
Software & System Modeling (2006) 5(2): 187–207
DOI 10.1007/s10270-006-0001-4

SPECIAL ISSUE PAPER

Luciano Baresi · Reiko Heckel · Sebastian Thöne ·
Dániel Varró

Style-based modeling and refinement of service-oriented
architectures
A graph transformation-based approach

Received: 21 May 2005 / Revised: 15 September 2005 / Accepted: 15 September 2005 / Published online: 5 April 2006
c© Springer-Verlag 2006

Abstract Service-oriented architectures (SOA) provide a
flexible and dynamic platform for implementing busi-
ness solutions. In this paper, we address the modeling of
such architectures by refining business-oriented architec-
tures, which abstract from technology aspects, into service-
oriented ones, focusing on the ability of dynamic reconfigu-
ration (binding to new services at run-time) typical for SOA.

The refinement is based on conceptual models of the
platforms involved as architectural styles, formalized by
graph transformation systems. Based on a refinement rela-
tion between abstract and platform-specific styles we inves-
tigate how to realize business-specific scenarios on the SOA
platform by automatically deriving refined, SOA-specific re-
configuration scenarios.

Keywords Service-oriented architecture · Architectural
style · Architecture refinement · Graph transformation

Research partially supported by the European Research Training Net-
work SegraVis (on Syntactic and Semantic Integration of Visual Mod-
elling Techniques)

Communicated by Bernhard Schätz and Ingolf Krüger

L. Baresi (B)
Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Italy
E-mail: baresi@elet.polimi.it

R. Heckel
Department of Computer Science, University of Leicester, UK
E-mail: reiko@mcs.le.ac.uk

S. Thöne
International Graduate School, University of Paderborn, Dynamic
Intelligent Systems, Germany
E-mail: seb@upb.de

D. Varró
Department of Measurement and Information Systems, Budapest
University of Technology and Economics, Hungary
E-mail: varro@mit.bme.hu

1 Introduction

The service-based paradigm to structure and modular-
ize software systems becomes more and more popular
for complex distributed applications with high degree of
dynamic reconfigurations and interactions among system
components. This article focuses on the architectural as-
pect of service-based software engineering and introduces
a methodology for deriving service-oriented architectures
(SOA) from high-level business-oriented architecture de-
scriptions.

Software architectures play an important role in soft-
ware development [1]. As abstract models of the run-time
structure they help to bridge the gap between user require-
ments and implementation. In the context of e-business, self-
healing, or mobile systems, dynamic architectures gain more
and more importance. They represent systems that do not
simply consist of a fixed, static structure, but can react to cer-
tain requirements or events by run-time reconfiguration of its
components and connections. Thus, models of dynamic ar-
chitectures do not only have to consider component structure
and interactions, but also dynamic changes of that structure.

Service-oriented architectures are one import kind of dy-
namic architectures. They allow for automated service pub-
lication and discovery at run-time. For instance, whenever
a service cannot be provided with the required quality-of-
service any longer, the service requester could dynamically
search for and change to a new service.

Designing such dynamic architectures is a complex task
because one has to cope with both business-driven and
platform-driven requirements: The business requirements
prescribe certain component structures, interactions, and re-
configurations which have to conform to the interaction
and reconfiguration mechanisms provided by the underlying
middleware platform.

We propose to deal with this complexity by a stepwise
refinement approach that covers various degrees of plat-
form abstraction. At first, the software architect derives an
abstract model of the architecture from the user and busi-
ness requirements. This model roughly corresponds to the

188 L. Baresi et al.

conceptual architecture view proposed in [2]. It mainly cov-
ers the functional aspects encapsulated in business-related
components. Such a business-level architecture description
abstracts from the concrete middleware and run-time plat-
form of the system, and it omits elements that are needed
to use platform-specific communication and reconfiguration
mechanisms.

For instance, a business-level architecture model de-
scribes business components and their interfaces but ne-
glects the distinction between ordinary components and pub-
lished service components. Consequently, it does not contain
any SOA-specific elements like service descriptions and dis-
covery services, either. Also, it elaborates on the various use
cases of the system by business-oriented scenarios of com-
ponent interactions, but it neglects SOA-specific interactions
and reconfiguration operations required for service publica-
tion and discovery.

Only later in the design process, when the decision for a
service-oriented middleware platform has been made, more
and more non-functional requirements and SOA-specific as-
pects are integrated into the core functionality. This leads
to a SOA-specific model of the application architecture
which refines both the structural and the behavioral parts of
the business-level model according to the service-oriented
paradigm.

A recent example of this general modeling principle is
the Model-Driven Architecture (MDA)1 [3] put forward by
the OMG. Here, platform-specific details are initially ig-
nored at the model-level to allow for maximum portabil-
ity. Then, these platform-independent models are refined by
adding details required to map to a given target platform.
Thus, at each refinement level, one imposes more assump-
tions on the resources, constraints, and services of the cho-
sen platform.

In software architecture research, architectural styles are
used to describe families of architectures by common re-
source types, configuration patterns and constraints [4]. As
Di Nitto and Rosenblum argue in [5], the restrictions im-
posed by a certain choice of platform can be considered as an
architectural style, too. Moreover, to account for component
interactions and platforms that support dynamic reconfigu-
rations like SOA, we suggest in [6] to extend the classical
notion of architectural style by defining not only structural
constraints but also platform-specific communication and re-
configuration mechanisms.

As described in [6], we formally define architectural
styles as graph transformation systems including type graph,
constraints, and transformation rules. Based on that, we in-
vestigate refinement relationships between abstract and con-
crete styles in [7]. They enable us to check if a given archi-
tecture is a refinement of another one with a special focus on
the refinement of business-level scenarios of communication
and reconfigurations into platform-specific scenarios.

Our refinement criteria guarantee both semantic correct-
ness and platform consistency. This means that the platform-
specific scenario comprises the same functional behavior as

1 www.omg.org/mda/

the business-level scenario, and that it is consistent with con-
straints and mechanisms imposed by the chosen target plat-
form.

In this article, we apply the approach to service-based
architectures and extend the SOA case study sketched
in [6]. We present a complete definition of the architectural
style for service-oriented architectures including all relevant
mechanisms for service publication, discovery and connec-
tivity. We also define an abstract, business-level style and a
refinement relationship between the abstract and the SOA-
specific style. Moreover, we show how this relationship can
be used to check for correct architecture refinements and
to derive SOA-specific scenarios from given business-level
scenarios.

Since refinements can be tedious and error-prone, we
show how the behavior refinement problem can be formu-
lated as a reachability problem which can be solved by clas-
sical graph transformation and model checking tools. This
allows, within the usual limitations, an automated refine-
ment of business-level architectures into SOA-specific archi-
tectures.

In order to account for user-friendly models, we also
discuss how to combine the formal, graph-based represen-
tation of architectures with the Unified Modeling Language
(UML).2 For this purpose, we introduce an extension of the
UML meta-model, proposed as a UML profile for service-
oriented architectures in [8], and define a mapping between
the profile and the elements of the architectural style. This
mapping can be used by editors and other tools to provide a
user-friendly syntax for complex architectural descriptions.

The rest of the article is organized as follows. In Sect. 2,
we introduce a typical service-based application as running
example for this article. In Sect. 3, we explain how archi-
tectural styles can be used as conceptual platform models
for different levels of platform abstraction and how they can
be formalized by graph transformation systems. We define
an abstract style for business-level architectures and a spe-
cific style for service-oriented architectures. In Sect. 4, we
discuss the use of UML and UML profiles as concrete nota-
tion for the presented SOA models. In Sect. 5, we define re-
finement relationships between architectural styles and show
how they can be used in order to derive SOA-specific archi-
tectural models from business-oriented models. We survey
related work in Sect. 7, and Sect. 8 concludes the article.

2 The SmartCar example

Throughout this article, we use a simple scenario, taken from
the automotive domain, to demonstrate the main features of
our approach. The scenario foresees how the availability of
special-purpose and context-sensitive services will change
our way of planning trips with our car.

While driving our car, we can inquire a map service to
get the best (cheapest) map of the area. Another services
computes the best itinerary to reach the final destination. The

2 www.uml.org

Style-based modeling and refinement of service-oriented architectures 189

v:Vehicle m:MapRequestp2:Map-
Provider

p3:Itinerary-
Requester

p1:Map-
Requester

MapConnector
{new}

i:ItineraryDefinition t:TrafficInformation

p4:ItineraryProvider

p7:Info-
Requester

p8:Info-
Provider

TrafficInfoConnector
{transient}

ItineraryConnector {new}

Fig. 1 Component diagram of the SmartCar system

computation is not only based on static information, like the
cheapest route (i.e., no fees) or the fastest one (i.e., always
on highways), but also uses actual traffic conditions to better
plan the itinerary.

The first step towards design leads to a platform-
independent architecture that can be informally depicted by
means of the UML component diagrams of Fig. 1.

The scenario can be enacted by means of the four
special-purpose components of Fig. 1, which specify their
interaction ports in terms of required and supplied inter-
faces. The Vehicle is the only active component which starts
the scenario and acts as coordinator of any dynamic in-
teraction. The MapRequest component provides both the
best (highest resolution) or cheapest map. Since we do not
aim at discussing the way services and their parameters
can be negotiated, it is the service itself that supplies the
best option without negotiating parameters. The Itinerary-
Definition component complements bought maps with the
itineraries we choose. Again, we allow for the cheapest and
fastest itineraries. This component interacts with the Traf-
ficInformation system to identify the fastest trip with respect
to the actual traffic conditions.

Since the vehicle moves around a region, the actual com-
ponents must be identified and used while the system is ex-
ecuted in a fully dynamic fashion. This means that the ac-
tual links among the components change while the scenario
evolves. These changes are constrained by available recon-
figuration mechanisms.

In the component diagram, those reconfigurations are
indicated by attachments to affected elements: {new} for
newly created connections and {transient} for connections
that are created and then removed after a while.

System requirements also include certain scenarios of
component interaction. For instance, as shown in Fig. 2, Ve-
hicle (i.e., the driver) asks the MapRequest for the best
map of the area. It also selects the itinerary to reach its final
destination. For this purpose, it queries ItineraryDefinition,
which in turn queries the TrafficInformation service to se-
lect the fastest offer.

After the platform-independent model, the next devel-
opment phase requires the selection of a specific platform
the system should be deployed on. Similar to the intentions
of MDA [3], the platform-independent model is in princi-
ple portable to different platforms. In this case, the devel-
opment team decides to implement the SmartCar system
based on a service-oriented architecture (SOA), e.g., Web

v :Vehicle

inquireMap()

maps

selectMap()

getTrafficInfo()

info
itineraries

m :Map-
Request

i :Itinerary-
Definition

t :Traffic-
Information

askForItineraries()

sd plan trip

Fig. 2 Simple scenario of the SmartCar system

Fig. 3 Roles in a service-oriented architecture, cf. [9]

Services. This means that the business components expose
their functionality as services over a network to vehicles. A
service is equipped with a description of the provided func-
tionality including information where and how to access it.

As shown in Fig. 3, SOA involves three different roles:
service providers, service requesters and discovery agencies.
The service provider runs and exposes the service. Also, the
provider has to publish the service description, in order to
enable dynamic service discovery and to allow requesters to
access the service.

Since providers and requesters usually do not know each
other in advance, the service descriptions are published via
third-party discovery agencies. They categorize the descrip-
tions and deliver them in response to queries issued by ser-
vice requesters. As soon as the service requester retrieves a
service description that meets its requirements, it can use it
to interact with the service.

Service-oriented architectures are highly dynamic and
flexible: Components and services are only loosely coupled
and communicate according to standardized protocols; ser-
vice descriptions with interface specifications are exchanged
at runtime; thus, service requesters can dynamically replace
unsatisfactory services if other services provide a better al-
ternative concerning functionality or quality. This might also
become necessary for self-healing purposes, e.g., if a service
is not reachable any longer due to some network problems.

To integrate SOA-specific features like service discovery
into system design, we refine the business-level architecture
into a SOA-specific architecture. This does not only involve

190 L. Baresi et al.

structural refinements like introducing discovery services
and service descriptions but also behavioral refinement of
the reconfiguration scenarios. For instance, the creation of a
new connection to a service might require service discovery
operations beforehand.

In the following sections, we show how our refinement
approach can be applied to this sample application. We
explain the use of architectural styles as conceptual platform
models and how the architectural models can be expressed
in terms of these styles. Then, we exemplify our notion
of behavioral refinement between a style for platform-
independent architectures and a style for service-oriented
architectures.

3 Architectural styles as platform models

In this section, we revisit our approach from [6] to use ar-
chitectural styles as conceptual platform models which are
formalized as typed graph transformation systems [10]. Af-
ter a brief introduction to graph transformations, we present
a platform-independent architectural style for business-level
architectures and a platform-specific architectural style for
service-oriented architectures.

As we want to model software architectures in relation to
their computational infrastructure at different levels of plat-
form abstraction, we need a conceptual model for each of
these infrastructures. For such a conceptual platform model,
we consider the following four requirements:

1. It has to define the vocabulary of elements that are to be
considered in an architecture description for the chosen
platform. In an architecture description, the engineer can
then use this vocabulary to define application-specific
types as well as runtime configurations of these types.

2. It has to define and constrain the relationships that are
allowed among the various architectural elements of the
vocabulary.

3. It has to define the communication mechanisms that are
provided by the platform to let the architectural ele-
ments interact. An architect who wants to design interac-
tion scenarios among software components can then use
these communication mechanisms in the scenarios.

4. It has to define the reconfiguration mechanisms that are
provided by that platform to let a dynamic architecture
evolve at runtime and to change its current configuration.
An architect who wants to design scenarios of architec-
tural behavior can then include reconfigurations that con-
form to these mechanisms in the scenarios.

Since a platform model constrains the possible applica-
tion architectures according to the assumptions about the
underlying platform, it can also be considered as an ar-
chitectural style that characterizes the family of architec-
tures which conform to the platform-specific restrictions and
mechanisms.

While the classical notion of architectural style cov-
ers structural constraints only like common vocabulary and

Component-
Type

PortTypeInterface
provides
requires

Connector-
Type

Connector

Component

connects

2
allows

1

1

1

1
ownssupports

isInstanceOf

isInstanceOf

isInstanceOf

Operation

defines

1 2

Port
used:Boolean

0..1

0..1

sentVia0..1

respondsTo
1

receives

sends

Request Response

0..1

calls 0..1

Message

Fig. 4 Type graph of the business-level style

topological patterns [4], we extend this notion by also taking
into account the communication and reconfiguration mech-
anisms as required above. For this purpose, we represent ar-
chitectural styles as typed graph transformation systems.

A typed graph transformation system G = 〈TG, C, R〉
consists of a type graph TG to define the architectural ele-
ments and their relationships, a set of constraints C to fur-
ther restrict the valid models, and a set R of graph transfor-
mation rules.

Nodes of the type graph define the architectural ele-
ments, i.e., the vocabulary of the architectural style. Edges
define the possible links and relationships among these el-
ements. A type graph can be depicted as a UML class dia-
gram as shown in Fig. 4. We can also define subtypes, which
inherit all the associations of its supertype, and attributes,
which describe additional properties of the respective ele-
ment.

We use the vocabulary in a concrete application archi-
tecture by representing system configurations as instance
graphs of the type graph. According to [10], a valid instance
graph G ∈ GraphTG has to be equipped with a structure-
preserving mapping to the fixed type graph TG, formally
expressed as a graph homomorphism tpG : G → TG. In
combination with the UML class diagram for the type graph,
we use UML object diagrams to depict instance graphs. One
can assign attribute values to the instances in an object dia-
gram in order to add information about their current state.

Along with the type graph comes the set C of constraints
that further restrict the set of valid instance graphs. Simple
constraints already included in the class diagrams are car-
dinalities that restrict the multiplicity of links between the
elements (omitted cardinality means 0..n by default). More
complex restrictions can be defined, e.g., using expressions
of the Object Constraint Language (OCL) [11], which is part
of the UML. Together, the type graph and the constraints
satisfy the first two requirements stated above for platform
models.

The third and fourth requirement are handled by graph
transformation rules. They represent both communication
and reconfiguration mechanisms provided by the considered
platform. Examples for such rules can be found in Table 1.

The application of a transformation rule to an instance
graph results in rewriting a certain part of that graph. Since,

Style-based modeling and refinement of service-oriented architectures 191

Table 1 Transformation rules of the generic style

192 L. Baresi et al.

in our case, instance graphs represent system configurations,
the transformation rules are well-suited to model reconfigu-
ration mechanisms that can be applied to change the system
configuration.

In order to treat communication mechanisms in the same
way, we have to encode communication-related information
into the instance graphs. For this reason, we add dedicated
nodes to the type graph which represent, e.g., messages with
edges to their sender, receiver, and current position. Then,
special transformation rules can be defined to create and
transmit messages.

Altogether, the consecutive applications of transforma-
tion rules to a given instance graph, also called a transfor-
mation sequence, can be used to model a certain scenario of
both reconfiguration and communication operations.

Formalization Formally, a graph transformation rule r :
L � R consists of a pair of TG-typed instance graphs L , R
such that the intersection L ∩ R is well-defined (this means
that, e.g., edges which appear in both L and R are connected
to the same vertices in both graphs, or that vertices with the
same name have to have the same type, etc.). The left-hand
side L represents the pre-conditions of the rule while the
right-hand side R describes the post-conditions.

According to the Double-Pushout semantics [12], the
application of a transformation rule r to a host graph G,
yielding a direct transformation step G

r,oL�⇒ H , is performed
in three steps:

1. Find an occurrence oL of the left-hand side L in the cur-
rent host graph G, formally a structure-preserving graph
morphism oL : L → G.

2. Remove all the vertices and edges from G which are
matched by L \ R. We must also be sure that the remain-
ing structure D := G\oL(L\R) is still a legal graph, i.e.,
that no edges are left dangling because of the deletion of
their source or target vertices. In this case, the dangling
condition [12] is violated and the application of the rule
is prohibited.

3. Glue D with a copy of R \ L to obtain the derived graph
H . We assume that all newly created nodes and edges
get fresh identities, so that G ∩ H is well-defined and
equal to the intermediate graph D.

A transformation sequence s = (G0
r1,o1�⇒ · · · rn ,on�⇒ Gn) in

G, briefly G0 ⇒∗
G Gn , is a sequence of consecutive transfor-

mations using the rules of G such that all graphs G0, . . . , Gn
satisfy the constraints C . As above, we assume that fresh
identifiers are given to newly created elements, i.e., ones that
have not been used before in the transformation sequence.
In this case, for any i < j ≤ n the intersection Gi ∩ G j is
well-defined and represents that part of the structure which
has been preserved in the transformation from Gi to G j .

After this introduction to graph transformation theory,
we now illustrate the concepts by two sample graph trans-
formation systems that represent architectural styles for
business-level and service-oriented architectures. Later in

the article, these styles are used to demonstrate the step-
wise refinement approach for developing complex, service-
oriented architectures.

3.1 A style for business-level architectures

The first architectural style we define represents a high level
of platform abstraction and can be used for business-level ar-
chitecture descriptions. At the business level, we do not want
to consider platform-specific aspects but concentrate on core
functionalities. Therefore, we avoid as many assumptions as
possible about the underlying platform and assume a ba-
sic computational infrastructure for component-based, dis-
tributed systems only.

As usual in architecture descriptions [1], the style pre-
scribes to use components and connectors as first-class enti-
ties to configure a system architecture. Components are con-
sidered as encapsulated black boxes which can communicate
with their environment through dedicated ports only. Ports
are characterized by provided and required interfaces. Two
components can only interact with each other if their ports
are connected by a connector.

Type graph The type graph of the style is shown in Fig. 4.
It can be subdivided into two parts: The left half contains
elements to define application-specific types, i.e., the Com-
ponenTypes, the supported PortTypes (including provided
and required Interfaces), and the ConnectorTypes. The
right half of the diagram contains elements to define the run-
time configuration of a system with Components, Ports,
and Connectors, i.e., concrete instances of the aforemen-
tioned types respectively.

Consequently, instance graphs of the type graph describe
both application-specific types as well as runtime configu-
rations of concrete instances thereof. The type information
allows, e. g., to determine the interfaces provided or required
by a certain component. Moreover, the transformation rules
presented below need to access the type information in order
to check type compatibility when creating new instances.
Note that the same technique of including elements for both
application types and runtime instances in a single type
graph is also used in the UML meta-model [13].

Attributes can be used to store additional information in
a node. For example, we add the boolean attribute used to
the Port node in order to distinguish between free and al-
ready used ports. The current value of the attribute can be
queried, e.g., before a transformation rule is applied. For in-
stance, the rule openPort in Table 1 can only be applied to
open a new port for a component if there is no other free port
left.

As mentioned before, we have to include special com-
munication elements in the type graph in order to express
communication mechanisms by graph transformation rules.
For this reason, the type graph contains a Message node
which is specialized into subtypes Request and Response.

Style-based modeling and refinement of service-oriented architectures 193

isInstanceOf
m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

t:Component

v:Component

i:Component

Vehicle
:ComponentType

ItineraryDefinition
:ComponentType

TrafficInformation
:ComponentType

MapRequester
:PortType

ItineraryRequester
:PortType

ItineraryProvider
:PortType

InfoRequester
:PortType

InfoProvider
:PortType

isInstanceOf
supports

supports

isInstanceOf
supports

supports

isInstanceOf supports

MapConnector
:ConnectorType

TrafficInfo-
Connector

:ConnectorType

Itinerary-
Connector

:ConnectorType

allows

allows

allows

allows

allows

allows

Fig. 5 Instance graph for the SmartCar application

Constraints Besides the cardinalities given in the class di-
agram, there is a set of additional OCL constraints which
further exclude undesired instance graphs. For example, the
following expression ensures that a Connector only con-
nects those Ports whose PortTypes are allowed by its Con-
nectorType:

context Connector inv:
self.port.portType -> forAll(pt|
self.connectorType.portType -> includes(pt))

With the help of the type graph and the constraints, we
can now model system configurations as instance graphs that
conform to the business-level style. Figure 5 shows an exam-
ple which models the initial configuration of the SmartCar
system.

Although such instance graphs may easily become large
and unreadable, they are still suitable as formal representa-
tion inside tools. In order to facilitate the handling of larger
models by end users, we recommend to apply the UML as
concrete notation as discussed in Sect. 4.

Transformation rules The architectural behavior of our
models depends on the communication and reconfiguration
mechanisms provided by the infrastructure or the platform.
For the business-level style, we assume that ports can be
opened or closed and that connectors can be created or re-
moved, but we abstract from mechanisms for finding the
right partner components and defer this question to the
platform-specific style. Moreover, we assume a basic com-
munication mechanism which is based on message exchange
via established connectors.

These mechanisms are defined by the graph transforma-
tion rules listed in Table 1. As an example, consider the first
rule openPort which creates a new port for a component. The
pre-condition on the left-hand side demands that the type of
the component supports the type of the port to be created.

As we want to avoid that the rule is applied again and
again to the same component creating an unbounded num-
ber of ports, we add a negative application condition to the
rule. Such a negative condition is depicted by crossed-out
elements like, e.g., the Port node p in rule openPort. It pre-
vents the application of the rule to any occurrence of the

left-hand side which can be extended by the crossed-out el-
ements. In the case of openPort, this means that the rule is
only applicable if the component does not already own a free
port of the selected port type.

According to the right-hand side of openPort, a rule ap-
plication results in the creation of a new port for the com-
ponent. While on the left-hand side one can query attribute
values, at the right-hand side one can assign attribute values.
In this case, the value of the used attribute of the new port
is initially set to false.

With these remarks, we believe that the rest of Table 1
should be self-explanatory. It contains further rules to cre-
ate or remove connections, to send or receive requests and
responses, and to remove finished messages.

After having introduced the transformation rules, we can
apply them to the initial configuration of the SmartCar sys-
tem shown in Fig. 5. This way, we can formally model
the SmartCar scenario from Sect. 2 as a transformation se-
quence. The beginning of the transformation sequence is
partially shown in Fig. 6.

3.2 A style for service-oriented architectures

While the above presented architectural style can be used for
modeling at the platform-independent level, the following
subsection presents a style for service-oriented architectures
as introduced in Sect. 2. It extends the platform-independent
style by SOA-specific concepts like service publication and
discovery. In Sect. 5, we then explain how business-level ar-
chitecture models and scenarios can be refined to the SOA
style.

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==true

owns

isInstanceOf

p2:Port

used==true
owns

isInstanceOf

con
:Connector

connectsconnects

isInstanceOf

openPort

openPort

connect

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==false

owns

isInstanceOf

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

Fig. 6 Transformation sequence for the SmartCar scenario in the busi-
ness style

194 L. Baresi et al.

ComponentType

PortTypeInterface
provides
requires

Connector
Type

Connector

Component

DiscoveryService

Service

connects

2

allows

1

1

1

1

owns
supports

isInstanceOf

isInstanceOf

isInstanceOf

Operation

ServiceType

Discovery-
ServiceTypedefines

1

FindPT

PublishPT

RequesterPT

ProviderPT
2

Port
used:Boolean

Fig. 7 Type graph of SOA style (package Structure)

Port
(from Structure)

Service-
Description

Connector
(from Structure)

connects

2

Message

Service-
Query

Service-
Publication

0..1

0..1

sentVia0..1

1

1

requires-
ServiceForpublishes

respondsTo
1

sends

receives

Query-
Result

contains

Request Response

Operation
(from Structure)

0..1

calls

PortType
(from Structure)

1
Service

(from Structure)

Component
(from Structure)

knows

describes

0..1

1

satisfies

resultOf
1 0..1

Fig. 8 Type graph of SOA style (package Communication)

The SOA style does not model any vendor-specific plat-
form. It rather represents the general SOA-specific mecha-
nisms for service publication and service discovery. Other
aspects that go beyond like quality-of-service, security, or
mobility can be represented by even more specific styles
which form a refinement hierarchy down to vendor-specific
platform models. Our stepwise refinement approach can
then be extended to this hierarchy.

Type graph Figures 7 and 8 show the type graph of the SOA
style. Due to the increased complexity, the class diagram is
subdivided into two separate packages, Structure and Com-
munication. They contain the same types as the platform-
independent type graph from Fig. 4 but specialize some of
them by subtyping and add further types for SOA.

The first package Structure (Fig. 7) contains subtypes
of Component which can be used to declare software com-
ponents as Service or, if functioning as discovery agency,
as DiscoveryService. ComponentType is specialized ac-
cordingly. Also, there are special subtypes of PortType
which are used to define dedicated port types for interactions
with discovery services.

The second package Communication (Fig. 8) extends
the elements for message-based communication known from
the business style. The central SOA element here is Ser-
viceDescription which describes a specific Service (in
SOA, descriptions refer to deployed, addressable services
rather than to service types only). The knows relationship
indicates which components have access to a description.
The existence of such a knows relationship is a precondition
for connecting to a service as shown by the transformation
rule connect in Table 2.

Besides the already known Request and Response
messages, there are three special SOA message types for
interactions with discovery services, namely ServicePub-
lication, ServiceQuery, and QueryResult. The first one
submits a service description to a discovery service for
publication, the second one refers to a port type which the
service requester requires a suitable service for, and the
third one is returned by the discovery service containing a
description that satisfies the query.

Constraints Along with the extended type graph comes an
extended set of constraints which we do not present in de-
tail here. For instance, they ensure that a DiscoverySer-
viceType always supports port types of kind PublishPT
and FindPT. Also, they restrict possible sender and receiver
ports for SOA-specific messages; e.g., a ServicePublica-
tion message can only be sent from ProviderPT ports to
PublishPT ports.

We can now model the initial configuration of the Smart-
Car system in the SOA style. We take the business-level
instance graph from Fig. 5 and change all components ex-
cept for Vehicle into the new SOA types Service and Ser-
viceType. We attach a ServiceDescription to all services.
Furthermore, we add a DiscoveryService which is used
to dynamically discover services. Additional port types are
inserted to enable communication with the DiscoverySer-
vice. The result is shown in Fig. 9.

Since SOA-specific instance graphs become larger and
more complex than the platform-independent ones, their
readability decreases. In Sect. 4, we explain how to define
a mapping between the type graph and a customized version
of the UML meta-model in order to allow for a better con-
crete notation.

Transformation rules Similarly to the type graph, the SOA
style also inherits the transformation rules defined for the
business style in Table 1. The only rule that is modified is
the rule connect. Its SOA-specific variant, shown at the be-
ginning of Table 2, has a stronger precondition demanding
that a Component knows the ServiceDescription of a re-
quested Service before a Connector to the service can be
created.

In order to establish the required knows relationship, a
number of other SOA-specific rules have to be applied first,
which model the mechanisms for service publication and
query. These additional rules are found in Table 2 after the
connect rule.

Style-based modeling and refinement of service-oriented architectures 195

isInstanceOf
m:Service MapRequest

:ServiceType
MapProvider

:PortType
supports

t:Service

v:Component

i:Service

Vehicle
:ComponentType

ItineraryDefinition
:ServiceType

TrafficInformation
:ServiceType

MapRequester
:PortType

ItineraryRequester
:PortType

ItineraryProvider
:PortType

InfoRequester
:PortType

InfoProvider
:PortType

isInstanceOf

isInstanceOf

supports

isInstanceOf

supports

MapConnector
:ConnectorType

TrafficInfo-
Connector

:ConnectorType

Itinerary-
Connector

:ConnectorType

allows

allows

allows

allows

allows

allows

d:Discovery-
Service

Discovery-
Engine

:Discovery-
ServiceType

QueryPort
:FindPT

isInstanceOf
supports

PublicationPort
:PublishPT

supports

mapDesc:
ServiceDescriptiondescribes

itineraryDesc:
ServiceDescription

describes

trafficDesc:
ServiceDescriptiondescribes

discoveryDesc:
ServiceDescription

describes

knows

knows

knows

knows

ServiceRequester
:RequesterPT

ServiceProvider
:ProviderPT

QueryConnector
:ConnectorType

allows

allows

Publication-
Connector

:ConnectorType

allows

supports

supports

allows

supports

supports

Fig. 9 SOA-specific instance graph for the SmartCar system

There are three rules dealing with service publications
and six rules dealing with service queries. After a query has
been submitted (sendServiceQuery) and received by the
discovery service (receiveServiceQuery), the rule find-
Service is applied to decide which service description sat-
isfies the query. A necessary condition is that there exists
a ConnectorType which allows the connection of the re-
quester port type and the port type of the service. If there are
several candidates, the rule is applied non-deterministically
since we abstract from detailed specification matchings in
this style.

4 UML Notation for SOA-specific models

Graph transformation is a powerful formalism but, at the
same time, rather difficult to use in practice because instance
graphs easily grow very large. Also, the proposed notation
for instance graphs does not provide a symbolic distinction
between different element types which makes it difficult to
read the diagram.

To address these problems, we propose to use the graph
representations as underlying formalism, which can inter-
nally be handled by tools, and to place a user-friendly no-
tation layer like the Unified Modeling Language (UML) on
top. UML is a well-known modeling language and the de-
facto standard for object-oriented modeling in industry.

Another advantage of UML is its built-in extension
mechanism [13]. In our case, this mechanism can be used
to provide a distinguished notation for style-specific ele-
ments that are not represented by the UML core. For this
purpose, one defines a UML profile that consists of so-called

stereotypes. Each stereotype extends and adapts classes of
the UML meta-model by defining refined semantics, addi-
tional attributes, constraints, and, optionally, a new distin-
guished notation.

While the standard UML might be sufficient to model
platform-independent architectures (cf. [14]), we propose to
define dedicated UML profiles for platform-specific models.
Following the tradition of [14, 15], we choose an existing
meta-class from the UML meta-model that is semantically
close to a construct from the platform-specific architectural
style and define a stereotype that can be applied to instances
of that meta-class to constrain its semantics to that of the
architectural style.

The correspondence between the resulting UML models
and their equivalent graph-based representation can be main-
tained by special conversion tools as described in Sect. 6.
Based on a mapping between the (extended) UML meta-
model and the type graph of the corresponding architectural
style, such tools can translate between the UML models
exported from a CASE-tool and the corresponding graph-
based representation.

Table 2 Transformation rules of the SOA style

196 L. Baresi et al.

Table 2 Continoued

Style-based modeling and refinement of service-oriented architectures 197

«profile» SOA

«metaclass»
Class

«stereotype»
PortType

«metaclass»
Association

«stereotype»
Connector

«metaclass»
Component

«metaclass»
Instance-

Specification

«stereotype»
Service

«stereotype»
Discovery-

Service

«metaclass»
Port

«stereotype»
PublishPort

«stereotype»
FindPort

«metaclass»
Dependency

«stereotype»
Knows-

Dependency

«stereotype»
Describes-

Dependency

«stereotype»
PublishPT

«stereotype»
FindPT

«stereotype»
RequesterPT

«stereotype»
ProviderPT

«metaclass»
Artifact

«stereotype»
Service-

Description

Fig. 10 Stereotypes of the UML profile for SOA

Below, we apply the concept to our service-oriented
style. At first, we define a UML profile for SOA as a set
of stereotypes that extend selected classes of the UML 2.0
meta-model. Then, we provide a notation guide for these
new stereotypes. Eventually, we define the mapping between
the SOA type graph and the extended UML meta-model as
conceptual basis for conversions between the two represen-
tations.

Stereotypes Figure 10 defines the SOA-specific stereotypes
for the UML 2.0 meta-model. The extended UML meta-
classes are shown at the top of the diagram, the correspond-
ing stereotypes below the dashed line. The extension rela-
tionship is indicated by arrows with small, filled arrow-head.
Stereotypes can be specialized by subtypes.

Port types and connector types can be modeled with
class diagrams. Thus, we introduce the stereotype PortType
and its sub-stereotypes as extensions of the UML meta-class
Class. Associations between these port type classes model
connector types and are marked by the stereotype Connec-
tor. In the same class diagram, one can also specify the in-
terfaces that a port type provides and requires (cf. Fig. 11).

With the help of the two stereotypes Service and Dis-
coveryService, we can label components that are to be ex-
posed as services. Since services occur as both types and
instances thereof, these stereotypes can be attached to the
meta-classes Component as well as InstanceSpecifica-
tion. These constructs are used in component diagrams (cf.
Fig. 12), where we can also specify which port types from
the aforementioned class diagram are supported by a com-
ponent or service type, and in communication or sequence
diagrams modeling interactions between various (instances
of) components and services.

UML 2.0 knows the notion of Port as an interaction
point to a component instance. Thus, we do not need a sepa-
rate stereotype for ports in general. But, in order to highlight
those ports that are used for service publication and query,
we introduce the stereotypes PublishPort and FindPort.

«interface»
MapSelection

inquireMap(..)
selectMap(..)

«portType»
MapProvider

«portType»
MapRequester

«use»

«connector»
MapConnector

«interface»
ItinerarySelection

askForItineraries(..)
selectItinerary(..)

«portType»
ItineraryProvider

«portType»
ItineraryRequester

«use»

«connector»
ItineraryConnector

«interface»
TrafficInfo

getTrafficInfo(..)

«portType»
InfoProvider

«portType»
InfoRequester

«use»

«connector»
TrafficInfoConnector

«interface»
ServicePublication

publish(..)

«publishPT»
PublicationPort

«providerPT»
ServiceProvider

«use»

«connector»
PublicationConnector

«interface»
Payment

findService(..)

«findPT»
QueryPort

«requesterPT»
ServiceRequester

«use»

«connector»
QueryConnector

Fig. 11 SOA-specific class diagram for SmartCar

v:Vehicle
m:MapRequest

:MapProvider

:ItineraryRequester

:MapRequester

i:ItineraryDefinition t:TrafficInformation

:Itinerary-
Provider

:InfoRequester :InfoProvider

«service» «service»

«service»

d:DiscoveryEngine

:QueryPortF
«discovery»

:PublicationPortP

P
:ServiceProvider

F

:Service-
Requester

P

:Service-
Provider

F:Service-
Requester

P
:ServiceProvider

map-
Desc

D

traffic-
Desc

D

itinerary-
Desc

D

discovery-
Desc

D
«describe»

«describe»

«describe»

«describe»

«know»

«know»

«know»

«know»

Fig. 12 SOA-specific component diagram for SmartCar

The stereotype for service descriptions is based on the
meta-class Artifact. The relationships to these descriptions
are modeled by the stereotypes KnowsDependency and
DescribesDependency.

Notation The default convention for the notation of stereo-
typed diagram elements is to attach the stereotype name
within a pair of guillemets to the symbol of its meta-class.
Nevertheless, one can also define more customized nota-
tions. The notation of the SOA stereotypes is summarized
in Table 3.

Relating style and UML meta-model The relationship be-
tween the UML notation and the formal architectural style is
defined by a bi-directional mapping between the type graph
of the style and the extended UML meta-model. With the
help of such mapping, we can render a given instance graph
as UML diagrams, and, in the opposite direction, we can
provide the semantics for a given UML model in terms of
the architectural style.

198 L. Baresi et al.

Table 3 Notation guide for SOA stereotypes

Table 4 shows the mapping for the SOA style and the
UML profile for SOA. The left column contains the nodes
(and some of the edges) of the SOA type graph (cf. Fig. 7
and 8). The right column contains the corresponding meta-
classes and stereotypes that should be used in UML dia-
grams to depict the various concepts of the SOA style.

Edges in the type graph represent relationships between
nodes. If there are similar relationships in the UML meta-
model (e.g., for the operations defined by an interface), then
we can omit the mapping of edges. Two exceptions are the
knows and describes edges because their counterparts on
the UML side are real meta-classes and stereotypes.

If there are several notation options for the same type
graph element, then we can distinguish these options by ad-
ditional OCL constraints as shown in Table 4 for Port.

Since, we restrict the UML profile to visualizing the
structure of a system only, we omit a mapping of the var-
ious message types for communication.

Example diagrams Figures 11 and 12 give an impression,
how the model layout is improved when the SOA profile
is applied. They visualize the SOA instance graph of the
SmartCar system shown in Fig. 9.

Figure 11 presents a class diagram which defines all port
types together with their provided (triangle arrow-head) and
required (use dependency) interfaces. The component dia-
gram in Fig. 12 reveals which service or component supports
which port type and which service descriptions are known
by which components at the beginning.

Table 4 Mapping between SOA style and UML

SOA type graph UML meta-model and profile elements

elements (package name::class name)

ComponentType BasicComponents::Component

Component Kernel::InstanceSpecification

ServiceType BasicComponents::Component

stereotyped by SOA::Service

Service Kernel::InstanceSpecification

stereotyped by SOA::Service

DiscoveryService- BasicComponents::Component

Type stereotyped by SOA::DiscoveryService

DiscoveryService Kernel::InstanceSpecification

stereotyped by SOA::DiscoveryService

PortType Kernel::Class

stereotyped by SOA::PortType

ProviderPT Kernel::Class

stereotyped by SOA::ProviderPT

PublishPT Kernel::Class

stereotyped by SOA::PublishPT

FindPT Kernel::Class

stereotyped by SOA::FindPT

RequesterPT Kernel::Class

stereotyped by SOA::RequesterPT

Port [If self.portType.oclIsTypeOf(PortType)]

Ports::Port

[If self.portType.oclIsTypeOf(PublishPT)

or self.portType.oclIsTypeOf(ProviderPT)]

Ports::Port

stereotyped by SOA::PublishPT

[If self.portType.oclIsTypeOf(FindPT) or

self.portType.oclIsTypeOf(RequesterPT)]

Ports::Port

stereotyped by SOA::FindPT

ConnectorType Kernel::Assocication

stereotyped by SOA::Connector

Connector Kernel::InstanceSpecification

Interface Interfaces::Interface

Operation Kernel::Operation

ServiceDescription Artifacts::Artifact

stereotyped by SOA::ServiceDescription

knows Dependencies::Dependency

stereotyped by SOA::KnowsDependency

describes Dependencies::Dependency

stereotyped by

SOA::DescribesDependency

Style-based modeling and refinement of service-oriented architectures 199

5 Behavior-preserving architecture refinement

Based on the architectural styles defined in Sect. 3 and the
UML profile defined in Sect. 4, we can now model system
architectures at the business-level as well as for service-
oriented platforms, and we can provide an operational se-
mantics for communication and reconfiguration scenarios in
terms of graph transformations. The underlying conceptual
platform model, in our case the architectural style for SOA,
ensures that the architecture is consistent with the provided
platform mechanisms.

The remaining problem we want to address in this sec-
tion is how to ensure the consistency between architecture
models in the abstract, business-oriented and the platform-
specific, service-oriented style. Since these two styles repre-
sent different levels of platform abstraction, the desired con-
sistency relationship can be defined by an appropriate notion
of architecture refinement.

To be a valid refinement of a business-level architecture,
a platform-specific or, in our case, service-oriented architec-
ture has to realize the same functionality. This requirement
can be subdivided into

1. Structural refinement The platform-specific architecture
has to preserve all business-relevant, functional entities
and all required connections between these entities.

2. Behavior-preserving refinement The platform-specific
architecture has to enable all communication and recon-
figuration scenarios which can also occur at the business
level.

Our notion of refinement should be style-based, i. e.,
based on a relationship between the abstract, platform-
independent style and the SOA-specific style which can be
reused for refining any instances of these styles. For this pur-
pose, a mapping between the two type graphs is used to in-
duce an abstraction function that projects instance graphs
from the concrete style to the abstract style. The rationale
behind using an abstraction function rather than a refinement
function is the fact that abstraction is in general simpler and
more deterministic than refinement.

Based on the abstraction function, we can check if a
given instance graph in the SOA style is a refinement of a
given business-level instance graph. A similar criterion ap-
plies to transformation sequences representing reconfigura-
tion and communication scenarios.

In order to derive refined, SOA-specific scenarios from
given business-level scenarios including operations for ser-
vice publication and discovery, we reformulate this prob-
lem as a reachability problem which can automatically be
solved by graph transformation or model-checking tools as
described in Sect. 6.

5.1 Refinement criterion for instance graphs

As mentioned above, we use an abstraction function as re-
finement criterion which is induced by a mapping at the

ComponentType Component

DiscoveryService

Service

1 isInstanceOf

ServiceType

DiscoveryServiceType

ComponentType ComponentisInstanceOfTGpi

TGso

t

t t

t

t

1

Fig. 13 Part of the type graph mapping t

style level. For the case of service-oriented architectures,
let the platform-independent (pi) style from Sect. 3.1 be
Gpi = 〈TGpi, Cpi, Rpi〉 and the service-oriented (so) style
from Sect. 3.2 be Gso = 〈TGso, Cso, Rso〉. Then, we intro-
duce a type mapping t : TGso → TGpi, formally a partial
surjective graph homomorphism, which maps elements of
the SOA type graph TGso to the elements of the platform-
independent type graph TGpi.

The concrete definition of t is driven by semantic corre-
spondences between the elements of the two styles. We dis-
tinguish three different cases which are illustrated in Fig. 13:

1. Since the SOA-specific type graph is an extension of the
platform-independent type graph, all nodes and edges
of the latter also occur in the former. In these cases,
the SOA elements are mapped to their equivalent in
the platform-independent type graph. This way, the ab-
straction mapping t becomes surjective. For instance, as
shown in Fig. 13, t maps the SOA type Component to
the platform-independent type Component, and simi-
larly with ComponentType.

2. Since services are a SOA-specific interpretation of com-
ponents, t maps Service and ServiceType to the
platform-independent types Component and Compo-
nentType, too.

3. All other types (and adjacent edges) like Discovery-
Service, ServiceDescription, or the SOA-specific port
types and messages represent purely platform-specific
concepts which do not occur at the business level. There-
fore, these elements are not mapped to the platform-
independent type graph.

The type mapping t induces the desired abstraction func-
tion abst : GraphTGso → GraphTGpi which abstracts in-
stance graphs typed over TGso to those typed over TGpi. This
abstraction informally consists of (1) renaming the types of
all elements whose type has an image in TGpi according to
the definition of t , (2) deleting all nodes and edges which,
due to the partiality of t , have a type in TGso but not in TGpi,
and (3) deleting all dangling edges and those adjacent nodes
whose number of connected neighbor nodes falls below the
lower bound of the relevant cardinality constraint.

Figure 14 illustrates the effect of the abstraction func-
tion abst for an instance graph fragment which defines the
MapRequest service in the SOA style. First, we apply
the type mapping t and rename the types of the Service

200 L. Baresi et al.

(1)

(3)

(2)

abstractionabs
t

isInstanceOf
m:Service

MapRequest
:ServiceType

p1:PortmapDesc
:Service-

Description owns

describes

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns

ServiceProvider
:ProviderPT

supports

isInstanceOf

isInstanceOf
m:Component

MapRequest
:ComponentType

p1:Port
mapDesc
:Service-

Description owns

describes

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns

ServiceProvider
:ProviderPT

supports

isInstanceOf

isInstanceOf
m:Component

MapRequest
:ComponentType

p1:Port

owns

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns supports

isInstanceOf

isInstanceOf
m:Component

MapRequest
:ComponentType

p1:Port

owns

MapProvider
:PortType

supports

isInstanceOf

Fig. 14 Abstraction of an instance graph

and ServiceInstance nodes into Component and Com-
ponentInstance (1). Then, we delete the ProviderPT and
ServiceDescription nodes and the describes edge because
they have no mapping to TGpi under t (2). The deletion of
the ProviderPT node leads to the deletion of the adjacent
Port node in the third step, because otherwise the cardinal-
ity constraint would be violated which says that every Port
requires a PortType. Eventually, all dangling edges are re-
moved (3).

Since we defined the cardinalities and constraints Cso in
Gso stronger or as strong as the constraints Cpi in Gpi, the
abstraction of instance graphs is compatible with the con-
straints, that is, if Gso satisfies Cso, then abst (Gso) satisfies
Cpi, too.

A service-oriented instance graph Gso is called a refine-
ment of a platform-independent graph Gpi, if its abstraction
into the platform-independent style reflects exactly the ele-
ments of Gpi, i.e., if abst (Gso) = Gpi. This definition en-
sures that the SOA-specific refinement preserves all func-
tional, business-relevant entities occurring in the abstract,
business-oriented architecture.

As an example, consider the graph in the upper left
of Fig. 14 which is obviously a refinement of graph (3)
in the lower right of the figure. Another example is the
SOA-specific configuration for SmartCar, shown in Fig. 9,
which refines the platform-independent configuration shown
in Fig. 5 because the application of the abstraction function
to the former yields the latter.

The above defined refinement criterion helps to check for
refinements of individual system configurations as instance
graphs. In order to actually construct the refined configu-
rations, we refer to existing work on structural refinements
such as [16, 17]. Since our focus is on the refinement of sce-
narios, we assume that the architect uses heuristics or one
of the available techniques in order to derive correct SOA-
specific configurations (with, e.g., discovery service and ser-
vice descriptions) from platform-independent ones accord-
ing to the above refinement criterion. Nevertheless, plain
structural refinement is not sufficient to refine the behavioral
aspects of a scenario as described below.

5.2 Refinement criterion for transformations

According to Sect. 3, a reconfiguration and communication
scenario is represented as a transformation sequence in the
architectural style. For this reason, we extend the correct-
ness criterion for the refinement of instance graphs to the
refinement of transformation steps and further on to the re-
finement of transformation sequences.

For a transformation step spi = (Gpi ⇒ Hpi) in the
platform-independent graph transformation system Gpi, the
transformation sequence sso = (Gso ⇒∗

Gso H so) in the
service-oriented transformation system Gso is a correct re-
finement, if Gso refines Gpi and H so refines Hpi (formally,
abst (Gso) = Gpi ∧ abst (H so) = Hpi).

The refinement sso is a transformation sequence rather
than a single step because, at the platform-specific level, it
might be necessary to perform a number of consecutive steps
to realize the platform-independent step.

As an example, consider the transformation step spi of
Fig. 15 which contains the application of the platform-
independent rule connect (cf. Table 1). For the service-
oriented refinement of this step, we have to use the SOA
variant of the connect rule (cf. Table 2) which requires as
precondition that the service description is known to the ser-
vice requester. Therefore, it becomes necessary to submit
a service query to a discovery service before the connect
operation can be applied. Thus, we add corresponding rule
application to the service-oriented refinement sso shown at
the bottom of Fig. 15.

The criterion for transformation steps is easily extended
to sequences spi = (Gpi

0 ⇒∗
Gpi Gpi

n) of length greater than
one: A sequence sso = (Gso

0 ⇒∗
Gso Gso

n) over the SOA style

is a valid refinement of spi, if sso can be partitioned into con-
secutive subsequences that are refinements of the individual
transformation steps of spi.

5.3 Construction of refined transformation sequences

To actually construct the refined transformation sequence,
we stick to the stepwise view and decompose the abstract
sequence spi into its individual steps spi

k = (Gpi
k ⇒ Gpi

k+1).
Each step is then transformed into a reachability problem
which can be solved by analysis tools.

Consider the first step spi
0 = (Gpi

0 ⇒ Gpi
1). We assume

that there is a correctly refined start graph Gso
0 in the SOA

style with abst (Gso
0) = Gpi

0 . Then, the first reachability

Gso Hsosend-
Service-
Query

receive-
Service-
Query

find-
Service

connect

connect

abst abst

spi =

sso =

Gpi Hpi

send-
Query-
Result

receive-
Query-
Result

save-
Query-
Result

Fig. 15 Refinement of a transformation step

Style-based modeling and refinement of service-oriented architectures 201

problem is to find the shortest transformation sequence of
SOA-specific rule applications which leads from Gso

0 to an

instance graph Gso
1 that refines the target graph Gpi

1 .
The length of the SOA-specific transformation sequence

is required to be minimal, because we want to reach the tar-
get configuration without any superfluous steps that could
have additional effects on business-relevant elements like,
for instance, creating any extra connector that is not required
by the target graph Gpi

1 .
If the search within the service-oriented transformation

system is successful, the reached instance graph can be taken
as new start graph for the second step spi

1 , and so on. If we
repeat the procedure for all steps of the transformation se-
quence and concatenate the resulting SOA-specific transfor-
mation sequences, we receive a complete refinement of the
platform-independent scenario spi.

If the search fails and at least one of the steps to be re-
fined cannot be expressed as a transformation sequence at
the SOA level, then this might be caused by some missing el-
ements in the initial configuration of the service-oriented ar-
chitecture. For example, if one of the components that needs
to use a service does not know the description of the respon-
sible discovery service and, thus, cannot connect to it for
submitting a service query, then this component cannot con-
nect to the required service, either. This way, the solution
of the reachability problems can also be used to validate the
correctness and completeness of the initial SOA configura-
tion.

Example We illustrate the refinement of scenarios for the
SmartCar scenario which is partially depicted in Fig. 6 as a
transformation sequence in the platform-independent style.
The depicted part represents the creation of a new connector
between the Vehicle component and the MapRequest com-
ponent and consists of four instance graphs, which we now
name Gpi

0 , Gpi
1 , Gpi

2 , and Gpi
3 , and the three transformation

steps

Gpi
0

openPort�⇒ Gpi
1

openPort�⇒ Gpi
2

connect�⇒ Gpi
3

The refinement of this transformation sequence is de-
picted in Fig. 16. The individual steps of the refined trans-
formation sequence are labeled by the applied SOA-specific
rules. We do not highlight to which part of the graph a
rule has been applied since this can be derived from the
outcome of a rule application, and, for the sake of brevity,
we have summarized some consecutive transformations into
single steps. For the definition of the individual rules please
refer to Table 2.

The start graph of the refined sequence in Fig. 16
equals the SOA instance graph from Fig. 9 which is a
valid refinement of the platform-independent start graph
Gpi

0 from Fig. 6. It contains all relevant parts for the
Vehicle component, the MapRequest service and the
DiscoveryEngine discovery service. In order to shorten the
example, we assume that the service description mapDesc

of the MapRequest service has already been published to
the discovery service (as indicated by the knows edge).

The refinement of the transformation sequence starts
with the first two transformation steps representing two in-
vocations of the openPort operation. Their refinement into
a SOA-specific scenario is quite trivial as we can simply ap-
ply the equivalent openPort operations of the SOA style.

More difficult is the refinement of the business-level
connect operation. In this case, we cannot simply apply the
corresponding SOA variant to the last intermediate result be-
cause the SOA variant of the connect rule requires a knows
link to the service description mapDesc which is not yet ex-
istent. For this reason, we have to try the application of other
rules in order to find a transformation sequence to a valid re-
finement of Gpi

3 .
The minimal solution to this reachability problem can

be found in Fig. 16 after the first two openPort opera-
tions. In summary, it comprises two further openPort op-
erations that “prepare” a connect operation to the discov-
ery service, sending and receiving a query to the discovery
service, finding an appropriate service, and submitting the
query response with the required service description. Even-
tually, the desired connect operation is applicable after the
knows links has been created by saveQueryResult (cf.
also Fig. 15).

If we continue the refinement procedure until the en-
tire business-level scenario of the SmartCar application is
refined to the SOA-specific level, we receive a platform-
specific reconfiguration and communication scenario which
can then be rendered as a UML diagram again. Figure 17,
for instance, shows the interactions of the refined scenario
as a UML sequence diagram.

We do not have to perform the described reachability
searches manually. As discussed in the next section, existing
analysis and graph transformation tools can automatically
select applicable transformation rules and test the effect of
their application in order to automate the presented refine-
ment approach.

6 Tool support

While conceiving the approach presented so far, we did not
concentrate on designing a brand-new tool, but decided to
exploit existing tools as components of a tool chain. Even
if this paper concentrates on describing the concepts of the
approach, we briefly discuss the tool support required and
how we can reuse existing tools.

Roughly, we can split the task into the creation of UML
models and graph transformation systems and the support
for model refinement. The latter, involving the reachability
analysis for a target configuration from a given initial con-
figuration, is critical for the proposed refinement technique.
This analysis can be performed using both model checking
techniques and simulation features of graph transformation
tools. In both cases, the solution to the reachability problem

202 L. Baresi et al.

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

openPort (4x)

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

knows

QueryConnector
:ConnectorType

allows

allows

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

connect

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==false

owns

isInstanceOf

p3:Port

used==false

owns

isInstanceOf

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

sendServiceQuery +

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsis
In

st
an

ce
O

f

receiveServiceQuery

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

findService

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives
connectsis

In
st

an
ce

O
f

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

sendQueryResult +
receiveQueryResult

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives

satisfies

connectsis
In

st
an

ce
O

f

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

saveQueryResult

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives

satisfies

rq:Query-
Result

sends

re
su

ltO
f

contains

receives

sentVia
connectsis

In
st

an
ce

O
f

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

connect

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false

owns

isInstanceOf

p2:Port

used==false

owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsis
In

st
an

ce
O

f

knows

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allow
sal

lo
w

s

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==true

owns

isInstanceOf

p2:Port

used==true

owns

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsis
In

st
an

ce
O

f

knows

c2
:Connector

connectsco
nn

ec
ts

isInstanceOf isInstanceOfisInstanceOf

Fig. 16 Refined, SOA-specific transformation sequence for the SmartCar scenario

Style-based modeling and refinement of service-oriented architectures 203

v :Vehicle

inquireMap()

maps

selectMap()

getTrafficInfo()

info
itineraries

«service»

m :Map-
Request

«service»

i :Itinerary-
Definition

«service»

t :Traffic-
Information

askForItineraries()

sd plan trip «SOA»
«discovery»

d :Discovery-
Engine

sendServicePublication()

sendServicePublication()

sendServicePublication()
sendServiceQuery()

query result

sendServiceQuery()

query result

sendServiceQuery()
query result

Fig. 17 UML sequence diagram of SOA-specific scenario

has to be integrated with the tools to create graph transfor-
mation systems and UML models.

6.1 Modeling tools

The creation of UML models is a standard task and does
not require special attention. Here, we can use off-the-shelf
UML CASE tools, like Poseidon,3 to define models and
add suitable annotations (stereotypes) to decorate them with
additional information. All UML tools support the XML
Metadata Interchange (XMI) format [18] as a standard and
vendor-independent way to store and exchange user models.

The creation of graph transformation systems is sup-
ported by tools, like AGG,4 PROGRES [19], and Fujaba,5

which allow the specification of rules in various notations
as well as their application to a given graph. As a com-
mon XML format for graph transformation systems, the
Graph Transformation eXchange Language (GTXL)6 is be-
ing developed. It is based on the Graph eXchange Language
(GXL)7 [20] and will shortly be supported by several graph
transformation tools.

6.2 Reachability analysis by model-checking

Model checking of graph transformation systems has al-
ready been investigated by Varró with the CheckVML
tool [21]. This subsection gives a brief overview how the
technique can be applied to solve reachability problems. The
interested reader is referred to [6, 22] for more technical de-
tails.

3 www.gentleware.com
4 tfs.cs.tu-berlin.de/agg
5 www.fujaba.de
6 tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
7 www.gupro.de/GXL

The model checking problem consists in deciding by ex-
haustive simulation whether a certain correctness property
holds in a given transition system. That requires a system-
atic traversal of all possible execution paths of the system,
i.e., all enabled transitions must be taken in all reachable
states. The properties are typically formalized as temporal
logic formulae.

From graph transformation systems to transition systems
The system specification languages of most model check-
ers are based on transition systems, where the structure of
a state consists of (a subset of) propositions over an a pri-
ori finite universe. When translating graph transformation
systems into transition systems (as done by the CheckVML
tool, mapping graph transformation systems to Promela, the
input language of the SPIN model checker [23]) a graph is
interpreted as a state, while the application of a rule for a cer-
tain occurrence of the left hand side in such a graph yields
a transition in the transition system. Traversing all enabled
transitions then means applying all rules with all possible
occurrences.

The main challenge consists in bridging the gap in the
abstraction levels: Graph transformation rules define how an
arbitrary instance of a type graph should behave, while tran-
sition system specifications in, e. g., Promela are given for
specific instances. That requires to generate Promela transi-
tions for all the potential applications of a graph transforma-
tion rule during a compile-time preprocessing phase.

Moreover, sophisticated optimization techniques are
needed in order to reduce the state space. For example, one
can distinguish static and dynamic model elements in the
type graph (only the latter are modified by graph transforma-
tion rules), representing only the dynamic parts of instance
graphs as states of the target transition system. The occur-
rences of the rules in the static parts, instead, yield additional
constraints on the potential execution paths.

A drawback of the model checking approach is its a pri-
ori restriction to finite state systems. Therefore, one has to
fix an upper bound for the number of dynamic model ele-
ments that can be created by the transformation rules. If the
analysis is not successful, one can increase the bound and
repeat the analysis within certain limits.

From graph patterns to logic properties The reachability
problem of a certain target configuration can be expressed
by safety and reachability properties.

– A safety property defines a desired property that should
always hold on every execution path or (equivalently)
an undesired situation which should never hold on any
execution paths.

– A reachability property describes, on the contrary, a de-
sired situation which should be reached on at least one
execution path.

From a model checking point of view, safety and reach-
ability properties are dual: the refutation of a safety property

204 L. Baresi et al.

is a counter-example which satisfies the reachability prop-
erty obtained as the negation of the safety property. On the
other hand, if a safety property holds (or a reachability prop-
erty is refuted) the model checker has to traverse the entire
state space.

A safety or reachability property can be interpreted as a
special graph pattern (called property graph) which imme-
diately terminates the verification process if it is matched
successfully. As shown in [24], the properties expressible in
this way are equivalent to the ∃¬∃ fragment of (∀-free) first
order logic with binary predicates.

An alternative solution for model checking graph trans-
formation systems has been proposed by Rensink in the
GROOVE system [25]. The essence of the approach is to use
the core concepts of graphs and graph transformations all the
way through during model checking. This means that states
are explicitly represented and stored as graphs, and transi-
tions as applications of graph transformation rules. Further-
more, graph-specific model checking algorithms are applied
for traversing the state space. This solution exploits the sym-
metric nature of problems by intensive graph isomorphism
checks.

A comparison on the two approaches for model checking
graph transformation systems can be found in [26].

6.3 Reachability analysis by simulation

In order to avoid the complete generation of the state space
of a model, and thus allow the refinement of infinite state
systems, we may use graph transformation tools for the
interactive simulation. The PROGRES [19] tool is espe-
cially suitable for this purpose since it supports, besides
the mere execution, depth-first search and backtracking. In
PROGRES, we can define a type graph, the set of transfor-
mation rules, the start graph, and constraints for safety in-
variants. The reachability property is represented by a so-
called test graph which models the target pattern.

The interpreter simulates the execution of the transfor-
mation rules by non-deterministically choosing applicable
rules. If the system runs into a dead end, backtracking is
used to roll back the current state. As soon as an occurrence
of the test graph is found in the current host graph, the search
successfully terminates.

Since the tool performs depth-first search in an infinite
state space, it might run into an infinite path. For this reason,
one can define PROLOG-like cuts that interrupt the back-
tracking at certain points and guarantee termination by lim-
iting the search depth.

6.4 Tool integration

The integration of all these components can be carried out
through suitable XML data: XMI representations of class
and communication diagrams can be transformed into GXL
documents, e.g., using XSLT scripts or simple tools.

GXL is the format supported by both AGG and Check-
VML. The former exploits GXL for type and start graphs,
while the latter uses GXL graphs for the initial configuration
and the encoding of properties (i.e., scenarios). AGG and
CheckVML can also exchange graph transformation rules
encoded in GTXL, the Graph Transformation eXchange
Language.

A data flow, which is still missing, but nevertheless im-
portant, is the propagation of analysis results produced by
the model checker back to the UML case tool. This flow does
not only require a suitable data format, but also a rigorous
transformation of traces and counter examples into mean-
ingful decorations of UML elements.

6.5 User roles

The tools and artifacts discussed above imply two kinds of
users, namely style architects and application architects.

If the presented styles for business- and service-oriented
architectures are to be modified or adapted to other plat-
forms, then users who are proficient in both graph trans-
formation and architectural styles can serve as style archi-
tects to design the graph transformation systems that specify
platform-specific concepts and reconfiguration mechanisms.
The style architect also defines the mapping between the
type graph and parts of the UML meta-model (possibly ex-
tended by style-specific stereotypes) which can be used to
convert UML diagrams into the graph representations. Even-
tually, the style architect has to relate the styles for different
levels of platform abstraction by suitable refinement rela-
tions.

While specific rules and mappings are required for each
architectural style, several architectures can exploit the
same style. As soon as rules and UML mapping are defined,
application architects can model their architectures using
conventional UML diagrams (suitably stereotyped for the
chosen style) and validate and refine them by means of our
approach.

7 Related work

The work presented in this paper is rooted in four main re-
search directions: architecture description languages, model
checking of software architectures, graph transformations,
and architectural refinement.

Besides the many proposals for Architecture Descrip-
tion Languages (ADLs), like Rapide [27], Wright [28], or
Darwin [29], we must mention those approaches that exploit
graph transformation [30–34] to reason on the consistency
of reconfiguration operations and interaction of components
with respect to structural constraints. Our work is in this tra-
dition, but it combines the formal approach with the notion
of style-based refinement.

Le Métayer [32] describes architectures by graphs and
the valid graphs of an architectural style by a graph gram-
mar. Reconfiguration is described by conditional graph

Style-based modeling and refinement of service-oriented architectures 205

rewriting rules. He uses static type checking to prove that
the rewriting rules are consistent with the respective style. In
comparison to our work, his graphs represent computational
entities but no connectors, specifications, or other resources.
And, instead of a graph grammar, we use a declarative type
graph to define the valid graphs of the architectural style.

Wermelinger and Fiadeiro [34] provide an algebraic
framework based on Category theory where architectures
are represented as graphs of CommUnity programs and su-
perpositions. The architectural style, given as a type graph,
restricts the ways connectors can be applied to components.
Dynamic reconfigurations are specified by graph transfor-
mation rules over architecture instances. Both, styles and
rules are used for modeling domain-specific restrictions
rather than the underlying platform as we do. Consequently,
they do not deal with refinement relationships between dif-
ferent levels of platform abstraction.

In his Ph.D. thesis [30], Hirsch uses hypergraphs to rep-
resent architectures and hyperedge replacement grammars to
define the valid architectures of an architectural style. Fur-
thermore, he uses graph transformation rules to specify run-
time interactions among components, reconfigurations, and
mobility. Hypergraphs and rules are textually represented
using the concept of syntactic judgements which enables for-
mal type checking proofs. Similar to the other approaches,
refinement relationships are not discussed.

The use of graph transformation techniques to capture
dynamic semantics of models has also been inspired by work
proposed by Engels et al. in [35] under the name of dynamic
meta modeling. That approach extends meta-models defin-
ing the abstract syntax of a modeling language like UML by
graph transformation rules for describing changes to object
graphs representing the states of a model.

The use of model checking techniques for verifying
software architectures has been thoroughly studied by sev-
eral proposals. vUML [36], veriUML [37], JACK [38], and
HUGO [39] support the validation of distributed systems,
where each statechart describes a component, but do not
support any complex communication paradigm. JACK and
HUGO only support communication based on brodcasting,
where the events produced by a component are notified to
all the others. vUML and veriUML support the concept of
a channel, that is, each component writes and reads mes-
sages on/from a channel. These proposals aim at general-
purpose applications and can cover different domains, but
are not always suitable when we need a specific communi-
cation paradigm.

They study static systems whose topology cannot vary
at run-time. Similarly, Garlan et al. [40] and the re-
searchers involved in the Cadena project [41] applied model-
checking techniques to analyze specific architectures based
on the publish/subscribe paradigm. The fixed topology dis-
tinguishes these approaches from our work. In fact, we pro-
pose the study of the dynamic evolution of architectures
with almost no attention to the internals of components.
Given our interest, we treat components as black-box en-
tities, while all these approaches analyze the behaviors of

such components. They consider a given system (architec-
ture) as if it were a complex and fixed automaton, but neglect
the possibility that such automaton changes while the sys-
tem evolves. Even if different, these approaches can also be
seen as the natural complement of our approach: We study
what they do not address and they analyze what we neglect,
mainly because of the size of resulting models. So far, no
proposal attempts to address the whole picture.

There are also different notions of software refinement.
For instance, Batory et. al. [42] consider feature refinement
which is modifying models, code, and other artifacts in or-
der to integrate additional features. For every new artifact
type, they require a special refinement definition in order to
compose software by generators. In our case, we concen-
trate on the refinement of architectural models and derive
platform-specific models from abstract ones without adding
any extra-functionality.

Such a refinement of architectures has first been
discussed by Moriconi et al. in [17]. Building on a formal-
ization in first-order logic, the authors describe a general
approach of rule-based refinement replacing a structural
pattern in the more abstract style by its realization in the
concrete style. The approach is complementary to ours
because it focuses on refinement of structure rather than
behavior and does not capture reconfiguration. The general
idea of rule-based refinement, however, could be applicable
in our context, too.

Garlan [43] stresses the fact that it is more powerful to
have rules operating on styles rather than on style instances.
He formalizes refinements as abstraction functions from the
concrete to the abstract style. We use a similar approach to
define the refinement relations (see Sect. 5). Also, he argues
that no single definition of refinement can be provided, but
that one should state what properties are preserved. In our
case, we concentrate on the preservation of the dynamic se-
mantics of reconfiguration and communication scenarios.

Other proposals on architecture refinement like [16, 44,
45] concentrate on structural refinements only, which is
complementary to our work. The only formal approach we
are aware of that considers refinement of dynamic reconfig-
uration can be found in [46]. But, the paper provides only
a sketch of the ideas without any concrete definition. More-
over, the approach is targeted on the translation from one
ADL to another rather than on the refinement between ar-
chitectural styles that represent different levels of platform
abstraction.

8 Conclusions and future work

In this paper, we have given a formal definition of service-
oriented architectures, seen as an architectural style. We
have defined a refinement relation from a generic style of
component-based systems to the SOA style that can be used
to study the specialization of platform-independent scenar-
ios, and we have discussed the use of model checking tech-
niques and tools to automate this task. The results are based

206 L. Baresi et al.

on the use of graph transformation systems as models of ar-
chitectural styles at different levels of platform abstraction,
representing reconfiguration and communication scenarios
as graph transformation sequences.

While we demonstrated the approach for service-
oriented architectures in this article, it should also be ap-
plicable to other kinds of middleware infrastructures mod-
eled by corresponding architectural styles as sketched in
Sect. 6.5.

As stated in Sect. 7, a current challenge is to combine
descriptions and analysis of component behavior with run-
time changes of component configurations. In a parallel pa-
per [47], we elaborate on this problem and propose an ex-
tension of the architectural styles presented in this article.
These extensions allow to equip active entities like compo-
nents, services, and connectors with process definitions that
prescribe the order in which communication and reconfigu-
ration operations can be applied.

All applications of communication and reconfiguration
rules have to respect the process definitions. This way,
we integrate descriptions of component behavior and of
topological changes which are required to realize the de-
sired business processes. In [47], we demonstrate how
this integration can be achieved without any new for-
mal concepts. Consequently, we are still able to apply
the aforementioned model checking-based analysis tech-
niques. The restricted architectural behavior even facili-
tates the analysis due to the smaller overall state space.
We also discuss in [47] how the behavior-preserving re-
finement can be guaranteed in face of the new process
descriptions.

Our future work addresses the development of an inte-
grated CASE environment for the analysis and stepwise re-
finement of software architectures which is a prerequisite
for validating the approach on other non-trivial examples.
We are proficiently conducting experiments with existing
graph transformation tools and model checkers in isolation,
but the final objective is a tool chain that seamlessly inte-
grates the different components. The problem is largely one
of incompatible input formats. Only the backward transla-
tions of analysis results into user models poses conceptual
questions.

References

1. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall (1996)

2. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architec-
ture. Addison-Wesley (2000)

3. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Object Manage-
ment Group, 2003. www.omg.org/docs/omg/03-06-01.pdf.

4. Abowd, G.D., Allen, R., Garlan, D.: Using style to understand de-
scriptions of software architectures. ACM Software Engineering
Notes 18(5), 9–20 (1993)

5. Di Nitto, E., Rosenblum, D.: Exploiting ADLs to specify architec-
tural styles induced by middleware infrastructures. In: Proc. of the
21st International Conference on Software Engineering, ICSE 99,
pp. 13–22. IEEE Computer Society Press (1999)

6. Baresi, L., Heckel, R., Thöne S., Varró, D.: Modeling and vali-
dation of service-oriented architectures: Application vs. style. In:
Proc. ESEC/FSE 03 European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 68–77. ACM Press (2003)

7. Baresi, L., Heckel, R., Thöne S., Varró, D.: Style-based refinement
of dynamic software architectures. In: Proc. WICSA4—4th Work-
ing IEEE/IFIP Conference on Software Architecture, pp. 155–
164. IEEE Computer Society (2004)

8. Heckel, R., Lohmann, M., Thöne, S.: Towards a UML profile for
service-oriented architectures. In: Proc. of Workshop on Model
Driven Architecture: Foundations and Applications (MDAFA),
CTIT Technical Report TR-CTIT-03-27. University of Twente,
Enschede, The Netherlands (2003)

9. Champion, M., Ferris, C., Newcomer, E., Orchard, D.:
Web Service Architecture, W3C Working Draft, 2002. http://
www.w3.org/TR/2002/WD-ws-arch-20021114/

10. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Funda-
menta Informaticae, 26(3/4), 241–265 (1996)

11. Object Management Group. UML 2.0 OCL Final Adopted Speci-
fication, 2003. www.omg.org/cgi-bin/doc?ptc/2003-10-14

12. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an alge-
braic approach. In: 14th Annual IEEE Symposium on Switching
and Automata Theory, pp. 167–180. IEEE (1973)

13. Object Management Group. UML 2.0 Superstructure Fi-
nal Adopted specification, 2003. http://www.omg.org/cgi-bin/
doc?ptc/2003-08-02

14. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.:
Modeling software architectures in the Unified Modeling Lan-
guage. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 11(1), 2–57 (2002)

15. Robbins, J.E., Medvidovic, N., Redmiles, D.F., Rosenblum, D.S.:
Integrating architecture description languages with a standard de-
sign method. In: Proc. of the 20 th International Conference on
Software Engineering, ICSE 98, pp. 209–218. IEEE Computer So-
ciety (1998)

16. Abi-Antoun, M., Medvidovic, N.: Enabling the refinement of a
software architecture into a design. In: Proc. UML 99—The Uni-
fied Modeling Language, vol. 1723 of LNCS, pp. 17–31. Springer
(1999)

17. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct archi-
tecture refinement. IEEE Transactions on Software Engineering
21(4), 356–372 (1995)

18. Object Management Group. XMI: XML Metadata Interchange,
v2.0, 2003. http://www.omg.org/cgi-bin/doc?formal/2003-05-02

19. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES ap-
proach: Language and environment. In Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook on
Graph Grammars and Computing by Graph Transformation,
vol. 2. Applications, Languages and Tools. World Scientific
(1999)

20. Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL
graph exchange language. In Diehl, S. (ed.) Software Visual-
ization: International Seminar, Dagstuhl Castle, Germany, May
20–25, 2001. Revised Papers, vol. 2269 of LNCS, pp. 324–336.
Springer (2002)

21. Varró, D.: Towards symbolic analysis of visual modeling lan-
guages. In Proc. GT-VMT 2002—Int. Workshop on Graph Trans-
formation and Visual Modeling Techniques, vol. 72 of ENTCS,
pp. 57–70. Elsevier (2002)

22. Varró, D.: Automated formal verification of visual modeling lan-
guages by model checking. Journal of Software and Systems Mod-
eling 3(2), 85–113 (2004)

23. Holzmann, G.: The model checker SPIN. IEEE Transactions on
Software Engineering 23(5), 279–295 (1997)

24. Rensink, A.: Canonical graph shapes. In: Schmidt, D.A. (eds.)
Programming Languages and Systems—European Symposium on
Programming (ESOP), vol. 2986 of LNCS, pp. 401–415. Springer
(2004)

Style-based modeling and refinement of service-oriented architectures 207

25. Rensink, A.: The GROOVE simulator: A tool for state space
generation. In: Nagl, M., Pfalz, J., Böhlen, B. (eds.) Proc.
Application of Graph Transformations with Industrial Rele-
vance (AGTIVE’03), vol. 3062 of LNCS, pp. 479–485. Springer
(2003)

26. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph trans-
formations: A comparison of two approaches. In: Ehrig, H., En-
gels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) Proc. 2nd Inter-
national Conference on Graph Transformation, ICGT 2004, vol.
3256 of LNCS, pp. 226–241. Springer (2004)

27. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D.,
Mann, W.: Specification and analysis of system architecture using
rapide. IEEE Transactions on Software Engineering 21(4), 336–
355 (1995)

28. Allen. R.: A Formal Approach to Software Architecture. PhD
thesis, School of Computer Science, Carnegie Mellon University
(1997)

29. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Dis-
tributed Software Architectures. In: Proc. ESEC 95–5th European
Software Engineering Conference, vol. 989 of LNCS, pp. 137–
153. Springer (1995)

30. Hirsch, D.: Graph transformation models for software architecture
styles. PhD thesis, Departamento de Computación, Universidad de
Buenos Aires (2003)

31. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement
with name mobility. In: Proc. CONCUR 2001—Concurrency The-
ory, vol. 2154 of LNCS, pp. 121–136. Springer (2001)

32. Le Métayer, D.: Software architecture styles as graph grammars.
In: Proc. 4th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, vol. 216 of ACM Software Engineering
Notes, pp. 15–23. ACM Press (1996)

33. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change manage-
ment by distributed graph transformation: Towards configurable
distributed systems. In: Proc. TAGT’98—Theory and Applica-
tion of Graph Transformations, vol. 1764 of LNCS, pp. 179–193.
Springer (2000)

34. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach
to software architecture reconfiguration. Science of Computer
Programming 44(2), 133–155 (2002)

35. Engels, G., Hausmann, J.H., Heckel, R., St. Sauer. Dynamic meta
modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In: Proc. UML 2000—The Unified
Modeling Language, vol. 1939 of LNCS, pp. 323–337. Springer
(2000)

36. Lilius, J., Paltor, I.P.: vUML: a tool for verifying UML models. In
Proceedings of the 14th IEEE International Conference on Auto-
mated Software Engineering (ASE), pp. 255–258 (1999)

37. Compton, K., Gurevich, Y., Huggins, J., Shen, W.: An automatic
verification tool for UML. Technical Report CSE-TR-423-00,
University of Michigan, EECS Department (2000)

38. Gnesi, S., Latella, D., Massink, M.: Model checking UML state-
charts diagrams using JACK. In: Proceedings of the 4th IEEE In-
ternational Symposium on High Assuarance Systems Enginering
(HASE), pp. 46–55. IEEE Press (1999)

39. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state ma-
chines and collaborations. Electronic Notes in Theoretical Com-
puter Science 55(3), 13 (2001)

40. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-
subscribe systems. In: Proceedings of the 10th SPIN Workshop,
vol. 2648 of LNCS (2003)

41. Hatcliff, J., Deng, W., Dwyer, M.B., Jung, G., Ranganath, V.: Ca-
dena: An integrated development, analysys, and verification en-
vironment for component-based systems. In: Proceedings of the
25th International Conference on Software Engineering, pp. 160–
172, (2003)

42. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise re-
finement. In: Proc. ICSE 2003—Int. Conference on Software En-
gineering, pp. 187–197. IEEE (2003)

43. Garlan, D.: Style-based refinement for software architecture. In:
Proc. ISAW-2, 2nd Int. Software Architecture Workshop on SIG-
SOFT ’96, pp. 72–75. ACM Press (1996)

44. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement
of dynamic software architectures. In: Proc. WICSA1, First Work-
ing IFIP Conference on Software Architecture, vol. 140 of IFIP
Conference Proceedings, pp. 107–126. Kluwer (1999)

45. Denford, M., O’Neill, T., Leaney, J.: Architecture-based de-
sign of computer based systems. In: Proc. StraW03, Int. Work-
shop From Software Requirements to Architectures, 2003.
se.uwaterloo.ca/ straw03/

46. Bolusset, T., Oquendo, F.: Formal refinement of software architec-
tures based on rewriting logic. In Proc. RCS 02 Int. Workshop on
Refinement of Critical Systems, 2002. www-lsr.imag.fr/zb2002/.

47. Heckel, R., Thöne, S.: Behavior-preserving refinement relations
between dynamic software architectures. In Proc. of the 17th Int.
Workshop on Algebraic Development Techniques, WADT 2004,
LNCS. Springer, 2004 (to appear)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

