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Abstract. Previously, we presented Circus, an integra-
tion of Z, CSP, and Morgan’s refinement calculus, with
a semantics based on the unifying theories of program-
ming. Circus provides a basis for development of state-
rich concurrent systems; it has a formal semantics, a re-
finement theory, and a development strategy. The de-
sign of Circus is our solution to combining data and be-
havioural specifications. Here, we further explore this is-
sue in the context of object-oriented features. Concretely,
we present an object-oriented extension of Circus called
OhCircus. We present its syntax, describe its semantics,
explain the formalisation of method calls, and discuss our
approach to refinement.
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1 Introduction

The search for increasing levels of abstraction is a key fea-
ture in the history of Computing, and, particularly, of lan-
guage design. The consolidated concepts of abstract data
types and classes allow a structured modelling of real-
world entities, capturing both their static and dynamic
properties. The notion of process abstracts from low-level
control structures, allowing a system architecture to be
decomposed into cooperative and active components.
Despite the complementary nature of constructs for

describing data and control behaviour, most program-
ming languages focus only on one or the other aspect.
For example, Java [18] offers (abstract) classes, interfaces,
and packages; in contrast, only the low-level notion of
threads is available. On the other hand, occam [21] em-
bodies an elegant notion of process, but neglects abstract
data types. There are exceptions like Ada [20], whose
design has clearly addressed abstract data and control be-
haviour (with packages and tasks), but even so there are

several limitations; for example, a package is not a first-
class value.
The design of specification languages has followed

a similar trend, with state-based and property-oriented
formalisms concentrating on high-level data constructs [3],
and process algebras exploring control mechanisms.
A current and active research topic is the integration of
notations to achieve the benefits of both abstract data
and control behaviour [13, 31]. Our effort is Circus [36],
a combination of Z [38] and CSP [27], which includes
Dijkstra’s language of guarded commands [11] and speci-
fication constructions in the style of Morgan’s refinement
calculus [23].
Circus is a unified language of specification, design,

and programming, in the spirit of refinement calculi. In [8,
30], we define notions of refinement, and a simulation
technique, which we prove sound. In [9], we propose a re-
finement strategy that supports the calculation of con-
current programs from centralised specifications. The se-
mantic model of Circus [37] is based on the unifying theo-
ries of programming of Hoare and He [19].
In this paper, we are concerned with further inves-

tigating the integration of event and state-based for-
malisms, particularly within the context of elaborate
state descriptions, possibly involving classes structured
using inheritance and dynamic binding. Inheritance of
processes is also investigated. Given our previous ex-
perience with the development of Circus, our ideas are
materialised by adding object-oriented features to Circus,
and we call the new notation OhCircus. We provide a uni-
form semantic model for classes and processes, based on
the unifying theories of programming.
Central to our approach is the notion and techniques

of refinement: Circus and OhCircus are languages for re-
finement. Our aim is to provide a refinement calculus in
the style of Morgan [23] that allows us to reason about
concurrent object-oriented programs.
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Our approach to object-orientation is also influenced
in many ways by Java, but it is not our aim to stand
up for its particular design. Instead, our decision is justi-
fied by our choice of target programming language: Java
itself, with the support of the JCSP library [35], which
implements CSP facilities. The implementation of CSP
operators frees us from having to refine OhCircus speci-
fications into the low-level notion of Java threads, which
involves shared variables, rather than communication via
channels.
Our case studies have shown that this framework

is suitable for the implementation of Circus specifica-
tions, and it is of practical interest due to the success of
Java [26]. By including object-oriented facilities in Circus,
we hope to be able to better explore the facilities of Java.
In the next section, we present and justify our ap-

proach to modelling states and events. In Sect. 3, we in-
troduce OhCircus and provide a small example to illus-
trate the combined use of classes and processes. Section 4
describes the semantics of method calls. The following
section discusses a unified strategy for refinement of pro-
cesses and classes. Finally, we discuss our results and top-
ics for further research.

2 The Circus approach

The structure of a Circus program is similar to that of
a Z specification; a program in Circus is a sequence of
paragraphs: Z paragraphs, process definitions, or channel
definitions. Typically, a system is modelled as a process.
The most basic way to define a process is by explic-

itly specifying its state, using a schema as in Z, and its
behaviour, using a (main) action. Schemas that define op-
erations over the state are actions; furthermore, construc-
tors of CSP and of Morgan’s refinement calculus can also
be used to define actions. A main action is distinguished
as the definition of the overall behaviour of the process.
A process can also be defined in terms of existing pro-
cesses using CSP operators.
As a very simple example, we consider a process that

models a buffer with two positions; it uses channels in and
out to input and output integer numbers.

channel in, out : Z

We call our example process TwoPositionBuffer .

process TwoPositionBuffer =̂ begin

The state of the buffer contains components first and sec-
ond to hold the buffered numbers, and a component size
that determines how many numbers are actually in the
buffer.

state BState
first, second : Z
size :N

size≤ 2

The invariant states that at most two integers are
buffered.
An initialisation schema defines an action that sets the

size of the buffer to 0: initially, the buffer is empty.

Init
BState′

size′ = 0

This schema is not distinguished from the others. The be-
haviour of a process does not necessarily start with an
initialisation of the state. Instead, it is defined by the
distinguished main action, which may perform an initiali-
sation; this is the case in our example, as shown below. In
general, operations over the state are executed only when
invoked from the main action of the process.
The first operation that we present inserts a number

x? into the empty buffer.

InsertF irst
∆BState
x? : Z

size= 0
first′ = x?
size′ = 1

The next operation inserts a second number into a buffer
that already holds one number. The first number is not
changed.

InsertSecond
∆BState
x? : Z

size= 1
first′ = first
second′ = x?
size′ = 2

The output of a number is possible only if the buffer is not
empty, in which case the output number is always first .
The operation Output updates the state accordingly, but
does not actually produce the output; this is left for the
main action.

Output
∆BState

size > 0
first′ = second
size′ = size−1

If the buffer happened to have two numbers, the sec-
ond number becomes the first , and is output in the next
request.
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All these state operations are auxiliary actions that
we use below to specify the main action of TwoPosition-
Buffer using CSP operators.

• Init;
µX • (size < 2) & in?x→

(size= 0) & InsertF irst;X
�

(size= 1) & InsertSecond;X
�

(size > 0) & out!first→Output;X
end

First of all, the state is initialised. In sequence, the pro-
cess TwoPositionBuffer recurses (µ), offering the possi-
bility of inputting and outputting numbers depending on
its size. If the buffer is not full, size< 2, then it is possible
to input a number x. An action g & A behaves like A if g
holds, and deadlocks otherwise. For an action c→A, the
behaviour is that of A, after the communication c. The
communication in?x is the input of a value x through the
channel in. If the buffer is not empty, then it is also pos-
sible to output first ; the communication out!first out-
puts the value first through the channel out . In the main
action, size < 2 and size > 0 are used as guards, as are
size= 0 and size= 1. After an input, the action Insert-
First or InsertSecond is executed depending on whether
the buffer is empty or not.
Events, which in Circus are communications, and state

updates are detached. In our example, the occurrence
of the communication in?x, for instance, does not trig-
ger a state update. The following action is an external
choice (�); depending on the value of size, either Insert-
First or InsertSecond is going to be used to update the
state.
As opposed to other integrated formalisms, Circus

does not identify guards and preconditions, which have
different purposes. The precondition of InsertFirst , for
example, is that the buffer is empty, size= 0. If executed
in a state in which size is 1 or 2, then InsertFirst di-
verges. In this way, the behaviour of an action defined by
a schema operation is the same as in Z; as a consequence,
refinement of schemas is as expected by Z users. The main
action uses size= 0 as a guard to block the choice to exe-
cute InsertFirst , if its precondition does not hold.
In spite of the great flexibility provided by Circus, it

is possible to start describing a system either exclusively
with events or exclusively with states. A process may have
no state components, and have its behaviour defined by
a main action that uses only CSP constructs. Such a pro-
cess is described using a process algebra, with no explicit
state. Later, we can apply data refinement to introduce
a state.
As a second option, it is possible to focus on an ab-

stract data type as a system specification, and later de-
velop the communication and concurrency required for
a distributed implementation. This amounts to writing

a Z specification, and using channels to communicate the
inputs and outputs of each operation, because the state
of a process is local. The main action initialises the state
and recursively offers the choice of all operations. For ex-
ample, a process that models an integer variable can be
specified as follows.

channel rd, wrt : Z
process V ariable =̂ begin
state State =̂ [ x : Z ]
Init =̂ [ State′ | x′ = 0 ]
Read =̂ [ ΞState; v! : Z | v! = x ]
Write =̂ [ ∆State; v? : Z | x′ = v? ]
• Init;
µX •var v : Z •Read; rd!v→X

�

wrt?v→Write;X
end

The state component is the value x of the variable. There
are operations Init to initialise the state, and Read and
Write to access and update the variable, which are de-
fined just as in Z; in Circus they are actions. The action
Read has an output variable v!, which we declare locally
as v. After Read is executed, we output v through the
channel rd .
The channels rd and wrt are needed because the state

of aVariable process is encapsulated; the onlyway of inter-
acting with a process is through channel communication.
A process that does not input or output any information is
equivalent to Skip, if it terminates, or is divergent, if it does
not, no matter how complex its state is. If this pure Z style
is adopted, the Circus refinement strategy can be used to
introduce a rich system architecture [9].
In summary, even if any of the pure specification styles

is adopted, refinement allows moving to a hybrid de-
scription during development. Typically, in code, there is
a complex interplay between events and state updates,
just as in programs written in languages like Java and oc-
cam. Even though it is possible, moving between the pure
styles of specification is not the objective when you have
coding in mind.
Most often, it is more convenient to adopt a mixture of

the two approaches from the early stages of specification,
using parallelism to capture requirements separately, and
using states to abbreviate and simplify descriptions. Such
Circus specifications make an important distinction be-
tween the use of events and states as specification devices
and as implementation artifacts.
A temptation that arises from the availability of both

Z and CSP constructs is to introduce too much structure
into the specifications. Parallelism, for example, is useful
to combine the components of a design; at the abstract
specification level, it should be used only when there is
intrinsic parallelism in the requirements.
In most cases, an abstract Circus specification is com-

posed of a single process whose definition is structured
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using the schema calculus and action operators. Global
properties should be captured as invariants in the style of
Z. As we progress with refinement, these properties are
distributed throughout the components and become local
invariants interconnected by reactive mechanisms.
Another approach to the combination of CSP and Z

is represented by CSP-Z [14]. The major distinction be-
tween CSP-Z and Circus is that, in CSP-Z, reactive be-
haviour is defined solely using CSP, with an implicit at-
tachment between an event in the CSP description and
a state transition described as an associated Z operation.
In other words, CSP-Z embeds the second specification
style we considered above.
The work in [31] presents CSP||B, a combination of

CSP and B [1] that follows the philosophy of communi-
cating data types. In this work, CSP is used to control
interaction between B machines; a B machine is regarded
as a data type, with each operation triggered by an asso-
ciated communication.
The fixed architectural model adopted in both CSP-Z

and CSP||B for the specification of data and behavioural
aspects of the system has advantages. Firstly, in the re-
sulting specifications there is a clear separation between
the uses of the combined notations. This allows the easy
reuse of successful existing tools like FDR [16]. Secondly,
the semantics of the language can be defined as an exten-
sion of the well-studied failures-divergences semantics of
CSP, with the view of the data types as processes.
The motivation for the design of Circus and OhCircus,

however, is the definition of a unified language for re-
finement. In this context, the detachment of an event
occurrence from a state transition seems more appropri-
ate. Potential target programming languages like Java,
occam, or Handel-C [33] also deal with events and state
update independently.
Asalready said, the semantics of Circus andOhCircus is

based on the unifying theories of programming. As such,
even though it is not a direct extension of the semantics of
CSP, it reuses an existing model that encompasses state-
based, reactive, and concurrent constructs. Furthermore,
we are currently working on the development of a model-
checker for Circus based on FDR, and on the mecha-
nisation of the semantics of Circus using a Z theorem
prover: ProofPowerZ.
Our approach to model checking Circus specifications

combines standard model checking techniques with theo-
rem proving. We generalise the successful algorithm of
FDR to handle infinite automata that may arise from
the rich state of Circus specifications. Failures and di-
vergences are handled symbolically, and the outcome of
a model checking attempt depends on a set of proof
obligations that need to be discharged using a theorem
prover.
Typically, model checking is used to debug specifica-

tions and implementations through a cycle of checks and
amendments. In our approach, an application-oriented
theory is developed for a particular specification during

the cycles. As we progress, this theory should become
powerful enough to support automatic theorem proving.
Handling infinite and complex data structures is also

an issue when model checking CSP-Z and CSP||B speci-
fications. In the case of CSP-Z [12, 25], data abstraction
is used. In the CSP||B approach, relevant data properties
of the B machines are recorded as assertions in the CSP
processes.
In [10], refinement of Object-Z [32] specifications is

studied in detail, and a possible combination of Object-Z
and CSP is also considered. In Object-Z, the precondi-
tion of the Z operation schemas are taken as guards for
their execution. In Circus, we keep the philosophy of Z
and reflect the generality of programming by introducing
a guard constructor. This has a major impact on refine-
ment, so that the rules that we need for Circus (and for
OhCircus) are different, and are closely related to those
of Z.
The notation CSP-OZ [14] follows design guidelines

similar to those of CSP-Z, but, being a combination of
CSP and Object-Z [32], it also includes classes, inheri-
tance, and other object-oriented features. Besides coup-
ling events and state transitions, classes and processes are
identified in CSP-OZ. There, the main concern is specifi-
cation only, and at that level of abstraction such distinc-
tions may not be really necessary.
In industrial practice, however, class instances (ob-

jects) are passive entities, while processes are active. It
seems artificial to force class descriptions that model, for
instance, addresses or employees, to have the status of
a process, since the standard behaviour would be just
a recursive choice of all its operations (methods). Another
potential practical inconvenience of regarding data elem-
ents as processes is that method calls have to be expressed
as synchronisations involving explicit communication.
In OhCircus, where refinement is a central issue, we

introduce a separate construct for defining classes, and
provide a semantics for method calls that is indepen-
dent of communication. Classes support the definition of
processes with complex state spaces. Their introduction
raises issues related to the refinement of classes, but does
not interfere with existing results related to the devel-
opment of processes. When deriving from an OhCircus
specification code written, for example, using JCSP, it
will usually be relevant to distinguish between ordinary
classes and active ones (processes).
The work reported in [22] is an integration of Object-Z

and Timed CSP called TCOZ. Like Circus and OhCircus,
TCOZ does not follow the communicating data type phi-
losophy, and avoids implicit associations between com-
munications and state updates. Their motivation is the
need to specify time restrictions on state operations; if
they are identified with communications, they become in-
stantaneous in the framework of CSP.
Refinement does not seem to be a concern in that line

of work. Indeed, TCOZ inherits the difficulties related
to refinement of Object-Z specifications. For instance, in
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Object-Z, method calls can be used as schemas; since
the schema calculus operators are not monotonic with
respect to refinement, stepwise refinement of methods
is not immediately available. Furthermore, in Object-Z
class inheritance allows renaming, redefinition, and can-
cellation of operations in such a way that a subclass
is not necessarily a refinement or even a subtype of its
superclasses.
In OhCircus, the use of schemas, method calls, and

the subclassing mechanism is restricted, so that modu-
lar reasoning and stepwise refinement are still possible.
This may lead to more verbose specifications of redefined
operations than those written in CSP-OZ or Object-Z;
examples are presented in the next section. It is our view,
however, that the loss of a compositional approach to re-
finement would be too high a price to pay. Furthermore,
the use of the unifying theories of programming as a basis
for the OhCircus model makes the use of method calls in
expressions and predicates possible, with great improve-
ment in expressive power.
Another issue is that of copy versus reference se-

mantics. Circus and OhCircus do not allow sharing. The
refinement of a specification into target languages like
JCSP [26] or UML-RT [29] preserves the channel based
communication model for processes. Object-oriented pro-
gram development exploring the use of patterns, pos-
sibly involving sharing, is a suggested topic for further
research. Results in the absence of sharing are reported
in [4]. Object-Z and CSP-OZ have a reference semantics.
Nevertheless, as already pointed out, there seems to be no
proposal of how to formally refine specifications in those

Fig. 1. OhCircus syntax

languages into object-oriented programs. The next sec-
tion details the rationale for the design of OhCircus.

3 OhCircus

In the same way as Circus, and Z, a program inOhCircus is
a sequence of paragraphs. In Circus they can be Z para-
graphs, or process and channel definitions. OhCircus in-
cludes yet another form of paragraph: a class definition.
Moreover, in OhCircus we can define processes using in-
heritance, and using data types defined as classes.
In Figs. 1 and 2, we provide a partial BNF descrip-

tion for the syntax of OhCircus. The syntactic categories
Paragraph, Schema-Exp, Expression, and Declaration con-
tain Z paragraphs, schema expressions, expressions, and
declarations. The syntactic categories named ChannelDef-
inition, ChanSetDefinition, and CSExpression are those of
Circus channel definitions, channel set definitions, and
channel set expressions. Finally, the syntactic category N
contains the valid names. Terms included in brackets are
optional. Superscript + is used for non-empty comma-
separated lists of elements of the base syntactic category;
if the list can be empty, we use superscript *.
A process definition in OhCircus gives the process

name and description, as in Circus, but can also include
an extends clause, which names a superprocess. The de-
fined process is said to be a subprocess of that named in
the extends clause.
The state of a subprocess includes all the compo-

nents of its superprocess. In a subprocess specification, we
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Fig. 2. OhCircus syntax

have access to all the definitions of the superprocess: state
components, actions, and auxiliary definitions. Further-
more, the main action of the subprocess is implicitly
composed in parallel with the main action of the super-
process. The reason for this is the result on behavioural
refinement of processes presented in [15, 34].
When we declare a subprocess in OhCircus, we raise

a proof obligation to show that the subprocess be-
haviourally refines its superprocess. In [15], the authors
put forward a behavioural refinement relation that guar-
antees substitutability in all contexts. This means that,
if a process P1 is behaviourally refined by another pro-
cess P2, according to their definition, then uses of P1
can be replaced with uses of P2 in all contexts. Further-
more, in [34], it is indicated that, having the behaviour
of P2 defined by the parallel composition of that of P1
with an additional process is part of a set of conditions
which, together, are sufficient for attaining behavioural
refinement. Therefore, even though this is not enough, by
considering that the main actions of the superprocess and
the subprocess are in parallel, we are taking a first step
towards behavioural refinement.
Parallelism of processes is just like in CSP: the par-

allel processes synchronise on communications through
channels in a given synchronisation set. The states of
the processes are encapsulated and are handled indepen-
dently. For actions, we need to identify partitions of the
process state to avoid conflict. For example, the action
A1 |[ { x }|{| c|}|{ y } ]|A2 is the parallel composition of
A1 and A2, synchronising on communications through c;
both A1 and A2 have access to the state components x
and y, but A1 can only change x and A2 can only change
y. In the case of the main action of a subprocess SubP ,
which is implicitly defined using parallelism, the main
action of the superprocess SuperP changes its state com-

ponents, and the main action defined in SubP changes
only the additional components.
An explicit process description is like in Circus: a se-

quence of paragraphs and a main action. The main action
is optional in OhCircus, and, if omitted, it is assumed to
be Skip; this is not usually an interesting main action
for a Circus process, but it is perfectly reasonable for an
OhCircus subprocess. In this case, the main action of the
subprocess is the parallel composition of the main action
A of the superprocess with Skip: simply A. In effect, if
the main action of a subprocess is omitted, that of the
superprocess is inherited as it is. All the Circus process
operators are available, but, for the sake of simplicity, we
include only some in Fig. 1.
The syntactic category PParagraph is that of Circus

process paragraphs. We extend only the expression no-
tation to include several object-oriented constructs: this,
null, and the new constructor, all in the style of Java,
attribute access and method calls, possibly with target
super as in Java, and type tests and casts.
The syntax of class definitions is depicted in Fig. 2. It

gives a class name, its superclass in an extends clause,
and its attributes and methods delimited by begin and
end. If the optional extends clause is omitted, the su-
perclass is object, which has no attributes or methods.
As with subprocesses, the declaration of a subclass raises
a proof obligation to guarantee that it behaviourally re-
fines the superclass.
To illustrate our notation, we present a bank system

inspired by that defined in [10] using Object-Z. First of
all, we have a class Account to model individual bank ac-
counts. In its specification, we use a given set NUMBER
containing all valid account numbers.

class Account =̂ begin
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The definition of the attributes and methods of a class
consists basically of a sequence of paragraphs. An op-
tional state clause distinguishes a schema expression or
a constraint that defines the state of the class; we some-
times refer to the state components as attributes. If the
state definition is just a constraint, the state components
are those of the immediate superclass; the constraint
strengthens the invariant.
The state schema expression may be just as in Z, but

it may also include qualifiers in the declaration of its com-
ponents. If nothing is said, the attributes are private, but
we may declare them to be protected or public. Protected
attributes are visible in the subclasses, and public at-
tributes are visible in the whole program. For processes,
we do not have this possibility: the state components are
always private, as interaction with a process is possible
only through channels.
In our example, the state schema declares two pro-

tected attributes: the number of the account and its
balance.

state AcctState
protected number :NUMBER
protected balance : Z

The initial clause introduces a constructor. It defines the
meaning of new. The initialisation schema cannot have
outputs and must be a deterministic operation, to avoid
the complexities of nondeterministic expressions [24]. In
the bank, the initialisation takes the number of the ac-
count as input.

initial AcctInit
AcctState′

number? :NUMBER

number′ = number?
balance′ = 0

The balance is set to 0 initially.
The methods are distinguished from other paragraphs be-
cause they are qualified as private, protected, public, or
logical. The definition of a method is a parametrised com-
mand: a schema expression, a command itself, if there are
no parameters, or a parametrised command in the style of
Back [2]. Below, we have a public methodDeposit defined
as a schema.

publicDeposit
∆AcctState
amount? :N

balance′ = balance+amount?
number′ = number

This method takes the amount? to be deposited as in-
put, and updates the balance accordingly. The definition
is just as in Z, or Circus.

The Withdraw method is defined as a parametrised
command in the style of Back. Parameters can be passed
by value or result. Here, we have a value parameter
amount ; the body of the parametrised command is a spe-
cification statement.

publicWithdraw =̂ val amount :N •

balance :

[
amount≤ balance,
balance′ = balance−amount

]

The specification describes a program that may change
the attribute balance. The precondition requires that the
parameter is an amount available in the account. In this
case, the postcondition defines that the final balance of
the account is obtained by deducting the amount taken as
input.
Finally, the method Balance has a result parameter;

its body is an assignment.

public Balance =̂ res bal : Z • bal := balance

In the definition of a method as a schema, the input vari-
ables are parameters passed by value, and the output
variables are parameters passed by result.
Methods qualified as logical are specification artifacts;

they are useful to describe a specification or design, but
do not need to be implemented in the final code. Below,
we define a logical method getNumber , which returns the
number of the account through a result parameter n; it is
used in the specification of the bank.

logical getNumber =̂ res n :NUMBER •
n := number

end

Strictly speaking, we do not really need getNumber . In
a specification or design, the visibility of attributes and
methods does not need to be respected. In a class speci-
fication, if an attribute of another class is present, direct
access to its attributes may be useful to describe invari-
ants and methods. For example, in the specification of the
bank, we can directly access the number and balance at-
tributes of the accounts. Logical methods, however, are
useful as a structuring mechanism when the information
that needs to be accessed is not directly available as an
attribute. In fact, direct accesses to attributes can be
viewed as implicit uses of logical get and set methods. In
code, visibility constraints must be respected.
An account that provides some credit can be described

as a subclass of Account .

class CreditAccount =̂ extends Account begin

The state of a subclass includes all the attributes of its
(direct) superclass. More specifically, the state schema of
the superclass is implicitly included in that of the sub-
class. This allows the definition of an invariant that in-
volves the components of both states. In our example, we
have one extra attribute: the credit .
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state CAcctState
protected credit :N

balance+ credit≥ 0

The invariant guarantees that the credit is never ex-
ceeded; it involves attributes of both Account and
CreditAccount .
The constructor of CreditAccount takes the initial

credit as input.

initial CAcctInit =̂
val number :NUMBER; initCred :N •

AcctInit; credit := initCred

We observe that AcctInit is used as a command in this
context. Even though AcctInit is a constructor, it can be
used as a command in the constructor of the subclass.
Perhaps, a definition that would spring to mind more

readily would be the following.

initial CAcctInit
CAcctState′

AcctInit
initCred? :N

credit′ = initCred?

This, however, is not valid inOhCircus, sincemethods (and
constructors) cannot be used as schemas, even if they are
defined by a schema. This is because, as already said, in
general, the schema calculus operators are not monotonic
with respect to refinement. So, if we refined a method, all
its uses as a schema would potentially need to be modi-
fied, and certainly would need to be checked. This ap-
proach is not practical. Programming constructors like
sequence, on the other hand, are all monotonic. If we re-
fine AcctInit , for example, we are also refining CAcctInit .
If a method is redefined, there is also no implicit inclu-

sion of the schema that defines it in the superclass. There
is actually no guarantee that it is defined by a schema in
the superclass; even if it is, refinement may transform it
into another construct. If an implicit inclusion were as-
sumed, refinement would require changes in subclasses.
Methods that are defined by a schema in the super-

class, and are not redefined, are extended to the larger
state, implicitly. They are conjoined with a schema that
specifies that the attributes of the subclass do not change.
For example, we do not redefine Deposit , therefore, it is
available in this class with the definition below.

publicDeposit
∆CAcctState
amount? :N

balance′ = balance+amount?
number′ = number
credit′ = credit

The inclusion of ∆CAcctState puts the attributes in
context.
We redefine the method Withdraw ; in the case of

a credit account, more can be withdrawn than simply the
balance of the account. The credit is also available.

publicWithdraw =̂ val amount :N •

balance :

[
amount≤ balance+ credit,
balance′ = balance−amount

]

This definition ofWithdraw is a refinement of that in the
superclass Account : its precondition is weaker. A method
redefinition must not change its signature: it needs to
have the same parameters, with the same type.
Finally, we also have a new method, which sets the

credit of the account.

public SetCredit
∆CAcctState
ΞAcctState
credit? :N

credit′ = credit?

end

We use the schema ΞAcctState to concisely define that
the attributes of the superclass are not affected by this
method.
The bank is modelled as a process. Four channels are

declared: open, deposit , and balance are used to request
that an account is open, that a deposit is made, and the
balance of an account, and out is used to receive balance
information.

channel open :Account; balance :NUMBER;
deposit :NUMBER×N; out : N

In our very simple example, we omit several operations.
The process Bank is a client of the classes Account and
CreditAccount . Its state includes a set of accounts, which
can be Account or CreditAccount objects.

process Bank =̂ begin

The state of the bank has one attribute: a set of accounts.

state BState
accounts : PAccount

∀acct : accounts •acct �= null
∀acct1, acct2 : accounts|acct1 �= acct2 •
acct1.getNumber() �= acct2.getNumber()

The invariant guarantees that all accounts are proper in-
stances of Account : they are not null, and they have dif-
ferent numbers. The (logical) method getNumber of class
Account is used in this definition to access the number at-
tribute of the accounts. Calls to methods like getNumber ,
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whicharedeterministic andhave exactly one resultparam-
eter, can be used as values. Such use of a method, however,
generates a proof obligation to guarantee that it is indeed
deterministic. In the case of getNumber , this is trivial.
Method calls cannot be used in a negative context, like

a negation or the antecedent of an implication, otherwise
the resulting predicate is not monotonic. This restriction
does not cause too many difficulties in OhCircus, since
we are free to use the names of any attributes directly
in a predicate, regardless of visibility constraints. As we
said before, visibility constraints apply to program code,
but not necessarily to specifications and designs. For ex-
ample, we can specify the state of the bank as follows.

state BState
accounts : PAccount

∀acct : accounts •acct �= null
∀acct1, acct2 : accounts|acct1 �= acct2 •
acct1.number �= acct2.number

In this case,we access the attributenumber of the accounts
directly. The choice of approach is a matter of style.
The initialisation is very simple. The collection of ac-

counts is initially empty.

BInit =̂ [ BState′|accounts′ = ∅ ]

Since Bank is a process, and not a class, this is not a con-
structor, but an action.
To open a bank account, we give an account as input.

Open
∆BState
acct? : Account

acct? �= null
∀acct : account •
acct.getNumber() �= acct?.getNumber()
accounts′ = accounts∪{ acct? }

Some actions are defined in terms methods of Account
using the Z promotion technique. We use a promotion
schema that we call Lookup.

Lookup
∆BState
number? :NUMBER
acct, acct′ :Account

acct ∈ accounts
acct.getNumber() = number?
accounts′ = (accounts\{ acct })∪{ acct′ }

This schema provides a frame for operations that act over
an existing account acct , and produce a modified account
acct′. It identifies acct as the account with the number
given as input; it also updates accounts by removing acct
and inserting the updated acct′.

Apart from the account number, the PDeposit action
also takes the amount? to be deposited as input. Its spe-
cification is a call to the Deposit method of Account with
target acct .

private PDeposit
Lookup
amount? :N

acct.Deposit(amount?)

The method call acct.Deposit(amount?) denotes the
predicate below, which specifies the effect of depositing
amount? in the account acct .

acct′.balance= acct.balance+amount?∧
acct′.number= acct.number∧
acct′.credit= acct.credit

This predicate can be calculated from the specification of
Deposit , as explained in the next section. It is a predicate
over acct and acct′, which are both in scope. The possibil-
ity of using method calls in predicates accounts for clearer
and more concise specifications.
The components acct and acct′ need to be hidden, as

they are used only to promote the call to Deposit .

Deposit =̂ PDeposit \ ( acct, acct′ )

For conciseness, we do not considerWithdraw , which can
be promoted in a similar way. Balance is as follows.

PBalance =̂ [ Lookup; bal! : Z|acct.Balance(bal!) ]
Balance =̂ PBalance \ ( acct, acct′ )

LikePDeposit , the schemaPBalance includes Lookup and
declares a new component; in this case, a result parameter
bal!. The result parameter of the account method Balance
defines the value of bal!.
The main action below defines the behaviour of the bank.

•BInit;
open?acct→Open;
µX •(open?acct→Open

�

deposit?number?amount→Deposit
�

balance?number→
var bal : num •
Balance; out!bal→ Skip);X

end

First of all, the state is initialised, and then it is only pos-
sible to request that an account is open. Afterwards, the
process recursively offers the possibility of opening an ac-
count, making a deposit, or requesting a balance.

4 Semantics: method calls

This section outlines the basis of OhCircus’s semantics
for method calls. In Hoare and He’s unifying theories,
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several programming paradigms are given denotational
semantics in the framework of an alphabetised version of
Tarski’s relational calculus. Hoare and He model and es-
tablish links between imperative, functional, logical, par-
allel, and reactive programming. Programs are captured
as predicates over states containing observations of in-
terest; subtheories are formed by imposing healthiness
conditions.
Circus is based on the combination of the imperative

and reactive programming theories. The observations are
the program variables and the variables tr and ref to
record a CSP-style failure, wait to mark a non-termin-
ation state, and okay to denote divergence-freedom. For
example, the deadlocked process Stop is represented by
the predicate below.

tr prefix tr′∧ ( okay =⇒ okay′∧wait′∧
tr′ = tr∧v′ = v∧
( wait =⇒ ref ′ = ref ) )

The first conjunct is a healthiness condition for every
CSP process: history is never altered, or rather, the ac-
cumulated trace of events tr is unchanged. If Stop is
activated in a divergent state, then okay will be false,
and this healthiness condition is all that we can guar-
antee about the resulting behaviour. Otherwise, if okay
is true, then Stop does not diverge (okay′ is true), does
not terminate (wait′ is true), and does not change tr
or the programming variables v. If wait is true, then
Stop’s behaviour is being considered when some sequen-
tial predecessor has not terminated; in which case, noth-
ing changes, not even the refusal set.
InOhCircus, we use a class semantics based on records;

methods are modelled as higher-order, predicate-valued
variables, following the treatment of higher-order proced-
ures and parameters in [19]. For example, consider the
class C below, which offers an encapsulation of a natural
number v with initialisation, increment, and get methods.
The schema S defines the local state of C.

class C =̂ begin
state S =̂ [ v : N ]
initial initC =̂ [ S′|v′ = 0 ]
public incC =̂ [ ∆S; i? :N|v′ = v+ i? ]
public getC =̂ [ ΞS; o! : N|o! = v ]

end

The meaning of C is a record with three labelled compo-
nents (like a schema binding in Z), one for the construc-
tor, and one for each method. These components con-
tain program texts (unifying theories predicates) that are
parametrised to make the semantics of method invocation
convenient. The before and after-values of the state are
abstracted as variable parameters, a new mechanism for
handling variable names; inputs are abstracted as value
parameters; and outputs as result parameters. We give
the meaning of each of these mechanisms of parameter
passing using lambda notation.

A value parameter declares a local variable that is ini-
tialisedwhen themethod is called.The semantics of apara-
metrised command with a value parameter is given be-
low: ahigher-order functionthat takes thevalueof the local
variable as its argument and produces a programtext.

( val v : T • c ) =̂ ( λw : T •(var v := w • c) )

The value of w is the argument that is given in a method
call.
A result parameter takes as argument the name of

a variable with wider scope. This is the argument in
a method call.

( res v : T • c ) =̂ ( λw : N •(var v • c; w := v) )

The parameter w is the name of the variable that takes
the result.
The target of a method call is an extra argument,

passed by value-result: t.m(a) =̂m(t, a). We define value-
result parameter passing below. It is not directly available
in OhCircus; it is only used to define the semantics of
method calls.

( valres v : T • c ) =̂
( λw : N •(var v := w • c; w := v) )

The parameter of the lambda expression is again a pro-
gram variable. This is an abstraction over two arguments,
the before and after values, and our notation enforces
this.

( λx : N • c )(y) =̂ c[y, y′/x, x′]

In this case, the lambda calculus’s rule of β-reduction is
augmented in the obvious way to cope with variable pa-
rameters: elements of the syntactic category N.
If P is a predicate that gives the meaning of the body

of a method of a class C, with value parameter i of type I,
and result parameter o of typeO, then the meaning of the
method is a higher-order function P whose value is given
below.

( valres t :C;val i : I; res o :O •P )

The parameter t represents the target of a call; its type is
the class C, which denotes the set of bindings of type S,
the local state of C. Multiple parameters are handled by
a combination of the above definitions.
If the method is defined by a schema operation using

the usual conventions of Z, the semantics of its body is the
promotion of the schema from an anonymous binding to
a named one. For the method incC in our example, we
have the following semantics.

procedure incC := ( valres c :C;val i? :N •
( ∃∆S • incC∧θS = c∧θS′ = c′ ) )

The parameter c, which stands for the target of a call to
incC , is used to determine the initial value of state; the
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expression θC denotes a binding whose components are
those of the state S. The final value of c is the final value
of the state, which is defined by incC .
The initialisation determines the semantics of the

new expression: the binding defined by the initialisation
schema. This should be uniquely defined. For our ex-
ample, we have the following semantics.

new initC := ( µ initC )

We use the Z definite description operator µ to determine
the unique value defined by the initialisation.
Finally, methods that do not change the state, and

have a unique result parameter, are also expressions, as
long as they are deterministic. For example, the method
getC is given a meaning as a function; as mentioned be-
fore, there are the usual proof obligations to show that it
is indeed functional.

function getC : N := ( val c :C •
( µ o! :N •( ∃∆S • getC∧θS = c ) ) )

The parameter c is used to determine the initial value of
the state for getC . The final state of getC is irrelevant
for the semantics of getC as a function; it is existen-
tially quantified. The definite description determines the
unique output value.
As an example, suppose that d is an object of class C.

We can increment d’s value by 5 by applying incC to it.

d.incC(5)
= { semantics of method application }
incC(d)(5)

= { semantics of incC }
( valres c :C;val i? : N •
( ∃∆S • incC∧θS = c∧θS′ = c′ )

)(d)(5)
= { β-reduction, twice }
∃∆S • incC[i? := 5]∧θS = d∧θS′ = d′

= { definition of incC and substitution of 5 for i? }
∃v, v′ :N • v′ = v+5∧θS = d∧θS′ = d′

= { equality of schema tuples }
∃v, v′ :N • v′ = v+5∧v = d.v∧v′ = d′.v

= { one-point rule, twice }
d′.v = d.v+5

So, the method call on d is the program text that incre-
ments d’s v-component by 5.
Dynamic binding and recursion are resolved in the

construction of the records that define the semantics of
each of the classes. The approach follows the line of the
formal semantics presented in [6] for a subset of Java.

5 Refinement

In [9], we propose a refinement strategy for Circus that al-
lows iterated decompositions of processes; an overview is

presented in Fig. 3. Refining a Circus program amounts
to refining its processes. A process P1 is refined by a pro-
cess P2, if the main action of P1 is action refined by
the main action of P2, with the state components taken
as local variables. Action refinement corresponds to the
standard notion of refinement in Z and Dijkstra’s lan-
guage of guarded commands, and to failures-divergence
refinement in CSP. These are both formalised in the
unifying theories of programming as a single notion. Z
and CSP refinement laws apply in the refinement of
actions.
In order to decompose a process into, for instance, par-

allel sub-processes, the state and the paragraphs of the
original process must be organised into two partitions:
each partition is formed of a subset of the state compo-
nents and a set of paragraphs that have access to them. As
a result of this decomposition, each partition is promoted
into a component process. The way these processes are
combined is determined by the main action of the original
process.
Each iteration of the strategy involves a process

decomposition. In practice, however, before decompos-
ing a process, action refinement is necessary to partition
the internal structure of the process in the way explained
above. Typically, if two actions (belonging to different
partitions) share a state element, this shared-variable
communication is transformed into a channel communi-
cation; the reason is that the processes that result from
the decomposition are not allowed to share state elements
(as imposed by the design of Circus).
Apart from action refinement, previous to a decom-

position, it is often necessary to carry out some change
of data representation, so that the development will
progress towards concrete state components whose types
are available in the target implementation platform. The
relevant tools here are the laws of process simulation pro-
posed in [9].
The purpose of this section is to illustrate, through

an example, that this strategy can be conservatively
extended to incorporate classes and inheritance as in-
troduced into OhCircus. The extended strategy includes
(possibly iterated) applications of the following steps:

– class simulation, in addition to process simulation;
– parametrised command refinement, in addition to ac-
tion refinement;
– class refinement, in addition to process refinement
(decomposition);
– behavioural inheritance for both classes and pro-
cesses.

The concept of iteration is still the same as in the original
Circus strategy. It is marked by an application of a pro-
cess decomposition; nevertheless, this is now not confined
to yield only processes: a partition may be promoted into
a class.
All the other forms of refinement can freely occur

inside iterations, typically as a way of partitioning the
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Fig. 3. Iteration of the refinement strategy

internal structure of a process for further decompos-
ition. Particularly, class refinement can be carried out
independently.
Parametrised commands are introduced as a new class

paragraph in OhCircus; therefore action refinement is ex-
tended to deal with this new feature. Behavioural inheri-
tance of classes and processes is inherent to the design of
OhCircus, as discussed in Sect. 3.

As an example, we develop the design of a hypothet-
ical operating system resource scheduler from an initial
abstract specification. We first decompose it into a re-
source manager and a scheduler using standard process
refinement; then, we further decompose the scheduler
into a concrete scheduler and a class that encapsulates
the collection of tasks to be scheduled. In the final step,
we introduce priority by extending both the concrete
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scheduler and the task collection through behavioural
inheritance.

5.1 Abstract specification of a resource scheduler

Our resource scheduler is responsible for the management
of resources, and scheduling of tasks based on the avail-
ability of resources. Tasks can be modelled as a class with
a single attribute: the task identifier.

[Identifier]
class Task =̂ begin
state TState =̂ [ id : Identifier ]

This identifier is initialised when the task is created
and can be publicly accessed through the method
getId .

initial TInit
TState′

id? : Identifier

id′ = id?

public getId
ΞTState
id! : Identifier

id! = id

end

Resources are abstractly represented using a given set.

[Resource]

The resource scheduler interacts with its environment
through several channels with the following functions: the
input of a new task (in); the output of the identifier of
the executing task that has just been scheduled (exec);
the indication that a resource became available (avail-
able) or is being demanded (demand , demand_ok); and
the indication that the executing task has been destroyed
(out).

channel in : Task; exec : Identifier;
available, demand :Resource;
out; demand_ok

The channels out and demand_ok are used only for syn-
chronisation; no values are communicated through them,
so that their declaration does not give a type.
The way the interactions occur with the environment

is captured by the process ResourceScheduler .

process ResourceScheduler =̂ begin

The state components are the task that is currently ex-
ecuting, a set of ready tasks, a set of tasks blocked on
resources, and a set of free resources.

state RSState
executing : Task
ready : PTask
block : Task �→Resource
free : PResource

ready∩dom block = ∅
∀t1, t2 : ready∪dom block∪{executing} •
t1 �= t2 =⇒ t1.getId() �= t2.getId()

{null, executing}∩{ready∪dom block}= ∅
ran block∩free= ∅

The invariant states that the sets of ready and blocked
tasks are disjoint; tasks have distinct identifers; the ex-
ecuting task is neither ready nor blocked; and the set of
free resources is disjoint from the resources on which tasks
are blocked.
As an example, we specify the insertion of a new task.

Insert
∆RSState; t? : Task

t? �= null
∀t : ready∪dom block∪{executing} •
t �= null =⇒ t.getId() �= t?.getId()
executing′ = executing
ready′ = ready∪{t?}
block′ = block∧free′ = free

The new task to be inserted must be a proper (non-null)
task, and it must not be already recorded as ready or
executing.
After initialisation, the main action recursively offers

insertion of a new ready task (Insert); inclusion of a free
resource, possibly releasing blocked tasks (IncludeOrRe-
lease); allocation of a free resources (Allocate); block-
ing the executing task on a demanded resource which is
not free (Block); destruction of the executing task (De-
stroy); and scheduling of a random ready task for execu-
tion, interrupting the currently executing task, if there is
one (InterruptAndExecute). The internal choice (�) with
Stop (deadlock) means that the ResourceScheduler de-
cides whether or not to interrupt the currently executing
task.

•RSInit;
µX •
in?t→ Insert

� available?r→ IncludeOrRelease
� executing �= null&
demand?r→
r ∈ free& demand_ok→Allocate

� r /∈ free&Block
� out→Destroy

� ready �= ∅&
(var id : Id •
InterruptAndExecute; exec!id→ Skip
) � Stop

end
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Except for Insert , specified previously, most actions used
above are omitted since the focus of the development is on
decomposition of processes, which generates further pro-
cesses and classes, and on behavioural inheritance, rather
than on action refinement.

5.2 Resource scheduler internal partitioning

Aiming at decomposing the process ResourceScheduler
into a resource manager and a scheduler, first it is ne-
cessary to transform the internal structure of the pro-
cess into two partitions. These will then be promoted
into the relevant processes, as explained early in this
section.
The sharing of state between the partitions is replaced

by explicit channel communications. For instance, the ac-
tion IncludeOrRelease is described as a cooperation of
the partitions. When the resource manager partition re-
ceives from the environment a resource through the chan-
nel available, it recovers the tasks blocked on that re-
source and sends them through a channel unblock to the
scheduler partition, which adds them to the set of ready
tasks.

channel unblock : PTask

Further, when the scheduler partition receives a demand
for a resource, it interacts with the resource manager par-
tition, communicating the currently executing task and
the resource itself, using the new channel request ; as a re-
sult, the resource manager partition communicates back
informing whether the resource is free (request_ok) or not
(block).

channel request : Task×Resource;
request_ok; block

chanset RSProtocol =̂
{|block, unblock, request, request_ok|}

The identifier RSProtocol is introduced to name the
above set of channels; it is an abbreviation for future
convenience.
The interactions between the two partitions are made

precise in the refined version of the ResourceScheduler
presented below.

processResourceScheduler =̂ begin

The state of the process ResourceScheduler is split into
two disjoint schemas, so that the original state is now ex-
pressed as the conjunction of these two schemas. The first
schema will become the state of the scheduler and the sec-
ond one the state of the resource manager.

SState
executing : Task; ready : PTask

executing /∈ ready

RMState
block : Task �→Resource; free : PResource

ran block∩free= ∅

state RSState =̂ SState∧RMState

Since the state is partitioned, the part of the invariant
which relates elements of the two states cannot be ex-
plicitly stated anymore. Of course, as the partitioning is
a data refinement, the invariant still holds implicitly; the
relevant proof obligations amount to proving that all the
operations preserve the invariant. They are omitted for
conciseness.
The initialisation is partitioned in a similar way. Con-

cerning the other actions (whose behaviour has been
briefly described in the previous subsection), Insert , De-
stroy and ExecuteAndInterrupt involve solely scheduling
activities; therefore, they are included in the scheduler
partition. On the other hand, Allocate has to do only
with resource managing, and is part of the associated
partition.
The actions Block and IncludeOrRelease refer to com-

ponents of both partitions. The action Block gives rise
to two actions: SBlock , in the scheduler partition, which
assigns null to executing, and RMBlock , in the resource
manager partition, which blocks the executing task on
an unavailable resource. The action IncludeOrRelease is
replaced with three actions: Include and Release, in the
resource manager partition, which include a new resource
and release tasks blocked on a resource that becomes free,
and Unblock , in the scheduler partition, which includes
the liberated tasks in the set of free tasks.
The main actions of the two partitions formalise each

allowed external behaviour, as well as the interactions be-
tween the partitions. They are given as separate actions
below.

SAction =̂
SInit;
µX •
( in?t→ Insert
� executing �= null&
demand?r→ request!executing!r→
request_ok→ demand_ok→ Skip
�

block→Block
� out→Destroy

� executing �= null∧ ready �= ∅&
(var id : Identifier •
InterruptAndExecute; exec!id→ Skip
) � Stop

� unblock?ts→ Unblock);X

This is very similar to the main action of ResourceSched-
uler , except that it interacts with the action below.
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RMAction =̂
RMInit;
µX •
( available?r→

r /∈ ran block & Include
� r ∈ ran block &
var ts : PTask •
Release;unblock!ts→ Skip

� request?t?r &
r ∈ free&Allocate; request_ok→ Skip

� r /∈ free& block→Block);X

The behaviour of the refined ResourceScheduler process
can then be given in terms of the parallel composition
of the above two actions, hiding the new channels intro-
duced for synchronisation between the two partitions.

• (SAction
|[αSState |RSProtocol | αRMState]|

RMAction) \RSProtocol
end

The syntax of the parallel operator makes explicit that
the SAction can modify only components of SState,
whereas RMAction is allowed to change only elements of
RMState. As alreadymentioned, this extra information is
not needed in the parallel composition of processes, whose
states are encapsulated, but is fundamental in the combi-
nation of actions to avoid conflicts in the modification of
variables.
The refinement carried out in this subsection is a pure

(although elaborate) action refinement. Formally, it can
be justified using the notions and laws presented in [9],
adapted to handle the fact that Task is a class type.
This detailed justification is out of the scope of this
paper.

5.3 Decomposition: resource manager
and scheduler processes

Once a process is partitioned, like ResourceScheduler was
in the previous subsection, its partitions can be promoted
into processes, as formalised in [9]. Consider that Sched-
uler is a process with state SState, actions SInit , Insert ,
Destroy, ExecuteAndInterrupt , SBlock and Unblock , and
main action SAction. Assume also that ResourceMan-
ager is a process with state RMState, actions Allocate,
Include, Release and RMBlock , and main action RMAc-
tion. In this case, the process ResourceScheduler can be
redefined as follows.

process ResourceScheduler =̂
(Scheduler
|[αSState |RSProtocol | αRMState]|

ResourceManager) \RSProtocol

This marks the end of the first iteration of our develop-
ment.

5.4 Scheduler decomposition: concrete scheduler
and task collection

So far we have illustrated refinement steps that can be
justified using the strategy developed for Circus [9]. The
remaining steps of our development focus on a more
concrete design of Scheduler , and single out the fea-
tures introduced in OhCircus: in particular, classes and
inheritance.
In this refinement step the Scheduler process is decom-

posed into a more concrete version of the scheduler and
a class that encapsulates the collection of tasks to be sched-
uled. Analogously to the previous decomposition, before
the actual splitting of the process, the relevant partitions
need to be identified and the internal structure of the pro-
cess needs to be modified, showing explicitly how these
partitions cooperate to preserve the original behavior.
In the case of decomposing a process into two other

processes, the two partitions are identified simultan-
eously, and their cooperation is formalised by a process
algebra operator (like parallelism, as illustrated in the
previous step) used to combine the corresponding main
actions.
Concerning a process decomposition that generates

a process and a class, the partition that will be promoted
into a class is identified first, and the class declaration is
actually introduced. The original process is then data re-
fined to become a client of the generated class. Therefore
the cooperation between the resulting class and process
is established by the clientship relation itself (contrasting
with a process algebra operator, as in the previous case).
The idea for decomposing a process into a process and
a class is similar to the well-known refactoring extracting
class in the object-oriented paradigm [17].
In our example, the partition that gives rise to a new

class is that formed of the state component ready (of
SState) and the several operations over this component
that appear in the actions of Scheduler . Extracting this
partition results in the class in Fig. 4, with a single at-
tribute (a set of tasks) and methods for including and
removing tasks, and for accessing the entire set of tasks.
Tasks are randomly removed; this is a consequence of the
fact that scheduling is random in the process Scheduler ,
which is the source of this decomposition.
The other product of this decomposition is the Sched-

uler itself, adjusted to be a client of the above class.
A simple data refinement justifies this transformation.
This concludes the second iteration of our case study.

5.5 Introducing priority tasks

The target scheduler of our development is one which al-
locates tasks based on priority. The purpose of this step
is to introduce the classPriorityTask , which inherits from
Task and includes a new attribute to record priority.
We also introduce PriorityTaskCollection as a sub-

class of TaskCollection. In principle, this should not be
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Fig. 4. Class TaskCollection specification

necessary, sinceTaskCollection can store instances ofPri-
orityTask . Nevertheless, the inherited collection is intro-
duced because it redefines the remove method responsible
for selecting the next element for scheduling: while in the
original collection this choice is totally arbitrary, in the
inherited one, the task with higher priority is returned.
First we introduce constants to fix the maximum pri-

ority and define the priority range.

maxPriority : N1

Priority == 1–maxPriority

In the subclass PriorityTask , presented in Fig. 5, we
extend the class Task with a new attribute to record pri-
ority. Apart from the constructor, set and get methods
are introduced for the new attribute.
The introduction of a new class is a simple refinement

step; however, since PriorityTask is declared as a sub-

Fig. 5. Class PriorityTask specification

class of Task , a proof obligation to ensure behavioural
subclassing is generated. The preservation of behaviour is
intuitive, since it involves no method redefinition and the
extra methods refer only to the new attribute.
Analogously, we extend TaskCollection with priori-

ties. Although the intention is to store in the new col-
lection only instances of PriorityTask , it would not be
valid to enforce this requirement, say as an invariant in
the class definition. The reason is that the original col-
lection allows both the inclusion and deletion of ordinary
tasks. In order to ensure behavioural subclassing, such
a behaviour cannot be forbidden.

class PriorityTaskCollection =̂
extends TaskCollection begin

A new attribute is introduced to store the tasks with pri-
ority. The invariant states that this set of priority tasks is
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a subset of the original set.

state PTCState
priTasks : PPriorityTask

priTasks=
{ t : tasks|t instanceof PriorityTask }

The remove method is redefined to choose one of the
tasks with highest priority (1 is considered a higher
priority than 2, and so on); this is used as a new
scheduling policy in the scheduler designed in the next
section.

public remove
∆PTCState
t! : Task

t! ∈ task
tasks′ = tasks\{ t! }
priTasks �= ∅ =⇒
t! ∈ priTasks∧
∀tp : priTasks •
t!.getPriority()≤ tp.getPriority()

When priTasks is empty, and tasks is not, we have a sub-
tle situation. In this case, an arbitrary (non-priority) task
is chosen, so the redefined method works just as the ori-
ginal remove method, as should be expected.
The method insert is also redefined.

public insert
∆PTCState
t? : Task

∀t : tasks • t.getId() �= t?.getId()
tasks′ = tasks∪{t?}

end

The only modification to its original definition is that the
redefined version acts on the extended state (PTCState).
If the input task t? happens to be a priority task, it is in-
cluded both in tasks (explicitly) and in priTasks (due to
the invariant).
Concerning preservation of behaviour, only remove

and insert are redefined. The redefined version of insert ,
as already explained, updates the component task exactly
as before, and eventually also updates the new attribute
priTasks. Considering the redefinition of remove, it still
removes a task from the set tasks , but eventually one of
those with highest priority, in which case it also updates
the new attribute priTasks. Therefore, regarding the ori-
ginal attribute, the redefined version clearly strengthens
the postcondition. This can be discharged by simple pred-
icate calculation.

5.6 A priority scheduler

A priority scheduler can be designed as a specialisation
of the process Scheduler , as OhCircus allows inheritance
of processes, in addition to class inheritance. In our ex-
ample, no action needs to be added, only the invariant
is strengthened, as presented below. If there are no extra
components, we can define the state just as a predicate in-
troduced using �. It is conjoined to the invariant of the
state of the superprocess (or superclass).

process PriorityScheduler =̂ extends Scheduler
begin
state � tasks instanceof PriorityTaskCollection
end

As tasks can store both ordinary and priority tasks, the
executing task might eventually be a non-priority one.
This is why we do not enforce that the executing attribute
of the PriorityScheduler be an instance of PriorityTask .
As the main action is missing, it is assumed to be

Skip. It is put in parallel with that in the superprocess.
In this case, the process inheritance is very simple, and
it is intuitive that the behaviour of the original process is
preserved.

6 Conclusions

This paper has presented OhCircus, a language for spe-
cification and refinement, which integrates Z, CSP, re-
finement calculi constructs, and object-oriented concepts.
We have discussed our approach to its model; it unifies
elaborate mechanisms for defining data (classes) and con-
trol behaviour (processes). Using the unifying theories of
programming, it is possible to combine these constructs
and still specify and reason in the resulting formalism
without deviating from all we have learned working with
each notation in isolation.
By describing our work, in particular onOhCircus, and

in general on Circus, this paper makes a contribution to
the debate on states versus events. Many specification
methods are based either on states or on events; they rely
on the fact that these approaches are equivalent, since
an event can be modelled as a state change, and a state
can be modelled as an equivalence class of sequences of
actions. These methods have taken very different formal
directions, and they tend to differ in practice.
In fact, neither approach is dominant in Circus. We fol-

lowed two important principles in designing Circus: states
and events should be semantically integrated; and sys-
tem architecture should be uncommitted. Although Cir-
cus combines Z and CSP, it is not part of the tradi-
tion that views this combination as requiring a notion of
communicating abstract data-types. Instead, state tran-
sitions and events are decoupled, each occurring when
they need to, according to the behaviour required. This
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allows Circus to encompass a wider variety of program-
ming styles and paradigms.
In the Circus refinement strategy, the starting point

is an abstract, and usually centralised specification that
is progressively transformed into a concrete and dis-
tributed architecture, based on laws for process decom-
position and (data) refinement. During this process, ex-
plicit global invariants become implicit distributed in-
variants. State-based descriptions become reflected in
distributed reactive behaviour. The global invariant actu-
ally guides the discovery of the reactive design.
Within the context of OhCircus, this strategy is ex-

tended to handle the introduction of classes, as a means
of further structuring the states of processes. New defini-
tions and laws are needed to support the extended strat-
egy, but the overall approach is still valid, as illustrated by
the development in the previous section.
Circus and OhCircus include novel specification de-

vices that play a central rôle in the refinement strategy.
For example, the state in a Circus program is carefully
partitioned between processes, which leads to a clean pro-
gramming model free from race conditions. For actions,
the partitioning of the state is imposed by the operators
for parallelism.
If we want to introduce parallelism by splitting a pro-

cess into sub-processes, a natural way to proceed is by
stepwise development. Since we allow shared variables
inside a process, we can separate the task of dealing
with the event structure (concurrency and communica-
tion) from that of dealing with the state structure (par-
titioning the variables). During development, we intro-
duce actions that share state. Next, we shift state com-
ponents into particular subsets, replacing references to
shared state by event-based communication. This con-
tinues until the process structure emerges. In this way, we
use the interplay between states and events to great ad-
vantage during development.
Something similar happens in the treatment of objects

in OhCircus: visibility is a code-level constraint. During
development we can refer freely to private and protected
attributes of a class as we construct and refine its clients.
The final code, however, can only rely on method calls to
access and update such attributes.
At the level of actions, assertional reasoning is possible

since assertions are special forms of specification state-
ments. In particular, assertions over state properties can
be used to restrict reactive behaviour. This is possible
because Circus allows the free combination of state opera-
tions and events. As such, an extended form of Hoare logic
may be adopted as a reasoning technique, which leads,
in the usual way, to predicate transformers and to refine-
ment calculi.
In [3], a framework called St.Eve is presented with the

aim of supporting the classification of specification lan-
guages and techniques with respect to their approach to
the definition of state and behavioural aspects of a sys-
tem. In the St.Eve terminology, an OhCircus event is

a communication, just as in CSP. A state is a binding,
a mapping of values to state components, just as in Z.
A specification is a sequence of paragraphs, again as in Z;
we have, however, new forms of paragraphs for channel,
process, and class definitions. The semantics is a predica-
tive rendering of alphabetised relations.
More interesting, OhCircus supports three forms of

system decomposition policies or constraints: actions,
processes, and classes. Inside a process, actions support
descriptions with shared events and variables; their gen-
erality is controlled by the structure of processes and the
parallelism operators. In Circus and OhCircus, the par-
allel composition operators for actions require that each
of the parallel actions have update access restricted to
a partition of the state; all actions have read access to the
before state, but can change only variables in their own
partition. Processes are based on pure event constraints,
since their states are encapsulated. Finally, classes sup-
port a pure state partitioning.
We intend to characterise behavioural refinement for

processes and classes in the semantic framework of OhCir-
cus, independently of the obvious formulation in terms
of forwards simulation. Maybe we will be able to provide
simple proof obligations related to subprocess declara-
tions that do not require that the actions of the super-
process and the subprocess are executed in parallel. More
flexibility may be of practical use.
As OhCircus has most of the central design elements

of notations like Real Time UML, a refinement strategy
for OhCircus is illuminating in the formalisation of indus-
trial development practices, possibly through a mapping
between these languages. An initial result has been pre-
sented in [28].
We have already shown that the calculational style

of reasoning is possible for Circus. In [5, 7], we consid-
ered refinement of object-oriented programs. We plan to
bring these results together in a unified framework of
programming. The unified language and model presented
in this paper is the basis for all these further research
investigations.
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