
Software & System Modeling (2006) 5(1): 91–107
DOI 10.1007/s10270-005-0100-7

REGULAR PAPER

Ashley McNeile · Nicholas Simons

Protocol modelling: A modelling approach that supports reusable
behavioural abstractions

Received: 13 February 2005 / Accepted: 21 March 2005 / Published online: 9 September 2005
c© Springer-Verlag 2005

Abstract We describe a behavioural modelling approach
based on the concept of a “Protocol Machine”, a ma-
chine whose behaviour is governed by rules that determine
whether it accepts or refuses events that are presented to it.
We show how these machines can be composed in the man-
ner of mixins to model object behaviour and show how the
approach provides a basis for defining reusable fine-grained
behavioural abstractions. We suggest that this approach pro-
vides better encapsulation of object behaviour than tradi-
tional object modelling techniques when modelling transac-
tional business systems.

We relate the approach to work going on in model driven
approaches, specifically the Model Driven Architecture ini-
tiative sponsored by the Object Management Group.

Keywords Behavioural modelling · Reuse · Protocols ·
State machines · Mixins · Executable modelling

1 Introduction

1.1 Background and purpose

The modelling ideas described in this paper have their ori-
gins in work done by the authors in the late 1980s to develop
a scheme for generating code from models. Since that early
work we have developed a series of tools that implement the
approach and have refined the ideas and their formal basis.

Our objective has been to develop suitable abstractions
for describing the behaviour of a class of systems normally
termed “transactional business systems”. This class includes
such familiar applications as accounting, order processing,
workflow, stock control, etc.

Communicated by August-Wilhelm Scheer

A. McNeile (B) · N. Simons
Metamaxim Ltd, 48 Brunswick Gardens, London W8 4AN,
GROSSBRITANNIEN
E-mail: ashley.mcneile, nick.simons@metamaxim.com

This paper explores a possible formal basis for the ideas.
We believe that this formalisation will help others in the
modelling community to understand and assess our work,
and provide a basis to extend and improve it.

We also compare aspects of our approach with more
traditional object-oriented modelling (as supported, for in-
stance, by the Unified Modelling Language, UML) and ex-
plain how ours differs and why it may be better.

1.2 Structure of the paper

In Section 2 we introduce the underlying concepts of Events,
Protocol Machines and Protocol Systems. These are the ba-
sis for the rest of the paper.

In Section 3 we show how these basic concepts can be
used to model the behaviour of objects, and in Section 4
how the behavioural metadata of objects is defined. This sec-
tion includes an example illustrating a graphical notation for
metadata.

Section 5 explains how the ideas can be used to build
semantically complete object models, capable of execution.
Section 6 describes how the approach supports reuse of be-
havioural metadata.

Section 7 discusses the differences between our ap-
proach and other forms of object based modelling. We note
that our focus on modelling behaviour is aligned to some of
the aims of the Object Management Group’s “Model Driven
Architecture” (MDA) initiative, and we relate our work to
other work in the MDA field.

Finally, Section 8 gives a short history of implementa-
tions of the ideas described in this paper.

2 Underlying concepts

This section describes the three concepts that form the basis
of the approach described in this paper. These concepts are:
• events,
• protocol machines, and
• protocol systems.

92 A. McNeile, N. Simons

2.1 Events

Our focus has been on modelling the behaviour of event
driven systems. Our modelling approach uses a core be-
havioural abstraction that we refer to as a “protocol ma-
chine”. Before describing the concept of a protocol machine
in detail, we start with the notion of an “event”.

An “event” (properly an “event instance”1) is the data
representation of an occurrence of interest in the real world
business domain. Examples of such real world occurrences
are “Customer Fred places an order for 100 widgets to be
delivered on 12th August” or “Policy holder Jim makes a
claim for £250 against policy number P1234”. These occur-
rences are considered to be atomic and instantaneous in the
domain.

An event represents such an occurrence as a set of data
attributes. Every event is an instance of an event-type, and
the type of an event determines its metadata (or attribute
schema), this being the set of data attributes that completely
define an instance of the event-type. In a banking system, for
instance, an event-type might be “Withdraw” with metadata
(Account Id, Date and Time, Amount).

This approach to modelling events is identical to that
used in other event based modelling approaches such as
Jackson System Development [1] and Syntropy [2]. From a
more formal standpoint, our treatment of events corresponds
to that described by Jackson and Zave [3].

We use meaningful, natural language names for Event-
types to aid their identification with the real world occur-
rences that they represent. For the same reason, we use
natural language names for attributes in the metadata of an
event-type.

2.2 Protocol machines

A “protocol machine” is a conceptual machine that has a
defined repertoire of events that it understands, and the abil-
ity to accept, refuse or ignore any event that is presented to
it.

Protocol machines have the property that large, com-
plex protocol machines can be assembled from small, sim-
ple ones. We are interested in using them to build models of
systems that comprise objects and, in this use, the smallest
protocol machines are more fine-grained than objects. The
largest, however, represent whole systems.

The use of the term “protocol” in this context is bor-
rowed from UML, as used in the concept of a “protocol
state machine” [4]. In UML, protocol is used to mean an
allowable sequence of operation (method) invocations in the
life of an object. Although we are talking about sequencing
of events rather than operations, the intent (namely to de-
fine allowable sequences) is the same so we use the same
term.

1 We will use “event” for event instance throughout this paper.
Where we need to refer to an event type we will use the explicit term.

Fig. 1 Local state and state environment

2.2.1 Type

A protocol machine has a “machine-type” which is a fixed,
immutable property of the machine. The machine type, M ,
of a machine instance, m, can be determined using a type
function:

M = τ(m).

(Note: Throughout this paper we use upper case to denote a
type and lower case to denote an instance.)

2.2.2 State

A protocol machine has a stored “local state” which only it
can alter, and only when moving to a new state in response
to an event.

Machines can be nested. If a machine m1 is immediately
nested in machine m2, then:

• The local state of m1 is a subset of the local state of m2.
• Only m1 can alter that part of the local state of m2 that

is also the local state of m1.

In addition, a machine has a “state environment”, being
stored state that the machine can access but cannot alter. The
state environment of m1 is defined as the union of:

• the local state of m2 that is not local state of m1, and
• the state environment of m2.

A machine that is not nested inside another has an empty
state environment, and is called a “closed machine”.

This is summarised in Fig. 1.

2.2.3 Repertoire

A protocol machine has a set called its “repertoire” that de-
termines the events that it is able to understand.2 The only

2 More formally: an event-type is included in the repertoire of a pro-
tocol machine if there is some state of the machine in which it would
be capable of accepting or refusing it.

Protocol modelling 93

requirement of a repertoire is that when an event is presented
to a machine, it must be possible to determine whether or
not that event is represented in the repertoire. Exactly how
this determination is made is defined in Sect. 3.3 in terms of
“binding”. For the present we shall take it that the reper-
toire of a machine is a set of event-types. The machine
can understand any event with a type that belongs to its
repertoire.

As we describe later in Sect 5.4, the repertoire of a ma-
chine can change. However, it must always be possible to
determine the repertoire of a machine when the machine is
in a stable state.

When machines are nested, the repertoire of an inner
machine is always a subset of the repertoire of the ma-
chine within which it is embedded. This is required for
consistency, as it makes no sense for a machine to ig-
nore an event that another machine nested inside could
understand.

2.2.4 Behaviour

The behaviour of a protocol machine is entirely event driven.
Events are presented to the machine one at a time by its en-
vironment. The machine has no capability to process more
than one event at a time, and is stable between events. Pre-
senting an event to a machine also presents it to every em-
bedded machine.

The behaviour of a machine is defined as follows:

a. When presented with an event that is not represented in
its repertoire, the machine ignores it.

b. When presented with an event that is represented in its
repertoire, it will either accept it or refuse it.

c. Acceptance of an event is not possible unless the quies-
cent values of the machine’s local state and of its state
environment both before and after the event meet con-
straints specified by the machine.

d. By accepting an event, the machine is allowing (but not
requiring) its new quiescent state to be designated as its
new stable state.

2.2.5 Quiescence and stability

A machine is quiescent when, if starved of further events (no
further events presented to it), it cannot undergo any further
change of local state. Informally, this just means that the pro-
cessing that the machine performs to update its local state in
response to an event is complete.

When a machine reaches quiescence after being pre-
sented with an event, one of the following must take place:

• Its new quiescent local state is designated as its new “sta-
ble” state; or

• The new quiescent local state is abandoned, and the ma-
chine remains at the stable state that pertained before the
last event.

Whichever of these takes place, it applies to the ma-
chine itself and to all embedded machines. The decision as
to which happens is, in general, not made by the machine
itself. This is discussed later in Sect. 5.2.

Only after a new stable state has been established can a
new event be presented to the machine.

2.2.6 Determinism

Protocol Machines are deterministic in the following sense.
The new quiescent state that a machine reaches as a result of
being presented with an event is completely determined by:

• the last stable value of its own local state,
• the last stable value of its state environment, and
• the event-type and the values of the attributes of the event

presented to it.

This also means that whether or not a machine accepts an
event is similarly deterministic, and therefore that executions
of a protocol machine based model are repeatable.

To ensure that this degree of determinism is achieved re-
quires that:

a. The algorithm by which a machine updates its local state
is deterministic3.

b. When a machine accesses its state environment in the
course of update, it will always obtain the last stable
value, not yet reflecting any update for the current event.

c. A machine does not begin to update its own local state
until all embedded machines have reached their new qui-
escent states, and access to the state of an embedded ma-
chine yields its new quiescent state.

The last of these means that, using the terminology of
Sect. 2.2.2, if machine m2 is performing updates to its local
state for an event e:

• m2 cannot start to alter its own local state before e has
been presented to m1 and m1 has reached quiescence.

• m2 has access to this new quiescent state of m1.
• m2 also has access to its own state environment in its last

stable state, i.e., not reflecting any updates for e.

The scheme is shown pictorially in Fig. 2.

2.3 Protocol systems

We are interested in building executable models by putting
together protocol machines.

In this section we describe, in general, how a set of pro-
tocol machines can be composed in parallel to form another
protocol machine. We call a machine formed in this way a
“protocol system”. A protocol system has no stored state or

3 This rules out, for instance, using multiple threads of processing
in the algorithm if this can cause indeterminism by introducing race
conditions.

94 A. McNeile, N. Simons

Fig. 2 State access during event update

behavioural capacity beyond that provided by the machines
that constitute it.

In the following sections we describe how a protocol
system behaves and show how it conforms to the definition
of a protocol machine. For ease of reading across, the sec-
tions mirror those used in Sect. 2.2 to describe a protocol
machine.

2.3.1 Type

A system has a “system-type” which is a unique, immutable
property of the system. The type of a system has associated
metadata which determines a fixed set of machine types to
which any constituent machine must belong.

The system-type, S, of a system, s, can be determined
using a type function:

S = τ(s).

As a system is itself a protocol machine, its system-type
is also its machine-type.

2.3.2 Repertoire

The repertoire of a system is the union of the repertoires of
its constituent machines.

2.3.3 State

The local state of a system is the union of the local states of
the constituent machines.

The state environment of each constituent machine is the
union of:

• the local states of all the other constituent machines, and
• the state environment of the system.

2.3.4 Behaviour

When an event is presented to a system it is presented, in
some order, to all of the constituent machines of the system.

The disposition (ignored, refused or accepted) of an
event presented to a system is determined by, and only by,
the responses of the constituent machines in the system. This
determination is made as follows:

a. If the event is not represented in the repertoire of the
system, the system ignores it.

b. If any constituent machine refuses the event, the system
refuses it.

c. Otherwise the system accepts the event.

Note that this definition of the semantics of composition
bears a close resemblance to the parallel composition opera-
tor, P||Q, in Hoare’s Communicating Sequential Processes
[5]. We explore some aspects of this resemblance in an ear-
lier paper, State Machines as Mixins [6].

2.3.5 Quiescence and stability

It follows from the definition in Sect. 2.2.5 that the system
is quiescent when:

• all constituent machines that could update their local
state as a result of the last event presented to the system
have done so, and

• all of its constituent machines are quiescent.

Once a system is quiescent a determination of its new
stable state is made, as described in Sect. 5.2.

2.3.6 Determinism

A protocol system is deterministic, shown inductively as fol-
lows:

a. By assumption, the constituent machines are determinis-
tic. So the only source of non-determinism in the sys-
tem is in different choices of the order in which the
constituent machines are presented with an event and
perform their update.

b. As any constituent machine, while in progress of updat-
ing its local state, cannot see updates made for the cur-
rent event by any other constituent machine, the ordering
of updates does not influence the result of the updates.

This induction requires that elementary machines (those
not defined in terms of other machines) are deterministic.
This is addressed in Sect. 4.3.

Protocol modelling 95

Fig. 3 A system with two objects

3 Modelling objects

This section describes how the concepts of events, proto-
col machines and protocol systems can be used to construct
models that have a notion of object.

3.1 Object identifiers

Our aim is to be able to model a population of objects as
a protocol system. We do not want each object instance to
require its own machine type, so we have to be able to ac-
commodate multiple instances of a given machine type in a
system and identify them as different individuals.

To provide for unique identification of machines in a sys-
tem, and to tie every machine to the object whose partial
description it represents, we require that every constituent
machine of a system has a property called its “object iden-
tifier”, or OID. The OID is a fixed, immutable property of
the machine. The combination of the OID and machine-type
properties of a machine must be unique in a system.

The collection of all machines sharing a given OID rep-
resents an object, so the relationship between objects and
machines is one to many,4 as shown in Fig. 3.

Figure 3 shows a system containing two objects, one
comprising three machines and the other two machines. The
combination of machine-type and OID yields a unique iden-
tifier for each machine. Note that machine type M1 is used
by both objects.

3.2 Repertoire specification

In Sect. 2.2.3 we introduced the idea of a repertoire, and sug-
gested that the repertoire of a machine type can be thought
of as a set of event-types.

With the introduction of objects the use of a simple
event-type as a repertoire entry is not sufficient, and needs
to be qualified in two ways as described below.

4 An alternative formation, having one machine per OID, is also pos-
sible but adds complexity with no apparent advantage.

The first need for qualification results from having mul-
tiple machines of the same type in a system. When an event
is submitted to a system it will be relevant to some objects
and not others. Thus a “Withdraw” occurrence in a banking
domain will be for a particular account. Other accounts are
not affected by it and should ignore it.

From the objects’ point of view the event instance cor-
responding to the Withdraw is in the repertoire of one par-
ticular account, and should be ignored by other accounts. To
allow the repertoire to be used to determine that an event is
to be ignored because it is for a different object, the entries
in the repertoire of the machine are made to include the OID
of the machine. Concretely, we express this by specifying an
entry in the repertoire of a machine using both the event-type
and the OID:

(E, o, . . .).

Here E is an event-type and o is the OID of the machine.
The ellipsis indicates that we are now going to add more to
the entry, because of the second need for qualification.

The second need for qualification is more subtle. It is
required because, in some cases, event-type is not a unique
determinant of the meaning of an event to a machine. Ambi-
guity can occur when an event instance can be presented to
two machines of the same type.

Consider the case of a “Transfer” event that moves
money from one bank account to another. Clearly an in-
stance of Transfer has a different effect in the two accounts:
in one (the source) it causes a reduction in the balance but
in the other (the target) it causes an increase. It may also
be that the Transfer is subject to different protocol rules in
the two accounts: for instance, if an account is in a “frozen”
state, this may mean that it cannot serve as the source of a
Transfer but may not affect its ability to act as a target.

If both accounts are represented by a machine of the
same type, it is necessary for the machine to know both the
event-type (Transfer) and its role in the event (Source or Tar-
get) to determine its behaviour. To ensure lack of ambiguity,
the role (e.g., Source or Target) that an object can play when
engaging in an event is added to the event-type and OID to
create an unambiguous repertoire entry thus: (E , o, R). Here
R is a role name.

To keep the formalisation uniform, and without loss of
generality, we assume that all repertoire entries use this triple
form, even if the role name is not required for disambigua-
tion.

As would be expected, the roles that an event-type can
play are specified in its metadata. The metadata for the
Transfer event-type might be as shown in Fig. 4. This shows
the attributes of the Transfer event and an indication, in
parentheses, of the type of value that each attribute is al-
lowed to take.

We shall use the names of the OID valued attributes,
“Source” and “Target” in Fig. 4, as the names of the roles as-
sociated with the event-type. For example, the entry (Trans-
fer, 12345, Source) in a machine’s repertoire signifies that
the machine will understand, and either accept or refuse but

96 A. McNeile, N. Simons

Fig. 4 Metadata for the transfer event

will not ignore, an event that wants to transfer funds, using
the account corresponding to OID 12345 as the source of the
transfer.

3.3 Binding

When an event is presented to a machine its treatment by the
machine depends on whether the event is represented in the
repertoire of the machine. We use the term “binding” to de-
scribe whether or not an event is represented in the repertoire
of a machine.

When an event is created, some of its attributes (as de-
fined by the event-type’s metadata, see Fig. 4) take OIDs as
their values. Suppose an event instance e of event-type E
containing an attribute R with OID value o is presented to
machine m. We say that the attribute is “bound” to m if m’s
repertoire contains the entry (E , o, R).

Based on this, we can define the possible levels of bind-
ing between an event e and a machine m as follows:

a. If e has no OID valued attributes, the binding between e
and m is undefined.

b. If any OID valued attribute of e is bound to m, e is
“bound” to m.

c. If all OID valued attributes in e are bound to m, e is
“fully bound” to m.

d. If no OID attribute of e is bound to m, e is “not bound”.

The phrase “an event e is represented in the repertoire
of a machine m” introduced in Sect. 2.2.3 we now formally
define to mean “e is bound to m”. Thus a machine m will
ignore an event e that is presented to it unless e is bound to
m.

3.4 Single binding rule

Consider an event of type E that has two OID valued at-
tributes (R1 and R2) with the same OID value, o. There is
the risk here that the model contains a machine that has both
(E , o, R1) and (E , o, R2) in its repertoire, and that this ma-
chine will accept and react in two different ways to the event.
This could give rise to non-deterministic behaviour.

To prevent this, we require that a given OID may ap-
pear as the value of at most one attribute in a given event
instance, so that it is not possible for two attributes of the
same event instance to bind to the same machine. Having
an event instance that binds twice with a given machine is
avoided by using another event-type that only binds once.

Thus a “Suicide” event would be used in place of “Murder”
if the murderer and victim are the same person.

3.5 Object types

The scheme described so far does not place any restriction
on the combinations of machine types that may be used to
form an object. If a system has n machine types, any of the
2n–1 combinations could be used. We now describe a more
restricted, but much more useful, formulation in which there
is a fixed number of predefined object types.

To do this we ensure that every system only allows a
predetermined combination of machine types to share the
same OID. Each combination of machine types allowed is
specified as a set called an “object type”. The set of object
types supported by a system of type S is denoted by �(S)
and is part of the metadata associated with the system-type.

4 Machine metadata

Ultimately any protocol machine is defined in terms of “el-
ementary machines”: machines that are not defined (as sys-
tems) in terms of other machines.

The properties and behaviour of an elementary machine
are determined by the metadata associated with its machine-
type. This metadata determines:

a. The repertoire of the machine.
b. The initialised value of the local state of a newly instan-

tiated machine.
c. The tests that the machine applies to the quiescent states

before and after an event to determine whether or not it
accepts the event.

d. The updates that it makes to its local state as the result
of an event.

It is not the purpose of this paper to describe the details
of a concrete modelling language, but some aspects of the
metadata definition are described below.

4.1 Machine meta-repertoire

The metadata of an elementary machine type M defines the
set of event-type/role combinations (E , R) that any machine
of type M can understand. This set is called the “meta-
repertoire” of M and is denoted by �(M).

When an elementary machine is instantiated from meta-
data and given an OID, o, the machine’s repertoire entries in
the form (E , o, R) are created from the OID and the meta-
repertoire in the obvious way.

4.2 Machine behaviour

For each entry in the meta-repertoire of a machine, the ma-
chine’s metadata must provide:

Protocol modelling 97

Fig. 5 Structure of machine metadata

• A definition of the tests that determine whether or not
an event instance that matches the repertoire entry is ac-
cepted, and

• The updates to the machine’s local state that are per-
formed if it is.

The metadata for a machine can be thought of as having
the logical structure shown in Fig. 5.

This picture depicts a structure for the metadata for a
machine type, M . The upper boxes represent the entries of
the meta-repertoire of M , so: �(M) = {Q1, Q2, Q3, Q4}.
Each member of �(M) has the form (E , R) described in
Sect. 4.1.

The lower box for a given meta-repertoire entry defines
how a machine of type M handles an event that matches the
meta-repertoire entry. The handling is defined by:

a. Tests to be applied to the quiescent states before and af-
ter an event that determine whether or not the event can
be accepted by the machine. These tests have as their
domain the local state and the state environment of the
machine.

b. The algorithm that defines the update to be applied to the
local state of the machine as a result of the event.

4.3 A graphical notation

In principle, the metadata for the test and update definitions
(the lower boxes in Fig. 5) can take any convenient form: for
instance a programming language. However, the following
graphical form is attractive and works well in practice.

The graphical notation uses state transitions. There are
two variants of the notation, as shown in Fig. 6.

In both variants, the circles represent states of the ma-
chine, and the transition represents the effect of an event. In
both cases, the diagram represents a successful event accep-
tance scenario.

In the upper variant, the states “s1” and “s2” are values
of a distinguished stored variable (the “state variable”) in
the local state of the machine. The semantics of the upper
diagram is:

Fig. 6 Graphical notations for machine metadata

a. The scenario is applicable if the value of the state vari-
able in the quiescent local state of the machine before
the event is “s1”.

b. The scenario results in a set of updates, specified by “Up-
date Spec”, being applied to the local state of the ma-
chine.

c. In addition to the updates specified by Update Spec, the
scenario results in the machine’s state variable being set
to “s2” after the event, this being the only mechanism
whereby the state variable can be changed.

In the lower variant, the circles (this time with a double
outline) represent values that are computed by the machine,
using a distinguished function called the machine’s “state
function”. This is a function on the local state and state en-
vironment of the machine that returns an enumerated type,
of which “ f 1” and “ f 2” are two possible values. Again, the
diagram represents a successful event acceptance scenario,
but with the following semantics:

a. The scenario applies if the value returned by the state
function in the quiescent state of the machine before the
event is “ f 1” and the value returned by the state function
in the quiescent state after the event is “ f 2”.

b. The scenario results in a set of updates, specified by “Up-
date Spec”, being applied to the local state of the ma-
chine.

One or more scenarios can be used to specify the lower
box metadata in Fig. 5 for a given entry in the meta-
repertoire of a machine. An event presented to the machine
is accepted if there is a corresponding scenario specified
against the repertoire entry for the event that is successful
according to the semantics defined above.

The rule that a machine must be deterministic (as speci-
fied in Sect. 2.2.6) requires that the scenarios are designed so
that a given machine cannot have more than one successful
scenario for a given event. This is most easily arranged by
requiring that, where more than one scenario is specified for
a given repertoire entry, the starting states of the scenarios
are mutually exclusive.

Also note the following:

• The two variants are not mixed within a given machine-
type. A machine type is either “stored state” in which
case it has a single, distinguished, state variable as part
of its local state and only uses upper variant scenarios;

98 A. McNeile, N. Simons

Fig. 7 Basic machine for account

Fig. 8 Machine for freezing an account

or it is “derived state” in which case it has a single, dis-
tinguished, state function that returns its state value and
only uses lower variant scenarios.

• The success scenario diagrams for a single machine type
can be “stitched together” to form a single graphical state
transition diagram that represents the behaviour of the
machine.

4.4 Example

Figure 7 shows a state transition diagram for a machine that
represents a simple bank account.

Each arrow represents a scenario for a different meta-
repertoire entry, and each is labelled with the meta-repertoire
to which it belongs: Open, Deposit, Withdraw or Close.5

This machine uses a stored state and thus uses the upper vari-
ant described in Fig. 6. The current state (Active or Closed)
is stored as part of the local state of the machine and changes
to its value are driven by the transitions as shown in the dia-
gram.

Now suppose that an account can be frozen and that,
while frozen, funds cannot be withdrawn. Figure 8 shows
a machine that specifies this behaviour. This machine type,
then, is added to the set that defines the Account object type.

This machine also uses a stored state and specifies four
scenarios. The machine performs no updates to its local

5 Strictly speaking these meta-repertoire entries should be specified
in the form (E , R). In these examples the role, R, is not required for
disambiguation and we have omitted it for ease of reading.

Fig. 9 Machine to control release and close

Fig. 10 Machine to prevent overdraft by withdrawal

state, apart from the state variable update implicit in the tran-
sitions.

As the Withdraw event is subject to scenarios in both
Account Machine 1 and Account Machine 2, it can only be
accepted if allowed by both: in other words, if the Account
is both Active (in Account Machine 1) and Unfrozen (in
Account Machine 2).

Suppose that additionally we want to specify that an ac-
count cannot be released (from a frozen state) or closed if it
is overdrawn. A third machine with the metadata shown in
Fig. 9 is added to the Account object type.

This machine specifies two scenarios, corresponding to
the two arrows, one for Release and one for Close. The sce-
narios state that these events cannot take place unless the
Account state as returned by the machine’s state function
before the event is In Credit. This machine uses the lower
variant from Fig. 6 but, as we are not interested in the state
after the events, no ending state is needed on the scenarios.
Note that the state function refers to the Balance maintained
by Account Machine 1, which forms part of Account Ma-
chine 3’s state environment.

Finally, suppose that the account is subject to an over-
draft limit of £50. We add a fourth machine, shown in
Fig. 10.

In this machine, the overdraft limit rule is expressed as a
constraint on the state that results from a Withdraw event.
If the state after the event is not as specified by this machine,
the event is refused. So no withdrawal can be made that re-
sults in a violation of the £50 overdraft limit.

Protocol modelling 99

As a final note, a state function may be more complex
than shown here. In a previous paper, Mixin Based Be-
haviour Modelling [7], we describe a model of marriages
in which the marital status of a Person (Single or Married)
is computed by detecting the presence of a valid Marriage
Contract, another object type in the model.

4.5 State spaces

Generally, the number of machines required to model the be-
haviour of an object is the number of separate “state spaces”
that the object possesses. For instance, a model of Per-
son might have two state spaces, (Single or Married) and
(Working or Unemployed), and would therefore require
two machines to model its event protocol.

This is only a guideline. Sometimes it is appropriate to
use more than one machine for a state space to improve
model readability or to render machines more re-usable
across different object types.

4.6 Proto machines

To support the instantiation of new machines when a new
object is created, it is assumed that a system has an inex-
haustible supply of “proto-machines”, being machines that
have a type but no OID.

Proto-machines are in an initial state. The initial state of
an elementary machine is specified by the machine’s meta-
data. In particular, stored state variables are initialised to a
value that corresponds to the starting pseudo-state (the black
dots in Figs. 7 and 8). The initial state of a system is a sys-
tem with no constituent machines. Proto-machines have no
repertoire, so ignore all events.

The way in which proto-machines are used to create new
objects is described in the following section.

5 Protocol models

A “protocol model” is a protocol machine built out of other
protocol machines by combining them recursively as sys-
tems.6 A protocol model is privileged in having the follow-
ing two capabilities, not shared by its constituent machines:

• The capability to determine whether or not a new quies-
cent state becomes a new stable state, and

• The capability to bring new objects into existence.

To qualify for this privilege, a protocol model must be
closed (in the sense defined in Sect. 2.2.2) and requires that
every event that is presented to it is fully bound to it, other-
wise the result of presentation is undefined.

6 Subject, of course, to the constraint that a system is not defined
directly or indirectly in terms of itself.

5.1 Full binding

The implication of full binding is that every OID valued at-
tribute of an event is represented in the repertoire of at least
one elementary machine in the model (see Sect. 3.3).

Consider, for example, the Transfer event in Fig. 4. Full
binding means that when an instance of the Transfer event
type is created, Accounts exist for both OIDs specified in
the event. This does not mean that the event is necessarily
accepted, as one or both Accounts involved in the transfer
might refuse the event.

However it does mean that no OID in the event can be
ignored and in this sense, the full binding requirement en-
sures that the behavioural semantics of a model is complete.
This is a prerequisite for meaningful execution.

5.2 Determination of stability

After an event has been presented to a model and the model
has reached a new quiescent state, it is able to determine a
new stable state for itself. It does this as follows:

a. If the event was accepted by the model, the new quies-
cent state becomes the new stable state.

b. If the event was refused, the new stable state is the same
as the one that pertained before presentation of the event.

This determination defines the new stable state of the
model itself and of all nested machines.

5.3 OIDs in models

A model does not itself have an OID but every other machine
in the model does have one. This is because every machine
in a model, with the exception of the model itself which is at
the top of the nesting, belongs to a system and so requires an
OID as described in Sect. 3.1. In particular, every elementary
machine in a model has an OID.7

Because a constituent machine of a system can itself be
a system, there can be many systems in a model, each hav-
ing its own set of OIDs. This recursion can be used, for in-
stance, to model an object that structurally owns a homoge-
neous population of further objects, as an Order owns Order
Lines.8

The OIDs of a model must satisfy the following rule:
Given an OID, even one not currently used by any machine
in the model, it must be possible to determine the system
to which the OID belongs. In other words, there must be an
“object ownership” function, ω, which gives the system s to
which an OID o belongs: s = ω(o).

7 We ignore the case of a model that consists of a single elementary
machine.

8 UML refers to this kind of ownership relationship as “aggrega-
tion”.

100 A. McNeile, N. Simons

5.4 Object creation

A new object is created when an event containing an OID
that does not currently exist (i.e. there are no machines in
the model with that OID) is presented to a model. This is
done before the level of binding between the event and the
model has been determined.

Suppose an event contains an OID valued attribute with
value o, and that no object exits in the model with this OID.
The event creation mechanism must ensure that ω(o) exists
at the time the event is presented. The model then creates a
new object in the system ω(o) with OID o.

Object creation is done by assigning the OID o to a set
of proto-machines in ω(o). The object creation mechanism
must ensure that the set of types of the proto-machines se-
lected to instantiate the object is a member of �(τ(ω(o))),
the set of object types allowed in ω(o).

When an elementary proto-machine is given an OID, it
also acquires a repertoire as described in Sect. 4.1. Because
the repertoire of a system is the union of the repertoires of
its constituent machines (see Sect. 2.3.2) the new repertoire
entries percolate up the nesting hierarchy and contribute new
entries to the repertoire of the model. Only after the model
repertoire has been re-established is the level of binding of
the event with the model determined.

5.5 Attribute typing

The metadata for an event-type includes a “type” for each
attribute of the event. Giving an event attribute a type is an
instruction to the mechanism that handles event instance cre-
ation concerning the allowable values that may be loaded
into the attribute. This mechanism is normally a user inter-
face, although it could also be software.

For a non-OID valued attribute the type is a primitive
value type such as String, Integer, Real, Date, Boolean, etc.
with the obvious meaning for what may be loaded at event
creation time.

For OID valued attributes we have so far specified the
type as “OID” (for instance in Fig. 4) indicating that the
attribute references an object. However, this gives no indi-
cation of what type of object is an appropriate addressee of
the event, and therefore no guarantee that the event will be
bound. A better scheme is to type event attributes that ref-
erence objects with a machine-type. In the next section, we
show how it is then possible to ensure that events are prop-
erly (fully) bound to a model.

First, we define what is meant by giving an OID valued
attribute a type. Suppose an attribute R of an event type E is
given type M (a machine-type). Suppose that an instance e
of type E is created, and that the attribute R is given the OID
value o. To honour the type, M , of the attribute, the event
creation mechanism must ensure that there is a machine of
type M with OID o in the model. Moreover, this must be the
case whether o is an existing object or a new object created
according to the description in Sect. 5.4.

If a new object is to be created, and there is more than
one object-type that meets the type match criterion given
above, which one is chosen is undefined by the model and
must be determined externally. This determination is nor-
mally by user choice at event creation time.

5.6 Design time binding

With OID valued attributes typed in this way, it is possible
to ensure at design time (i.e., based on metadata of a model)
that events are always fully bound to a model. We now de-
scribe a recipe for doing this.

First we define the meta-repertoire, �(O), of an object
type O as follows:

�(O) ≡ {Q | (Q ∈ �(M)) ∧ (M ∈ O)

∧ M is elementary}
To guarantee that an attribute R in event-type E will be

bound to a model X , we choose the type M for the attribute
as follows:

a. Let � be the set of all system-types used in the metadata
of X . Define �(X), the set of object types in X , as:

�(X) ≡ {O | (O ∈ �(S)) ∧ (S ∈ �)}
b. Define the set O(E , R, X) of all object types in X that

have (E , R) in their meta-repertoire:

O(E, R, X) ≡ {O | (O ∈ �(X)) ∧ ((E, R) ∈ �(O))}.
c. For the type of R in E , find a machine-type M such that

any object using a machine of type M has (E , R) in its
meta-repertoire:

∀O ∈ �(X), M ∈ O ⇒ O ∈ O(E, R, X).

This construction of the attribute type for R, combined
with the assurance provided by the event creation mecha-
nism that any value loaded into R must conform to type,
guarantees that the attribute R will be bound to the model.
So if this construction is carried out for all the OID valued
attributes of an event type, event instances of that type will
be fully bound.

In step c of the construction it is possible that no
machine-type M with the property required exists. In this
case it is possible to create one as follows:9

i. Create a new elementary machine type M ′ with
�(M ′) = {}. Any machine of type M ′ will have an
empty repertoire so will ignore all events presented to
it. Hence adding M ′ to an object-type has no effect on
the behaviour of objects of that type.

ii. Add the machine-type M ′ to all object-types in
O(E, R, X) (from step b above). Use M ′ as the type for
the attribute.

9 In practice, the need to create a machine type that has no behaviour
is an indication that a model contains poorly chosen behavioural ab-
stractions.

Protocol modelling 101

Fig. 11 Metadata for the open event

Fig. 12 Basic machine for customer

5.7 Example

We now expand the banking example introduced earlier to
illustrate the effect of having an event bound to multiple ob-
jects.

Consider the Open event, that opens a bank account for
a customer with the metadata shown in Fig. 11.

This event has two OID valued attributes. The Ac-
count attribute is typed by the machine Account Machine
1 (Fig. 7). The machine for Customer is shown in Fig. 12.

Suppose that an instance, e, of the Open event is cre-
ated with value o1 for the Customer attribute and o2 for the
Account attribute.

Assuming that e is fully bound and successful (not re-
fused) then e must have been accepted by a machine of type
Customer Machine 1 with OID o1 and by a machine of
type Account Machine 1 with OID o2. Moreover, the o1
machine must have been in the state Registered and the o2
machine in the initial pseudo-state (the black dot on Fig. 7),
otherwise the event would not have been accepted.

In the case of the Customer machine, there may not have
been any change to the local state of the machine as a result
of the event. The point here is that acceptance of an event
by a machine signifies consent to the event being possible,
and may or may not involve an update to the local state of
the accepting machine. Designing the metadata of a proto-
col model is therefore about designing the “event consent
schema” of each event type, across all the object types it in-
volves. We emphasise this to dispel the possible misconcep-
tion that an event-type only needs to appear in the metadata
of a machine if an occurrence of the event actually alters the
state of the machine.

Fig. 13 Extending a model

5.8 Extended models

It is possible to extend a model so that the effect10 of one
event is defined in terms of a set of generated events.

The general scheme is shown in Fig. 13. Here the model
X ′ is created by extending the model X with:

• A new event type, EP.
• A process P that handles instances of EP.
• Protocol metadata within X that determines when events

of type EP can be accepted.

Events presented to X ′ that are not of type EP are pre-
sented directly to X (as in the case of e1 in Fig. 13).

Events of type EP are presented to a process P that is in
X ′ but outside X , as shown in the case of e2. P creates new
events and presents them to X , as is the case with e3 and e4.
The generated events are handled by X exactly as though X
were a stand-alone model: P is simulating an environment
for X by presenting it with events. This means that, while P
is active, X determines acceptance and state stability for the
generated events.

Note the following points about P:

• P is specific to an event type and is used for every in-
stance of that event type presented to X ′.

• P is not, itself, a protocol machine. When an event is
presented to it, it must accept it.

• While P is active, X behaves like a model for all the
events generated by P . This includes object creation in
X and determining acceptance or refusal of the generated
events.

• P has access to the attributes of e2 and to the interim
stable states that X reaches between the presentation of
successive generated events.

• Once P completes and X reaches a quiescent state, the
quiescent state of X ′ is the same as that of X . In other
words, P does not contribute to this state.

Although presented to X , e2 must not itself cause any
change to the state of X . Instead, the required updates are
performed by the events created by P . This rule ensures that
there is no possible indeterminacy in the processing of e2

10 Here “effect ” of an event means the change to the total stored state
of the model resulting from its acceptance.

102 A. McNeile, N. Simons

resulting from different interleavings of the updates required
for e2 itself with those required for the generated events.

A necessary condition for the acceptance of e2 by X ′ is
that every generated event is accepted by X . This is not a suf-
ficient condition, as the metadata of X may impose protocol
constraints on the acceptance of e2 that are not guaranteed
by the acceptance of the generated events.

X ′ is responsible for determining state stability for
events presented to X ′. So the new quiescent state of X ′ af-
ter presentation of e2 becomes the new stable state if, and
only if, all generated events are accepted by X and e2 itself
is accepted by X ′. Otherwise the new stable state of X ′ is the
stable state prior to presentation of e2.

As an example of the use of model extension, suppose
that in a banking system separate events have been defined
to:

• Register the new customer, and
• Open a current account, and
• Open a savings account.

Suppose also that, for most new customers, it is usual to
do all three of these and do them together. It would be pos-
sible to use model extension to define a new “standard cus-
tomer set-up” event that registers a new customer and opens
the two accounts as a single event.

Model extension can also be used to create and send
events to a number of objects.

6 Behaviour reuse

One of the motivations for the approach to behaviour mod-
elling described in this paper is to support the reuse of be-
havioural abstractions. The basis for this is that the same
elementary machine type may be included in the definition
of many object types. As the behaviour of a given machine
type is specified by its metadata, this translates into a mech-
anism for reuse of behavioural metadata across many object
types.

This style of object behaviour definition by combining
the metadata of smaller elements that can be reused con-
forms to the pattern described by Bracha et al. as a “pure
mixin approach” [8].

While this provides the foundation for behaviour reuse,
its utility is limited without a means to define behaviour that
abstracts from particular event-types, as the next section il-
lustrates.

6.1 Approach to re-use

Suppose that the Account example described in Sect. 4.4
is to amended to support two different types of account: a
Current Account and Savings Account. A Current Account
allows overdrafts, and each Current Account has an over-
draft limit agreed with the customer at the time the account
is opened. Savings Accounts, on the other hand, do not allow
overdrafts.

When a Current Account is opened its overdraft limit is
specified as part of the open event, so the open event must
include this as an attribute in its metadata. The open event
for a Savings Account does not have this attribute and is
therefore a different event-type.

It makes sense to want to use Account Machine 1
(Fig. 7), which describes the basic mechanism for account
balance maintenance, for both types of account. However,
there is an apparent problem here: how do you represent the
“open” event in this machine when there are two different
kinds of open event, one for each of the two different kinds
of account?

There are a number of possible mechanisms that might
be considered, none of which is satisfactory:

• Include both event types in the definition of Account
Machine 1. However, this pollutes the repertoire of each
account type with an Open event that does not belong to
it.

• Require that the set of events defined for the application
be re-factored, for instance so that opening a current ac-
count is separated into two events: a generic open and
another event that sets the overdraft limit. However, it
is not proper that the vocabulary of event types should
be driven or constrained by limitations of the modelling
language.

• Take a similar line to that described above, but hide
the internal configuration of events by using the Model
Extension mechanism (see Sect. 5.8) to generate them.
However, the consequent separation between the vocab-
ularies of external and internal, generated, events dilutes
the clarity of the protocols as statements about rules of
the domain.

Instead of any of these, our route has been to build
mechanisms into the modelling language that allow abstract
events to be defined. Two mechanisms are involved:

• Conditional Repertoire Entries
• Repertoire Macros

These are described in the following sections.

6.2 Conditional repertoire entries

This is a mechanism that allows the behaviour of a machine
to be influenced by its context, as defined by the other ma-
chines which belong to the same object.

Suppose that a machine type M has an entry Q = (E, R)
in its meta-repertoire. We can define a new machine type,
M/{Q}, which is the same as M except that the entry Q is
absent from its meta-repertoire. This means that a machine
of type M/{Q} will ignore requests to participate as player
of role R in an event of type E . Otherwise the machine be-
haves exactly like one of type M .

Now we define M//{Q}, a machine in which Q has been
made a “conditional” entry in the meta-repertoire of M . The
behaviour of a machine of this type depends on its context

Protocol modelling 103

in a protocol system. Suppose that a machine m of type
M//{Q} and with OID o is present in a system s. Then:

a. If any other constituent machine of s has the en-
try (E, o, R) in its repertoire, resulting from a non-
conditional entry (E, R) in its meta-repertoire, m be-
haves as though it had type M .

b. Otherwise m behaves as though it had type M/{Q}.
The effect of this is that the meta-repertoire entry Q in

a machine of type M//{Q} is “active” (i.e., causes the ma-
chine to accept or refuse events) if and only if the machine
is part of an object that has at least one other machine whose
meta-repertoire contains Q as a non-conditional entry.

We will use underlining to denote a conditional meta-
repertoire entry, thus: Q.

6.3 Full binding revisited

With the introduction of conditional repertoire entries we
need to revisit the discussion of full binding in Sect. 5.6 to
check that the ideas set out there still work.

Suppose a machine type M that has a conditional meta-
repertoire entry Q is used by an object type O , so that
M ∈ O . If no other machine type in O contains Q as a
non-conditional entry, Q is inactive in O and so should not
appear in the meta-repertoire, �(O), of O .

With this observation it is clear that, provided condi-
tional meta-repertoire entries are ignored when compiling
the meta-repertoire of an object, the full binding recipe
works as before. The definition of the meta-repertoire of
an object type given previously in Sect. 5.6 is therefore
amended to:

�(O) ≡ {Q|(Q ∈ �(M)) ∧ (M ∈ O)

∧ M is elementary ∧ Q is non-conditional in M}

6.4 Conditional entries and reuse

Returning to the example of the current and savings ac-
counts, we now explain how conditional repertoire entries
allow machine metadata reuse.

We start by assuming that we want to use a common ma-
chine to describe the basic account mechanism of maintain-
ing a balance, as Account Machine 1 did in our earlier ex-
ample, but that we include both types of account opening
event. The machine is described in Fig. 14.

This machine type allows either of the two (different)
event types Open Current or Open Savings to be the first
event in its lifecycle. Either event has the effect of initialising
the balance and enabling deposits and withdrawals to take
place until the close event. However, if used as it stands in
the context of defining both the current and savings account
objects, both objects will end up with both types of open
event in their repertoire, and this is not appropriate.

Fig. 14 Basis for an Account machine that can be re-used in different
types of account

To avoid this, we can create a reusable version of the
machine by forming the machine

Account Machine//{(Open Current, Account),

(Open Savings, Account)}
in which the two entries for the open events are made condi-
tional.11

Note that the Current Account object must contain
at least one (non-reusable) machine that includes Open
Current non-conditionally in its meta-repertoire, otherwise
Open Current would not appear in the meta-repertoire of
Current Account at all. Assuming however, as is reason-
able, that none of the machine types involved in defining
the Current Account object contains Open Savings non-
conditionally in its meta-repertoire, Open Savings will not
be in the meta-repertoire of Current Account at all. A similar
argument applies to Savings Account.

6.5 Repertoire macros

While the conditional repertoire entry mechanism can sup-
port the creation of reusable machines by making it possible
to “switch off” the entries in a machine’s repertoire not rel-
evant to the context of a particular object, we have not cap-
tured an idea of abstraction that would allow the distinction
between two event types (such as the two open events) to
be hidden where it is not required. The second mechanism,
Repertoire Macros, is the basis for doing this.

Suppose a machine type has the metadata shown in
Fig. 15.

Consider the relationship between the metadata for Q1
and an event instance that it processes. In particular we need
to understand what information about an event the metadata
needs to obtain from an event instance at run time.

11 For concreteness in showing the meta-repertoire entries it is as-
sumed that the both of the open events have an attribute called Account
that takes the OID of the (new) Account being opened.

104 A. McNeile, N. Simons

Fig. 15 Machine metadata with conditional meta-repertoire entries

Fig. 16 Sharing the use of test and update metadata across meta-
repertoire entries

Because the metadata, by assumption, is specific to an
event type and role (as specified in Q1) these are known to
the metadata by design, and do not need to be obtained at
run time. Therefore, only the values of event attributes need
to be obtained at run time.

This means that the metadata definitions for two meta-
repertoire entries can be identical if:

• the event attributes referred to by the two metadata def-
initions are present in the metadata of both event types,
and

• the processing required (i.e., both testing for event ac-
ceptance and performing local state update) defined by
the two entries is the same.

Under these circumstances, the two entries can share a
single lexical copy of the metadata. This is shown in Fig. 16.

Figure 16 represents the same machine as Fig. 15 but
recognises that the (conditional) meta-repertoire entry Q3
and the (non-conditional) entry Q4 have identical metadata
and can share the same lexical copy.

We now provide a simple compile-time lexical replace-
ment (or macro) facility to re-write Fig. 16 as shown in
Fig. 17.

Using this technique in the context of the Account
Machine defined earlier, we can define a macro:

Open = {(Open Current, Account),

(Open Savings, Account)}

Fig. 17 Machine metadata with a repertoire macro

In this definition, Open is a macro name now defined in
the meta-repertoire of Account Machine, but which is re-
placed by the two conditional meta-repertoire entries for the
two types of Open event at compile time. This macro defi-
nition is possible because the metadata treatment of the two
open events in the context of the Account Machine is iden-
tical, as can be seen in Fig. 14. This is equivalent to noting
that, at least in the context of Account Machine, abstraction
from the particular types of open to a generic open is appro-
priate, and the Open macro can be viewed as naming this
abstraction.

We can now restore Fig. 14 to the simpler form that it
had in Fig. 7, with the single arrow for opening an account,
supplemented by the macro definition that makes it re-usable
across the different types of account.

7 Discussion

7.1 Behaviour encapsulation

Most object-oriented modelling techniques, in particular the
UML, do not have a primitive notion of an “event” as de-
scribed here and typically events are modelled as objects. A
“Transfer” event that moves funds between accounts would
have its own class with responsibility for checking that a
transfer can complete, i.e. that both the source and target ac-
counts exist and are in a state to participate in the transfer.
This checking might include a check that the source account
is not frozen, as this might prevent the account from being
used in this role.

Freezing an account would also prevent cash withdrawal,
so the class that models the Withdraw event would need to
include a similar check.

In this approach the behavioural states and the event pro-
tocol of an object are implicit in the tests that transactions
perform to determine whether or not they can proceed. This
has two consequences:

• Each transaction can potentially take a different view on
how the attributes of an object determine its state. So

Protocol modelling 105

that there is no guarantee, for instance, that Transfer and
Withdraw determine whether or not the account is frozen
in the same way. If they do it in different ways, the be-
haviour of the system becomes incoherent.

• Because event protocols are embedded in the transac-
tions and not the object, sub-classing the object does not
sub-class the protocol. This means that sub-classing can-
not be used to create behavioural variants of an object in
the way that one might hope or expect.

We think that these are symptoms of poor encapsulation
of behaviour. Neither of these issues can arise in protocol
based modelling as the protocol of an object is a property of
the object itself, by virtue of the protocol machines used to
define it.

7.2 MDA

Our focus on model execution is driven by a belief that ex-
ecution at the model level has value in providing a means
of validating models early in the systems development life-
cycle. The idea that models embody behavioural semantics
that potentially support model execution is also part of the
vision of the Model Driven Architecture initiative sponsored
by the Object Management Group. In this section we relate
our work to some of the stated aims of MDA and compare
the protocol machine approach with other approaches that
also aspire to address these aims.

7.2.1 MDA and model execution

The OMG characterises MDA as follows: “Fully-specified
platform-independent models (including behaviour) can en-
able intellectual property to move away from technology-
specific code, helping to insulate business applications from
technology evolution and further enable interoperability”
[9]. (The underlining is ours.)

Moreover, Richard Soley, CEO of OMG, says that one
of the aims of MDA is that “Models are testable and simu-
latable” [10]. Oliver Sims, a member of various OMG Task
Forces who served for several years on the OMG Architec-
ture Board, says that “The aim [of MDA] is to build com-
putationally complete PIMs [models]” [11]. As Oliver Sims
points out, the term “computationally complete” means ca-
pable of being executed.

7.2.2 Other MDA approaches

Here we compare our approach to other work currently be-
ing promoted under the MDA banner. There are two main
camps of MDA, both of which take the UML as their basis,
and we consider each in turn below.

The first camp is based on “Design By Contract” [12],
and uses the Object Constraint Language (OCL) [13] to
specify contracts in terms of pre-and post-conditions on op-
erations invoked in objects. The claim is that adorning a

Fig. 18 Contracts and protocols

UML structural (class) model with contracts enables be-
haviour to be captured formally [14].

While the language of Design by Contract (pre- and
post-conditions) is very similar to that used in this paper
for protocols (pre- and post-constraints), it seems clear to us
that Contracts and Protocols are conceptually different (see
Fig. 18). In particular, the language of contracts does not
bring with it any new primitives with behavioural semantics
to raise the level of abstraction at which behaviour is de-
scribed. This means that a model that expresses behaviour
as contracts will either not be executable (and therefore not
simulatable or testable) or will not be at a level of abstraction
above a programming language.

The second camp is that termed “Executable UML”,
which is based largely on the work of Shlaer and Mellor
[15]. In this approach, state machine descriptions of object
life-cycles are adorned with definitions of the processing
performed by the object expressed in a high level impera-
tive language, the Action Language [16].

This work bears superficial resemblance to ours in its use
of state transition diagrams as a means of describing object
behaviour and in its aim of providing model executability.

106 A. McNeile, N. Simons

Moreover, the state machines do provide some level of ex-
plicit definition for the behavioural states of an object. How-
ever, the state machine semantics in Executable UML are
different from ours, in that a state machine may ignore an
event but cannot refuse one. Without the ability to refuse
events, state machines cannot describe event protocols in
situations where an event must be accepted by multiple
objects, which is usual in transactional business systems.
This leads to the need to model transactions (events) as
classes in their own right, containing behaviour rules that
check event acceptability across multiple contexts. This ap-
proach has the encapsulation weaknesses that we outlined in
Sect. 7.1.

Two other points where the Executable UML approach
differs from that described in this paper are also worth
noting:

• The approach advocates a single state machine per class.
An object with multiple state spaces, such as the Person
example in Sect. 4.5, would need to be modelled using
more than one class.

• There is no concept of a calculated state, as described in
Sect. 4.3. This means, in general, that state spaces such
as (In Credit or Overdrawn) can only be handled by
generating internal events that have no domain meaning
to drive the machine between these states.

Finally, the Executable UML technique offers no mech-
anism for behaviour reuse which, in the literature describing
the method, is explicitly discouraged.

8 Implementations

The ideas presented in this paper have emerged from
15 years of work building and using tools that support the
behavioural design of transactional business systems.

Our focus in this work has been to provide tools that al-
low behavioural models, described as protocol machines, to
be executed and tested early in the development lifecycle.
This early testing reduces the risk that severe behavioural
problems are found at late stages of development, when rec-
tification can be very expensive. The executable models can
be viewed as a form of prototype, and the testing and ex-
ploration of model based prototypes provides a vehicle for
users and other stakeholders to engage in the modelling pro-
cess even if they have no understanding of the notations and
concepts used to build the model.

All of these tools are aimed at exploring and validating
behaviour with users. The user interface for driving model
execution is therefore designed to be understandable by peo-
ple who do not know anything about the modelling con-
cepts used. In particular, the user interface presents object in-
stances without revealing their internal machine level struc-
ture or requiring the user to understand this structure.

The first version of the tool, built in 1989, used the con-
cepts and notations of Jackson Systems Development [1],
an early object-based modelling approach developed in the

1970s. This tool only allowed one machine per object and
had no support for behaviour reuse. Also, this version had a
primitive user interface that required OIDs to be constructed
and entered explicitly by the user.

In 1993 we moved to using state transition diagrams
as the basic notation for defining protocols. This allowed a
more intuitive style of user interface, as it became possible to
“grey out” the event-types incapable of being accepted by an
object because they violate a pre-constraint. A new approach
to binding events to the model was introduced based on se-
lecting object instances from user interface lists rather than
entering OIDs; and OIDs became completely hidden from
the user. This tool also supported multiple machines per ob-
ject and extended the notion of state transition diagrams by
allowing states to be calculated, as described in Sect. 4.3.
However, there was only limited support for machine
re-use.

The most recent tool, ModelScope [17], developed in
2002, improved the metadata language and added support
for the event abstraction ideas described in Sect. 6, greatly
increasing the capabilities for behavioural reuse.

References

1. Jackson, M.: System Development. Prentice Hall (1983)
2. Cook, S., Daniels, J.: Designing Object Systems – Object-

Oriented Modelling with Syntropy. Prentice Hall International
(1994)

3. Jackson, M., Zave, P.: Domain descriptions. In: Proceedings of
the IEEE International Symposium on Requirements Engineering
pp. 56–64. IEEE CS Press (1993)

4. OMG: UML 2.0 Superstructure Final Adopted Specification, Doc-
ument reference ptc/03-08-02 August 2003. Object Management
Group website: www.omg.org.

5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall
International (1985)

6. McNeile, A., Simons, N.: State Machines as Mixins. The Journal
of Object Technology 2(6), 85–101 (2003)

7. McNeile, A., Simons, N.: Mixin Based Behaviour Modelling. In:
Proceedings of the 6th International Conference on Enterprise In-
formation Systems, vol. 3, pp. 179–183. Porto (2004)

8. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proc. of the
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (1990)

9. OMG Model Driven Architecture: How Systems Will Be Built.
Object Management Group website: www.omg.org/mda/.

10. Soley, R.: Presentation: MDA: An Introduction. Object Manage-
ment Group website: www.omg.org/mda/presentations.htm .

11. Sims, O.: Presentation: MDA: The Real Value. Object Manage-
ment Group website: www.omg.org/mda/presentations.htm .

12. Meyer, B.: Object-Oriented Software Construction. Prentice Hall
(1997)

13. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting
Your Models Ready for MDA. Addison Wesley (2003)

14. Kleppe, A., Warmer J., Bast, W.: MDA Explained The Model
Driven Architecture: Practice and Promise. Addison Wesley
(2003)

15. Shlaer, S., Mellor, S.: Object Life Cycles — Modeling the World
in States. Yourdon Press/Prentice Hall (1992)

16. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model
Driven Architecture. Addison Wesley (2002)

17. Metamaxim website, www.metamaxim.com

Protocol modelling 107

Author Biographies

Ashley McNeile is a practitioner
with over 25 years of experience
in systems development and IT
related management consultancy.
His main areas of interest are
requirements analysis techniques
and model execution and in 2001
he founded Metamaxim Ltd. to
pioneer new techniques in these
areas. He has published and pre-
sented widely on object oriented
development methodology and
systems architecture.

Nicholas Simons has been working
with formal methods of system
specification since their intro-
duction, and has over 20 years
experience in building tools for
system design, code generation and
reverse engineering. In addition,
he lectures on systems analysis
and design, Web programming and
project planning. He is a co-founder
and director of Metamaxim Ltd.

