, RFSet = {}.

A constraint on the two features is:

C5 : f require g.

We can find that such a partially-customized feature model
violates the suitability, because g has no chance to be re-
moved; otherwise, the C5 will not be satisfied. The possible
cause of the violation may be that C5 should not exist, or the
reuser forgot to bind g, or f should not be bound.

As we have seen, the most important value of the three
properties is to help locate possible mistakes in constraints
and in customizing resolutions. Currently, we are employing
the model checker SMV [20] to automate the checking of
these three properties and to further locate possible errors.

4.4 Constraint semantics

Constraints provide necessary criteria, by exposing cus-
tomization rules, to help retrieve information from domain
feature models. However, what we are interested in is the
origins of constraints which are called constraint semantics
in this paper. We think that the constraint semantics reveals
the nature of constraints, and provides more valuable infor-
mation than constraints themselves to guide the further anal-
ysis of dynamic relationships between system features. In
this subsection, we give a more detailed classification to the
basic constraints require and exclude according to their dif-
ferent semantics.

This metamodel defines four kinds of different semantics
that a concrete require constraint may manifest: strong ne-
cessity require, weak necessity require, availability require,
and usability require.

Strong Necessity Require (requirens) For any two entities A
and B, A requirens B means that in any case for A to be
correctly executed, it will depend on whether B can be cor-
rectly executed. The requirens constraint often exists on fea-
tures and their accessible resource containers. One example
of such constraint in the email client software is “email-filter
requirens filtering-rules”, in which the feature email-filter
depends on the resource container filtering-rules to provide
the necessary data for its correct execution.

Weak Necessity Require (requirenw) For any two entities A
and B, A requirenw B means that in some cases for A to be
correctly executed, it will depend on whether B can be cor-
rectly executed, while in other cases, A’s correct execution
may have no relation with B. One example of such constraint
is “email-filter requirenw email-decryption”, in which the
feature email-filter depends on the feature email-decryption
only when a received email is encrypted and email-filter
needs to filter this email according to its content.

Availability Require (requirea) For any two entities A and
B, A requirea B means that whether A can be executed de-
pends on whether B have been executed. That is, if B is not
bound to the software, A will never be available to users.
Those features whose execution is triggered by other fea-
tures often involve such constraints. One example is the con-
straint “email-copy-auto-saving requirea email-sending”, in
which the feature email-copy-auto-saving depends on the
feature email-sending triggering its execution when an email
has been sent out. After the execution of email-copy-auto-
saving, the copy of a sent-out email will be saved to the
copy-box.

Usability Require (requireu) For any two entities A and
B, A requireu B means that A’s usability depends on
B’s execution. That is, if B is not bound to the software,
then A’s execution is useless to users although it can be
successfully executed. One example of such constraint is
“email-filter-configurator requireu email-filter”, in which
the feature email-filter-configurator modifies filter rules
stored in the resource container filtering-rules, while the

A metamodel for modeling system features and their refinement, constraint and interaction relationships 179

feature email-filter read rules from it when executing. Al-
though email-filter-configurator may still behave correctly
without email-filter, its execution is useless in this case.

For the exclude constraint, this metamodel defines two
kinds of different semantics that a concrete exclude con-
straint may manifest: single-value exclude and conflict ex-
clude.

Single-Value Exclude (excludes) This kind of semantics
often exists on features which are specialized from a same
general feature. If we treat a general feature as a variation di-
mension and its specialized features as values in this dimen-
sion, then the exclude constraint on any two values in this
dimension means that at most one value can be in the bound
state at any time. The semantics of an exclude constraint
on two features in a same dimension is called single-value
exclude in this paper. For instance, the two features outline-
moving and content-moving on the moving-mode dimension
have the single-value exclude semantics (i.e. outline-moving
excludes content-moving) (Fig. 2). Single value dimensions
are also referred to as single adaptors in [21].

Conflict Exclude (excludec) There are also exclude con-
straints that involve features not in a same variation
dimension or even not being values in a dimension. The
semantics of these exclude constraints are called conflict
exclude in this paper. Binding two conflict exclude features
in a same context will cause undesirable feature interac-
tions. An example of conflict exclude exists between the
two features caller-ID and block-caller-ID in the telecom-
munication software [22]. If the recipient binds caller-ID,
and the originator binds block-caller-ID, there will be
no software behavior that could satisfy both of the two
features.

It should be pointed out that the phrase “an entity’s cor-
rect execution” which we have used above have particular
meanings especially when this entity denotes a feature. The
correct execution of a feature means that this feature’s be-
havior complies with both its requirements and its specifi-
cation. A feature’s behavior complying with its specifica-
tion does not exactly mean its behavior complying with its
declared requirements, because for a feature to satisfy its
requirements, it often has to depend on other features or
resource containers to behave correctly. For example, re-
quirements of the feature email-copy-auto-saving may be
that “after an email is sent out, a copy of this email will
be saved in the copy-box”, and its specification may be that
“when it receives a message, which indicates that an email
has been sent out, from the feature email-sending, a copy
of the email will be put into the copy-box”. Then, even
if email-sending sends a wrong message to it, email-copy-
auto-saving‘s behavior will still comply with its specifica-
tion. But in that case its behavior does not comply with
its requirements. Vice versa, a feature’s behavior comply-
ing with its requirements also doesn’t exactly mean that its
behavior complying with its specification, because some-
times not all parts of a feature’s specification relate to its
requirements. That is, some parts of its specification only

Feature Interaction Context

Interactions

…

…

Feature Set

Resource
Container Set

(Specification)

Fig. 4 Feature and its interaction context

relate to other features’ requirements. For instance, one part
of email-sending‘s specification may be that “after an email
is sent out, send a message to the listeners (e.g. email-copy-
auto-saving)”. Then, even if this part is not correctly imple-
mented, email-sending‘s behavior will still comply with its
requirements.

The reason for defining features’ correct execution ac-
cording to the two dimensions of complying with both its
requirements and its specification is that such a definition
provides a suitable view to identify and analyze interactions
between features. The scattering nature of requirements is
the origin of interactions, and specification is the way to im-
plement requirements.

5 Interaction

Speaking generally, any interaction involves at least two en-
tities. Those interactions that involve three or more entities
can often be decomposed into a set of interactions between
two entities. This metamodel only focuses on binary inter-
actions. In the view of an individual entity, all entities that
interact with it constitute its interaction context. In this meta-
model, a feature’s interaction context consists of a set of fea-
tures and a set of resource containers (Fig. 4).

This metamodel distinguishes different roles played by
entities involved in an interaction. The entity which triggers
the interaction is called trigger and the other entity is triggee.
For example, in the interaction between email-sending and
email-copy-auto-saving, the former is the trigger since it is
the sender of messages, and the latter is the triggee. It should
be noticed that trigger and triggee are only roles played by
entities. An entity may play as trigger in one interaction
while playing as triggee in other interactions.

This metamodel classifies interactions according to two
dimensions. The first dimension is whether the trigger inter-
acts with the trigger directly. There are two values in this
dimension: direct and indirect. The indirect value means
two features interact with each through a resource container.
The direct value means two features interact with each other
without any resource container involved. The second di-
mension is whether there is a constraint requires(trigger,
triggee) between the trigger and the triggee. There are also
two values in this dimension: explicit and implicit. The ex-
plicit value means there is such a constraint, and the implicit

180 H. Mei et al.

value means the reverse. Consequently, there are totally four
different combinations of values in the two dimensions: di-
rect explicit interactions, direct implicit interactions, indi-
rect explicit interactions and indirect implicit interactions.
This metamodel employs these four combinations as an in-
teraction classification framework.

If only considering the factor of who plays the trigger
role in an interaction, there are theoretically four kinds of
interaction in each aforementioned interaction class:

1. Interactions only between features.
2. Interactions between features and resource containers

(features play the trigger roles).
3. Interactions between features and resource containers

(resource containers play the trigger roles).
4. Interactions only between resource containers.

The last kind of interaction essentially reflects the way
to structure information in software systems, such as those
methods of database design. Because our interests mainly
focus on interactions involving features, this kind of inter-
action will not be discussed in the remainder of this paper.
However, not all the other three kinds of interaction make
sense or are of enough value in each interaction class. In the
rest of this subsection, we will address seven typical interac-
tions (see Fig. 1) which we have identified according to the
interaction classification introduced above.

5.1 Direct explicit interactions

In a direct explicit interaction, the trigger interacts with the
trigger directly, and depends on triggee.

Invoke interactions One commonly occurred instance of
this class is the invoke interactions, in which the invokers
play the trigger role.

Figure 5 shows an invoke interaction between address-
auto-retrieving and address-adding in the email client soft-
ware, and the constraints involving these two features (cor-
responding constraint semantics is attached to the lower of
the two end-points of constraint notation). The requirements
of address-auto-retrieving is that “after an email is sent out,
the receiver’s address of this email will be added to the ad-
dress book”, and the requirements of address-adding is that
“add the address that user requires to the address book”.
From this example, we can see that in an invoke interaction,
not only does the trigger have the necessity require seman-
tics to the triggee, but the triggee has the availability require
semantics to the trigger.

ans

address-auto-retrieving address-adding

Constraints:

Interaction:
invoke

address-adding
address-auto-retrieving

address-adding-use-case

Fig. 5 Invoke interactions in the email client domain

Those invoke interactions between features and resource
containers, in which features play the trigger roles, essen-
tially reflect the features’ control on resources. By such
interactions, two features can interact indirectly with each
other. Generally, these interactions can be further classified
into modify invoke and read invoke according to whether the
states of resource containers are changed by features, or pro-
duce invoke and consume invoke according to the producer
or consumer role played by features. An example of such
interactions can be found in Fig. 8 (see details in Sect. 5.2).

It seems that those invoke interactions between features
and resource containers, in which resource containers play
the trigger roles, are of little value in practice. Since a re-
source container’ main responsibilities are passively accept-
ing features’ requests for resource storing, querying and re-
trieving, they have no reason to rely on features to achieve
these responsibilities. However, if resource containers are
assigned with more responsibilities than their nature, such
interactions may also exist.

Meta-level configure interactions Another instance of di-
rect explicit interactions we have identified is the meta-level
configure interactions between features. Complex software
systems often have the capability to modify their behav-
ior ([23] calls such systems self-modifying systems). From
this view, [9] makes a distinction between core features
and modulating features. One kind of modulating feature is
those features that can change other features’ binding states.
Interactions between features in which the triggees’ bind-
ing states are changed by the triggers are called meta-level
configure interactions in this paper. One example of meta-
level configure interactions is interactions between features
meeting-state-modulator, ringer and vibrator in the mobile-
phone client software (Fig. 6), in which when users trig-
ger meeting-state-modulator, it will configure vibrator to the
bound state and ringer to the undecided state. From this ex-
ample, we can identify that in a meta-level configure interac-
tion, the trigger has the availability semantics to the triggee.

5.2 Direct implicit interactions

In a direct implicit interaction, the trigger interacts with the
trigger directly, but doesn’t depend on triggee.

Notify interactions One instance of this class is the notify
interactions. The feature which is the source of notification

a

ringer

vibrator

meeting state
modulator

meta-level configure

ringer

vibrator

meeting state
modulator

Constraints:

Interaction:

Fig. 6 Meta-level configure interactions in the mobile-phone client do-
main

A metamodel for modeling system features and their refinement, constraint and interaction relationships 181

signal-listener

ringer

call-refusing call-accepting

notify(canceling event)notify(calling event)

notify (accepting event)notify(refusing event)

Interactions:

Constraints:

ringer

vibrator
signal-listenera

ringer

vibrator

signal-listener

call-refusing

call-accepting

ns

Fig. 7 Notify interactions in the mobile-phone client domain

plays the trigger role in a notify interaction, and the triggee
depend on the trigger to notify proper information.

Figure 7 shows an example of notify interactions be-
tween features in the mobile-phone client software. In in-
teractions between these features, ringer is triggered by the
notification of the calling event from signal-listener, hence
ringer has the availability require semantics to the signal-
listener. After ringer is triggered, it can only shut itself
down when one of the three events (canceling event, refus-
ing event and accepting event) happens. For ringer to be-
have correctly, all of the three features signal-listener, call-
refusing and call-accepting should behave correctly, that is,
they should not notify ringer of wrong events. Therefore,
ringer has the strong necessity require semantics to all of
the three features. Interactions and constraints involving vi-
brator can also be identified in the similar way.

There are also notify interactions between features and
resource containers in which resource containers play the
trigger roles. In these interactions, resource containers no-
tify features that their states have satisfied certain condi-
tions. Figure 8 shows a well-known example of such interac-
tions between model and views in the MVC pattern, in which
model notifies views when its state has changed. In the MVC
pattern, controller can be treated as one or more features that
provide controlling capability to users, model as a resource
container that stores data, and views as features that provide
data viewing capability with different styles to users. From

controller

View 1

model
View 2

View n

modify invoke

notify

notify

notify

read invoke

read invoke

read invoke

Fig. 8 Interactions in the MVC pattern

this example, we can also see that controller and views in-
teract indirectly with each other through a set of direct inter-
actions between features and resource containers.

Those notify interactions between features and resource
containers in which features play the trigger roles seem un-
necessary in the situation that features’ specification and re-
source containers’ specification are clearly separated. The
reason is just as we have explained in Sect. 5.1: a pure re-
source container needn’t depend on features to implement
its specification.

5.3 Indirect explicit interactions

In an indirect explicit interaction, the trigger interacts with
the triggee through a resource container, and depends on the
triggee.

Resource configure interactions One instance of this inter-
action class is the resource configure interactions between
features, in which the triggers configure the triggees’ be-
havior by modifying resources accessed by the triggees.
An example of resource configure interactions is the inter-
action between email-filter and email-filter-configurator in
the email client software, in which email-filter-configurator
modifies the resource container filtering-rules, and email-
filter read information from filtering-rules (see Fig. 9). From
this example, we can see that a resource configure interac-
tion is actually implemented by a set of direct interactions
between features and resource containers, and that the trig-
ger has the usability require semantics to the triggee.

Influence interactions Another instance of indirect explicit
interactions is the influence interactions, in which trig-
gers influence triggees’ behavior by imposing additional
responsibilities on them, and these additional responsibili-
ties further cause indirect interactions between triggers and
triggees. An example of such interactions can be found be-
tween the three features copy, paste, delete and the feature
un/re-do in many software systems (Fig. 10). The additional
responsibility imposed by un/re-do is that each of the three
editing features should record the un/re-doing information of
their execution to a resource container. For un/re-do behav-
ing correctly, these responsibilities must be correctly com-
pleted. Hence, un/re-do has the strong necessity require se-
mantics to these editing features. Furthermore, un/re-do also

email-filter

email-filter-configurator

resource configure

filtering-rules

modify invoke
read invoke

Interactions:

Constraints:
email-filteremail-filter-configurator u

Fig. 9 Resource configure interaction in the email client domain

182 H. Mei et al.

a

copy

paste

delete

un/re-doing-
information

un/re-do

produce invokes

consume invoke

Interactions: Constraints:

influences

copy

paste

delete

un/re-do ns

Fig. 10 Influence interactions

email-decryption signature-verification

email-filter

nw
email-decryption

signature-verification

email-filter

flow flow

Interactions:

Constraints:

signature-verificationemail-filter
nw

email-receiving
flow

saving-to-received-box
flow

email-decryption

signature-verification

email-filter

email-receiving

a

<data importer>

saving-to-received-box

email-importing
<data importer>

email-importing

Fig. 11 Feature flow in the email client domain

has the availability require semantics to these editing fea-
tures, since if all editing features are removed, un/re-do will
have no chance to be executed.

5.4 Indirect implicit interactions

In an indirect implicit interaction, the trigger interacts with
the triggee through a resource container, but doesn’t depend
on the triggee.

Flow interactions One instance of this interaction class is
the flow interactions between features, in which data are pro-
cessed by the triggers and then flow to the triggees for further
processing. Flow interactions reflect the possible data flows
in software. The require constraint on features in a flow in-
teraction often determines which feature plays the trigger
role. Suppose that the constraint “A require B” exists, in
which A and B are two features involved in a flow inter-
action. Three scenarios may occur in this flow interaction:

1. A depends on B’s processing of data to a proper format
so that these data can be further processed by A. In this
scenario, the constraint semantics between A and B is “A
requirenw B” or “A requirens B”.

2. B is a data importer. That is, the requirements declared
by B are to receive data from the environment of soft-
ware. In this scenario, the constraint semantics between
A and B is “A requirea B”, because if B is removed, A
will never have the chance to be executed.

3. A is a data exporter. That is, the requirements declared
by A are to send data to the environment of software. In
this scenario, the constraint semantics between A and B
is “B requireu A”, since if A is removed, previous pro-
cessing on data will become useless.

Obviously, the only possible role assignment in these
three scenarios is B plays the trigger role and A the triggee
role.

Two independent features may incidentally exhibit a data
flow relation because of implementation reasons, but we
don’t treat this as a flow interaction, since these two fea-
tures are concurrent in their nature, although this concur-
rency may be sequentially implemented in the final software.

As trigger or triggee is only a role played by features, a
feature which plays the triggee role in one flow interaction
may play the trigger role in another one. By this way, a set
of related flow interactions can form a pipe-and-filter archi-
tectural style [24], which we called a feature flow. As in a
flow interaction, the require constraint often plays the par-
tial order on features in a feature flow. Thus, by exploring
constraints among a set of features in which data flows may
exist, the sequence or concurrency in feature flows can be
systematically identified or verified. Figure 11 shows a fea-
ture flow existing in the email client domain in which a set
of features are composed by certain order to collaboratively
process received/imported emails. More information about
the pipe-and-filter architectural style or examples of feature
flows can be found in [10, 24, 25].

Mutex interactions Another instance of indirect implicit in-
teractions is the interaction between two excluded features
which is called a mutex interaction in this paper. For soft-
ware to behavior correctly, there must be a third party that
plays the medium role between any two run-time excluded
features. For example, a single value variation dimension
may be accompanied by a configurator which ensures that at
most one value in this dimension can be in the bound state,
or a coordinator may exist between two conflict excluded
features to resolve the conflict between them.

A metamodel for modeling system features and their refinement, constraint and interaction relationships 183

Constraints InteractionsConstraint
Semantics

require

exclude

Strong Necessity
Require

Weak Necessity
Require

Availability
Require

Usability
Require

Single-Value
Exclude

Conflict
Exclude

invoke

meta-level configure

resource configure

influence

notify

flow

mutex

Fig. 12 Mapping between constraints and interactions through con-
straints semantics

5.5 Mapping between constraints and interactions

Based on the analysis of interactions and their connected
constraints described above, we can thus create a informal
mapping between interactions and constraints. Figure 12
shows the mapping between two basic constraints and seven
typical interactions through six kinds of constraint seman-
tics.

This mapping provides guidelines for the identification
of possible interactions between features according to con-
straints on features. After the problem space of a software
domain is systematically explored and the feature model is
created as in most feature-oriented domain analysis methods
(feature models in these methods only contain information
about refinements and constraints), reusable assets produc-
ers can then analyze the semantics implied by constraints,
and select suitable interaction types which can best embody
the constraint semantics.

Furthermore, this mapping also helps elicit constraints
on features. In some cases, interactions between features are

Fig. 13 Feature refinement view of the email client software

more obvious than constraints on features (for example, in
our experience, we often first identify the notify interaction
between two features, and then realize the require constraint
on them). Then, analysts can use these identified interactions
as the input to find possible constraints through constraint
semantics analysis. This further improves the customization
of feature models.

6 Case study

As a case study, we applied our approach to the email client
software, which is a simple and mature software domain.

Figures 13–15 show part of the modeling result. Infor-
mation about features and refinements between features is
shown in Fig. 13, information about constraints on features
is shown in Fig. 14, and information about interactions be-
tween features is shown in Fig. 15. Because of space limi-
tation, some attributes of features/resource containers, such
as requirements, specification, binding-time, are not given in
this paper. Optional features are marked with cycle symbols.
In Fig. 14, only those analyst-imposed constraints on fea-
tures are given, since those refinement-imposed constraints
can be automatically retrieved from refinements between
features.

From this case study, we can see that by explicitly mod-
eling system features and their refinement, constraint and in-
teraction relationships, software can be specified at a high
abstract level in an easily understandable manner for both
customers/users and software developers. Customers/users
can know what the software provides for them from the fea-
ture refinement view, and then customize the software ac-
cording to their real requirements under the guidance of the
feature constraint view. While software developers can know
how these features interact with each others at run-time from
the feature interaction view, and further implement these fea-
tures and enable interactions between features. Since soft-
ware is implemented in a feature-oriented way, artifacts in
the solution space maintain a same customizable structure

184 H. Mei et al.

nw ns ns

u

a

u u w

uw

ns

ns

ns

nw

a

anw

a

ns

u

u

ns

ns

a

Fig. 14 Feature constraint view of the email client software

Fig. 15 Feature interaction view of the email client software

as artifacts in the problem space (i.e. feature models), which
improve the alignment between the problem space and the
solution space of software.

7 Related work

Our work on constraint based feature interaction analysis
was inspired in part by [17], which focuses on extracting fea-
ture interactions and constraints from legacy systems. While
[17] tries to separate interactions and constraints from fea-
ture refinement structures (the feature tree view) and model
them in the so-called feature interaction and dependency
view, our approach further makes a clear distinction between
interactions and constraints. Thus, there are three types of
view in our approach: feature tree view, feature constraint
view and feature interaction view. It should be noticed those
feature models used in current feature-oriented methods [2–
5] only cover information in the former two views of our ap-
proach. The reason why we distinguish between constraints
and interactions in our approach is motivated by the fol-

lowing two considerations. The main consideration is that
the two kinds of concepts have different characteristics and
functions in software development: constraints are static and
can be employed to resolve the artifact retrieval problem of
software reuse, or facilitate customization of software arti-
facts; while interactions are dynamic in their nature and fa-
cilitate the analysis of features’ running logic, and thus pro-
vide a starting point to specify and implement features in the
solution space. Another consideration is that most current
feature-oriented methods have contained information about
constraints in their feature models, and thus we want to make
our approach as a compatible extension to these methods.

Biddle et al. [26] present a dependency-based concep-
tual model for understanding the nature of software reusabil-
ity at the language level. The concept dependency in this
model is similar to the constraint in feature models. While
this model tries to reveal the relation between reusability and
those dependencies caused by language constructs, our work
focus on analyzing constraints imposed by domain nature at
the requirement level. This model can be viewed as the re-
sult of a “bottom-up” approach to software reuse, while our

A metamodel for modeling system features and their refinement, constraint and interaction relationships 185

work follows a “top-town” approach. However, there is no
conflict between this model and our approach. They can be
two complementary approaches in practice, i.e. employing
this model to guide the way to implement features so that
only those requirement level constraints are embodied in fi-
nal software.

Sutcliffe et al. [27] describe a different approach to re-
quirement reuse from the domain analysis approach (e.g.
most current feature-oriented domain analysis methods).
Unlike the domain analysis approach of that only concerned
reusable assets for specific software domains, this approach
implicitly supposes that there is a finite set of domain ab-
stractions that covers the nature of requirements of most
domains, and thus aims to identify and specify these do-
main abstractions and automatically retrieve them when en-
gineering requirements for individual applications. Another
instance of this approach is proposed by Jackson [28], which
tries to decompose the problem space of software into a set
of commonly occurred problem frames. This kind of ap-
proach often bases on humans’ analogy capability to iden-
tify and reuse those domain abstractions or problem frames,
and tries to resolve the software reuse problem at a more
abstract level than the domain analysis approach. One ques-
tion we are exploring is whether these domain abstractions
or problem frames can be modeled in the form of interac-
tions between features, since in our work we have identified
a set of commonly occurred feature interaction abstractions.
This may be a possible combination of these two distinct
kinds of approach. Besides the difference, a similarity be-
tween [27, 28] and our work is that all of them agree on the
idea of separating information entities from system behav-
ior specifications, i.e. the information system models in [27],
the lexical domains in [28] and the resource containers in
our work are proposed respectively to encapsulate informa-
tion entities.

Jackson and Zave [10] proposes the DFC method for
feature specification and composition in telecommunica-
tion systems. This method follows the idea of implement-
ing features as individual containers. DFC mainly explores
the problem of using the pipe-and-filter architectural style to
compose features. Resource containers accessed by features
are abstracted into the underlying architectural substrate in
this method.

In [29], a logic based variability validation method
was proposed. However, this method does not consider the
binding-time attribute of features, that is, there is no con-
cept of undecided features in it. For this reason, this method
can only apply well when all undecided features are decided
(bound or removed). While our constraint and customization
verification method (Sect. 2.3.2) integrates the logical veri-
fication with binding times, it can thus apply to any binding
phase without any limitation to features’ binding states. For
example, suppose features A and B are two run-time bind-
ing features with an exclude constraint on them, and after
customization, neither of them is removed from the feature
model. Such a customization result will be considered to be
“invalid” in [29], although the program logic can automat-

ically maintain this exclude constraint at run-time. While
in our method, these two features can coexist in any cus-
tomized feature model, as long as one or both of them are in
the undecided state at run-time.

8 Conclusion and future work

In this paper, we mainly present a metamodel to support the
systematical modeling of system features and their refine-
ment, constraint and interaction relationships. Particularly,
three kinds of refinement, four kinds of constraint and seven
kinds of binary interaction are defined in this metamodel.
A visual notation for modeling constraints and a proposi-
tional logic based method to constraint formalization and to
both constraint and customization verification is proposed.
An approach to mapping between constraints and interac-
tions through constraint semantics is also described.

Our current work presented in this paper can not fully re-
solve the problem about how to propagate the customizable
structure (i.e. feature models) of the problem space to the so-
lution space. But we do think that our current work provide
the foundation for this problem, since we have systemati-
cally explored one of the most important relationships be-
tween features when constructing software, that is, the inter-
actions between features, and have proposed a way to build
traceability between constraints and interactions. Once con-
straints and interactions are identified and their traceability
is build, the next work needs to do is to implement features
and their interactions in a highly customizable way.

Our future work will focus on the feature implementa-
tion problem. A possible approach is to keep features as first-
class objects in the solution space. Hence, we will explore
the feasibility of such an approach by encapsulating each
feature’s specification as one individual component, and we
will further analyze the operational contexts and the imple-
mentation contexts of features, following the 3C model of
reusable software components [12, 13].

Acknowledgements This work is supported by the National Grand
Fundamental Research 973 Program of China under Grant No.
2002CB312003, the National Natural Science Foundation of China un-
der Grant No. 60233010, 60125206 and 90412011, and the Beijing
Natural Science Foundation under Grant No. 4052018.

The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions.

References

1. Barstow, D., Arango, G.: Designing software for customization
and evolution. In: Proceedings of the Sixth International Work-
shop on Software Specification and Design, pp. 250–255 (1991)

2. Kang, K.C. et al.: Feature-oriented domain analysis feasibility
study. SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University (November 1990)

3. Kang, K.C. et al.: FORM: A feature-oriented reuse method with
domain-specific architecture. Annals of Software Engineering 5,
143–168 (1998)

186 H. Mei et al.

4. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating feature mod-
eling with the RSEB. In: Proceedings of Fifth International Con-
ference on Software Reuse, pp.76–85. IEEE Computer Society,
Canada (1998)

5. Chastek G. et al.: Product line analysis: A practical introduc-
tion. (CMU/SEI-2001-TR-001), Software Engineering Institute,
Carnegie Mellon University (2001)

6. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven
Development. Prentice Hall PTR (2002)

7. Mehta, A., Heineman, G.T.: Evolving legacy system features into
fine-grained components. In: Proceedings of the 24th International
Conference on Software Engineering. Orlando, Florida (2002)

8. Keck, D.O., Kuehn, P.J.: The feature and service interaction prob-
lem in telecommunications systems: A survey. IEEE Transactions
on Software Engineering 10(24), 779–796 (1998)

9. Antón, A.I., Potts, C.: Functional paleontology: The evolution
of user-visible system services. IEEE Transactions on Software
Engineering 29(2) (2003)

10. Jackson, M., Zave, P.: Distributed feature composition: A virtual
rchitecture for telecommunications services. Ieee Transactions on
Software Engineering 24(10) (1998)

11. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual
basis for feature engineering. Journal of Systems and Software
49(1) (1999)

12. Tracz, W.: The 3 cons of software reuse. In: Proceedings of the
Third Annual Workshop: Methods and Tools for Reuse (1990)

13. Edwards, S.H.: The 3C model of reusable software components.
In: Proceedings of the Third Annual Workshop: Methods and
Tools for Reuse (1990)

14. Wiegers, K.E.: Software Requirements. Microsoft Press (1999)
15. Griss, M.L.: Implementing product-line features with component

reuse. In: Proceedings of Sixth International Conference on Soft-
ware Reuse, pp. 137–152. LNCS 1844,Vienna (2000)

16. Kang, K.C., Lee, K., Lee, J., Kim, S.: Feature oriented product
line software engineering: principles and guidelines. A chapter
in “Domain Oriented Systems Development—Practices and Per-
spectives”, UK, Gordon Breach Science Publishers (2002)

17. Ferber, S., Haag J., Savolainen, J.: Feature interaction and depen-
dencies: modeling features for reengineering a legacy product line.
In: The Second Software Product Line Conference 2002, LNCS
2379, pp. 235–256 (2002)

18. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B.: Natt och
Dag, J.L An industrial survey of requirements interdependencies
in software product release planning. In Proceedings of Fifth IEEE
International Symposium on Requirements Engineering, pp. 84–
91 IEEE Computer Society (2001)

19. Karlsson, J., Olsson, S., Ryan, K.: Improved practical support for
large-scale requirements prioritizing. Requirements Engineering
Journal 2(1), 51–60 (1997)

20. SMV, Model Checking @CMU, The SMV System”, http://www-
2.cs.cmu.edu/∼modelcheck/smv.html

21. Mannion, M., Kaindl, H., Wheadon, J., Keepence, B.: Reusing
single system requirements from application family requirements.
In: Proceedings of the 21st International Conference on Software
Engineering, pp. 453–462 (1999)

22. Fife, L.D.: Feature interaction: How it works in telecommunica-
tion software. IEEE (1996)

23. Buhr: Use case maps as architectural entities for complex systems.
IEEE Transactions on Software Engineering 24(12) (1998)

24. Garlan, D., Shaw, M.: An introduction to software architecture. In:
Advances in Software Engineering and Knowledge Engineering,
vol. 1. World Scientific (1993)

25. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Inc. (1996)

26. Biddle, R.L., Tempero, E.D.: Understanding the impact of lan-
guage features on reusability. In: Proceedings Fourth International
Conference on Software Reuse, pp. 52–61 (1996)

27. Sutcliffe, A., Maiden, N.: The domain theory for requirements
engineering. IEEE Transactions on Software Engineering 24(3)
(1998)

28. Jackson, M.: Problem Frames: Analysing and Structuring Soft-
ware Development Problems. Addison-Wesley (2001)

29. Mannion, M.: Using first-order logic for product line model val-
idation. The Second Software Product Line Conference 2002,
LNCS 2379, pp. 176–187 (2002)

Hong Mei received the BSc and
MSc degrees in computer science
from the Nanjing University of
Aeronautics and Astronautics
(NUAA), China, in 1984 and 1987,
respectively, and the PhD degree
in computer science from the
Shanghai Jiao Tong University in
1992. He is currently a professor
of Computer Science at the Peking
University, China. His current
research interests include Software
Engineering and Software Engi-
neering Environment, Software
Reuse and Software Component
Technology, Distributed Object
Technology, and Programming

Language. He has published more than 100 technical papers.

Wei Zhang received the BSc in
Engineering Thermophysics and the
MSc in Computer Science from
the Nanjing University of Aero-
nautics and Astronautics (NUAA),
China, in 1999 and 2002, respec-
tively. He is currently a PhD student
at the School of Electronics Engi-
neering and Computer Science of
the Peking University, China. His
research interests include feature-
oriented requirements modeling,
feature-driven software architecture
design and feature-oriented soft-
ware reuse.

Haiyan Zhao received both the
BSc and the MSc degree in Com-
puter Science from the Peking Uni-
veristy, China, and the Ph.D degree
in Information Engineering from
the University of Tokyo, Japan. She
is currently an associate professor
of Computer Science at the Peking
University, China. Her research
interests include Software Reuse,
Domain Engineering, Domain
Specific Languange and Program
Transformation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

