
Software & System Modeling (2005) 4(4): 386–398
DOI 10.1007/s10270-005-0089-y

SPECIAL ISSUE PAPER

Martin Gogolla · Jörn Bohling · Mark Richters

Validating UML and OCL models in USE by automatic
snapshot generation

Received: 31 May 2004 / Revised: 15 November 2004 / Published online: 26 June 2005
c© Springer-Verlag 2005

Abstract We study the testing and certification of UML and
OCL models as supported by the validation tool USE. We
extend the available USE features by introducing a language
for defining properties of desired snapshots and by show-
ing how such snapshots are generated. Within the approach,
it is possible to treat test cases and validation cases. Test
cases show that snapshots having desired properties can be
constructed. Validation cases show that given properties are
consequences of the original UML and OCL model.

Keywords UML · OCL · Model validation · Model testing ·
Reasoning about models · Class diagram · Invariant ·
Pre- and postcondition · Test case · Snapshot

1 Introduction

The UML [1] is accepted today as a de-facto standard
for software development. The Object Constraint Lan-
guage (OCL) [2] is an important part of the UML, and soft-
ware support for OCL is growing (see the Dresden OCL
compiler [3] integrated within ArgoUML [4], the Boldsoft
tool [5], work based on C++ in [6], the KeY approach [7],
or the NEPTUNE tool [8]). One of the first systems support-
ing OCL was our UML Specification Environment (USE)
[9, 10]. Among other offered functionalities, USE allows to
validate UML and OCL models by constructing snapshots
representing system states at a particular point in time with
objects, attribute values, and links. Such snapshots are rep-
resented as object diagrams [11].

However, up to now these snapshots had to be con-
structed by giving an explicit sequence of commands. The
motivation for the current work is to construct snapshots in
a more declarative way by specifying properties the desired
snapshot has to fulfill. For this means, we have developed
the language ASSL (A Snapshot Sequence Language)

M. Gogolla (B) · J. Bohling · M. Richters
University of Bremen, Computer Science Department Database
Systems Group, 28334 Bremen, Germany
E-mail: {gogolla, joebo, mr}@informatik.uni-bremen.de

allowing the construction of snapshots apart from giving
command sequences. Thus one can specify properties the
resulting snapshots have to satisfy. Furthermore, the USE
functionality has been extended in order to dynamically
load invariants. USE and its ASSL extension afford the
certification of properties about UML models, i.e., the
developer can formally check properties against provided
scenarios regarded as relevant. In terms of practical merits,
our approach allows to construct large and non-trivial
snapshots being consistent with a complex class diagram
and illustrating complex scenarios.

The importance of validation and testing in object-
oriented software development has been recognized for
long, see for example [12]. Thus, our work has connec-
tions to other related approaches (apart from the ones we
have mentioned above in connection directly with OCL).
For example, the approach in [13] focuses on animation.
Although the starting point of [14] is distributed software,
the paper discusses a set of general techniques like verifica-
tion, simulation or testing for validation purposes. The paper
also introduces the UMLAUT tool which can manipulate the
UML representation of a system and which integrates dif-
ferent validation techniques. The approach in [15] empha-
sizes the importance of having multi-formalisms by translat-
ing UML models to Z and Lustre specifications which then
are validated by means of a prover and a testing environ-
ment. Muthiayen [16] studies validation of UML models by
means of theorem proving, in particular in connection with
PVS. Snapshots were also generated from dynamic models
such as Use Cases or State Charts. For instance, [17] de-
rive a sequence of messages from Use Cases by transform-
ing them into planning problems. The Alloy constraint an-
alyzer [18] is a tool that allows the generation of snapshots
for a model based on relational logic. However, an Alloy
model does not support significant UML and OCL features
like attributes and its data types. Approaches concentrating
on testing of UML models have been considered for spe-
cial applications like smart cards [19], and with emphasis on
special UML language features like sequence diagrams [20]
or collaboration [21] diagrams. The approach in [22] adapts



Validating UML and OCL models in USE by automatic snapshot generation 387

state-based specification test data generation criteria to gen-
erate test cases from UML statecharts obeying classical test
coverage criteria. In contrast to these works, our approach
in USE is the only one which focusses on OCL and which
allows to describe test cases, i.e., snapshots, in a descriptive
way using the same language (OCL) which is used for de-
scribing the models itself.

The structure of the rest of this paper is as follows.
Section 2 gives an overview of an example scenario which
is used in this paper to point out the new ideas of our ap-
proach. Section 3 introduces in detail the class diagram in-
cluding operations and invariants on which we rely and the
ASSL constructs needed for automatic snapshot generation.
Section 4 shows how to apply ASSL elements to test cases
and something what we call validation cases. Section 5 ex-
plains a denotational semantics for our language ASSL. The
paper ends with concluding remarks in Sect. 6. Appendix A
shows one additional example for an ASSL procedure, and
Appendix B offers more details of the semantics of single
ASSL commands.

2 Overview by a deployment diagram

Figure 1 shows a UML deployment diagram picturing the
files and their dependencies for the example scenario used
in this paper. We try to strictly adhere to the UML notation
in this diagram. Files are regarded as components being dis-
played as rectangles with two smaller rectangles protuding
from its side, and comments are shown as rectangles with
bent upper-right corner (dog-ear). Comments are attached by
undirected lines to components, and dependencies between
components are shown as directed dashed lines. These di-
rected dashed lines express that, when the component where

Fig. 1 Deployment diagram with use,invs, cmd, and assl files

the dashed arrow ends is modified, this may affect the com-
ponent where the dashed arrow starts. In concrete terms,
when, e.g., the file percom.use changes this may effect
the file twoRoleTC.cmd.

At the bottom, one recognizes the file percom.
use (PERson and COMpany) containing the USE model
of the classes, associations, and invariants as indicated by
the comments on both sides. On the next higher level, the
names of four invs files are shown, each one containing
one invariant. These invariants are not contained in the use
file. On the top, the file percom.assl can be seen which
contains several procedures used for constructing snapshots
consisting of objects and links. Below this file, three com-
mand files with ending cmd are displayed. Each command
file is responsible for performing either a test case or some-
thing what we call validation case which is explained be-
low. A command file first loads the percom.use file into
the USE system in order to make the classes, associations,
and invariants known. A command file afterwards calls pro-
cedures from the percom.assl file and thereby creates
objects, attribute values, and links. In addition to using the
invariants from the use file, a command file may dynam-
ically load further invariants from invs files. These in-
variants determine the properties of the created objects and
links in the snapshot. The particular procedure calls con-
struct the desired snapshots. But it is not required that each
separate snapshot is created by a separate procedure. Skil-
ful parametrization of procedures can provide general build-
ing blocks that can be re-used for the construction of several
snapshots.

But let us come back to the test and validation cases.
On the one hand, a test case has the task to certify that it
is allowed to construct a certain snapshot on the basis of
the already present invariants and the dynamically loaded



388 M. Gogolla et al.

invariants. On the other hand, a validation case certifies that
a dynamically loaded invariant is a semantic consequence of
the already present invariants by showing that it is not pos-
sible to construct a snapshot satisfying the already present
invariants and the negation of the dynamically loaded invari-
ant. These ideas are detailed below.

3 USE definitions, ASSL procedures,
and dynamic invariants

The USE tool and its ASSL extension are a lightweight for-
mal method following the classification in [23]. That means,
USE allows analysis of specifications rather than focusing
entirely on correctness proofs. The purpose of the USE tool
is to animate, test, and validate a UML class diagram and
its OCL constraints and to focus on the early stages of the
development process. Thus defects in a UML class diagram,
e.g., whether a class cannot have instances or an association
cannot have links, can be detected early before the imple-
mentation starts. Extending the USE tool with automated
system state generation allows the generation of snapshots
and, most important, testing a large number of system states
against additional OCL constraints. The purpose is still to
find defects, thus USE and ASSL are still a lightweight for-
mal method.

3.1 Class diagram and test and validation cases

The UML class diagram in Fig. 2 shows an example from
the UML Notation Guide [1] but specifies some additional
details. This example is contained in the file percom.use
of Fig. 1. Persons may have jobs at several companies
receiving from each company a salary. In each company, a
set of workers may be managed by a single boss. We expect

Fig. 2 Class diagram

the following invariants to hold. Persons and companies
are identified by their names. A Job object is determined
by its employee and employer links. A boss and a worker
belong to the same company, the links in the association
BossWorker constitute a hierarchy, and a boss is better
paid than a worker. In addition to the role names boss and
worker, the operations bossPlus() and workerPlus() make
the transitive closure of the respective role names available.
Note that the BossWorker hierarchy is built on jobs, not on
persons.

As an example, let us consider the snapshot in Fig. 3.
Links in the BossWorker association are always displayed
by placing the boss job above its worker jobs. One can
also identify the boss and the worker by considering the
salary which is always higher for the boss. In Fig. 3, Cher
works for Sony and Lex. Within Sony, Cher has Tom and
Nick as workers. Within Lex, Cher’s boss is Tom and Cher’s
worker is Nick. Coming back to the deployment diagram
in Fig. 1, the goal of the test case twoRoleTC is to con-
struct a snapshot with a three level job hierarchy where a
single person plays two roles, i.e., the person has a boss
job in one company and a worker job in the other com-
pany. The goal of the test case twoBossesTC is to show
a snapshot where two bosses with disjoint worker sets ex-
ist. The validation case bossBossVC shows that, as a con-
sequence from the specified invariants, not only the boss
of a worker is better paid than the worker, but also the
boss of the boss (the bossBoss) of the worker is better
paid.

3.2 USE definitions

The following USE definitions show details not covered in
Fig. 2. First, the five operations from the class diagram are
defined by OCL expressions.



Validating UML and OCL models in USE by automatic snapshot generation 389

Fig. 3 Snapshot generated by twoRoleTC.cmd

Person::employer():Set(Company)=
self.job.employer->asSet()
Company::employee():Set(Person)=
self.job.employee->asSet()
Job::bossPlus():Set(Job)=
if boss.isDefined then
boss.bossPlus()->including(boss)
else
oclEmpty(Set(Job)) endif

Job::workerPlus():Set(Job)=
workerPlusOnSet(worker)
Job::workerPlusOnSet(s:Set(Job)):
Set(Job)=
let oneStep:Set(Job)=

s.worker->asSet in
if oneStep->

exists(j|s->excludes(j)) then
workerPlusOnSet(s->union(oneStep))
else s endif

Note that we have defined the transitive closure here by em-
ploying recursively defined operations. But OCL allows a
quite general iterate construct which makes it possible
to define the transitive closure without recursion.

Second, the invariants informally mentioned above are
formally characterized by OCL formulae.

context p1:Person
inv personNamesAreUnique:
Person.allInstances->forAll(p2|
p1.name=p2.name implies p1=p2)

context c1:Company
inv companyNamesAreUnique:
Company.allInstances->forAll(c2|
c1.name=c2.name implies c1=c2)

context j1:Job
inv employeeEmployerAreUnique:
Job.allInstances->forAll(j2|
j1.employee=j2.employee and
j1.employer=j2.employer
implies j1=j2)

context top:Job

inv bossWorkerSameEmployer:
top.worker->forAll(low|
low.employer=top.employer)

context j:Job inv bossWorkerIsHierarchy:
j.workerPlus()->excludes(j)

context top:Job
inv bossBetterPaidThanWorker:
top.worker->forAll(low|
low.salary<top.salary)

We assume the operation bossPlus() is only called in valid
states where the invariants hold, in particular there should
be no cycles in the association BossWorker. We do not as-
sume this for the operation workerPlus() since this opera-
tion is used in the invariant bossWorkerIsHierarchy to ensure
that no cycles exist. We could have defined bossPlus() anal-
ogously to workerPlus(), but in order to keep the definitions
short we have preferred the current solution.

We are aware of the fact that our example is rather com-
plex: first, there is a reflexive association (i.e., an association
where one class participates twice); second, the example in-
volves the transitive closure of the two roles for that reflexive
association; third, the BossWorker hierarchy is formally de-
fined on the class Job, but one tends to think of it in terms of
Person objects. However, this complexity allows us to study
some rather complicated invariants and snapshots.

3.3 ASSL procedures

The task of an ASSL procedure is to construct a snapshot
or part of a snapshot. A call to the following ASSL pro-
cedure generateCompanies generates as many compa-
nies as indicated by its parameter count. The CreateN
expression returns a sequence of length count of newly
generated Company objects. Afterwards, within a loop rang-
ing over all these new objects, the procedure tries to as-
sign the attribute name for each new Company object.
A choice of ten names is offered, but this choice is re-
stricted with reject to the names not already present
in the current set of Company objects. Note that the
OCL expression Sequence{...}->reject(...) in



390 M. Gogolla et al.

the loop is evaluated newly every time it is reached within
the loop. Assuming no Company object is present, call-
ing, for example, generateCompanies(3) will con-
struct a snapshot with three Company objects with dis-
tinct names from the offered choice. If one alternatively
calls generateCompanies(11), the ASSL generator
will not construct a valid snapshot because the eleventh
company cannot obtain a name distinct from the existing
company names because only ten choices are offered.

procedure generateCompanies
(count:Integer)
var theCompanies:Sequence(Company);
begin
theCompanies:=CreateN(Company,[count]);
for p:Company in [theCompanies]
begin
[p].name:=Any([Sequence{’AMD’,’DEC’,
’HP’,’IBM’,’Lex’,’Miro’,’NEC’,’SAP’,
’Sony’,’Sun’}
->reject(n1|Company.allInstances.
name->exists(n2|n1=n2))]);

end;
end;

It is essential in procedure generateCompanies to
reduce the search space by the reject expression
in order to achieve the result efficiently. If we drop
this reject expression, the desired snapshots are still
within the described search space, because the invariant
companyNamesAreUnique rejects duplicate names, but
it will take much longer to receive a desired snap-
shot. Completely analogously to generateCompanies,
the file percom.assl contains a procedure generate
Persons offering a choice of 26 person names (one name
for each letter in the alphabet).

Let us now discuss the generation of links in the proce-
dure generateJobs given below. First, a fixed number of
new Job objects is created. As the multiplicity in the class
diagram requires, each of these Job objects must be linked
to one employee aPerson and one employer aCompany.
As possible employee candidates, first the set of all Person
objects is considered, but then this is directly restricted by
the following select to those Person objects linked cur-
rently to the minimal number of Job objects. As employer
candidates, the set of all Company objects is considered, but
this is restricted by the reject to those companies not al-
ready linked to the chosen employee candidate. As in the
case of employee candidates, this choice is further restricted
to those companies linked currently to the minimal number
of Job objects. Both restricting select expressions con-
tribute to fairness of Job distribution (one tries to give the
same number of jobs to all companies) and make the re-
sulting snapshot look more balanced. In contrast to this, the
reject expression contributes to invariant satisfaction by
reducing the search space. This reject expression guaran-
tees that the invariant employeeEmployerAreUnique
will never be violated by a constructed snapshot (which is

still to be checked against the invariants). The calculated
employee aPerson and employer aCompany are then in-
serted into the respective associations.

procedure generateJobs(count:Integer)
var theJobs:Sequence(Job),

aPerson:Person, aCompany:Company;
begin
theJobs:=CreateN(Job,[count]);
for j:Job in [theJobs]
begin
aPerson:=Try([Person.allInstances->
asSequence->
select(p|Person.allInstances->
forAll(p2|
p.job->size<=p2.job->size))]);

aCompany:=Try([Company.allInstances->
asSequence->
reject(c|
aPerson.employer()->includes(c))->

select(c|Company.allInstances->
forAll(c2|
c.job->size<=c2.job->size))]);

Insert(PersonJob,[aPerson],[j]);
Insert(CompanyJob,[aCompany],[j]);
end;

end;

After a complete snapshot has been constructed, the invari-
ants are checked. If one invariant fails, backtracking occurs
and an alternative choice is taken considering the last Try
expression offering still alternatives. The Try and Any ex-
pressions syntactically look identical. However, the Any ex-
pressions do not allow backtracking, whereas the Try ex-
pressions do so.

With the same ASSL language elements as de-
scribed above one can define procedures to gener-
ate links in the BossWorker association. The procedure
generateBossWorker mentioned in Fig. 1 is given in
Appendix A and will be used in the command files. The pro-
cedure generateTopMidLow also mentioned in Fig. 1
will be explained below.

Before we discuss the invariants to be loaded dynami-
cally, let us make some more technical remarks on ASSL.
An ASSL procedure is a language construct that defines,
in the context of a given initial snapshot and given actual
parameter values, a sequence of snapshots. Upon starting
a procedure, the ASSL interpreter iterates through that se-
quence of snapshots. If a snapshot is found that fulfills the
model-inherent constraints and the OCL invariants, then the
search stops. The output is a sequence of USE commands
that transforms the initial snapshot into the found snapshot.
If a snapshot that fulfills the constraints and invariants is not
found, then the ASSL interpreter reports No valid state
found. An ASSL procedure has also parameter variables
and local variables. Thus an ASSL command is evaluated
in the context of the current snapshot and the variables. The
tuple consisting of a snapshot and variable values is called



Validating UML and OCL models in USE by automatic snapshot generation 391

a configuration. For example, the first ASSL command of a
procedure is evaluated in the configuration consisting of the
initial snapshot and the actual values of the parameters.

Some ASSL commands such as Try are producing a
sequence of configurations. For instance, after evaluating
i:=Try([Sequence{17,15,13}]) the variable i has
the value 17 in the first configuration, the value of i in the
second configuration is 15, and finally, in the third configu-
ration the value of i is 13. Because an ASSL procedure is
a sequence of ASSL commands, executing an ASSL proce-
dure is done by a depth-first strategy through a tree consist-
ing of configurations. Only the snapshots of the configura-
tion tree leafs are checked against the OCL constraints. That
means, an ASSL procedure does not stop in the middle of
its execution with a Valid state found result. OCL ex-
pressions may be part of ASSL procedures. There, OCL ex-
pressions are always contained in square brackets. An OCL
expression is evaluated in the context of the current config-
uration. The language ASSL was first introduced in [24].

3.4 Dynamically loaded invariants

As already mentioned above, command files can dynami-
cally load invariants in order to generate snapshots with cer-
tain properties or to certify given properties. All these in-
variants will be referenced in the following by their names.
The command files will employ the invariant twoRoleEm-
ployee demanding that there exists a Person object with a
job playing the boss role in one company and with a second
job playing the worker role in a second company.

context Person inv twoRoleEmployee:
Person.allInstances->exists(p |
p.job->exists(low, top |
low.boss.isDefined and
top.worker->notEmpty and
low.employer<>top.employer))

The invariant threeLevelHierarchy demands that there are
three jobs arranged in a hierarchical fashion in the Boss-
Worker association.

context Job inv threeLevelHierarchy:
Job.allInstances->exists(top,mid,low|
top.worker->includes(mid) and
mid.worker->includes(low))

The invariant twoBossesWithDisjointWorkers requires that
there are two bosses with disjoint worker sets (direct or in-
direct workers).

context Person
inv twoBossesWithDisjointWorkers:
Person.allInstances->exists(top1,top2|
let top1Worker:Set(Job)=
top1.job.workerPlus()->asSet in

let top2Worker:Set(Job)=
top2.job.workerPlus()->asSet in

top1Worker->notEmpty and
top2Worker->notEmpty and

top1Worker->
intersection(top2Worker)->isEmpty)

Last, the invariant bossBossBetterPaidThanWorker assures
that the boss of the boss of a worker is better paid than the
worker.

context Job
inv bossBossBetterPaidThanWorker:
Job.allInstances->forAll(low,mid,top|
low.boss=mid and mid.boss=top
implies low.salary<top.salary)

It is worth to mention that the negated version of the previ-
ous invariant is equivalent to the invariant NEGATEDboss-
BossBetterPaidThanWorker.

context Job inv
NEGATEDbossBossBetterPaidThanWorker:
Job.allInstances->exists(low,mid,top|
low.boss=mid and mid.boss=top and
low.salary>=top.salary)

3.5 ASSL Commands

In this subsection we summarize the available ASSL com-
mands.

– Create(cls) returns one new object in class cls.
– CreateN(cls,expr) returns a sequence of length
expr with new objects in class cls.

– Insert(assoc,object-1,...,object-n) in-
serts the tuple (object-1,..., object-n) into
the association assoc.

– Any(seq-expr) returns an arbitrary value from the se-
quence seq-expr without allowing backtracking.

– Sub(seq-expr) returns an arbitrary subsequence
from the sequence seq-expr without allowing back-
tracking.

– Sub(seq-expr,size-expr) returns an arbitrary
subsequence of length size-expr from the sequence
seq-expr without allowing backtracking.

– Try(seq-expr) returns a single value from the se-
quence seq-expr with the possibility of backtracking
where the choices in the backtracking process are deter-
mined by the order in the sequence seq-expr.

– Try(assoc,seq-expr-1,...,seq-expr-n)
empties the association assoc and successively assigns
(with allowing backtracking) all possible link sets to
the association assoc which can be build from the
sequence expressions seq-expr: first the empty link
set, then the link sets having one link, then the link sets
with two links and so on.

4 Test and validation cases

This section applies ASSL elements to test and validation
cases. A test case certifies that it is allowed to construct



392 M. Gogolla et al.

a snapshot fulfilling the invariants. A validation case certi-
fies that a dynamically loaded invariant is a consequence of
given invariants.

4.1 Test case twoRoleTC

The task of the test case twoRoleTC is to generate some
companies, persons, and jobs. Furthermore the association
links have to be established in such a way that a three level
BossWorker hierarchy in at least one company and a two role
employee, i.e., a person possessing a boss job and a worker
job in different companies, become part of the snapshot. The
central steps of the command file twoRoleTC.cmd are
shown below (we here omit some details of the command
file which show the result of the last generation process and
which actually generate the new snapshot).

open percom.use
gen start
percom.assl generateCompanies(2)
gen start
percom.assl generatePersons(3)
gen start
percom.assl generateJobs(6)
gen load threeLevelHierarchy.invs
gen load twoRoleEmployee.invs
gen start
percom.assl generateBossWorker(4)

The command file demands to read the respective USE file
and to start the generation process of 2 companies, 3 persons,
and 6 jobs which means that every person will work in ev-
ery company. Up to now we have generated Company, Per-
son, and Job objects and CompanyJob and PersonJob links.
Now we load the two invariants which guide the generation
of BossWorker links into the desired direction. We generate
4 BossWorker links meaning that every employee in every
company will participate in at least one such link. The result
of the automatic generation process is pictured in Fig. 3. The
company with the three level BossWorker hierarchy is Lex,
and Cher and Tom are two role employees.

4.2 Test case twoBossesTC

The task of the test case twoBossesTC is to generate a
BossWorker hierarchy with two bosses having disjoint, non-
empty sets of direct or indirect workers (workerPlus) but this
time within a single company. Again, we only show the cen-
tral steps of the command file twoBossesTC.cmd.

open percom.use
gen start
percom.assl generateCompanies(1)
gen start
percom.assl generatePersons(7)
gen start
percom.assl generateJobs(7)

gen load
twoBossesWithDisjointWorkers.invs

gen start
percom.assl generateBossWorker(6)

We generate 1 company, 7 persons, and a job for each per-
son. We load the controlling invariant and request the gen-
eration of 6 BossWorker links. The result generated auto-
matically is displayed in Fig. 4. Max and Ida are the bosses
with disjoint, non-empty worker sets. Without loading the
controlling invariant twoBossesWithDisjointWorkers a flat
hierarchy would be generated. For the example in Fig. 4 this
would mean that Dan would be the only boss and all other
persons would be direct workers for him.

4.3 Validation case bossBossVC

As said above, a validation case certifies that a dynamically
loaded invariant is a consequence of already present invari-
ants by showing that it is not possible to construct a snap-
shot satisfying the already present invariants P-INVS and
the negation of the dynamically loaded invariant L-INV:

(P-INVS ⇒ L-INV) ⇔ ¬ (P-INVS ∧ ¬ L-INV).

The validation case bossBossVC shows that, as a conse-
quence from the specified invariants, not only the boss of
a worker is better paid than the worker, but also the boss
of the boss (the bossBoss) of the worker is better paid. The
following protocol file shows the central steps in command
file bossBossVC.cmd and indicates responses from USE.

use> open percom.use
use> gen start

percom.assl generateCompanies(1)
use> gen start

percom.assl generatePersons(3)
use> gen start

percom.assl generateJobs(3) (A)
use> gen load threeLevelHierarchy.invs

Added invariants:
Job::threeLevelHierarchy

use> gen load
bossBossBetterPaidThanWorker.invs
Added invariants:
Job::bossBossBetterPaidThanWorker

use> gen flags
Job::bossBossBetterPaidThanWorker
+n (B)

use> gen start
percom.assl generateTopMidLow()

use> gen result
Checked 162 snapshots.
Result: No valid state found.} (C)

We generate 1 company, 3 persons, and 3 jobs. Figure 5
shows the result at point (A) and at point (C). Note that no



Validating UML and OCL models in USE by automatic snapshot generation 393

Fig. 4 Snapshot generated by twoBossesTC.cmd

Fig. 5 Snapshot generated by bossBossVC.cmd

BossWorker links have been generated at point (C). Af-
ter point (A) we load the two desired controlling in-
variants. Afterwards we set the negate flag of invariant
bossBossBetterPaidThanWorker directly before
point (B) meaning that not the invariant itself is cur-
rently valid but its logical negation. This is equivalent
to explicitly loading the invariant NEGATEDbossBoss
BetterPaidThanWorker. Then the ASSL proce-
dure generateTopMidLow given below is started (gen
start) and we ask to present the result (gen result).

The USE system responds that it has checked 162 snap-
shots but no valid state was found. Why do we end up with
162 snapshots? Let us have a more detailed look at proce-
dure generateTopMidLow.

procedure generateTopMidLow()
var top:Job, mid:Job, low:Job,
jobs:Sequence(Job);

begin
jobs:=[Job.allInstances->asSequence];
top:=Try([jobs]);
mid:=Try([jobs->excluding(top)]);
low:=Try([jobs->excluding(top)->

excluding(mid)]);
Insert(BossWorker,[top],[mid]);
Insert(BossWorker,[mid],[low]);

[top].salary:=Try(
[Sequence{2000,3000,4000}]);

[mid].salary:=Try(
[Sequence{2000,3000,4000}]);

[low].salary:=Try(
[Sequence{2000,3000,4000}]);

end;

The procedure generateTopMidLow assumes that 3
Job objects are present and makes a choice for the
Job objects top, mid, and low via the 3 assignments
{top|mid|low}:=Try(...). Note that we have 3
choices for top, 2 choices for mid, and 1 choice for
low. This makes 6 choices and backtracking possibilities
for these Job assignments. Now consider the salary as-
signments. For every salary we offer 3 possibilities, which
makes 3 ∗ 3 ∗ 3 = 27 cases for the salary assign-
ments. In the total, we get 6 ∗ 27 = 162 combinations
and snapshots. None of them satisfies the negated invari-
ant bossBossBetterPaidThanWorker. This certifies
that it is not possible to construct a snapshot with three hier-
archically arranged BossWorker links such that the bossBoss
is less paid than the worker or equally paid to the worker.
By certification we refer to the process that the developer
gains more insight into her UML and OCL model and con-
vinces herself through a test or validation case that her model
possesses a certain property. We are aware of the fact that
this process is not a complete formal proof, but nevertheless
the intuitively suspected property of the modeler is formally
checked by means of USE and ASSL against the scenarios
the developer regards as relevant.

Up to now we have used Try with its back-
tracking possibilities for attributes only. But one can
use backtracking for link generation as well. It is
also possible to use Try(BossWorker, ...) in-
stead of Insert(BossWorker, ...). If we use Try,
we have to give for each argument of the associa-
tion a list of possible objects like Try(BossWorker,
[Sequencetop],[Sequencemid]). The USE system



394 M. Gogolla et al.

then generates all possible link combinations for the com-
plete association. In the example above, this would be the
empty link set and the link set consisting of the single pair
having the current top value as first and the current mid
value as second component. Backtracking is enabled again,
if we use Try instead of Insert.

Above in the example we have used concrete values
like 2000 or 3000. But the argumentation will be the same
if we use instead abstract values and abstract interpretation
techniques. This is subject to future research.

5 Formal semantics of ASSL

This section surveys the semantics of ASSL. Section 5.1
describes a transformation we have to perform on ASSL
procedures before the proper semantic function can be ap-
plied. This transformation resolves nested ASSL commands.
Section 5.2 afterwards characterizes the basic steps to be
taken for the denotational semantics. After explaining the
used formalization of OCL we map commands and com-
mand sequences into configurations and study how snapshot
sequences result from evaluating ASSL procedures.

5.1 Unnesting of ASSL expressions

The syntax of ASSL allows nested ASSL expressions.
For example, in the procedure generateCompanies the
variable theCompanies can be omitted, if we include the
CreateN(...) command directly in the loop:

for p:Company in
(CreateN(Company,[count]))
begin ... end

For the semantics of ASSL we only consider simple and
unnested ASSL expressions, thus the first step of defining
the semantics is to translate a given ASSL procedure with
nested ASSL expressions to a semantically equivalent pro-
cedure of an ASSL core having no nested ASSL expres-
sions. Because this transformation is simple and because
we want to focus on a precise denotational semantics, this
transformation is explained by an example only. In proce-
dure generateCompanies the body of the loop

[p].name:=Any([Sequence{’AMD’,’DEC’,
’HP’,’IBM’,’Lex’,’Miro’,’NEC’,’SAP’,
’Sony’,’Sun’->
reject(n1|Company.allInstances.name->
exists(n2|n1=n2))]);

is translated to:

vv:=Any([Sequence{’AMD’,’DEC’,’HP’,
’IBM’,’Lex’,’Miro’,’NEC’,’SAP’,
’Sony’,’Sun’}->
reject(n1|Company.allInstances.name->
exists(n2|n1=n2))]);

[p].name:=[vv];

The translation has inserted a new variable vv which must
defined in the declaration section of the procedure.

A procedure of the ASSL core only has commands given
in Appendix B. In the next section we define a denotational
semantics for these single commands and finally for proce-
dures of the ASSL core.

5.2 Denotational semantics

5.2.1 Formalization for OCL expressions

An ASSL procedure with parameters is executed in the con-
text of a given UML class model, an initial snapshot, and
actual parameter values. An ASSL procedure may contain
OCL expressions denoted within squared brackets. Thus, in
order to develop a semantics for ASSL we first need a for-
malization for UML class models, snapshots, and OCL ex-
pressions.

The required definitions, especially those for the seman-
tics of OCL expressions, are given in [9]. There, a snap-
shot (system state) S is defined as a labeled hypergraph
(V , E , nodes, roles, ostate) where V is a finite set of
nodes (objects, i.e., instances of a class), E is the finite set
of edges (links, i.e., instances of an association), nodes is
a function connecting edges with nodes, roles is a function
labeling each edge with a tuple of role names and ostate is a
function labeling each node with an attribute-value mapping.
For example, the snapshot represented in Fig. 5 is defined as:

V = { Person1, Person2, Person3,
Job1, Job2, Job3, Company1 }

E = { J1P1, J2P2, J3P3,
C1J1, C1J2, C1J3 }

nodes(J1P1) = ( Job1, Person1 )
nodes(J2P2) = ( Job2, Person2 )
nodes(J3P3) = ( Job3, Person3 )
nodes(C1J1) = ( Company1, Job1 )
nodes(C1J2) = ( Company1, Job2 )
nodes(C1J3) = ( Company1, Job3 )
roles(J1P1) = roles(J2P2) =
roles(J3P3) = (job, employee)

roles(C1J1) = roles(C1J2) =
roles(C1J3) = (employer, job)

ostate(Person1) = { (name, ’Lisa’ ) }
ostate(Person2) = { (name, ’Fred’ ) }
ostate(Person3) = { (name, ’Wini’ ) }
ostate(Job1) = ostate(Job2) =
ostate(Job3) =

{ (salary, undefined ) }
ostate(Company1) = { (name, ’Lex’ ) }

In [9], a definition for the semantics of OCL expressions is
given as well. Please note that the additional semantics in
this paper is based on that work and we do not repeat all
details from that paper here. Let B be the set of all variable
assignments and C the set of all classifiers. The semantics
of an OCL expression e ∈ Expr(c)s in the context of a class
c ∈ C is a function I [e] : B × C → I (s) in [9].



Validating UML and OCL models in USE by automatic snapshot generation 395

With little modification we can reuse these definitions for
the semantics of ASSL procedures. The main difference here
is that OCL expressions in ASSL procedures are not evalu-
ated in the context of a class c. But we can achieve this, if
we formally add a new class without associations, attributes
and operations to the class diagram, create an instance of
this new class, and provide the class c as the second parame-
ter in I [e]. However, we ommit this second parameter in the
following definitions and use it as I [e] : B → I (s).

Note that this new function I [e] : B → I (s) does
not have the snapshot as a parameter. In [9] the snapshot
is given by the frame of the definitions, but we need it ex-
plicitly as a parameter. In addition to the present notions,
let Snapshot be the set of all snapshots of a given class
diagram. Now, fitting for our purpose, the semantics of an
OCL expression e ∈ Expr(c)s can be defined by a function
I [e] : B × Snapshot → I (s).

5.2.2 Formalization of commands

The next step is to formalize ASSL procedures. The body
of an ASSL procedure is a sequence of ASSL commands.
Let Command be the set of commands defined by the ASSL
core. The set of all command sequences will further on be
called Command∗.

Now let proc ∈ Command∗ be the command sequence
of an ASSL procedure and let β0 ∈ B be the initial vari-
able assignment. This means, this assignment associates the
actual values of the procedure call with the parameter vari-
ables of the ASSL procedures. Because proc is evaluated
on an initial snapshot σ0 ∈ Snapshot and an initial variable
assignment β0, the semantics of proc is a function:

M : (Command∗ × B × Snapshot) → Snapshot∗

This function M produces the sequence of snapshots needed
for automatic snapshot generation. The goal of the next sec-
tions is to define the function M for M(proc, β0, σ0).

5.2.3 Evaluation of ASSL commands on a configuration K

ASSL commands are evaluated in the context of a snapshot
and a variable assignment. For example, the first command
in proc is evaluated in the context of β0 and σ0. Such a tuple
(β, σ ) is called configuration. Let K be the set of configura-
tions.

Because commands such as Try may produce many
configurations, the semantics of a command i ∈ Command
is a function A returning sequences of configurations, i.e.,
elements of K ∗:

A[i] : K → K ∗

A : Command → (K → K ∗)

Now we define the semantic function A for the com-
mands of the ASSL core. Here, in the running section, we
only define A for the variable assignment var:=[expr]. The
semantics of the other commands is given in Appendix B.

Let expr ∈ Exprs be an OCL expression and let var ∈
V ars be a variable with s ∈ SExpr(S). We now consider
oclexpr(expr , var) ∈ Command.

A[oclexpr(expr , var)](β, σ ) = 〈(β[var/I [expr](β,σ )], σ )〉
The command var:=[expr] produces a sequence with one
configuration, which has an unchanged snapshot σ and a
changed variable assignment β[var/I [expr](β,σ )]. That means,
the value of var will be equal to the evaluation result of the
OCL expression expr in the context of (β, σ ).

5.2.4 Evaluation of ASSL commands on a configuration
sequence K ∗

Starting with an initial configuration (β0, σ0) the first com-
mand of the ASSL procedure produces a sequence of config-
urations. The second command must now be evaluated in the
context of each configuration. So we would get a sequence
of sequences of commands. n commands are producing a
configuration tree with at least n levels. In order to get the
configuration of a level as a flattened sequence we need a
function f latten : (K ∗)∗ → K ∗ defined as:

flatten(〈〈k1,1, . . . , k1,n1〉, 〈k2,1, . . . , k2,n2〉, . . . ,
〈km,1, . . . , km,nm 〉〉)

= 〈k1,1, . . . , k1,n1, k2,1, . . . , k2,n2, . . . , km,1, . . . , k1,nm 〉
Let i ∈ Command be given. The semantics of a com-

mand evaluated on a configuration sequence is defined as:

Q[i] : K ∗ → K ∗

Q[i]〈k1, . . . , kn〉 = flatten(A[i](k1), . . . , A[i](kn))

Now the semantics of a command sequence can be de-
fined using recursion. Let seq ∈ K ∗ and i j ∈ Command
with j ∈ {1, . . . , n} be given.

Q[(〈i1, . . . , in〉)](seq)

=
{

seq if n = 0

Q[in](Q[〈i1, . . . , in−1〉](seq)) if n > 0

5.2.5 Semantics of an ASSL procedure

The semantic function M only needs the snapshots of the
produced configuration sequence, which are collected by the
function snaps : (B × Snapshot)∗ → Snapshot∗

snaps(〈(β1, σ 1), (β2, σ 2), . . . , (βn, σ n)〉)
= 〈σ 1, σ 2, . . . , σ n〉

Summarizing we can say that the semantics of an ASSL
procedure consisting of the command sequence proc ∈
Command∗ applied to the initial variable assignment β0 and
the initial state σ 0 is:

M(proc, β0, σ 0) = snaps(Q[proc](〈(β0, σ 0)〉))



396 M. Gogolla et al.

6 Conclusion

We have presented an extension of the USE tool for auto-
matic generation of complex snapshots, i.e., system states
consisting of objects possessing attribute values and links.
Our approach employs OCL expressions for various tasks
apart from traditional OCL tasks like definition of opera-
tions, invariants, pre- and postconditions: (1) OCL expres-
sions are used in ASSL procedures (1.a) to reduce the search
space for snapshots and (1.b) to formulate properties of the
desired snapshot, and (2) OCL invariants are dynamically
loaded during command file execution (2.a) to guide the
snapshot search and (2.b) to certify an invariant implication.
It is an interesting observation for us that a descriptive lan-
guage like OCL can be used in task (1.a) for improving effi-
ciency.

The presented approach can be seen in two ways: First,
as a means for purely generating consistent data constella-
tions and consistent snapshots, and second, as a possibil-
ity for providing an abstract, i.e., programming-independent,
implementation of operations in UML class diagrams. This
paper has been focussing on the first aspect. Regarding the
second aspect, one could use ASSL to systematically imple-
ment each operation from the UML class diagram by writing
a procedure for each operation. The possibilities of ASSL go
far beyond the current possibilities provided by USE com-
mand files for operation implementation.

Our approach is scalable with respect to larger snapshots.
We have employed the approach in various case studies and
have constructed, for example, snapshots with about 200 ob-
jects and 400 links in acceptable execution time (about 30 s).
Our motivation for the development of complex test cases in
early development stages is to ensure the quality of the de-
veloped models and to give early feedback to the developer.
We also see the possibility to carry over test and validation
cases from early phases to the later implementation phases.
For example, the 162 snapshots from the above validation
case correspond to 162 negative test cases which could also
be run against the implementation. Thus, the effort spent in
the early phases will be rewarded by high quality results in
later phases.

Acknowledgements The authors would like to thank the referees for
their fruitful and constructive criticism and their overall helpful re-
marks.

Appendix A: generateBossWorker

procedure generateBossWorker
(count:Integer)
var top:Job, low:Job, depth:Integer,
addition:Integer;
begin
for i:Integer in [Sequence\{1..count\}]

begin -- establish BossWorker links
top:=Try([Job.allInstances->
asSequence]);
low:=Try([Job.allInstances->
asSequence->reject(low|
low.boss.isDefined or
low=top or
low.workerPlus()->includes(top) or
top.workerPlus()->includes(low) or
top.employer<>low.employer)]);

Insert(BossWorker,[top],[low]);
end;

depth:=[0];
-- calculate depth of
-- BossWorker hierarchy

for j:Job in
[Job.allInstances->select(j|
j.salary.isUndefined)->asSequence]
begin depth:=
[if j.bossPlus()->size>depth

then j.bossPlus()->size
else depth endif];

end;
for j:Job in
-- establish salaries using
-- depth and random values
[Job.allInstances->select(j|
j.salary.isUndefined)->asSequence]
begin
addition:=
Any([Sequence 0,500,1000,1500]);
[j].salary:=

[1000+2000*(depth-j.bossPlus()->
size)+addition];

end;
end;

Appendix B: Semantics of further single ASSL
commands

This appendix contains the semantics of single ASSL com-
mands i ∈ Command by defining A[i] : K → K ∗. We are
defining the semantics for various commands showing that
the formalization is able to incorporate the main features of
ASSL which are (A) backtracking (by building a configura-
tion tree), (B) snapshot changes, and (C) variable assignment
changes.

• Variable assignment with an OCL expression:
var := [expr] Let expr ∈ Exprs be the OCL
expression and let var ∈ V ars be the variable with
s ∈ SExpr (S). Let oclexpr(expr , var) ∈ Command.

A[oclexpr(expr , var)](β, σ ) = 〈(β[var/I [expr ](β,σ )], σ )〉
• Variable assignment with
Create: var := Create(c)



Validating UML and OCL models in USE by automatic snapshot generation 397

Let c ∈ C be the class of the object to create. Let s ∈
SExpr (S) be the object type of class c. Let var ∈ V ars .
o ∈ I (c) is a object identifier. Let create(c, var) ∈
Command.

A[create(c, var)](β, (V ′, E, nodes, roles, ostate))

= 〈(β[var/o], (V ∪ {o}, E, nodes, roles, ostate))〉
with o ∈ I (c) \ V

• Insertion of a link: Insert(A,var1, . . . ,varn)
(n ∈ N , n > 1)
Let si ∈ SExpr (S) be the object type of the class
of the i th association end of association A. Then it is
vari ∈ V arsi . Now let rni ∈ Arole be the role name
of the i th association end of A. (i ∈ N , i ≤ n). Let
insert(〈rn1, . . . , rnn〉, 〈var1, . . . , varn〉) ∈ Command.

A[insert(〈rn1, . . . , rnn〉, 〈var1, . . . , varn〉)]
(β, (V, E, nodes, roles, ostate))

= 〈(β, (V, E ∪ {e}, nodes′, roles′, ostate))〉
with nodes′ = nodes ∪ {e → 〈I [var1](β, σ ), . . . ,

I [varn](β, σ )〉}
and roles′ = roles {e → 〈rn1, . . . , rnn〉}
and e /∈ E

• Variable assignment with Try : var := Try(seqvar)
Let seqvar ∈ V ar Sequence(s) and var ∈ Vars with s ∈
SExpr(S). Let tr y(seqvar, var) ∈ Command.

A[tr y(seqvar , var)] (β, σ ) = 〈(β[var/e1], σ ), σ ), . . . ,

(β[var/en], σ )〉
with β(seqvar) = 〈e1, . . . , en〉

• Variable assignment with Any : var := Any(seqvar)
Let seqvar ∈ V ar Sequence(s) and var ∈ V ars . (s ∈
SExpr (S)). Let any(seqvar , var) ∈ Command. Let
random : V ar Sequence(s) → I (s)

A[any(seqvar , var)] (β, σ )

= 〈(β[var/random(seqvar)], σ )〉
The function random is a function which could be
defined as an OCL term with seqvar->asSet->
asSequence->at(1). Because a set has no order, the
term asSequence->at(1) returns a random element
of seqvar. For a deterministic and exact semantics of ran-
dom the configuration (β, σ ) ∈ K must be extended with
a third element (β, σ, path) ∈ K , where path ∈ N∗
represents the path in the configuration tree. For exam-
ple, path =< 1, 3, 8, 4 > refers to the 4th subconfigu-
ration of the 8th subconfiguration of the 3rd subconfigu-
ration of the initial configuration. The deterministic func-
tion random(seqvar, path) now returns an element of
seqvar depending on path. Let rand : N × N∗ → N be a
given function with 1 ≤ rand(max, path) ≤ max , then

random(seqvar, path) = random(< e1, e2, . . . , en >
, path) = erand(n,path).
A configuration K is defined as a tuple (β, σ ) ∈ K with-
out path in order to reduce the complexity of the seman-
tics.

• Attribute assignment: [objectvar]. attrnamec:=
[valuevar]—
Let c ∈ C , objectvar ∈ V arc, valuevar ∈
V ars and (attrnamec : c → s) ∈ AT T c.
Let attr Assign(objectvar , attrnameC , valuevar) ∈
Command and
σ = (V, E, nodes, roles, ostate).

A[attr Assign(objectvar, attrnameC , valuevar ]
(β, σ ) = 〈(β, (V, E, nodes, roles, ostate′))〉
with ostate′(v, ac) =

×




I [valuevar ](β, σ ) if I [objectvar](β, σ ) = v
∧ attrnameC = ac

ostate(v, ac) else

(v ∈ V, ac ∈ AT T c)

References

1. OMG: (ed) OMG Unified Modeling Language Specification,
Version 1.5. OMG. OMG Document formal/03-03-01,
www.omg.org (2003, March)

2. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, Reading, MA (1998)

3. Hussmann, H., Demuth, B., Finger, F.: Modular architecture for a
toolset supporting OCL. In: Evans, A., Kent, S., Selic, B. (eds.)
Proceedings of 3rd International Conference on Unified Model-
ing Language (UML’2000), LNCS 1939, pp. 278–293, Springer,
Berlin Heidelberg New York (2000)

4. ArgoUML Team.: The ArgoUML Tool. www.argouml.
tigris.org (2003)

5. Boldsoft.: The Boldsoft OCL Tool Model Run.
www.boldsoft.com, Boldsoft, Stockholm, Sweden (2002)

6. Chiorean, D.: Using OCL Beyond Specifications. In: Evans, A.,
France, R., Moreira, A., Rumpe, B. (eds.) Proceedings UML’2001
Workshop Rigorous Development, pp. 57–68, Lecture Notes in
Informatics (LNI), German Informatics Society, Bonn, Germany
(2001)

7. Ahrendt, W., Baar, T., Beckert, B., Giese, M., Habermalz, E.,
Hähnle, R., Menzel, W., Schmitt, P.H.: The KeY approach: Inte-
grating object oriented design and formal verification. In: Ojeda-
Aciego, M., de Guzmán, I.P., Brewka, G., Pereira, L.M. (eds.) Pro-
ceedings of 8th European Workshop Logics in AI (JELIA’2000),
LNCS 1919, pp. 21–36. Springer, Berlin (2000)

8. Canals, A., Cassaing, Y., Jammes, A., Pomies, L., Roblet, E.: How
You could Use NEPTUNE in the Modelling Process. J. Object
Technol. 2(1), 69–83 (2003) www.jot.fm

9. Richters, M., Gogolla, M.: On Formalizing the UML Object Con-
straint Language OCL. In: Ling, T.-W., Ram, S., Lee, M.L., (eds.)
Proceedings 17th International Conference on Conceptual Model-
ing (ER’1998), pp. 449–464. Springer, Berlin, LNCS 1507 (1998)

10. Richters, M., Gogolla, M.: OCL—Syntax, Semantics and Tools.
In: Clark, T., Warmer, J. (eds.) Advances in Object Modelling with
the OCL, pp. 43–69. Springer, Berlin, LNCS 2263 (2001)

11. Richters, M., Gogolla, M.: Validating UML Models and OCL
Constraints. In: Evans, A., Kent, S. (eds.) Proceedings of 3rd Inter-
national Conference on Unified Modeling Language (UML’2000),
pp. 265–277. Springer, Berlin, LNCS 1939 (2000)



398 M. Gogolla et al.

12. Scott, W.A.: Building Object Applications: Patterns, Architec-
ture, Design, Construction, and Testing. Prentice-Hall, Englewood
Cliffs, NJ (1997)

13. Oliver, I., Kent, S.: Validation of object-oriented models using an-
imation. In: Proceedings EuroMicro, vol. 2, pp. 2237–2243. IEEE,
Los Alamitos (1999)

14. Jézéquel, J.-M., Le Guennec, A., Pennaneach, F.: Validating dis-
tributed software modeled with the Unified Modeling Language.
In: Bézivin, J., Muller, P.-A. (eds.) Proceedings of 1st Interna-
tional Workshop on Unified Modeling Language (UML’1998),
LNCS 1618, pp. 365–377, Springer, Berlin Heidelberg New York
(1999)

15. Dupuy, S., du Bousquet, L.: A multi-formalism approach for the
validation of UML models. Formal Aspects Comput. 12(4), 228–
230 (2000)

16. Muthiayen, D.: Real-Time Reactive System Development—A
Formal Approach Based on UML and PVS. PhD thesis, Depart-
ment of Computer Science at Concordia University, Montreal,
Canada (2000, January)

17. Fröhlich, P., Link, J.: Automated Test Case Generation
from Dynamic Models. In: Bertino, E. (ed.) Proceedings of
the 14th European Conference on Object-Oriented Program-
ming (ECOOP’2000), pp. 472–491. Springer, Berlin, LNCS 1850
(2000)

18. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: The Alloy con-
straint analyzer. In: Proceedings of the International Conference
on Software Engineering (ICSE’2000), pp. 730–733. ACM, New
York (2000)

19. Martin, H.: Using test hypotheses to build a UML model of object-
oriented smart card applications. In Rault, J.-C. (ed.) Proceedings
of the International Conference on Software and Systems Engi-
neering and their Applications (ICSSEA’1999), Paris (1999)

20. Graubmann, P., Rudolph, E.: Hypermscs and sequence diagrams
for use case modelling and testing. In: Evans, A., Kent, S., Selic,
B. (eds.) Proceedings of the 3rd International Conference on Uni-
fied Modeling Language (UML’2000), LNCS 1939, pp. 32–46,
Springer, Berlin Heidelberg New York (2000)

21. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for
static checking and test generation. In: Evans, A., Kent, S., Selic,
B. (eds.) Proceedings of the 3rd International Conference on Uni-
fied Modeling Language (UML’2000), LNCS 1939, pp. 383–395.
Springer, Berlin Heidelberg New York (2000)

22. Offutt, J., Abdurazik, A.: Generating tests from UML specifica-
tions. In: France R., Rumpe B. (eds.) Proceedings of the 2nd Inter-
national Conference on Unified Modeling Language (UML’1999),
LNCS 1723, pp. 416–429. Springer, Berlin (1999)

23. Agerholm, S., Larsen, P.G.: A Lightweight Approach to For-
mal Methods. In: Hutter, D., Stephan, W., Traverso, P., Ullmann,
M. (eds.) Proceedings of the International Workshop on Cur-
rent Trends in Applied Formal Methods (FM-TRENDS’1998),
LNCS 1641, pp. 168–183. Springer, Berlin (1999)

24. Bohling, J.: Generation of Snapshots for the Validation of UML
Class Diagrams. (In German). Diploma Thesis, University of Bre-
men (2001)


