Softw Syst Model (2005) 4: 258—276 / Digital Object Identifier (DOI) 10.1007/s10270-005-0084-3

Investigating a file transfer protocol using CSP and B

Neil Evansl, Helen Treharne?

1 Department of Computer Science, Royal Holloway, University of London, UK

2 Department of Computing, University of Surrey, UK
Published online: 11 May 2005 — © Springer-Verlag 2005

Abstract. In this paper a file transmission protocol spe-
cification is developed using the combination of two for-
mal methods: CSP and B. The aim is to demonstrate
that it is possible to integrate two well established formal
methods whilst maintaining their individual advantages.
We discuss how to compositionally verify the specifica-
tion and ensure that it preserves some abstract prop-
erties. We also discuss how the structure of the speci-
fication follows a particular style which may be gener-
ally applicable when modelling other protocols using this
combination.

Keywords: CSP — B — Combining formalisms — Compo-
sitional verification

1 Introduction

Large scale programming often adopts a strong separa-
tion between the model, view and controller aspects of
a system [12]. One benefit of this widely used technique
is the isolation of the state of the model from its co-
ordinating software. This enables a programmer to focus
on different parts of a system individually, which would
be difficult to comprehend and maintain otherwise. We
believe that a similar separation of concerns is also ap-
propriate at the specification level so that we can con-
centrate on the state and co-ordinating aspects of a spe-
cification individually. State-based methods are primar-
ily concerned with describing the state of a system to-
gether with its associated properties whereas eventbased
methods support the formal description of components
which interact in a co-ordinated way.

Our approach to the specification of complex interact-
ing systems centres around the combination of an event-
based method and a state-based method: CSP [14] and
B [2]. Previous work [19, 20, 24, 25] has shown that this

combination — which is called CSP || B! — allows the two
approaches to be integrated in a straightforward way. The
integration relates CSP events with B operation calls, so
that the original semantics of both languages is preserved.
The main benefit of retaining the individual languages
is that existing tool support for these formal methods is
available immediately.

The overhead of the integration is minimal and in-
volves extra consistency checks to ensure the state and
event based descriptions are compatible. These consis-
tency checks are akin to the establishment of design con-
tracts between the individual components of a system.
A key feature of our approach is that these checks can
be carried out compositionally. This means that CSP || B
has the necessary foundations in order to be scalable and
is appropriate to be used to specify systems that involve
many interacting components.

In addition to consistency checking, the CSP || B ap-
proach enables us to verify other properties of a system
using the model checker FDR?2. This tool is designed spe-
cifically for the analysis of CSP processes. However, the-
oretical results allow us to infer properties of an entire
combined system (properties such as deadlock, livelock,
and process refinement) by examining the event based de-
scriptions of the system in isolation. Establishing these
properties may require the introduction of further de-
sign contracts. During verification, we move between the
state-based model and the event-based model of the sys-
tem in order to introduce any additional design contracts
systematically.

In this paper we present the formal investigation of
a file transmission protocol to illustrate how we develop
and verify properties using the CSP || B combination.
By using a standard example, the Bounded Retransmis-

L This is pronounced ‘CSP parallel B’.
2 http: //www.fsel.com

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 259

sion Protocol [13], we aim to emphasise the different fea-
tures of CSP || B, and show how existing tool support is
utilised. However, in addition, we introduce a new, com-
positional approach to CSP || B verification that makes
larger specifications amenable to model checking tech-
niques. The verification of the protocol under investiga-
tion will apply this compositional approach.

The protocol is unusual in that it contains complex
control flow and also manipulates data in an interest-
ing way. Describing the protocol using only a state-based
method would involve the use of auxiliary variables to en-
code the information flow, and for complex control flow
this can be cumbersome. Similarly, using only an event-
based method to describe the protocol would mean that
the clarity of the control flow is obscured by the state
information that would be present in the description.
Therefore, using a combination of a state and event-based
method to specify the protocol seems entirely appropri-
ate. We show that for the specification of the Bounded
Retransmission Protocol we adopt a particular architec-
tural style which clearly identifies the participating com-
ponents and their interactions. This facilitates consis-
tency checking and the automated verification process.

The rest of the paper is structured as follows: Sect. 2
provides the motivation for the combined approach, as
well as the necessary technical background. Section 3 de-
tails the protocol itself, and Sect. 4 demonstrates how
it is modelled using CSP || B. This includes a new fea-
ture of the CSP || B approach whereby a synchronisa-
tion between two CSP processes is required to perform
a machine operation. A formal analysis of the model is
given in Sects. 5 and 6. Previous work on the theory of
CSP || B is illustrated in Sect. 5. This work is put into
context by highlighting similarities with the work of Lam-
port and Schneider in [15]. Section 6 demonstrates some
new results through the formal analysis of the protocol.
These results can be exploited by the approach in other
application areas.

The protocol described in the paper has been inves-
tigated using other approaches including Event B [4],
LOTOS [16], PVS [11], and I/O Automata [13]. Section 7
makes comparisons between our CSP || B approach, the
Event B approach [3] (which is a specialisation of the
B method), and also the LOTOS approach [6] (which is
a language based on CSP). Section 7 also summarises the
overall results of the analysis and discusses their impact
on the CSP || B approach in general.

2 Background

As we stated above, one motivation for our CSP || B ap-
proach is to make use of existing tool support to develop
computer systems with both complex state and control
(event based) requirements. These tools (i.e. FDR and
the B Toolkit) have been used successfully in industrial
strength projects [5,23]. The aim of our combination is to

improve the expressiveness of formal specifications whilst
maintaining the advantages of each individual approach.

The model checker FDR provides highly automated
tool support for the analysis of (event based) CSP pro-
cesses. It is capable of determining deadlock and diver-
gence (livelock) freedom of individual processes, and can
perform checks for more abstract patterns of behaviour
using CSP refinement for a variety of semantic models.

The B Toolkit3 is an environment for the development
of provably correct software. An abstract state based spe-
cification (comprised of modular units called machines)
is successively refined by adding more and more detail
until it is at a sufficiently low level that code can be gener-
ated automatically. Properties of the specification are ex-
pressed as an invariant of the state space. The refinement
procedure of the B method ensures that more concrete
versions maintain invariants that are at least as strong as
the original.

2.1CSP|| B

The fact that we can consider the combination of CSP
processes and B machines is due primarily to Carroll Mor-
gan’s CSP semantics of action systems [17]. This enables
us to give corresponding semantics to B machines.

The three most frequently used denotational seman-
tics for CSP are the traces model, the stable failures
model, and the failures/ divergences model (see [18, 21] for
more details). A trace is a finite sequence of events that
belong to a global set of events, 3. A trace tr is said to
be a trace of a process P if the process can perform the
sequence of events in tr. In the traces model, a process
P is identified with the set of traces that it can perform.
A stable failure is a pair (tr, X) consisting of a trace tr
and a set of events X (called a refusal set). This pair is
said to be a stable failure of a process P if it can perform
the trace tr and then, on the proviso that the process can-
not perform any hidden events, it is unable to perform
any event in X. In the stable failures model, a process
is identified with the set of trace/refusal pairs that it ex-
hibits together with its set of traces. A divergence is also
a sequence of events. A trace tr is a divergence of a pro-
cess P if it can perform an infinite succession of internal
events after performing some prefix of tr. A failure is also
a trace/refusal pair. A pair (¢r, X) is a failure of a process
P if tr is a divergence of P or (¢tr, X) is a stable failure of
P. In the failures/divergences model, a process is identi-
fied with the set of failures that it exhibits together with
its set of divergences.

For any B machine M, the sequence of operation calls
(e1,€2,...,ep) is a trace of M if such a sequence is pos-
sible in M (i.e. it is not guaranteed to block). In AMN [2]
this is written as the formula —([e;; e2; . . . ; ep]false). Such
a sequence is a divergence if it is not guaranteed to ter-
minate (i.e. performing the corresponding sequence of op-
eration calls does not establish the postcondition true);

3 http://www.b-core.com

260 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

this is written as —([e1; e2;. .. ;en]true). In a B machine
M, each operation e has a guard g.. (If a guard is not de-
fined explicitly, then it is considered to be true.) Given
a set of events X, ((e1,e2,...,€,),X) is a failure of M
if =([e1; €25 .- ;€n](Veex 9e)) — ie. none of the guards
are true after performing the sequence of operation calls.
Although Morgan does not give a stable failures defin-
ition for action systems, an intuitive definition is the set
of trace/refusal pairs whose trace component is not a di-
vergence. This is discussed in more detail in [20].

Now that a CSP semantics can be given to B ma-
chines, it is meaningful to speak of the parallel compo-
sition of a CSP process with a B machine; this is the
reason for naming our approach CSP || B. We shall be
concerned with a particular architecture in which each
B machine is composed with a unique CSP process called
its controller; a B machine can only interact with the en-
vironment via its controller. A CSP || B specification may
consist of multiple controller /machine pairs. In this archi-
tecture, controllers can also interact with each other.

2.1.1 The controller language

We use a subset of CSP to define the controllers for B ma-
chines. This is essentially the sequential part of CSP with
I/O communication over named channels, as is discussed
in [19]:

P:=a— P|c?z(E(x)) — P|dw{E(v)} — P|
6'U7${E(I)} — P|P1|:|P2|P1 |_|P2|
Ma|E(2)Pel if b then Py else Py end |S(p)

Initially, when modelling a system, we use events such as
a, c?x and dv to allow controller processes to commu-
nicate with the external environment and interact with
each other. The event names ¢ and d are called commu-
nication channels because they allow the passage of data:
the event c?z inputs a value into a process by assigning
the value to the variable x, and the event d!v denotes the
output? of the value v on channel d. In general, a commu-
nication channel is capable of passing both input and out-
put data, and all values must be of the correct type. The
event a is called a synchronising event because it does
not pass data. Furthermore, we allow events of the form
elv?x, where e is called a machine channel. Machine chan-
nels enable a controller process to call operations within
its corresponding B machine (this is discussed in more de-
tail in Sect. 2.1.2).

Subsequently, during verification, we may annotate
these variables and values with assertions to strengthen
the CSP description. For example, the event elv?z{E(z)}
(corresponding to a B operation) can accept any x as
input, but will diverge if E(z) is not satisfied. Hence, as-

4 In process definitions, the symbol ‘!’ is merely syntactic sugar
to indicate the output of a value. As such, we will often use the
basic event structuring operator ‘.’ in its place.

sertions of this kind are called diverging assertions. Sim-
ilarly, the augmented event elv?z(F(z)) will be blocked
if E(x) is not satisfied; these assertions are referred to as
blocking assertions. As we shall see in Sect. 5, both kinds
of assertion are needed to make design contracts explicit.

The other CSP operators used in the construction of
the controller processes are external choice, (general) in-
ternal choice, and conditional choice. The expression S(p)
introduces recursion into process definitions. After con-
struction, the controller/machine pairs are composed by
using the parallel operator ‘||’ and, during the analysis
phase, we also make use of the hiding operator ‘\’, the
sequential composition operator ‘;’, and the interleaving
operator ‘|[|’.

2.1.2 Controller/machine synchronisation

Every machine channel in a controller process corres-
ponds to an operation in a B machine. The structure of
the events in the process must match the signature of the
B operation. For example, the event elv?z in a controller
process corresponds to a call z < e(v) of the operation e
in the controller’s B machine. Note that the output value,
v, of the event becomes the input to the operation, and
the event’s input variable, z, is assigned the value out-
put by the operation. The types of the values input and
output by the operation must match the type of the chan-
nel e. In general, machine channels may also pass input
values only, output values only or pass no values at all.

In Sect. 2.1, we stated that every B operation has
a guard (that was defined explicitly, or defined implic-
itly as the predicate true). In the combined approach we
restrict ourselves to operations without explicit guards
— i.e. all guards are implicitly true. Such operations are
referred to as mon-blocking operations because they are
enabled in every possible state, and for every input they
must provide some output. (However, we allow precon-
ditioned operations which, therefore, introduces the pos-
sibility of divergences in the B machine.) The reason
for this constraint is because operations with non-trivial
guards are not implementable in general.

We also require that all inputs on machine channels
are non-discriminating. Intuitively, this means the CSP
events corresponding to B operations cannot be selec-
tive with the inputs they are prepared to accept. More
formally, if a controller can refuse an event e.v.w for a par-
ticular input value w, then it must refuse all events of this
form (regardless of the value w).

3 The Bounded Retransmission Protocol

The Bounded Retransmission Protocol (BRP) controls
the transfer of data files over a communications medium.
There are two entities involved in a run of the protocol:
the sender and the receiver. They are separated by the
medium over which messages can pass. The sender is will-

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 261

file

file component

packet

MEDIUM

packet

SENDER

RECEIVER

Fig. 1. The general architecture for the Bounded Retransmission Protocol

ing to accept an arbitrary sized file from its environment,
and is responsible for splitting the file into fixed size file
components to be transferred over the medium to the re-
ceiver. Each file component is sent as part of structured
message called a packet. An entire file is sent to the re-
ceiver as a sequence of packets. On receipt of a packet,
the receiver is able to extract the file component which it
passes to its environment. The flow of information from
the sender to the receiver is shown in Fig. 1.

The medium is unreliable because it has the potential
to lose packets. The aim of the protocol is to overcome
this deficiency by enabling the retransmission of packets
that are lost in transit; a variation of the alternating bit
protocol is used to achieve this. Thus, in addition to the
file component, a packet contains a bit (called a toggle)
whose role is to distinguish new packets from retransmis-
sions. (In addition to the toggle, a packet contains two
flags that indicate whether its file component is the first
or last component of the file respectively.) The receiver
replies to each successful packet transfer by sending an
acknowledgement over the medium to the sender. It is
also possible, therefore, for acknowledgements to be lost.
The bounded nature of the protocol means that only a fi-
nite number of retransmissions are attempted before the
sender aborts the run completely.

A confirmation signal is sent by the sender to the en-
vironment to indicate whether a file transfer has been
successful (i.e. the system has reached a point in which all
packets have been received and acknowledged), a possible
success (i.e. the last packet has been sent without a subse-
quent acknowledgement), or aborted (i.e. after a bounded
number of attempts to send an intermediate packet, the
file transfer has been abandoned).

4 Modelling the protocol

From the description of the protocol given above, we be-
gin to separate the various aspects of the protocol to con-
struct a formal model. We adhere to the general structure

depicted in Fig. 1, but now we add detail to the enti-
ties within the figure. We set up two controller/machine
pairs that correspond to the sender and the receiver. The
medium, whose role is simply to pass packets and ac-
knowledgements (or lose them), has no complex state
and, therefore, has no need for an underlying B ma-
chine.We also add channels between the various compo-
nents in anticipation of the kinds of communications that
will be needed. The resulting architecture is shown in
Fig. 2.

SenderCtrl is the name given to the sender’s controller
process. The channel req allows files to pass from the ex-
ternal environment to the sender, and conf passes the
confirmation signal from the sender to its environment.
The channel trans allows packets to be passed from the
sender to the medium, and rec allows their passage from
the medium to the receiver’s controller process (called Re-
ceiverCtrl). On the receiver’s side, the channel ind allows
file components to be passed to the external environment,
together with a label to indicate their relative position in
the file (first, last or intermediate), and ind_err is a chan-
nel that fires whenever a file transfer has been aborted.
Acknowledgements are passed from the receiver to the
medium on the sendack channel, and recack allows their
passage to the sender. The double arrows in the figure
represent all machine channels; these are described in
more detail below.

In the original protocol, retransmissions and, there-
fore, aborted runs are determined by timeouts: the sender
starts a counter every time a packet is sent, and the re-
ceiver starts a counter every time an acknowledgement
is sent. If, after a reasonable amount of time, the sender
has not received an acknowledgement for the transmitted
packet, a timeout occurs and the packet is retransmit-
ted (until an abort is performed). Similarly, if the receiver
fails to receive an expected packet within a certain period
of time, a timeout occurs and the protocol is aborted.

Since the protocol relies on the correctness of the time-
outs, and because FDR does not implement time, we
model timeouts by adding extra synchronisation chan-

262 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

req conf ind ind_err
l___l ______ T____ ___t____I__"
1 : trans rec 1 \
' SenderCtrl : MEDIUM ‘IL ReceiverCtrl :
1
| PROCESS |4 PROCESS { PROCESS |
: N recack sendack | |
I
e : | =
1 I |
Tou— — !
: brp sender ! : brp receiver :
1
'| MACHINE | '| MACHINE [
' 1 I
_______________ I Lo————————"="1

Fig. 2. The formal architecture for the Bounded Retransmission Protocol

nels; this is consistent with all of the approaches that have
analysed the BRP [4, 11,13, 16].We introduce a synchro-
nisation channel between the sender and medium called
dec that fires precisely when a packet or an acknowledge-
ment is lost. This enables the modelling of timeouts on
the sender side. Similarly, we introduce a synchronisa-
tion channel between the sender and the receiver called
abort that forces them to abandon a run of the proto-
col at the same time. This is shown in Fig. 3. By mod-
elling timeouts as synchronisations we avoid analysing
situations where, for example, the receiver aborts a run
while the sender proceeds with the protocol run. The
protocol does not aim to cope with such pathological
situations.

4.1 The sender side

In constructing the SenderCtrl process, we can identify
two distinct patterns of behaviour: the first is when the
sender is prepared to accept new files from its environ-
ment, and the second is when the sender is transferring
packets to the receiver. As a state based requirement, it
is the responsibility of the sender’s B machine to hold the
file components that have yet to be transmitted and con-
struct the packets that are to be sent over the medium,;
the number of retransmissions that the sender is prepared
to do before aborting is also retained in its B machine. In
addition, the confirmation signal is (partially) dependent
on the state of the file transfer, and we therefore conclude
that the status of this signal should be (partially) resolved
by the B machine. This motivates the following signa-
tures for the (as yet undefined) operations of the sender’s
B machine:

— initiate(file) accepts a file as input and stores it as
a piece of state.

— ff, U, tt, mm <+ get_packet outputs the current
packet to be sent over the medium. The output param-
eters correspond to the four components of a packet:
the first component flag, the last component flag, the
toggle, and the file component.

— advance updates the state when an acknowledge-
ment has been received so that the next packet is

ready to be sent. This involves negating the toggle so
that the packet can be distinguished from the last.

— ss + get_status outputs the status of the file transfer
for use in the confirmation signal.

— nn < retrans outputs the number of retransmissions
that the sender is prepared to do.

— dec decrements the number of retransmissions.

Note that dec was introduced above as a synchronisation
channel to model timeouts. Therefore, a call of this op-
eration requires the co-operation of the sender’s control
process and the medium. This is a departure from the
constraints on the general architecture given in Sect. 2.1
where a B machine must be associated with a unique
controller. We can informally justify this, however, by
observing that the synchronisation will only restrict the
calls of the operation. Thus, we cannot witness any ex-
tra behaviour (such as calling the operation outside its
precondition) by imposing such a restriction. This is dis-
cussed in more detail in Sect. 7.

The machine channels listed above, together with the
communication and synchronisation channels that have
already been defined, motivate the mutually recursive
process definition of the SenderCtrl process shown in
Fig. 4. Note that a file is defined to be a sequence of
file components, and the successful completion of a file
transfer (signalled by conf.ok) can be determined purely
within the process itself. Hence, if the file is empty then
a conf.ok signal can be issued immediately. Also, on the
successful completion of a non-empty file transfer, a flip
operation is called prior to the confirmation signal. This
operation is required to negate the toggle so that the first
packet of a new file can be distinguished from the last
packet of the current file.

The declaration of the sender machine’s state vari-
ables is shown in Fig. 5. The variable file_left holds the
file components that have yet to be transferred success-
fully. Since the completion of a file transfer can be de-
termined within the controller process itself, the state
variable status determines the confirmation signal for un-
successful file transfers only. Thus, it is assigned a value
not_ok when the protocol has aborted before the last

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 263

brp_sender

MACHINE

brp_receiver

MACHINE

req conf ind ind_err
:___\L ______ j]____: trans rec r__/]i____/]'__"l
i SenderCtrl I MEDIUM \IL ReceiverCtrl :
| ! recack I |
1 PROCESS J'/ PROCESS T PROCESS |
! h sendack | |
R dec :
| initiate | | :
1get_ k t !
7 advance ! | initialise |
i flip ! I ;
| Fh. ! abort ! examine :
1get_status : I get_ind |
. retrans | : I

1

: ! ! :
: [! |
1 ! ! |
1 ! | |
: | ! I

Fig. 3. All channels for the Bounded Retransmission Protocol

SenderCtrl =
req?file — if file = <> then conf.ok — SenderCtrl
else initiate.file — SendPacket

SendPacket =
retrans?n —
if n > 0 then get_packet?f?17t?m — trans.f.l.t.m —
((recack —
if | = true then flip — conf.ok — SenderCtrl
else advance — SendPacket)
O dec — SendPacket)
else abort — get_status?s — conf.s — SenderCtrl

Fig. 4. The SenderCtrl process

packet is sent, and dont_know when the protocol aborts
during the transfer of the final packet. The constant
mazx_retransmissions defines the bound on the num-
ber of retransmissions that the sender is prepared to
attempt.

The INITIALISATION clause assigns each vari-
able non-deterministically®. The reason for this appar-
ent freedom is because, in addition to their requirements
listed above, the machine operations are defined so that
they configure other pieces of state when they are called.
Therefore, we do not rely on the initialisation of the ma-
chine to configure the state. By using operations to set
up the state, we can call these operations to reconfigure
the state if necessary (e.g. after the protocol has aborted).
The implications of this emerge in the consistency check-
ing performed in Sect. 5. The operations of the sender’s
B machine are shown in Fig. 6. The initiate operation
does more than just accept files in readiness for their
subsequent transfer: it sets the send_first and send_last
flags, and it also assigns retransmissions to the maximum
value. Similarly, get_packet is responsible for setting
the status variable, and advance negates the toggle and

5 Somewhat confusingly, the operator ‘||’ is used to combine mul-
tiple substitutions in B machines.

MACHINE brp_sender
SEES Bool_TYPE , Bool_TYPE_Ops
SETS MESSAGE ; STATUS = { not_ok , dont_know }
CONSTANTS maz_retransmissions
PROPERTIES maz_retransmissions € N
VARIABLES
file_left | send_first , send_last | toggle ,
status , retransmissions
INVARIANT
file_left € seq (MESSAGE) A
send_first € BOOL N send_last € BOOL N
toggle € BOOL A status € STATUS N
retransmissions € 0 .. maz_retransmissions
INITIALISATION
file_left :€ seq (MESSAGE) ||
send_first :¢ BOOL || send_last :€ BOOL ||
toggle :€ BOOL || status :€ STATUS ||
retransmissions :€ 0 .. maz_retransmissions
END

Fig. 5. The sender’s state definition

also assigns retransmissions to the maximum value. It is
worth noting that the only piece of state that does not
get configured at all is the toggle. This implies that the
performance of the protocol does not rely on the specific
value of the toggle, it merely relies on the toggle’s relative
value at specific points in its execution.

4.2 The recetver side

In contrast to the SenderCtrl process, we can identify
three distinct patterns of behaviour in the receiver’s con-
troller process: 1) when the receiver is waiting for an ini-
tial packet, 2) when the receiver is waiting for subsequent
packets (of the same file), and 3) when it is waiting for the
first packet of a new file transfer but is also prepared to ac-
cept retransmissions of the last packet of the current file.
The only piece of state that the receiver depends on is the
toggle; this is required to distinguish new packets from

264 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

OPERATIONS
initiate (ff) =
PRE ff € seq (MESSAGE) THEN
file_left := ff || send_first :== TRUE ||
retransmissions 1= maz_retransmissions ||
IF size (ff)=1
THEN send_last := TRUE
ELSE send_last := FALSE
END
END

.U, tt, mm— get_packet =
PRE size (file_left) > 0 THEN
ff == send_first || Ul := send_last ||
tt := toggle || mm = first (file_left) ||
IF send_last = TRUE
THEN status := dont_know
ELSE status := not_ok
END
END ;

advance =
PRE size (file_left) > 0 THEN

file_left = tail (file_left) ||
send_first := FALSE ||
toggle — NEG_BOOL (toggle) ||
retransmissions := maz_retransmissions ||
IF size (tail (file_left)) = 1
THEN send_last := TRUE
ELSE send_last := FALSE
END
END ;

flip =
BEGIN toggle «— NEG_BOOL (toggle) END ;

dec =
PRE retransmissions > 0 THEN
retransmissions = retransmissions — 1
END ;

ss «— get_status = ss := status ;

rr «— retrans = rr := retransmissions

END

Fig. 6. The sender’s operations

retransmitted packets. The definition of ReceiverCtri is
shown in Fig. 7.

The receiver’s B machine is shown in Fig. 8. The oper-
ation initialise sets the state variable last_toggle to the
toggle value contained in the first packet that the pro-
cess ReceiverCtrl gets on the rec channel. It also provides
the first label for the output on the ind channel. The op-
eration get_ind provides subsequent labels for ind and,
in addition, updates the value of last_toggle. Finally, ex-
amine determines whether its boolean input matches the
value held in last_toggle.

4.8 The medium

The process MEDIUM defined in Fig. 9 accepts a packet
on the trans channel and non-deterministically chooses to

ReceiverCtrl =
rec?f?Tm —
initialise.f.1.t71 — ind.m.i — sendack —
if i = last_packet then RECEIVER2
else RECEIVER1
O abort — ReceiverCltrl

RECEIVER1 =
rec?f?U7tTm — examine.t?s —
if s = same then sendack — RECFEIVER]1
else get_ind.f.l1.t71 — ind.m.i — sendack —
if i = last_packet then RECEIVER2
else RECEIVER1

O abort — ind_err — ReceiverCtrl

RECEIVER2 =
rec?f??t?m — examine.t?s —
if s = same then sendack — RECEIVER2
else initialise.f.1.t7i — ind.m.i — sendack —
if © = last_packet then RECEIVER?2
else RECEIVER1

O abort — ReceiverCtrl

Fig. 7. The ReceiverCtrl process

MACHINE brp_receiver
SEES Bool_TYPE
SETS
INDICATE =
{ first_packet , last_packet , inter_packet }
COMPARISON = { same , different }
VARIABLES last_toggle
INVARIANT last_toggle € BOOL
INITIALISATION last_toggle :€ BOOL

OPERATIONS
i «— initialise (ff , Il , tt)
PRE ff € BOOL Al € BOOL A tt € BOOL THEN
last_toggle := tt ||
IF [l = TRUE THEN i := last_packet
ELSE i := first_packet

~

END
END ;
ss «— examine (tt) =
PRE tt € BOOL THEN
IF ¢t = last_toggle THEN ss := same
ELSE ss := different END
END ;

it «— get_ind ([, 1,)=

PRE ff € BOOL A Il € BOOL A tt € BOOL THEN
last_toggle := tt ||
IF [l = TRUE THEN ii := last_packet

ELSE i := inter_packet

END

END

END

Fig. 8. The receiver’s B machine

pass it to the receiver (via the rec channel) or lose it by
performing a dec event. Similarly, it accepts an acknowl-
edgement (by synchronising on the sendack channel) and

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 265

MEDIUM =
trans?p — (rec.p — MEDIUM 1 dec — MEDIUM)
O

sendack — (recack — MEDIUM M dec — MEDIUM)
Fig. 9. The MEDIUM process

non-deterministically chooses to pass it to the sender (by
synchronising on the recack channel) or lose it by per-
forming a dec event. We are able to model this erroneous
behaviour naturally because we are using CSP definitions
to capture the control flow of the transfer protocol. Note,
the protocol assumes that the medium is unable to cor-
rupt packets in any other way (such as by changing the
contents of the packet).

5 Formal analysis

By using the CSP processes and B machines defined in
Sect. 4, we can combine the various components of the
system using parallel composition. That is, we wish to in-
vestigate the behaviour of the following system:

(SenderCtrl || brp_sender)
| MEDIUM

l(ReceiverCtrl || brp_receiver)

Theoretical results enable us to isolate and investigate
various sub-components, that are amenable to tool sup-
port, to establish properties of the entire system.

The first step in the formal analysis of any combined
system is referred to as consistency checking (Sect. 5.1).
Consistency of a controller/machine pair means that
every time a B operation is called, as a consequence
of performing a CSP event, its precondition must hold.
Otherwise, according to Morgan’s semantics (defined in
Sect. 2.1), the entire system will diverge. In addition, we
must check that all CSP processes are consistent with
each other, which means that the parallel composition of
the processes cannot reach a deadlock state (i.e. when no
event can be performed). Deadlock freedom is a property
that can be checked using FDR (Sect. 5.2).

All other properties of interest concern the behaviour
of the system at its external interface. For the BRP, these
properties refer to the channels req, conf, ind and ind_err
only. The other channels are abstracted by using CSP
hiding operator ‘\’. However, by hiding such ‘internal’
events of a process, we introduce the possibility of live-
lock (i.e. when an infinite succession of internal events can
be performed). It is therefore necessary to make sure that
hiding does not introduce such undesirable behaviour.
Livelock freedom is also a property that can be checked
using FDR (Sect. 5.3).

In order to prove properties automatically using FDR,
it is usually necessary to augment the controller pro-
cesses with state information. This is necessary so that
the design contracts that exist between a controller and

its B machine are made explicit in the process definition.
In particular, we add assertions to the events of a process
so that the kinds of messages passing between a machine
and its controller are made explicit (see Sect. 2.1.1). This
prevents an FDR analysis from producing false negatives
as counterexamples. Processes augmented with diverg-
ing and blocking assertions exhibit additional behaviour
whenever an assertion is violated; this behaviour will be
detected by FDR. Of course, it is unsafe to introduce as-
sertions that are not fulfilled by the controller/machine
pairs. Therefore, each augmentation must be accompa-
nied by a proof of consistency. However, once a prop-
erty has been established, all such augmentations can be
discarded.

5.1 Proof of controller/ machine consistency

Consistency in the context of the BRP requires us to
show that SenderCtrl || brp_sender and ReceiverCtrl ||
brp_receiver are both divergence-free. In general, given
any mutually recursive controller LOOP and a machine
M, consistency means that LOOP || M is divergence-free
or, alternatively, the following property holds:

traces(LOOP) N divergences(M) = &

This is established if all traces tr of LOOP meet the speci-
fication [¢tr|true. This specification asserts that any trace
tr, when viewed as a sequence of machine operations, is
guaranteed to terminate. There will be traces of LOOP
that are impossible when it is put in parallel with M
(since M may not output certain values in the trace), and
a notion of coercion is used to guarantee that such traces
meet the specification miraculously. (See [24] for more
details.) Fortunately, such coercions will not mask a di-
vergence if one exists. Section 5.1.1 presents our approach
to proving consistency, and Sect. 5.1.2 applies this to the
protocol.

5.1.1 A proof technique for consistency

Our method for proving that LOOP meets the specifica-
tion is to construct a predicate called a control loop in-
variant (CLI). This is reminiscent of the approach taken
in [15] in which a safety property SP is specified in terms
of two predicates Init and Etern:

SP: if a program is started in any state satisfying Init,
then every state reached during its execution satis-
fies Etern.

This is proved by constructing a predicate I (called
an invariant) such that the following three conditions
hold:

S1: Init=1

S2: every ‘atomic’ action started in a state satisfying I
terminates in a state satisfying I

S3: I = Etern

266 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

where an ‘atomic’ action transforms the state (and termi-
nates) without passing through any visible intermediate
states.

As is emphasised in [15], control information (the
values of ‘program counters’) is as fundamental as other
pieces of state (the values of program variables) because
it determines which atomic actions can occur; the invari-
ant I can refer to such control information. For a mutually
recursive process LOOP, the control information resides
in the parameters of its sub-processes. In general, LOOP
has the following structure:

S(l’o) = R()
S(CL‘l) =R
S(azn).: R,

where each process body R; contains recursive calls of
the form S(acj)6 such that 0 < j < n. The parameters
g, X1, ... ,Zn provide the necessary control information.
As we shall see, the CLI can also refer to such control
information.

In order to show that LOOP satisfies the safety prop-
erty [tr]true, a CLI is constructed such that the following
conditions are satisfied:

Cl: [INITIALISATION]CLI
C2: CLI= [BBODYy|CLI
C3: CLI= [tr]true

where BBODYE, is the translation of the process body R;
into an equivalent sequence of AMN operations. (See [24]
for more details.) The condition C1 corresponds to the
hypothesis of SP (with CLI substituted for Init) be-
cause the starting state is specified by the INITIAL-
ISATION clause of the B machine. (This substitution
also makes S1 trivially true.) C2 corresponds to S2, and
C3 corresponds to S3. Notice that, for the purposes of
consistency, BBODYR, is considered to be atomic be-
cause we do not need to ensure that the CLI holds for
its intermediate states. In fact, Theorem 3.1 of [24] proves
that if ¢r is a trace of LOOP then C3 is consequence of C1
and C2.

We begin by declaring a new variable ¢, that is as-
signed values from the set of parameters {zg, z1, ... ,x, }.
This variable is called a control variable because it is
used to keep track of the execution path of the process
by highlighting specific control points. If ¢, is assigned
the value z; then execution of the process body R; is
imminent. The control points of the process are there-
fore chosen to be the points at which control leaves one
process and enters another (although there is no reason
why other points within the process bodies cannot be
used).

6 [24] also allows terminating processes.

Without loss of generality, a CLI of LOOP can be de-
fined as follows:

(cb=zo=Po)N(cb=z1=P)N...N(cy =2z = P,)

where P; is a predicate on state variables (and possibly
¢p) that must hold whenever control of the process en-
ters body R;. In proving that the AMN translation of R;
maintains the CLI, we observe that since ¢, must be as-
signed the value x; upon entry to the process body, all
but one of the conjuncts in the CLI will be vacuously true
at this point. Upon leaving the process body, one of sev-
eral control points could have been reached (this is due to
the branching within a process body). This information is
captured by defining two Boolean functions as follows:

— at(R;) is the assertion ¢, = x; which states that con-
trol resides at the entry point of R;.

— after(R;) is the disjunction of assertions of the form
¢y = x; if it is possible for the control variable to be
assigned the value z; upon leaving R;.

The Locality Rule from [15] is paraphrased in our set-
ting as follows:

(at(R;) N CLI) = [BBODYR,|(after(R;) A CLI)
CLI= [BBODYpg, CLI

This rule enables us to dispense with the irrelevant con-
juncts in the CLI. For example, if after(R;) is ¢, = x; V
¢y = xy, then, by using the Locality Rule, the AMN trans-
lation of the process body R; maintains the CLI if we can
prove:

(Cb =x; /\Pi) =
[BBODYRZ.]((CI) =T /\Pj) V (Cb = Tk /\Pk))

5.1.2 Consistency of the BRP

Before we prove consistency of the controller/machine
pairs formally, we give the intuition underlying the notion
of consistency by using the BRP model defined above.
We must show that all of its operations are called within
their preconditions. In our example, preconditioned op-
erations in the sender’s machine are called from the pro-
cess SendPacket (see Fig. 4). The operation dec defined
in Fig. 6 requires the remaining number of retransmis-
sions to be positive (i.e. retransmissions > 0). However,
by virtue of the branching of SendPacket, this will always
be the case because the query retrans?n assigns the cur-
rent value of retransmissions to n, and dec occurs within
the then branch of the conditional n > 0. More inter-
estingly, the operations get_packet and advance both
require the state variable file_left to be non-empty (i.e.
size(file_left) > 0). In other words, these operations re-
quire that there is always something to send. There is
nothing in the process SendPacket to ensure that this will
hold when either operation is invoked. Therefore, we infer

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 267

that it is necessary to show that whenever control passes
to SendPacket this piece of state is non-empty.

The two control points of the sender’s controller pro-
cess correspond to the entry points of SenderCtrl and
SendPacket. We therefore assign the control variable to
be the value 0 whenever control is at SenderCtrl, and as-
sign the value 1 whenever control is at SendPacket. The
AMN translation (as defined in [24]) converts SenderCtrl
to give:

ANY file, WHERE file, : seq(MESSAGE) THEN
IF size(filey) =0 THEN ¢, :=0
ELSE initiate(filey); ¢, := 1 END
The translation of SendPacket gives:

np < retrans;
IF n, > 0 THEN
o, Uy, tty, mmy, < get_packet;
CHOICE
IF I, = TRUE THEN flip; ¢;, :=0
ELSE advance; ¢, :=1 END
OR
dec; ¢y :=1
ELSE ss;, < get_status; ¢, := 0 END

From the discussion above, an appropriate choice for the
definition of the CLI could be ¢, = 1 = size(file_left) > 0
(in which the conjunct for ¢; = 0 is implicitly given the
value TRUFE). That is, when control enters SendPacket,
there must be something to send to the receiver. This
definition is strong enough to discharge the preconditions
of the operations. Unfortunately it is too weak to main-
tain the CLI. In showing that the AMN translation of
SendPacket maintains the CLI using the Locality Rule
and the AMN rules defined in [2], we are obliged to prove
(after some logical simplification) the following formula:

size(file_left) > 0 = [advance]|size(file_left) > 0
which, after expanding advance, reduces to:
size(file_left) > 0 = size(tail(file_left)) > 0

This is clearly not the case when file_left is of length 1.
However, control flow to the advance operation is also
dictated by the last packet flag. We can therefore use the
state variable send_last to strengthen the definition of the
CLI as follows:

cp = 1 =(send_last = TRUE = size(file_left) > O A
send_last = FALSE = size(file_left) > 1)

From the AMN translation of SendPacket, we can ob-
serve that the advance operation is called only when
send_last is FALSE. As well as updating the state vari-
able file_left, this operation also updates send_last ac-
cording to the size of tail(file_left). If this update switches
send_last to be the value TRUE then we have to show
that, under the assumption that size(file_left) > 1, it is
the case that size(tail(file_left)) > 0; this can, of course, be
proven.

Since the CLI is stronger than the precondition of ad-
vance, we can deduce that the sender’s controller process
calls the operation within a more restrictive set of circum-
stances than is allowed by the operation itself. However,
the precondition was chosen only to permit the safe use of
tail and, as such, there is no need to strengthen the pre-
condition to match this restrictive set of circumstances.

5.2 Deadlock freedom

The constraints on the languages of controllers and ma-
chines, given in Sects. 2.1.1 and 2.1.2, preclude the occur-
rence of deadlocks in two respects: non-blocking machines
cannot refuse operation calls from the controllers, and
the sequential nature of the controller language means
that individual controllers cannot deadlock. Therefore,
the only potential source of deadlocks is the synchronisa-
tion between the controllers (i.e. inconsistencies between
the controllers themselves).

The associative and commutative properties of the
parallel operator allow us to rearrange the formal model
of the BRP by grouping the controllers and the machines
as follows:

(SenderCtrl || MEDIUM || ReceiverCtrl)

|| (brp_sender || brp_receiver)

Therefore, any deadlock of the system will occur within the
CSP part of the combination (see Theorem 2 of [20]). This
analysis, which is amenable to FDR model checking, in-
deed confirms that the parallel combination (SenderCtrl ||
MEDIUM || ReceiverCtrl) is deadlock-free. If this check
had failed then FDR would provide a trace that causes
the refusal of all events in 3. Such counterexamples can
be used to determine flaws in the model.

It is also important, however, to understand what
this positive result tells us about the formal model of
the BRP. All synchronisations except the abort event in-
volve the medium. Once a (non-empty) file has been ac-
cepted by the sender, an attempt is made to transmit
the first packet on the trans channel. At this stage, the
medium (shown in Fig. 9 on page 8) is willing to accept
the packet, and both processes can proceed: the medium
non-deterministically chooses to pass the packet to the re-
ceiver or lose the message, and the sender waits for an
acknowledgement. However, if the message is lost then
the medium is only prepared to perform the dec event.
Therefore, the sender must not refuse it. Intuitively, this
means the sender must not wait for an acknowledgement
indefinitely. The model reflects this by having an external
choice between the events recack and dec in the process
SendPacket shown in Fig. 4.

If a packet is available on the medium, the receiver
is always prepared to accept it on the rec channel. Once
this event occurs, the medium and the receiver proceed by
synchronising on the sendack channel. The receiver then
waits for the next packet to arrive on the rec channel. The

268 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

only way that the event rec can be refused is when the
medium decides to dec, and since dec cannot be refused
by the sender, no deadlocks are possible on the receiver’s
side.

The remaining source of potential deadlocks is the
abort event. This is unusual because the receiver must be
prepared to abort a file transfer even if the first packet
of the transfer has not been received (i.e. even if the re-
ceiver is unaware that a file transfer has been attempted).
This corresponds to the abort events in the processes
ReceiverCtrl and RECEIVER2 shown in Fig. 7. Intu-
itively, the receiver must always be prepared to abort if it
is prepared to receive packets.

5.8 Livelock freedom

The proofs of consistency (Sect. 5.1) show that controller/
machine pairs do not exhibit divergent behaviour as
a consequence of calling an operation outside its pre-
condition. However, as we stated above, by hiding the
internal events it is possible to introduce divergent be-
haviour in the form of an infinite execution of such events.
We distinguish between these two forms of divergence by
referring to the latter case as a livelock. Intuitively, a live-
lock should not occur in the BRP because it has bounded
behaviour. Therefore, we anticipate the proof of livelock
freedom to be dependent on the finite bounds specified in
the protocol.

Theorem 3 from [20] allows us to infer livelock freedom
of a combined system, whose internal events are hidden,
by demonstrating livelock freedom of the controllers.

Theorem 3. If P || Q is divergence-free, and C' C a(P),
and P\ C is divergence-free, then (P | Q)\C is diver-
gence-free.

where a(P) denotes the set of events in the process P.

If we apply this theorem by substituting the paral-
lel combination (SenderCtrl || MEDIUM || ReceiverCtrl)
for P and (brp_sender || brp_receiver) for @, then by in-
stantiating C' with the set of internal events of the BRP
model, we can show that (SenderCtrl | MEDIUM || Re-
cetwerCtrl) \ C is livelock-free, which is amenable to FDR
checking. For the purposes of this analysis (and all sub-
sequent analyses), the set of internal events of the BRP
model is defined as follows:

C =X — {req, conf, ind, ind_err}

Unfortunately, this livelock freedom analysis fails because
the bounded behaviour of the protocol is modelled within
the B components (i.e. the finite number of retransmis-
sions that the sender is prepared to make, and the finite
length of each file to be transmitted by the sender). With-
out this information, there is nothing to prevent, say,
SendPacket and MEDIUM synchronising on trans and
dec ad-infinitum because the event retrans?n can always
accept positive values in the absence of brp_sender. (By

considering CSP processes in isolation, machine channels
such as retrans become normal CSP channels which can
potentially pass any value.)

We therefore augment the controllers with enough
state information in order to show that an infinite suc-
cession of internal events is not possible. However, this
augmentation must be done so that the behaviour of the
controller is preserved in the context of its B machine. We
appeal to Theorem 11 of [20] to prescribe how this can be
achieved.

State is added to a CSP process by the introduction
of parameters that specify how the state changes during
its execution. In order to preserve the behaviour of a pro-
cess, the introduction (or removal) of state must be done
so that it does not affect the flow of control. There are two
ways in which this can occur: the branching within a pro-
cess or the recursive calls of a process can be affected by
changes to the parameters.

Theorem 11 of [20] is primarily concerned with the
safe removal of state from a process through the use
of a collapsing function which identifies states that are
deemed to be equivalent because they yield the same
process behaviour. However, this theorem also justifies
the introduction of state that is required for our live-
lock freedom analysis. This is demonstrated by augment-
ing SenderCtrl in the BRP model to produce a process
called SenderCtrl’. The process SendPacket has no pa-
rameters. Therefore, all recursive calls to this process
(even within SendPacket itself) produce the same be-
haviour (i.e. they all ‘jump’ to the same place). Pro-
viding we do not change any branching within the re-
sulting indexed collection of process definitions, any pa-
rameters that are added will not affect the overall be-
haviour because each component process will have identi-
cal behaviour.

We begin by parameterising SendPacket with the
number of file components that remain to be sent and
the number of retransmissions that the sender is pre-
pared to attempt. The call to SendPacket is initiated in
SenderCtrl’ with the length of the file that has been ac-
cepted on the req channel and the maximum number of
retransmissions:

SenderCtrl’ = req?file —
if file =<> then conf.ok — SenderCtrl’
else initiate:file — SendPacket(#file, retransmissions)

By introducing these parameters, we can add diverging
assertions to the events retrans and get_packet that re-
fer to the current ‘state’ of SendPacket as is shown in the
following definition:

SendPacket(x,r) = retrans™{n =r} —
if n >0 then
get_packet? fUtIm{l < x =1} — trans.f.l.t.m —
((recack —
if | = true then flip — conf.ok — SenderCtrl’
else advance —
SendPacket(x — 1; retransmissions))

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 269

O dec — SendPacket(z,r—1))
else abort — get_status?s — conf.s — SenderCtrl’

Diverging assertions are used at this stage of the an-
alysis because we must perform a consistency check to
ensure that the assertions are satisfied in the context
of brp_sender. Processes augmented with blocking as-
sertions are inappropriate for consistency checking be-
cause unsatisfiable assertions do not exhibit divergent
behaviour. However, the process is not yet suitable for
a livelock freedom analysis because it exhibits divergent
behaviour trivially by virtue of the diverging assertions
that have been introduced. As these assertions are always
true in the context of the B machine (due to consistency),
Corollary 1 of [20] allows us to convert them to equiva-
lent blocking assertions, thereby eliminating this source
of divergence. Thus, SendPacket is defined as follows:
SendPacket(x,r) = retrans™n{n =r) —
if n >0 then
get_packet? fUIm(l < x = 1) — trans.f.l.t.m —
((recack —
if | = true then flip — conf.ok — SenderCtrl’
else advance —
SendPacket(x — 1, retransmissions))
O dec — SendPacket(z,7—1))
else abort — get status?s — conf.s — SenderCtrl’

Note that one of the parameters strictly decreases with
each recursive call to SendPacket. Both assertions, which
state implicitly that all internal behaviour ceases when-
ever r = 0 or z = 1, are fulfilled by brp_sender — the proof
of consistency confirms this. If we now submit (Sender-
Ctrl' | MEDIUM || ReceiverCtrl) \ C to FDR, livelock-
freedom is confirmed. Therefore, we can conclude (from
Theorem 4.1 of [20]):

SenderCtrl’ | MEDIUM || ReceiverCirl
, \C
|| brp_sender || brp_receiver

is livelock-free. Now we can remove the blocking asser-
tions of SendPacket completely (by using Corollary 1
of [20] again). Also, we observe that because the pa-
rameters of the process SendPacket were introduced
so that they did not affect the flow of control, we can
safely remove the parameters without changing the pro-
cess behaviour. This results in the original definition of
SenderCtrl, and we conclude:

SenderCtrl|| MEDIUM || ReceiverCtrl \C
|| brp_sender || brp_receiver

is also livelock-free.

6 Composing safety specifications

In this section we investigate more specific patterns of
behaviour by using the CSP refinement checking capa-
bility of FDR. Such patterns of behaviour are defined as

CSP processes — these are called process-oriented specifi-
cations [21]. Rather than trying to express all desirable
patterns of behaviour in a single specification, we define
several independent specifications whose ‘conjunction’
captures an overall notion of desirable behaviour. The
‘conjunction’ of process-oriented specifications is easily
defined in the traces model because it corresponds to par-
allel composition. For process-oriented specifications R
and S, and process P:

if RCp P and SCp P then R||SCr P

where ‘C7’ denotes the refinement relation in the traces
model.We shall construct process-oriented specifications
to investigate the safety properties of the BRP. Note, in
LOTOS a conjunction of different patterns of behaviour
is known as the constraint-oriented specification style, as
described in [26].

The events used in process-oriented specifications cor-
respond to the external events of the process under in-
vestigation. In Sects. 5.2 and 5.3, the aim is to verify
properties of the combined CSP || B system by analys-
ing the CSP components in isolation. Since all external
communication is done via the controllers, we once again
isolate the controllers in order to prove that they ex-
hibit certain desirable patterns of behaviour (i.e. we use
FDR to show that their parallel composition refines the
corresponding process-oriented specification). Examining
the controllers in isolation is justified by the corollary of
Theorem 5 in [20], and is stated as follows:

Corollary. If a process P has no blocking assertions on
any channels of process Q, then P\ a(Q) Csr (P || Q)\

a(Q),

where ‘Cgr’ denotes the refinement relation in the
stable failures model. For a process-oriented specifica-
tion SPEC, if we can show that SPEC Cgr P\ a(Q) by
using FDR, then the corollary and the transitivity of
the refinement relation prove that SPECCgp (P || Q) \
a(Q). Note that this result is also valid in the traces
model. If we instantiate P with the parallel combination
(SenderCtrl || MEDIUM || ReceiverCtrl) and instantiate
Q with (brp_sender || brp_receiver) then the corollary ap-
plies only if the internal events of the BRP are machine
channels. However, we also want to hide the commu-
nication channels linking the controller processes. We
therefore instantiate P with:

(SenderCtrl || MEDIUM || ReceiverCtrl)

\ {trans, rec, sendack, recack, abort}

Since (P\ A)\ B =gr P\ (AU B), the corollary is applic-
able to the BRP once more.

When using CSP process expressions as specifica-
tions, it is important to ensure that no acceptable traces
are excluded. For example, if the requirement is that
the events a and b alternate (beginning with a), then

270 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

we might use the process-oriented specification S = a —
b— S. If no constraint is required on the other events,
then the acceptability of an occurrence of any such event
must be stated explicitly. This is achieved by interleaving
the constrained behaviour (i.e. S, in this example) with
the process RUNx_, 3}, whose traces consist of all pos-
sible sequences of events not in {a, b}.

In the analysis of livelock freedom, we added as-
sertions to certain channels in order to constrain the
values that can be passed on those channels. We began
by adding diverging assertions and then, after consis-
tency checking, converting them into the corresponding
blocking assertions. In the analysis of safety properties
using the corollary above, we also need to add asser-
tions to channels. However, we only need to use diverging
assertions because divergences are not recorded in the
traces model (or the stable failures model). Therefore,
the consequence of using such assertions is to remove
the behaviours that violate the assertions from the re-
finement analysis. A proof of consistency demonstrates
that such behaviours are impossible in the context of the
B machines.

Section 6.1 demonstrates the analysis of one safety
property of the BRP. The appendix contains the analyses
of three other safety properties. Each analysis follows
a similar procedure in order to verify its respective prop-
erty. Section 6.2 combines these results to form an overall
(verified) specification of the protocol. The advantage of
composing specifications is to reduce the amount of state
information that needs to be lifted in order to verify each
property. This makes it easier to identify the source of
any unexpected behaviour because it is not obscured by
redundant state.

6.1 The buffer properties of the BRP

As with all communications protocols, the aim of the
BRP is to overcome the unreliability of the communica-
tions medium in order to transmit data from a source
to a destination without any corruption. It is natural,
therefore, to require that the overall system (comprised
of source, medium and destination) exhibits buffer-like
properties. These properties, taken from [18, p 114], are
stated as follows:

(i) A buffer correctly copies all its inputs to its output
channel without loss or reordering.

(ii) Whenever it is empty (i.e. it has output everything

that has been input), a buffer must accept any input.

(iii) Whenever it is non-empty (i.e. it has input more

than it has output), a buffer cannot refuse to output.

The BRP is different in several respects. First, the in-
put to the BRP consists of a single file, and the output
consists of a sequence of file components. Consequently,
property (i) must be rephrased to accommodate this al-
ternative notion of copying. Since (ii) and (iii) are liveness
properties, we shall not investigate them here. However,

Prefiz = req?file — SendSomeOf (file); conf?z — Prefix

SendSomeOf ({)) = SKIP
SendSomeOf ({(x) " y) = (ind.z?l — SendSomeOf (y))
O SKIP

Error = ind_err — Error

PrefizSpec = Prefix ||| Error

Fig. 10. A specification of the buffer property of the BRP

the bounded nature of the BRP means that (iii) cannot be
achieved because once an abort occurs, the remainder of
the input file (at the sender side) is denied the opportu-
nity to be output (at the receiver side).

The process Prefix defined in Fig. 10 captures the no-
tion of a partial file transfer by accepting files on its
req channel and then, via the process SendSomeOf, out-
putting some arbitrary prefix of the components that
make up the file before performing a confirmation event.
Notice that, for this property, we are not interested in the
labels that accompany the file components (on the ind
channel), and we do not consider the actual signals that
are sent on the conf channel; these are investigated in
the specifications of the appendix. The occurrences of the
ind_err event are also of no importance in this specifica-
tion. Hence, the specification process PrefizSpec in Fig. 10
consists of the process Error interleaved with Prefiz.

If we now check whether the parallel combination
(SenderCtrl || MEDIUM || ReceiverCtrl) \ C is a trace
refinement of PrefizrSpec using FDR, we find that the spe-
cification is not met. We need to augment the process
with enough state information in order to constrain the
data values that are passed on the ind channel (i.e. as
they would be in the context of the B machines). How-
ever, since the process ReceiverCtrl merely outputs the
data values it receives on the rec channel (on the pro-
viso that the toggle is as expected), it is the SenderCtrl
process that should be constrained because it is respon-
sible for sending the packets via the medium to the
receiver.

The buffer property (i) above states that buffer must
copy its inputs without loss or reordering. We therefore
expect SenderCtrl to be augmented with the file to be
transmitted. However, the alternating bit plays an im-
portant role in ensuring that packets transmitted by the
sender are correctly handled by the receiver; the tog-
gle is another piece of state that must be lifted into the
SenderCtrl process. In fact, both pieces of state are used
primarily in the definition of SendPacket. In order to con-
strain the packets sent on the trans channel, we add a di-
verging assertion to the get_packet event as follows:

SendPacket(t, (x) ™ y) = retrans?n —
if n >0 then
get_packet? {701 7t'm/’ {

trans.f'.I'.t'.m’' —

t=tAm' ==z
ANl & #y=0)

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 271

((recack —
if I' = true then flip — conf.ok — SenderCtrl
else advance — SendPacket(—t,y))
O dec — SendPacket(t, (x) ~y))
else abort — get_status?s — conf.s — SenderCtrl

The assertion states that the value of the toggle received
(t') must be identical to the toggle parameter ¢, the file
component received (m’) must be identical to the head
the file parameter z, and the last packet flag (1) is true if|
and only if, the file parameter consists of a single element
(i.e. the tail of the file parameter (y) is the empty list).

However, there is no way to assign an initial value to
the toggle t when SendPacket is called by SenderCtrl be-
cause it is initialised non-deterministically in the sender’s
B machine, and its final value must be negated and re-
tained whenever a file transfer has been successfully com-
pleted so that the first component of the subsequent file
transfer can be distinguished from the last component
of the current file transfer. One solution to the first of
these problems is to make an initial call to get_packet
from SenderCtrl in order to get the value of the toggle.
This transformation gives us the following process called
SenderCtrl’:

SenderCtrl’ = req?file —
if file =<> then conf.ok — SenderCtrl’
else initiate. file —
get_packet? {2t ?m — SendPacket(t, file)

We can justify this informally by observing that, although
get_packet changes some state, it does so by assigning
constant values to state variables. Hence, calling the op-
eration twice in succession is equivalent to calling it once;
we refer to such operations as idempotent operations.
As long as the maximum number of retransmissions is
greater than zero, the operation get_packet will be called
twice in succession where it had previously been called
once. Since all machine events are hidden, the meaning of
the process does not change. This novel solution will be
discussed in more detail in Sect. 7.

The solution to the second problem is to define an ad-
ditional process called SenderCtri2. It is almost identical
to the original SenderCtrl process except it is now pa-
rameterised by the toggle t. This process is called when-
ever a successful file transfer has occurred so that the
toggle value is retained for the next file transfer. The
complete definition of the sender’s augmented controller
process is shown in Fig. 11. Notice that this new pro-
cess definition now resembles the receiver’s controller pro-
cess in that it comprises of three parts. The additional
process SenderCtri2 corresponds to RECEIVER2 which
is needed to distinguish the first component of a new
file transfer from the last component of the current file
transfer. Of course, such augmentations must respect the
definition of the sender’s B machine; this is confirmed by
a proof of consistency.

The processes RECEIVER]1 and RECEIVER?2 of the
receiver’s controller are also augmented by parameteris-

SenderCtrl’ = req?file —
if file = <> then conf.ok — SenderCtrl’
else initiate.file —
get_packet?f?17t?m — SendPacket(t, file)

SendPacket(t, (z) " y) = retrans?n —

if n > 0 then
/ /
get_packet? 2024 ?m/ { f\(; ;A#Z - g) } .
trans.f'.1'.t'.m' —
((recack —
if I = true then flip — conf.ok — SenderCtri2(—t)
else advance — SendPacket(—t, y))
O dec — SendPacket(t, (z) ™ y))
else abort — get_status?s — conf.s — SenderCtrl’

SenderCtri2(t) = req?file —
if file = <> then conf.ok — SenderCtri2(t)
else initiate.file — SendPacket(t, file)

Fig. 11. The augmented sender controller for PrefizSpec

ing them with the a toggle value. This is initialised with
the toggle value of the first packet obtained by the re-
ceiver. The parameter therefore corresponds to the toggle
value of the last packet accepted by the receiver. We name
the augmented receiver process ReceiverCtrl .

We use FDR to confirm that these augmented pro-
cesses (when put in parallel with the medium) do indeed
combine to give a refinement of PrefizSpec:

PrefizSpec Crp
(SenderCtrl’ || MEDIUM || ReceiverCirl’) \ C

6.2 Combining the results

The four safety properties are refined by (different) aug-
mented versions of the parallel process (SenderCirl ||
MEDIUM || ReceiverCtrl) \ C. Once these properties
have been verified, we can dispense with their respective
augmentations by appealing to Corollary 1 and Theo-
rem 11 of [20] (see Sect.5.3). This converts each aug-
mented SenderCtrl and ReceiverCtrl process into its ori-
ginal form. As a consequence, we have shown that:

SenderCtrl|| MEDIUM || ReceiverCtrl
, \C
|| brp_sender || brp_receiver

refines each of the safety properties. Therefore, this pro-
cess also refines the parallel composition of these safety
properties, which can be viewed as the single process
that specifies the overall safety requirements of the BRP.
A single refinement would be difficult to prove directly be-
cause the controller processes would require considerably
more augmentation. This would make it harder to appre-
ciate the different ways in which the state is being used
during a run of the protocol.

272 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

The parallel composition of a number of specifica-
tion processes is comparable to Abadi and Lamport’s
approach to composing specifications [1] in which logi-
cal conjunction is used as the composition operator (al-
though their motivation is different).

7 Discussion

CSP || B has been applied in several domains, includ-
ing information systems [10]. This paper gives a detailed
account of the CSP || B approach to the specification
and analysis of a communications protocol. Section 7.1
summarises the paper’s contribution and the technical
issues that have arisen, and Sect. 7.2 positions our in-
tegrated approach in relation to other state and event-
based approaches.

7.1 New results

In this paper, we specified the expected external be-
haviour of the BRP via a number of separate process-
oriented specifications. This allows the analysis of in-
dividual aspects of the system while ignoring others.
Once all the specifications have been verified by refine-
ment checking, we can conclude that the parallel com-
position of the specifications is also proven. This new
result complements the existing theory of CSP || B and
extends the features of this approach. This has obvi-
ous advantages for large systems because it allows us
to isolate and investigate subcomponents of the sys-
tem. We are currently investigating an equivalent notion
of composition for liveness specifications. It is not the
case that, for process P and failures specifications S
and Ss:

if S1 Cgrp P and Sy Cgp P then S; || Sy Cgr P

and there is no other CSP operator that corresponds to
this notion of conjunction in the stable failures model.

In addition to compositional verification, several new
features have emerged from this CSP || B analysis. The
use of dec as a machine and synchronisation channel
(which is a relaxation of previous CSP || B architec-
tures) was justified informally in Sect. 4.1 because ma-
chine channels that call operations as a consequence
of synchronisation are more constrained than machine
channels that do not require synchronisation. Hence,
a proof of consistency that ensures an operation is never
called outside its precondition is sufficient to prove that
a constrained machine channel never calls an opera-
tion outside its precondition. Expressed more formally, if
a controller /machine pair P || M is divergence-free and,
for a process @, a(Q)Na(M) # @ then P also controls
Q’s calls to M in (P || M) || @ because a(M) C o(P).
Hence, any undesirable behaviour within the system will
arise from the CSP component (P || Q) only, which will be
discovered by using FDR.

Recall that during the analysis of the safety property
in Sect. 6, extra events were added to SenderCtrl in order
to retrieve the necessary state from the sender’s B ma-
chine, and we argued that this modification preserved the
meaning of the controller/machine pair. However, a cer-
tain amount of care is needed when introducing such hid-
den events. On the CSP side, the introduction of internal
events would seem to preserve meaning in all circum-
stances (since they do not contribute to the observable
behaviour of the process). Unfortunately this is not the
case because we can introduce non-determinism into an
otherwise deterministic process. For example, consider
the following process:

a — Stopd b — Stop

If we introduce (and hide) an event c as follows:
(¢c—a— StopOec— b— Stop) \ {c}

then this is equivalent to

a — Stoplb — Stop

which, in the stable failures model, is different to the
original. On the B side, the operations called as a con-
sequence of these additional internal events should not
affect the state; trivially, query operations are examples
of such operations.We have introduced the term idempo-
tent operations to refer to those operations that change
state variables with constant values. Thus, two consecu-
tive calls of an idempotent operation is equivalent to one
call of the operation. Of course, consistency must be pre-
served by the introduction of events.

7.2 Other approaches

Some other notable approaches to the integration of state
and event based methods include CSP-OZ [22] and Cir-
cus [9]. However, neither of these approaches can utilise
existing tool support. For a comparison of these methods
with our approach, see [24] and [7] respectively. In this sec-
tion, we compare CSP || B with Event B, LOTOS, and I/O
automatasince they have all been used to analyse the BRP.

Analysing protocols is a popular pastime in the event
based community because the data passed between pro-
tocol participants are usually simple and the potential
interactions between the participants can be very subtle.
The BRP is unusual because it is a protocol that manip-
ulates data in a non-trivial way, yet it has an intricate
flow of control that can only be modelled easily by a pro-
cess algebra. The analysis has not only given us fresh
insights to the protocol (for example, the analysis in Ap-
pendix A shows that the first packet flag is redundant),
it also gives us insights into the CSP || B approach in
general. The formal development consists of three stages:
1) the definition of the specification, 2) the definition of
abstract properties, and 3) the verification of the specifi-

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 273

cation against these properties. There is no reason why,
in practice, the first two stages could not be carried out
in either order. However, since we begin with a specific
protocol in mind (rather than a set of requirements), it is
more natural to proceed in the way prescribed in this pa-
per. The method followed in [13] is similar to ours since
it also comprises of separate stages: the definition of the
individual I/O automata and their composition, and the
identification of invariants of the system.

Our approach involves two well-established formal
methods that are at either end of the state/event spec-
trum. This is because they are based on distinct theor-
etical ideals: CSP’s strength lies in the use of events to
model complex behaviour in processes and the interac-
tions that can occur between them. Its weakness lies in
the lack of facilities for manipulating state. B, on the
other hand, is dedicated to state-based systems with little
provision for the control aspects. Even though the state
and event-based worlds are in some sense equivalent (see,
for example, [1]), the formal models of real world dis-
tributed systems rarely fall naturally into either of these
two camps, and any attempt to model such systems using
formal methods with such strong ideals will usually lead
to compromise. However, these ideals have yielded great
insights into the kinds of problems that arise in the con-
struction of complex systems, and therefore it would be
unwise to abandon them.

It is the aim of CSP || B to retain the ideals on which
its component languages are based whilst extending the
expressivity of both. Even though distributed systems
will typically have rich data combined with a complex
flow of control, it is often the case that such features can
be modelled separately by defining B machines and CSP
processes and then recombined through parallel compo-
sition. The only overhead in this approach is the consis-
tency proofs that are needed to ensure that they combine
properly.

Nonetheless, attempts have been made to develop for-
mal methods that lie in between the two extremes of the
state/event spectrum. Event B uses guarded operations
(called events) to implement a notion of flow of control.
Here, the enabling of a guard implies the availability of
an operation. Thus, it is possible to analyse the sequential
execution of operations through the appropriate enabling
of guards. Since the B method aims, through refinement,
to implement executable code, the unconstrained use
of guarded operations is a definite compromise because
guards cannot be eliminated. As a consequence, such op-
erations cannot be implemented in general. Also, in Event
B (as well as the I/O automata approach of [13]), it is
difficult to see the flow of control without analysing the
details of all the guards carefully. This has led to the
building of compilers such as csp2B [8] to alleviate this
problem. In our approach we feel that there is a natural
separation of the events under the environment’s control
and internal events that trigger B operations to cause
state updates.

LOTOS is a language whose origins lie in the event
based process algebras CCS and CSP. It consists of a set
of operators for defining processes and, in addition, in-
troduces a notation for declaring abstract data types. It
has a sound theoretical basis but purists would argue that
it compromises the ideals on which these separate for-
malisms are based. The data part of this language is still
relatively weak when compared to B as there is no notion
of data refinement and, like CSP, state is rather cumber-
some because it is passed as a parameter to a process.

In [4], the protocol is constructed following a series
of refinements using Event-B. The advantage of this ap-
proach is that, in one atomic step, the overall property
on the global state can be captured very abstractly using
simple predicates. Such a simple abstraction is not pos-
sible with our approach because we have to include be-
havioural information from the outset. Nonetheless, we
believe that during the refinement stages it becomes in-
creasingly difficult to clearly visualise the control flow
within the protocol which we feel is important for this
kind of application. Also, each refinement is specified on
a single level, and it is therefore difficult to separate the
resources (state variables) among the participants of the
protocol. For this application, such a separation is vital in
order to reflect the actual resources available in the real
world.

The LOTOS analysis of [16] is very similar to ours.
The specification of the expected external behaviour and
the specification of the protocol itself are both defined as
processes. The architecture of the protocol in [16] is also
very similar to our CSP architecture (although we define
a single process for the medium). Tool support allows the
automatic translation of a LOTOS script into a labelled
transition system. Then bisimulation is used to show that
the protocol specification exhibits its expected external
behaviour. This approach could also benefit from com-
positional verification techniques in order to make the
model checking more tractable.

Acknowledgements. Thanks go to Steve Schneider for many discus-
sions on this work. The reviewers’ comments are also appreciated.
The authors are also grateful to the UK EPSRC for funding under
grant GR96859/01.

References

1. Abadi M, Lamport L (1993) Composing Specifications.
ACM Transactions on Programming Languages and Systems
15(1):73-132, January 1993

2. Abrial JR (1996) The B Book: Assigning Programs to Mean-
ing. CUP

3. Abrial JR (1996) Extending B without changing it (for devel-
oping distributed systems). In: Habrias H (ed) 1st Conference
on the B Method, Nantes, November 1996, pp 169-190

4. Abrial JR, Mussat L (1997) Specification and Design of
a Transmission Protocol by Successive Refinements using B.
Mathematical Models in Program Development 158:129-200.
Springer, Nato ASI Series F: Computer and Systems Sciences

5. Behm P, Desforges P, Maynadier JM (1998) METEOR: An
Industrial Success in Formal Development. B’98, Montpellier,
April 1998, LNCS, vol 1393. Springer

274 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

6. Bolognesi T, Brinksma E (1998) Introduction to the ISO Spe-
cification Language LOTOS. Computer Networks and ISDN
Systems 14(1):25—-29, January 1998

7. Bramble M (2004) Investigating the consistency of combined
specifications. MPhil thesis, Royal Holloway, University of
London

8. Butler MJ (2000) csp2B: A Practical Approach to Combining
CSP and B. Formal Aspects of Computing 12:182-196

9. Cavalcanti A, Sampaio A, Woodcock J (2002) Refinement of
Actions in Circus. In: REFINE’02, FMEWorkshop, Copen-
hagen

10. Evans N, Treharne H, Laleau R, Frappier M (2004) How to
Verify Dynamic Properties of Information Systems. In: IEEE
International Conference on Software Engineering and Formal
Methods, China. IEEE Computer Society Press

11. Havelund K, Shankar N (1996) Experiments in Theorem Prov-
ing and Model Checking. In: FME’96, Oxford, March 1996,
LNCS, vol 1051. Springer

12. Goldberg A (1983) Smalltalk-80: The Interactive Program-
ming Environment. Addison-Wesley Publishers

13. Helmink L, Selling MPA, Vaandrager FW (1994) Proofcheck-
ing a data link protocol. Technical Report CS-R9420, Cen-
truum voor Wiskunde en Informatica (CWI), March 1994

14. Hoare CAR (1985) Communicating Sequential Processes.
Prentice Hall

15. Lamport L, Schneider FB (1984) The “Hoare Logic” of CSP,
and All That. ACM Transactions on Programming Languages
and Systems 6(2):281-296, April 1984

16. Mateescu R (1996) Formal Description and Analysis of
a Bounded Retransmission Protocol. INRIA Rapport de
recherche 2965

17. Morgan CC (1990) Of wp and CSP. In: Feijen WHJ, van
Gasteren AJM, Gries D, Misra J (eds) Beauty is our business:
a birthday salute to Edsger W. Dijkstra. Springer

18. Roscoe AW (1998) The Theory and Practice of Concurrency.
Prentice Hall

19. Schneider S, Treharne H (2002) Communicating B Ma-
chines. In: ZB2002, Grenoble, January 2002, LNCS, vol 2272,
Springer

20. Schneider S, Treharne H (2002) CSP Theorems for Communi-
cating B Machines. Technical Report CSD-TR-02-12, Dept. of
Computer Science, Royal Holloway

21. Schneider SA (1999) Concurrent and Real-Time Systems: the
CSP Approach. John Wiley

22. Fischer C (1997) CSP-OZ: A combination of Object-Z and
CSP. In: Bowman H, Derrick J (eds) Formal Methods for
Open Object-Based Distributed Systems (FMOODS ’97), vol
2. Chapman & Hall

23. Stepney S, Cooper D, Woodcock J (2000) An Electronic Purse
Specification, Refinement and Proof. Oxford University Com-
puting Laboratory, Technical Monograph PRG-126, July 2000

24. Treharne H (2000) Controlling Software Specifications. PhD
Thesis, Royal Holloway, University of London

25. Treharne H, Schneider S, Bramble M (2003) Composing Spe-
cifications using Communication. In: ZB2003, Grenoble, June
2003, LNCS, vol 2651, Springer

26. Vissers CA, Scollo G, van Sinderen M, Brinksma E (1991)
Specification Styles in Distributed Systems Design and Verifi-
cation. TCS 89:179-206

A The output on the ind channel

The analysis of Sect. 6.1 ensures that the file components
output by the ReceiverCtrl process are delivered in the
correct order with respect to the file input to the sender’s
side. We now verify that the labels accompanying the file
components as they are output on the ind channel cor-
respond to the relative positions of the components in
the original file. Thus, we want to check that the first
component of the file is labelled first_packet, the last com-

PrefixLabel = req?file —
SendSomeLabels(1, #file); conf?x — PrefixLabel

SendSomeLabels(n, 0) = SKIP
SendSomeLabels(n, 1) = (ind?z.last_packet — SKIP)

O SKIP
SendSomeLabels(n, y) =

if n =1y then (ind?z.last_packet — SKIP) O SKIP
else if n =1 then
(ind?z.first_packet — SendSomeLabels(n + 1, y))
0O SKIP
else (ind?z.inter_packet — SendSomeLabels(n + 1,y))
O SKIP

Error = ind_err — Error

PrefizLabelSpec = PrefizLabel ||| Error

Fig. 12. A specification for labelling on the ind channel

ponent of the file is labelled last_packet and any other
components are labelled inter_packet. Since not all file
components are guaranteed to get through, the specifi-
cation must allow the possibility of partial file transfers.
This gives us the specification defined in Fig. 12. Notice
that we are no longer interested in the contents of the file
components, and we consider the labelling relative to the
length of the file.

The first parameter of SendSomeLabels corresponds
to the position of a particular file component; this ranges
from 1 to the length of the file. The second parameter is
the length of the file itself. The vacuous case, in which the
file length is 0, is defined to be the trivial process SKIP.
When the length of the file is 1, there can be at most one
ind event, and this must be labelled last_packet. For files
of length greater than 1, the labelling is defined with re-
spect to the first parameter.

Once again, we are not interested in the signals passed
on the conf channel, and we do not care when ind_err
events occur. Thus, our second specification is defined as
PrefizLabelSpec in Fig. 12. FDR reports that our original
process:

(SenderCtrl || MEDIUM || ReceiverCtrl)\ C

is not a trace refinement of this specification.

The augmentation of SenderCtrl for the analysis of
this property is similar to that of Sect. 6.1: we add a call
to get_packet in order to parameterise SendPacket with
the toggle value t. However, instead of adding the file
itself as a parameter of SendPacket, we only need to
consider its length k. Here, the diverging assertion of
get_packet?t'? {2 tm’ is {t’ =t Al' & k = 1} which con-
strains the last packet flag I’ to be true only when there
remains one file component to be transmitted. Once again,
we have to define an additional process SenderCtri2 to re-
tain the toggle value for subsequent file transmissions.

The augmentation of ReceiverCtrl is more interesting
for this analysis because it is the receiver’s B machine

N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B 275

ReceiverCtrl’ =
rec?f' 727" ?m’ —
, .
it .00 (£ it
ind.m.1 — sendack —
if i = last_packet then RECEIVER2(t)
else RECEIVER1(1)

O abort — ReceiverClrl’

RECEIVERL(t) =
rec?f' ' ?m’ — examine.t'?s{t' =t < s = same} —
if s = same then sendack — RECEIVERI1(t)
. s e, | U= 1 = last_packet
clse get—ind. [t { A =l = i = inter_packet }
ind.m’.i — sendack —
if i = last_packet then RECEIVER2(—t)
else RECEIVER1(—t)

O abort — ind_err — ReceiverCtrl’

RECEIVER2(t) =
rec?f' 27U m’ — examine.t’7s{t' = t & s = same} —
if s = same then sendack — RECEIVER2(t)
;.
else initialise.f'.I'.t'7i { ZA fl/z; fait;i%;f;zcket } .
ind.m'.i — sendack —
if i = last_packet then RECEIVER2(—t)
else RECEIVER1(—t)

O abort — ReceiverCtrl’

Fig. 13. The augmented ReceiverCtrl for PrefizLabelSpec

that is responsible for labelling the ind channel. As be-
fore, we add the toggle as a parameter to the processes
RECFEIVER]1 and RECEIVER2. However, now we need
to add diverging assertions to the initialise events of Re-
ceiverCtrl and RECEIVER2, and add a diverging asser-
tion to the get_ind event in RECEIVER]. This is defined
as the process ReceierCtrl’ shown in Fig. 13. These as-
sertions state the relationship between the label (I) and
the value of the last_packet flag that has been received
(2): if the value of the flag is false then the label must
be first_packet in the processes ReceiverCtrl’ and RE-
CEIVER?2, and it must be inter_packet for RECEIVER]I.
(If the flag is true, the label must be last_packet in both
cases.) As before, a proof of consistency is required to
ensure that the receiver’s B machine does indeed output
these values.

Now we can verify the trace refinement of the speci-
fication by using FDR. It is interesting to note that this
result tells us that the label on the ind channel can be
determined precisely by looking at the last packet flag.
This demonstrates that the first packet flag is completely
redundant in the protocol.

B The relationship between conf and ind

We now specify the nature of the signals that are output
on the sender’s conf channel by relating them to the la-
bels that accompany the file components on the receiver’s

ConfSignal = req? file —
if #file =0 then conf.ok — ConfSignal
else (if #f =1 then
(conf.dont_know — ConfSignal
O SendSomelnds; ConfSignal)
else
(conf.not_ok — ConfSignal
O SendSomelnds; ConfSignal))

SendSomelnds = ind?z?l —
((if 1 = last_packet then
(conf.ok — SKIP O conf.dont_know — SKIP)
else (conf.not_ok — SKIP O conf.dont_know — SKIP))
O SendSomelnds)

FError = ind_err — Error

ConfSignalSpec = ConfSignal ||| Error

Fig. 14. A specification for correct signalling of conf

ind channel. The previous analysis establishes that the la-
belling accurately reflects the relative position of the file
components output by the receiver. Therefore, by deriv-
ing a similar correspondence between conf signals and ind
labels, we aim to show that the signal event issued by the
sender controller on termination of a particular file trans-
fer (either successfully or unsuccessfully) is also accurate.

The length of the input file also impacts on the sig-
nals that are possible: if a file is empty nothing is sent
over the medium. Hence, conf.ok should be the only out-
come. If the file contains one packet then either the whole
file is sent, or its packet is not sent at all (before an
abort occurs). Thus, the only outcomes are conf.ok or
conf.dont_know. If the file contains two packets then, in
addition, one packet can be sent (i.e. all packets minus
the final packet) before an abort occurs. Thus, there is
the additional possibility of conf.not_ok. If the file con-
tains more than two events then, in addition, any other
non-empty prefix of the file can be sent before an abort
occurs.

This specification is defined as the process ConfSig-
nal in Fig. 14. The process SendSomelnds simply out-
puts a sequence of ind events followed by a single conf
event. The signal that accompanies this event is deter-
mined from the label in the final ind event: if the label
is last_packet then the signal is either ok or dont_know
(which depends on whether the final acknowledgement
is received). Otherwise, the signal is either not_ok or
dont_know (which depends on whether the final packet
reaches the receiver, and no subsequent acknowledgement
is received).

The trace refinement of this property is not met by
(SenderCtrl || MEDIUM || ReceiverCtrl) \ C without
augmenting SenderCtrl and ReceiverCtrl. However, the
reasons for introducing state are more subtle than the
previous analyses. Since we are no longer interested in
the contents of the file or the relative position of its file

276 N. Evans, H. Treharne: Investigating a file transfer protocol using CSP and B

SenderCtrl’ = req?file —
if file = <> then conf.ok — SenderCtrl’
else initiate.file —
get_packet?f?U?t?m{l < #f = 1} — SendPacket(t,1)

SendPacket(t,l) = retrans?n —
if n > 0 then get_packet?f'?2U'?2t"?m'{t' =t ANI' =1} —
trans.f.l.t.m —
((recack —
if I! = true then flip — conf.ok — SenderCtri2(—t)
else advance —
get_packet?f" 20" 7" Tm" — SendPacket(—t,1"))
O dec — SendPacket(t',1"))
| = s = dont_know
else abort — get_status?s Al = s = not_ok }

conf.s — SenderCtrl’

SenderCiri2(t) = req?file —
if file = <> then conf.ok — SenderCtri2(t)
else initiate.file —
get_packet? "2 I {t' =t NI & #f =1} —
SendPacket(t',1")

Fig. 15. The augmented SenderCtrl for ConfSignalSpec

components, it is perhaps surprising that the toggle is re-
quired as a parameter of both processes. The reason is
to ensure that both the sender and the receiver agree on
the acknowledgements that are sent and received. For ex-
ample, without the toggle to constrain the behaviour of
the processes it is possible for the sender to receive every
acknowledgement (and, hence, progress with the transfer
of subsequent file components), yet the receiver can be-
lieve that every packet received is a retransmission of the
first packet and, consequently, send acknowledgements
without delivering the file components. This results in
the sender believing that a successful file transfer has
occurred, whilst the receiver believes that only the first
component actually got through. In this case, the conf.ok
signal will not be accurate.

A second piece of state is added to the sender’s con-
troller. It corresponds to the last packet flag contained
in the packet that is currently being transmitted by the
sender. This is needed to constrain the status values
that can be received by the get_status event in the
abort branch of SendPacket because the conf.not_ok and
conf.dont_know signals are determined from the sender’s
B machine (see Sect. 4.1). Without this parameter, this
information is not available in this branch of the process
and, hence, it would not be possible to make such a con-
straint. The augmented definition of SenderCtrl is shown
in Fig. 15. Note, the get_packet event introduced after the
advance event is another example of the introduction of
idempotent events mentioned above (and discussed fur-
ther in Sect. 7). This is necessary so that the last_packet
parameter is maintained as the file transfer progresses.

Error = conf.not_ok — Error
a conf.dont_know — Error
O ind?z?l — (ind_err — conf.not_ok — Error
O
conf.not_ok — ind_err — Error)
O ind?z?l — (ind_err — conf.dont_know — Error
]

conf.dont_know — ind—_err — Error)

Inds = ind?z?l — Inds
Reqs = req?f — Reqs
OKs = conf.ok — OKs

ErrorSpec = Error ||| Inds ||| Regs ||| OKs

Fig. 16. A specification for ind_err events

C The Properties of ind_err

We would also like to establish a correspondence be-
tween the occurrences of ind_err on the receiver’s side
and the occurrences of conf signals on the sender’s
side. For example, it is reasonable to expect that there
should be no ind_err event whenever a conf.ok occurs.
Also, there should be at most one ind_err event for
each unsuccessful file transfer (signalled by the events
conf.not_ok or conf.dont_know). However, the former
case is not true. The reason is due to the allowance of
‘empty’ file transfers (i.e. the transfer of files of length
0 — a situation that is not allowed in [16]). It is pos-
sible for the sender and receiver to abort a run of the
protocol whereupon the sender performs a conf.not_ok
event. If the receiver is slow in performing the corres-
ponding ind_err event, the sender can engage in arbitrary
many ‘empty’ file transfers, each resulting in a conf.ok
signal. When the receiver chooses to perform its out-
standing ind_err event, this requirement is violated.
One solution to this problem is to forbid the ‘trans-
fer’ of empty files (as in [16]). However, we choose to
weaken the requirements in order to ascertain what can
be said about the properties of ind_err in this model
of the BRP. The weaker specification is formalised in
Fig. 16.

This specification states that the occurrence of an
ind_err event must be accompanied by a conf.not_ok
event or a conf.dont_know event and, in either situation,
these events must have been preceded by at least one ind
event. It is possible, however, for either conf.not_ok or
conf.dont_know to occur without an associated ind_err
being issued from the receiver side. This happens in the
case when no packets reach the receiver. The result of the
FDR analysis shows that the specification is refined by
(SenderCtrl | MEDIUM || ReceiverCtrl) \ C without any
augmentation.

