
Softw Syst Model (2003) 2: 187–210 / Digital Object Identifier (DOI) 10.1007/s10270-003-0028-8

VPM:Avisual, precise andmultilevelmetamodeling
framework for describingmathematical domains andUML∗

(The Mathematics of Metamodeling is Metamodeling Mathematics)

Dániel Varró, András Pataricza

Budapest University of Technology and Economics, Department of Measurement and Information Systems, H-1521, Budapest,
Magyar tudósok körútja 2, E-mail: {varro,pataric}@mit.bme.hu
Received: 18 February 2003/Accepted: 16 June 2003

Published online: 28 August 2003 – Springer-Verlag 2003

Abstract. As UML 2.0 is evolving into a family of lan-
guages with individually specified semantics, there is
an increasing need for automated and provenly correct
model transformations that (i) assure the integration
of local views (different diagrams) of the system into
a consistent global view, and, (ii) provide a well-founded
mapping fromUMLmodels to different semantic domains
(Petri nets, Kripke automaton, process algebras, etc.)
for formal analysis purposes as foreseen, for instance, in
submissions for the OMG RFP for Schedulability, Per-
formance and Time. However, such transformations into
different semantic domains typically require the deep
understanding of the underlying mathematics, which hin-
ders the use of formal specification techniques in indus-
trial applications. In the paper, we propose a multilevel
metamodeling technique with precise static and dynamic
semantics (based on a refinement calculus and graph
transformation) where the structure and operational se-
mantics of mathematical models can be defined in a UML
notation without cumbersome mathematical formulae.

Keywords:Metamodeling – Formal semantics – Refine-
ment – Model transformation – Graph transformation

1 Introduction

1.1 Evolution of UML

Recently, the main trends in software engineering have
been dominated by the Model Driven Architecture

∗ This work was partially carried out during the visit of the first
author to Computer Science Laboratory at SRI International (333
Ravenswood Ave., Menlo Park, CA, U.S.A.), and the University of
Paderborn (Germany), and it was funded by the National Science
Foundation Grant (CCR-00-86096), the SEGRAVIS Research Net-
work, and Hungarian Scientific Grants FKFP 0193/1999, OTKA
T038027, and IKTA 00065/2000.

(MDA) [26] vision of the Object Management Group
(OMG). According to MDA, software development will
be driven by a thorough modeling phase where first (i) a
platform independent model (PIM) of the business logic
is constructed from which (ii) platform specific models
(PSMs) including details of the underlying software ar-
chitecture are derived by model transformations followed
by (iii) an automatic generation of the target application
code.
The PIMs and PSMs are defined by means of the Uni-

fied Modeling Language (UML) [33], which has become
the de facto standard visual object-oriented modeling
language in systems engineering with a wide range of ap-
plications. Its major success is originating in the fact that
UML (i) is a standard (uniformly understood by differ-
ent teams of developers) and visual language (also mean-
ingful to customers in addition to system engineers and
programmers).
However, based upon academic and industrial expe-

riences, recent surveys (such as [18]) have pinpointed
several shortcomings of the language concerning,
especially, its imprecise semantics , and the lack of flexi-
bility in domain specific applications. In principle,
due to its in-width nature, UML would supply the
user with every construct needed for modeling soft-
ware applications. However, this leads to a complex
and hard-to-implement UML language, and since ev-
erything cannot be included in UML in practice, it
also leads to local standards (profiles) for certain
domains.
Recent initiatives for the UML 2.0 RFP aim at an

in-depth evolution of UML into a core kernel language
(UML Infrastructure 2.0), and an extensible family of
distinct languages (UML Superstructure). According to
these proposals, each UML sublanguage should have its
own (individually defined) semantics, which fundamen-
tally requires an appropriate and precise metamodeling
technique.

188 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

1.2 Transformations of UML models

Such a metamodeling-based architecture of UML highly
relies on transformations within and between different
models and languages. The immense relevance of UML
transformations is emphasized, for instance, in submis-
sions to the OMG RFP for a UML sublanguage for
Schedulability, Performance and Time [24]. In practice,
transformations are necessitated for at least the following
purposes:

– model transformations within a language should con-
trol the correctness of consecutive refinement steps
during the evolution of the static structure of a model,
or define a (rule-based) operational semantics directly
on models;
– model transformations between different languages
should provide precise means to project the semantic
content of a diagram into another one, which is in-
dispensable for a consistent global view of the system
under design;
– a visual UML diagram (i.e., a sentence of a language
in the UML family) should be transformed into its (in-
dividually defined) semantic domain, which process is
called model interpretation (or denotational seman-
tics).

Concerning model transformation in a UML envi-
ronment, the main stream of research is dominated by
two basic approaches: (i) transformations specified in
(extensions of) UML and the Object Constraint Lan-
guage (OCL, [27]) [2, 3, 9], and (ii) transformations de-
fined in UML and captured formally by graph transform-
ations [15, 43]. Up to now, OCL-based approaches typic-
ally superseded graph transformation-based approaches
when considering multilevel static metamodeling aspects
(as the latter is traditionally restricted to a type-level
and and instance level). However, when defining dynamic
semantics of a modeling language, graph transformation
has clear advantage over OCL due to its visual and opera-
tional (if-then-else like) nature – where, in fact, the formal
technicalities of the underlying mathematics are hidden.

Our contribution. In the paper, we converge the two
approaches by providing a precise and multilevel meta-
modeling framework where transformations are captured
visually by a variation of graph transformations systems.

1.3 Metamodeling and mathematics

Previous research (in project HIDE [7]) demonstrated
that automated transformations of UMLmodels into var-
ious semantic domains (including Petri nets, Kripke auto-
mata, dataflow networks) allow for an early evaluation
and analysis of the system. However, preliminary versions
of such transformations were rather ad hoc resulting in
error prone implementations with an unacceptably high
cost (both in time and workload).

In the VIATRA framework [11, 43] (a prototype auto-
mated model transformation system), we managed to
overcome these problems by providing an automated
methodology for designing transformation of UMLmodels.
After implementing more than 10 rather complex trans-
formations in this methodology (including model trans-
formations, for instance, for automated program gen-
eration [39], static consistency analysis [29] and model
checking [19] for UML statecharts), we believe that
the crucial step in designing such transformations were
to handle uniformly UML and different mathematical
domains within the UML framework by metamodeling
mathematics.

Mathematics of metamodeling. When regarding the pre-
cise semantics of UML (or metamodeling), one may easily
find that there is a huge contradiction between engineer-
ing and mathematical preciseness. UML should be sim-
ultaneously precise (i) from an engineering point of view
to such an extent adequate to engineers who need to im-
plement UML tools but usually lack the proper skills to
handle formal mathematics, and, (ii) from a mathemati-
cal point of view necessitated by verification tools to rea-
son about the system rigorously.
The UML 2.0 RFP requires (votes for) engineering

preciseness: “UML should be defined without compli-
cated mathematical formulae.” However, when consid-
ering model transformations of UML sublanguages into
executable platform/code or appropriate semantic do-
mains (i.e., the abstract syntax of a UML model is
mapped into such as Petri nets, finite automaton, etc.),
the proper handling of formal mathematics is indis-
pensable for developing automated and highly portable
tools for analysis and code generation in the MDA
environment.

Metamodeling mathematics. Meanwhile, recent stan-
dardization initiatives (such as PNML [1], GXL [34],
GTXL [37], or MathML [45]) aim at developing XML
based description formats for exchangingmodels of math-
ematical domains between different tools. Frequently (as
e.g. in [37]), such a document design is driven by a cor-
responding UML-based metamodel of the mathematical
domain. However, improper metamodeling of mathemat-
ics often results in conceptual flaws in the structure of
the XML document (e.g., in PNML, arcs may lead be-
tween two places, which is forbidden in the definition of
Petri nets). On the other hand, as demonstrated in [12]
(where dependability analysis of BPM-based e-business
applications is carried out with dataflow networks as
the mathematical background), a well-constructed meta-
model could drastically reduce the time and workload
related to the implementation of even complex mathe-
matical analysis tools.

Our contribution. We first demonstrate (in Sect. 2) that
although the overall goals of MOF metamodeling [25]
(which is the existing industrial metamodeling standard)

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 189

are highly relevant for the specification and integration of
modeling languages, the traditional metamodeling foun-
dations and concepts ofMOF (like the four-layer architec-
ture itself) are inappropriate from many aspects.
As the main contribution of the paper (Sects. 3 and 4),

we propose a visual but mathematically precise meta-
modeling framework (abbreviated in the following as
VPM: Visual and Precise Metamodeling) based upon the
structure of mathematical definitions (for the abstract
syntax) and graph transformation (for dynamic oper-
ational semantics). Starting from a very concise (thus
easy-to-implement) kernel language VPM builds up a hi-
erarchy of models and modeling languages satisfying the
rules of a refinement calculus that handles the most
important features of the current (and upcoming) meta-
modeling standard but avoids the problems identified in
Sect. 2
In addition, a static consistency analysis technique

is introduced (in Sect. 5) to automatically detect (and
partially correct) contradictions in the refinement hierar-
chy during the evolution of either a model or a modeling
language.
Finally, we demonstrate (by running examples and the

case study of Sect. 6) that even abstract mathematical
models can be understood by engineers if they are pre-
sented and specified visually by means of metamodels and
graph transformation.

2 Problems of MOFmetamodeling

At first, we briefly identify (or revisit) some major prob-
lems of MOF metamodeling that hinder the use of MOF
as the ultimate technique for specifying modeling lan-
guages of arbitrary domains in a hierarchical and reusable
way. These problems are presented as small situations
that cannot be appropriately captured by the MOFmeta-
modeling standard. However, they either contradict with
the goals of MOF (like e.g., “a core metamodeling lan-
guage should use a minimal number of elementary con-
cepts”), or they present problematic situations in model-
ing practice that are not even addressed by MOF.

Lack of package (metamodel) inheritance. Many existing
UML profiles clearly demonstrate that the most general
concepts (like events, actions, constraints, basic types,
etc.) are redefined over and over again for many differ-
ent profiles. This problem stems from the fact that MOF
metamodels cannot be arranged in a refinement hierar-
chy, thus domain experts responsible for the creation of
a specific profile cannot build upon a reusable abstract
metamodel library. Such a metamodel hierarchy is in
analogy with meta-level design patterns that would en-
capsulate and reuse best engineering (and mathematical)
practice in language design. In fact, a proper metamod-
eling technique would simultaneously handle both meta-
level and model-level design patterns.

The key notion of such a hierarchy is captured as pack-
age inheritance in the MML approach [9], which extends
the inheritance mechanism of classes to entire metamod-
els (encapsulated as a package). However, we demon-
strate in Sect. 3.1 that the underlying concepts come
from far beyond, namely, from the structure of mathe-
matical definitions where a new notion is defined on the
basis of an existing one (with the Zermelo–Frankel set
theory on the top to provide meta-circularity in the en-
gineering sense). For instance, each mathematical text-
book on graph theory first introduces the notions of
a graph, and then different subdomains (like bipartite
graphs, planar graphs, etc.) are derived by restrictions
(e.g., “ a bipartite graph is a graph with...” as expressed
in Fig. 1).
Fortunately, the latest proposal for the upcoming

UML 2.0 standard [38] seems to provide some advanced
concepts (such as redefine, import, package merge) to
capture such a reusable metamodel hierarchy.

Lack of association inheritance. As MOF (and UML)
evolved from traditional object-oriented programming
languages only the inheritance of classes is allowed. How-
ever, the lack of an inheritance concept for associations
hinders the development of reusable metamodel template
libraries, since the user (domain expert) has to write ad-
ditional well-formedness constraints (e.g., in OCL) to ex-
press that associations in the library should be restricted
to lead between the derived classes of the newmetamodel.
Unfortunately, this is very error prone when compared to
a proper inheritance mechanism for associations, since if
such well-formedness constraints are omitted, one might

Fig. 1. Metamodel (package) inheritance:
a bipartite graph is a graph

190 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

Fig. 2. Association inheritance

not be able to detect that an instance model does not con-
form to its metamodel.
The metamodel of queues in Fig. 2 specifies that

a Queue object may contain elements of class QElem. Now,
if queues are aimed to be reused to contain only integers,
then one can state in MOF that an integer queue IntQueue
is queue, and the class Integer is a subclass of QElem, but
without association inheritance, the fact that an integer
queue may only contain integers as elements can only be
expressed by explicit OCL constraints.

Structural redundancies in MOF. Even though MOF
should provide a minimal set of kernel constructs that is
required to specify modeling languages in a hierarchical
way, both the current MOF and the upcoming UML 2.0
core is redundant concerning containment and attributes.
As demonstrated in Fig. 3, one can express the math-

ematical fact that name is a function that maps States
to Strings as (i) introducing name as an attribute of class
State, or (ii) using an association with exactly one (or at
most one in case of partial functions) multiplicity at the
navigable String end.
Moreover, expressing containment for classes is also

redundant as we can alternatively use package contain-
ment and aggregations (for specifying that, for instance,
a Statemachine contains States). In many cases (concern-
ing reusable metamodels), it is extremely hard to judge
whether a package or a class (or probably both) is re-
quired for a certain concept.

Fig. 3. Structural redundancy in MOF

Fig. 4. Multiple instantiation

Lack of multiple instantiation. MOF (and UML) follows
traditional type theoretic foundations of object-oriented
programming languages where even if multiple inheri-
tance is allowed, objects are only permited to have a sin-
gle class as their direct type.
However, Fig. 4 depicts a simple example to highlight

the essence of the problem. Let us suppose that accepting
states AccState and initial states InitState are two sub-
classes of State in the language of finite automata. Then
a state instance which is simultaneously accepting and
initial can only be created if an object is allowed to have
multiple types. In Sect. 3.2, we demonstrate that multi-
ple instantiation can be handled identically to multiple
inheritance.
Unfortunately, the same problem appears throughout

in the UML environment as entire extension mechanism
of UML (based on profiles and stereotypes) is chaotic
(see [6] for an overview of the diversity of proposals that
formally capture stereotyping) due to the lack of multiple
instantiation. In principle, a UML profile (like SPEM [22],
EDOC [23], or GRM from the UML Profile for Schedu-
lability and Time [24]) is a modeling language (meta-
model) designed for certain domain created by experts
in order to model the target application from additional
aspects. However, such a metamodel itself is totally in-
dependent of UML, in other terms, UML is just one lan-
guage that a domain profile could be tailored to but could
possible be reused in other modeling languages. For in-
stance, resource usage can be modeled by the GRM for-
malism [24] not only for a software application (embed-
ding it in UML) but also for control applications (e.g.
combining with Matlab/Simulink).
A proper metamodel-based handling of the problem

is to instantiate constructs in a user model from multi-
ple modeling languages. Note that allowing multiple in
the modeling phase is very consistent with the well-known
“separation of concerns” principle (i.e., one can safely re-
fer to the same model element from multiple aspects by
using multiple modeling languages). For this reason, it
would be good modeling practice even if it is not directly
supported in an implementation phase by existing pro-
gramming languages.

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 191

Fig. 5. Problems with metalevels

Problems with metalevels. As discussed previously in [5],
there are fundamental problems with the traditional four-
layerMOF architecture. In many cases, same concepts are
replicated both on meta-level and model-level (or other
two adjacent layers) as (meta)classes can only be instan-
tiated one level down (up?) in the hierarchy (shallow
instantiation).
In the paper (see also Sect. 3.2), we argue that the

problem is directly caused by the fact that the metamodel
derivation process is quantitized into four discrete lev-
els, moreover, the borders of such metalevels are fixed.
As a result, one has to artificially distinguish between
classes and objects (meta-level andmodel-level instances)
of the same real world entity, which doubles the size of the
model space.
The problem relies in the fact that during different

modeling phases, the same concepts can be regarded both
classes and instances as well. For instance, when model-
ing databases in Fig. 5, we can simultaneously say (typ-
ically, on different level of abstraction) that a relational
database RelDB is both a subclass and an instance of
databases (see the generalization and instance-of rela-
tions leading to Database). According to the traditional
MOF concepts, we need to create a separate class and ob-
ject for the same real world concept.

Metamodeling vs. software engineering. As a conclusion,
many of these problems are probably not crucial in a gen-
eral purpose modeling language (like UML) for designing
software applications (as they might be too abstract for
an average systems engineer). However, they demonstrate
major weaknesses of a metamodeling kernel language used
for designing other modeling languages by domain ex-
perts. Unfortunately, many of the previous problems are
left unhandled even in the latest proposal for the upcom-
ing UML 2.0 core language [38].
As UML has been used in practice for many years

now with a wide range of existing applications, resolv-
ing such problems with minimal changes in the stan-
dard is very difficult. In fact, there are two rather com-
plementary conceptual solutions: (i) one is to separate
the techniques for designing applications and model-
ing languages, which may keep UML relatively unal-
tered but contradicts with the MDA vision (saying that
models and modeling languages are designed within
the same modeling approach, i.e., UML), (ii) the other
is to adapt the changes in UML as well, which

would result in a major redefinition of (at least) its
infrastructure.
Although we propose rather radical changes to the

underlying metamodeling concepts, an intuitive and sim-
plified UML/MOF notation is used in the paper to em-
phasize that changes in the depth (semantics of meta-
modeling) do not necessarily involve changes on the sur-
face (syntax of metamodels), and if so, these changes
are mainly simplifications of the existing MOF standard.
Moreover, as VPM is a multilevel approach the original
MOF metametamodel can be integrated into our frame-
work as any other modeling languages thus the confor-
mance with the current version of the standard can also
be maintained.

3 Structural refinement of metamodels

Below we define a structural refinement calculus on set
theoretical basis (i.e., refinement of sets, relations, func-
tions and tuples) for major MOF (UML) constructs. Our
metamodeling framework is gradually extensible in depth,
thus it only contains a very limited number of core elem-
ents, which highly decreases the efforts related to im-
plementation. Moreover, in order to avoid the previous
metamodeling problems we introduce dynamic (or fluid)
metalevels where the type–instance relationship is de-
rived between models instead of explicitly predefining
it by (meta)levels. Our approach has the major advan-
tage that the type–instance relations can be reconfigured
dynamically throughout the evolution of models, thus
transformations on (traditional) model and metamodel
“levels” can be handled uniformly.

3.1 Visual definition of Petri nets

Before a precise and formal treatment, our goals are sum-
marized informally on a metamodeling example deliber-
ately taken from a well-knownmathematical domain, i.e.,
Petri nets. Petri nets are widely used means to formally
capture the dynamic semantics of concurrent systems.
However, due to their easy-to-understand visual nota-
tion and the wide range of available tools, Petri net tools
are also used for simulation purposes even in industrial
projects (reported e.g., in [36]). From an UML point of
view, transforming UML models to Petri nets provide
dependability [8] and performance analysis [17] for the
system model in early stages of design.
A possible definition of (the structure of) Petri nets is

as follows.

Definition 1. A simple Petri net PN is a bipartite graph
with distinct node sets P (places) and T (transitions),
edge sets IA (input arcs) and OA (output arcs), where
input arcs are leading from places to transitions, and out-
put arcs are leading from transitions to places. Addition-
ally, each place contains an arbitrary (non-negative) num-
ber of tokens).

192 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

Fig. 6. Defining the structure of Petri Nets

Now, if we assign a UML class to each set of this
definition (thus introducing the entity of Place, Tran-
sition, InArc, OutArc, and Token), and an association
for each allowed connections between nodes and edges
(connections such as fromPlace, toPlace, fromTrans, to-
Trans, and tokens), we can easily obtain a metamodel of
Petri Nets (see the Petri Net package in the upper right
corner of Fig. 6) that seems to be satisfactory.
However, we have not yet considered a crucial part of

the previous definition, which states that a Petri net is,
in fact, a bipartite graph. For this reason, after looking
up a textbook on graph theory, we may construct with
the previous analogy the metamodel of bipartite graphs
(depicted in the lower left corner of Fig. 6) with ‘boy’
and ‘girl’ nodes1, and ‘boy-to-girl’ and ‘girl-to-boy’ edges.
Moreover, if we focus on the fact that every bipartite
graph is a graph, we may independently obtain a meta-
model of graphs (see the upper left corner of Fig. 6).
First, we intend to inter-relate these metamodels in

such a way to be able to express that, for instance, (i)
the class Node is a supertype of class Boy , and (ii) the
association fromPlace is inherited (indirectly) from the as-
sociation from. As a result of such elementary inheritance
relations, we would also like to state that the metamodel
of bipartite graphs is a generalization of the metamodel

1 Bipartite graphs are often explained as relations between the
set of boys and girls.

of Petri nets. In the rest of the paper, we denote these re-
lations uniformly by the term refinement, which simul-
taneously refers to the refinement of entities, connections,
and (meta)models.
Our notion of refinement should also handle the in-

stantiations of classes. For instance, in the SimpleNet
package in the lower right corner of Fig. 6, a Petri net
model consisting of a single place with one token is de-
picted. This model is regarded as an instance of the Petri
net metamodel as indicated by the dashed arrow between
the models.
From a practical point of view, supposing that we have

an extensible metamodel library, a new metamodel can
be derived from existing ones by refinement. Our main
goal is to show that (i) mathematical and metamodel
constructs can be handled uniformly and precisely (see
Sect. 3.2), and (ii) the dynamic operational semantics of
models can also be inherited and reused with an appropri-
ate model refinement calculus (Sect. 4) in addition to the
static parts of the models.

3.2 Formal semantics of static model refinement

Our VPM metamodeling framework uses a minimal sub-
set of MOF constructs (i.e., classes, associations, at-
tributes, and packages) with precisely defined semantics,
which has a direct analogywith the basic notions of math-
ematics, i.e., sets, relations, functions, and tuples (tuples

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 193

Fig. 7. The MOF metamodel of our approach

are constituted in turn from sets, relations and other
tuples).

Modeling concepts. However, in order to avoid clashes
between notions of MOF and set theory as much as pos-
sible, a different naming convention is used in the paper,
which simultaneously refers to UML and mathematical
elements. A model element in VPM may be either an
entity, a connection, or a mapping (see the MOF
metamodel of our approach in Fig. 7). A unique iden-
tifier (accessed by a .id postfix in the sequel) and a set
including the identifier of the model element and the iden-
tifiers of all the (intended) refinements of the element
(accessed by a .set postfix) are related to each of this
constructs.2 For mathematical reasons, the set associated
to a model element should also contain the identifier of
the element (to be able to detect circularities in typing
later on).

– An entity E is a set (called as basic entity in this
case) or a tuple (denoted as compound entity or
model) consisting of sets, relations, functions and tu-
ples (a collection of entities, connections, and map-
pings, respectively). Entities will be represented visu-
ally either by UML classes or UML packages while the
notion of containment will be captured by graphical
containment (e.g., classes inside a package) or aggre-
gations (leading from entities to both entities, con-
nections and mappings) depending on the context to
provide the better match with the conventional nota-
tion.
– A connection R between two entities is a binary re-
lation between the associated sets or tuples. Connec-
tions are depicted as (directed) UML associations.
– A mapping F from entity E1 to entity E2 is a func-
tion with the domain of (the set of) E1 and range of
E2. Mappings can be denoted visually by an attribute
assigned to the entity of its domain with an attribute

2 This philosophy is in analogy with the axiomatic foundations
of set theory. There we have classes as a notion that remains un-
defined. An element of a class is by definition a set, while the
singleton class that contains this element is also a set.

type corresponding to its range. In a strict mathemat-
ical sense, either connection or mapping would be suf-
ficient for a truly minimal metamodeling kernel; how-
ever, we introduced both to keep our concepts close
simultaneously to UML/MOF and mathematical con-
cepts as well.

A significant change in contrast to [42] is the merging
of previously distinct notions of entities and models into
a single entity construct, which idea stems from the fact
that a one-dimensional tuple (consisting of only a single
set) can be regarded as a set, thus a certain redundancy
is eliminated from the underlying mathematical frame-
work of our approach. In an object-oriented term, a uni-
form class concept is used for both classes and packages
(models).

A refinement calculus for inheritance and instantiation.
The static semantics of our metamodeling framework is
based upon a unifying refinement calculus, which cap-
tures the notion of inheritance and type-instance rela-
tionship (depicted by UML generalization and instance-
of relations, respectively) between arbitrary metalevels
without actually defining the notion of metalevels.

Definition 2 (Comparison of elements). A model
element P (i.e., either entity, connection or mapping) is
less than (or equal to) a model element Q (denoted as
P ≤Q) iff P.set⊆Q.set∧P.id∈Q.set.

Thus P ≤Q holds if the related set of P is a subset of
the corresponding set of Q and the identifier of P is con-
tained by the set of Q, which defines an ordering relation
combining the subset and set containment relations.
For the notational convention of Definition 3, let (i)

E(n) denote an entity consisting of exactly n subcom-
ponents (in case of n = 1, the entity is regarded to be
basic, otherwise compound) where E[i] accesses the ith
component (argument) of entity E; (ii) R(A,B) refers
to a connection R between entities A and B; while (iii)
F (A,B) denotes a mapping with the domain of entity A
and range of entity B.
Our general refinement relation between model elem-

ents Sub and Super will be denoted as Sub � Super3

(consistently with the partial order imposed by the re-
finement graph later in Sect. 5), which means that Sub is
a refinement of Super (for the use of our terminology, see
Table 1). Refinement is unified relation that is either an
inheritance⇒ or an instantiation �→ (or both).

Definition 3 (Refinement calculus). The refinement
(�) rules of our metamodeling framework (that simultan-
eously handle inheritance ⇒ and instantiation �→) are as
follows.

3 Note the difference between the ⊆ symbol used as the tradi-
tional subset relation and the � symbol that denotes the refine-
ment of VPM model elements.

194 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

Table 1. Notation guide for refinement, inheritance and
instantiation

sub is ... super super is ... sub

�: refinement = inheri- refinement of abstraction of
tance + instantiation

⇒: inheritance inherited from generalization of
(subtype) (subtype of) (supertype of)

�→: instantiation instance of type of
(type-instance relation)

1. Basic entity refinement:

E
(n)
sub � E

(1)
super

def
= E

(n)
sub ≤ E

(1)
super , thus if Esuper is

a simple entity (one-dimensional tuple consisting only
of a set) then refinement is defined as the “less-than”
relation. Informally, Esuper is either a generalization
or a type of Esub (which is either a class or a package)
if using a MOF metamodeling analogy.

2. Connection refinement:
Rsub(Asub, Bsub) � Rsuper(Asuper , Bsuper)

def
= Rsub ≤

Rsuper ∧Asub � Asuper ∧Bsub � Bsuper (where all Ai
andBi are entities). Connection inheritance expresses
the fact that MOF associations can also be refined
during the evolution of metamodels in addition to the
refinement of classes.

3. Mapping refinement:

Fsub(Asub) : Bsub � Fsuper(Asuper) :Bsuper
def
= Fsub ≤

Fsuper ∧Asub � Asuper ∧Bsub � Bsuper From a prac-
tical point of view, the refinement of MOF attributes
is also handled in our metamodeling framework (simi-
larly to classes and associations).

4. Mapping is connection:

F (Asub) :Bsub �R(Asuper , Bsuper)
def
= F ≤R∧Asub �

Asuper ∧Bsub � Bsuper , i.e., functions can be
interpreted as special relations. In practical uses
of this axiom, traditional cardinality restrictions
in MOF metamodels can be strengthened such
as the cardinality of a role can be changed from
“arbitrary number” (0..*) to “at most one”
(0..1).

5. Compound (model) refinement:
the refinement of compound entities (or models/pack-
ages) is explicitly split into the inheritance and instan-

tiation case, thus E
(n)
sub � E

(k)
super

def
= E

(n)
sub ⇒ E

(k)
super ∨

E
(n)
sub �→ E

(k)
super

(a)Compound entity (model) inheritance

E
(n)
sub⇒ E

(k)
super

def
= Esub ≤Esuper ∧∀i∃j : Esub[j]⇒

Esuper [i]. Informally, there exists a subtype rela-
tion for each argument of Esuper in a correspond-
ing argument of Esub. In MOF terms, each class
in the super package is refined into an appropriate
class of the subpackage. However, this latter one
may contain additional classes not having origins
in the super package.

(b)Compound entity (model) instantiation

E
(n)
sub �→ E

(k)
super

def
= Esub ≤ Esuper ∧∀i∃j : Esub[i] �→

Esuper [j]. Informally, there exists a type element
for each component of Esub in a corresponding
component of Esuper . In MOF terms, each object
in the instance model has a proper class in the
metamodel. However, the metamodel onemay con-
tain additional classes without objects in the in-
stance model.

The most crucial consequence of these definitions
is that the handling of refinement (inheritance and
instance-of) relations is identical for basic entities, con-
nections and mappings (while there is a certain orthog-
onality for compound entities/models). As a result, two
model elements can simultaneously be in subtype and
instance-of relations , which is a major difference with the
MOF standard.
In order to obtain a mathematically complete defin-

ition of our refinement calculus (that encapsulates the
metametamodel of Fig. 7 within our framework), a top
section of the inheritance and containment hierarchy is
introduced as follows.

Definition 4. The model space of our framework will al-
ways consist of (at least) the following elements.

– The abstract model element Universe or Top is greater
than all the other model elements (entities, connec-
tions and mappings), thus being the root of both the
inheritance and the containment hierarchy.
– The entity Entity is contained by (and refined from)
Universe.
– The connection Connection is leading from and to En-
tity.
– The mapping Mapping is leading from and to Entity.

Thereafter, any well-formed model space has to fulfill
the following axioms.

Property 1 (Inheritance and instantiation is partial order).
Each element in the model space (except for Universe) has
at least one supertype, and both refinement relations (in-
heritance and instantiation) are reflexive, transitive and
anti-symmetric.

Informally, multiple inheritance and instantiation are
allowed but circularities are therefore forbidden in the
type hierarchy (to be precise, treated as equality). Note
that the definition formally permits that an element is
inherited from (alternatively, instantiated from) itself,
which only eases the mathematical treatment of our
framework without foregoing consequences on the intu-
itive meaning.

Property 2 (All model elements are contained). Each
element in the model space (except for Universe) is con-
tained by at least one element, moreover, the containment
relation is transitive.

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 195

Fig. 8. Pattern refinement

As a consequence, multiple and circular containment
are thus allowed by this axiom, and each element should
be reachable from the top element by navigating contain-
ment relations.

Pattern refinement. We introduce the notion of pattern
refinement as a special case of entity refinement, which
provides a means to formally capture the use of design
patterns4 (i.e., how an abstract pattern can be embedded
in a concrete user model) by entity refinement. Moreover,
pattern refinement will also form the bases of rule refine-
ment later in Sect. 4.3
The overall idea (and typical use) of pattern refine-

ment is depicted in Fig. 8 where SubPattern is intended to
be a refinement (�) of SuperPattern.
We suppose that the abstract pattern SuperPattern

stored in a pattern library is a compound entity con-
taining a “metamodel” entity SuperMeta specifying type
information and a model entity SuperModel (which is
an instance of SuperMeta) describing the designated use
of the pattern. Thereafter, in a concrete user model
(SubModel in package SubPattern) aiming to apply the
pattern properly in a application domain defined by
the metamodel SubMeta, one has to establish the in-
heritance relation between SuperPattern and SubPattern
by showing that SuperMeta is a generalization of Sub-
Meta (i.e., the application domain is a proper refinement
of the pattern metamodel) and SuperModel is a gener-
alization of SubModel (i.e., the user model contains at
least the elements required by the library pattern Super-
Model).
As a summary, we can formally define patterns and

pattern refinement as follows.

Definition 5 (Pattern). A pattern P is a compound
entity consisting of entities Meta and Model where
Model �→Meta.

4 Essentially, the use of architectural styles can be handled simi-
larly to design patterns.

Definition 6 (Pattern refinement). A pattern Psub
is a pattern refinement of Psuper, if Psub � Psuper.

The four-layer MOF architecture in VPM. A main ad-
vantage of our approach (in contrast to e.g., [4] or the
MOF standard itself) is that type-instance relations can
be reconfigured dynamically. On one hand, as a model can
take the role of a metamodel (thus being simultaneously
a model and a metamodel) by altering only the single
instance relation between the models, we avoid all the
problems of Sect. 2. On the other hand, transformations
on different metalevels can be captured uniformly, which
is an extremely important feature when considering the
evolution of models through different domains.
Furthermore, our metamodeling framework clearly

demonstrates that the fixed number of metalevels intro-
duced by the MOF standard is artificial and mathemat-
ically unsound: the four layers are finite restrictions of
a general refinement relation, which is transitive both in
case of inheritance and instantiation.
On the other hand, as VPM is more general than

MOF, the original four layer MOF architecture can be
embedded into VPM by introducing the following con-
straints (in fact, they can be captured in a constraint
language like OCL as static well-formedness rules).

1. The metametamodel defined by MOF can be intro-
duced as a compound entity refined from our top-level
concepts.

2. The metamodels of modeling languages (like the UML
metamodel, Petri Net metamodel etc.) are entity in-
stances of the MOF metametamodel entity.

3. User models can be instances of the metamodel enti-
ties.

4. The object level instances have in turn related entities
to corresponding user models.

5. Within the same “metalevel”, arbitrarily long chains
of inheritance relations are allowed.

3.3 Formalizing the Petri net metamodel hierarchy

The theoretic aspects of model refinement (and instantia-
tion) are now demonstrated on the Petri net metamodel
hierarchy. Supposing that the refinement relations de-
picted at the bottom of Fig. 6 hold between the model
elements (e.g., Boy is a refinement of Node, e1 is a refine-
ment of tokens; the interested reader can verify that all
the connection refinements are valid) we can observe the
following.

Proposition 1. BipartiteGraph is both a(n entity) subtype
and instance of Graph.

Proof. The proof consist of two steps.

1. Proof of refinement: for each element in the Graph
model there exists a refinement in the BipartiteGraph.
Girl is refinement of Node; GBEdge is of Edge; from1 is
derived from from; and to1 is refined from to.

196 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

2. Proof of instantiation: for each element in Bipar-
tite Graph there exists an instance-of relation in Graph.
Girl and Boy are instantiations of Node; GBEdge and
BGEdge are of Edge; from1 and from2 are of from; and
to1 and to2 are of to. �

By similar course of reasoning, we can prove all the
other relations between different models of Fig. 6. Note
that Petri Net is not an instance of Bipartite Graph (as Token
is a new element), and SimpleNet is not inherited from Petri
Net (since, for instance, there are no transitions).

4 Dynamic refinement
in operational semantic rules

Now we extend the static metamodeling framework by
a general and precise means for allowing the user to de-
fine the evolution of his models (dynamic operational
semantics) in a hierarchical and operational way. Our
approach uses model transition systems [43] as the un-
derlying mathematics, which is formally a variant of
graph transformation systems enriched with control
information.
However, from a UML point of view, model transition

systems merely provide a pattern-based manipulation of
models driven by a statechart diagram (specified, in fact,
by a UML profile in our VIATRA tool), thus a domain
engineer only has to learn a framework that is very close
to the concepts of UML. After specifying the semantics of
the domain, a single virtual machine of model transition
systems may serve a general meta-simulator for arbitrary
domains.
In the current section, we first demonstrate that

model transition systems are rich enough to be a gen-
eral purpose framework for specifying (as an example)
dynamic operational semantics of modeling languages in
engineering and mathematical domains by constructing
an executable formal semantics for Petri nets. After-
wards, we define the notion of rule refinement, which
allows for a controlled reuse of semantic operations of ab-
stractmathematical models (such as graphs, queues, etc.)
in engineering domains in analogy with the well-known
concepts of dynamic binding and operator overloading in
traditional object-oriented languages.

4.1 An introduction to model transition systems

Graph transformation (see [32] for theoretical founda-
tions) provides a rule-based manipulation of graphs,
which is conceptually similar to the well-known Chom-
sky grammar rules but using graph patterns instead of
textual ones. Formally, a graph transformation rule
(see e.g. addTokenR in Fig. 9 for demonstration) is a triple
Rule= (Lhs,Rhs,Neg), where Lhs is the left-hand side
graph,Rhs is the right-hand side graph, while Neg is (an
optional) negative application condition (grey areas in
figures). As all graphs in a graph transformation rule have

to be well-typed, they can be regarded as patterns (see
Definition 5).
The application of a rule to a model (graph) M

(e.g., a UML model of the user) alters the model by re-
placing the pattern defined byLhswith the pattern of the
Rhs. This is performed by

1. Match. finding a matching of the Lhs pattern in
modelM ;

2. Check. checking the negative application conditions
Neg which prohibits the presence of certain model
elements;

3. Delete. removing a part of the modelM that can be
mapped to the Lhs pattern but not the Rhs pattern
yielding an intermediate model IM ;

4. Glue. adding new elements to the intermediate model
IM which exist in the Rhs but cannot be mapped to
the Lhs yielding the derived modelM ′.

In a more operational interpretation, Lhs and Neg of
a rule define the precondition while Rhs defines the post-
condition for a rule application.
In our framework, graph transformation rules serve

as elementary operations while the entire operational
semantics of a model is defined by a model transi-
tion (transformation) system [43], where the per-
mitted transformation sequences are constrained by
control flow graph (CFG) applying a transformation
rule in a specific rule application mode at each
node. A rule can be executed (i) in parallel for all
matches as in case of forall mode; (ii) on a (non-
deterministically selected) single matching as in case
of try mode; or (iii) as long as applicable (in loop
mode).

4.2 Model transition system semantics of Petri nets

In order to demonstrate the expressiveness of our seman-
tic basis (and the technicalities of graph transformation),
we provide a model transition system semantics for Petri
nets (in Fig. 9) based on the following definition.

Definition 7 (Informal semantics of Petri nets).
A micro step of a Petri net can be defined as follows.

1. A transition is enabled when all the places with an
incoming arc to the transition contain at least one to-
ken (we suppose that there is at most one arc between
a transition and a place).

2. A single transition is selected at a time from the en-
abled ones to be fired.

3. When firing a transition, a token is removed from each
incoming place, and a token is added to each outgoing
place (of a transition).

4. When no transitions are enabled the net is dead.

At the initial step of our formalization, we extend the
previous metamodel of Petri nets by additional features
(such as mappings/attributes enable and fire, or connec-
tions add and del) necessitated to capture the dynamic

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 197

Fig. 9. Model transition semantics of Petri nets

parts. Then the informal interpretation of the rules (given
in the order of their application) is as follows. In order
to improve clarity, the types of each model element are
depicted textually instead of the original graphical rep-
resentation by instance-of relations. Thus, for instance,
T:Trans can be interpreted as T is a direct instantiation of
Trans.

1. First, the enable and fire attributes are set to false for
each transition of the net by applying rules delEnableR
and delFireR in forall mode.

2. A transition T becomes enabled (by applying en-
ableTrR) only if for all incoming arcs A linked to a place
P, this place must contain at least one token K (note
the double negation in the negative conditions).

198 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

3. A single transition is selected non-deterministically by
executing selectFireR in try mode. If no transitions are
enabled then the execution of the net is finished.

4. All the InArcs are marked by a del edge that lead to the
transition selected to be fired by the application of rule
inArcsR.

5. A token is removed from all places that are connected
to an InArc marked by a del edge. The corresponding
rule (delTokenR) is applied as long as possible (in loop
mode) and a del edge is removed in each turn.

6. A process similar to Step 4 and 5marks the places con-
nected to the transition to be fired by add edges and
generates a token for each of them, and the micro step
is completed.

4.3 Rule refinement

A main goal of multilevel metamodeling is to allow
a hierarchical and modular design of domain models
and metamodels where the information gained from
a specific domain can be reused (or extended) in fu-
ture applications. Up to now, metamodeling approaches
only dealt with the reuse of the static structure while
the reuse of dynamic aspects has not been consid-
ered. However, it is a natural requirement (also in
mathematical domains) that if a domain is modeled
as a graph then all the operations defined in a library
of graphs (such as node/edge addition/deletion, short-
est path algorithms, depth first search, etc.) should
be adaptable for this specific domain without further
modifications.
Moreover, semantic operations are frequently needed

to be organized in a hierarchy (and executed accord-
ingly). For instance, in feature/service modeling, we
would like to express for the user that an operation copy-
ing highlighted text from one document to another and
another operation that copying a selected file between
two directories are conceptually similar in behavior when
regarding from a proper level of abstraction. Thus a do-
main engineer should be able to derive the “text copying”
operation from the abstract “copy a thing to a certain
place” operations. In other terms, in analogy with tradi-
tional structural ontologies, dynamic behavior can also be
classified into a hierarchy and reused in specific applica-
tion domains.
To capture such semantic abstractions, we define rule

refinement as a precise extension of metamodeling for
dynamic aspects of a domain as follows, which is con-
ceptually similar to the use of late bindings and method
overriding in object-oriented programming languages.
Based upon the definition of pattern refinement (see

Definition 6), the refinement relation of typed rules is de-
fined as follows:

Definition 8 (Rule refinement). A rule rsub = (Lhssub,
Rhssub, Negsub) is a refinement of rule rsuper = (Lhssuper ,
Rhssuper, Negsuper), denoted as rsub � rsuper, if

1. Lhssub �Lhssuper: the positive preconditions of rsuper
are not stronger (more general) than of rsub;

2. Negsub � Negsuper : the negative preconditions of
rsuper are not stronger than of rsub;

3. Lhssub∩Rhssub � Lhssuper ∩Rhssuper: the preserved
elements of rsuper are not stronger than of rsub

4. Lhssub \Rhssub � Lhssuper \Rhssuper: thus rsub re-
moves at least the elements that are deleted by the
application of rsuper ;

5. Rhssub \Lhssub �Rhssuper \Lhssuper: thus rsub adds
at least the elements that are added by the application
of rsuper .

As a direct consequence of this definition, the follow-
ing proposition can be established.

Proposition 2. If rsub � rsuper , (i.e., rsub is a struc-
tural rule refinement of rsuper), then rsuper can be applied
whenever rsub is applicable (which means a certain refine-
ment of dynamic behavior).

Examples on rule refinement. The concepts of rule
refinement are demonstrated on a brief example (see
Fig. 10). Let us suppose that a garbage collector removes
a Node from the model space (by applying rule delNodeR)
if the reference counter of the node (which collects the
number of edges leading into the node) has been decre-
mented to 0 (denoted by the attribute condition ref=0).
Thus a transformation sequence for garbage collection
may only remove isolated nodes from the model space.
Meanwhile, in case of Petri nets, we may forbid the

presence of tokens not assigned to a place. Therefore, even
when the reference counter of a Place (which used to be
a refinement of Node) reaches 0, an additional test is re-
quired for checking the non-existence of tokens attached.
If none of such tokens are found then the place P can be
safely removed (cf. rule delPlaceR).

Proposition 3. Rule delPlaceR is a refinement of rule
delNodeR. Therefore, in typical applications (visual model
editors, etc.) delPlaceR takes precedence of delNodeR.

Fig. 10. Rule refinement

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 199

Proof. The three steps of the proof are the following:

1. LhsdelP laceR �LhsdelNodeR since Place (the type of P)
is a refinement of Node (the type of N).

2. NegdelP laceR � NegdelNodeR since rule delNodeR has
no negative conditions.

3. Conditions 3–5 trivially hold due to the empty right-
hand sides of rules.

For a more complex example, let us consider that we
want to derive from the general Petri net metamodel
the specific metamodel of 1-bounded or 1-safe Petri nets
where each place may only contain at most one token
at a time. Therefore, some slight changes are needed to
be introduced in the Petri net semantics to capture that
a transition is only enabled if all incoming places contain
a token but none of the outgoing places (that are not in-
coming places as well) contains a token.5

Our goal is to maintain as much as possible from the
original Petri net formalization in Fig. 9, and introduce
a new rule (Fig. 11) by rule inheritance that modifies the
semantics in the right way. As a result, the dynamic oper-
ational semantics of a language will also be reused when
defining a more refined language (in addition to reusing
its structural definition).

– As for structural changes in the metamodel of 1-safe
Petri nets, the tokens connection is refined into a tokens
mapping (as indicated by the highlighted areas).

5 From a mathematical point of view, this subclass of Petri nets
can be simulated by the original semantics as well with a struc-
tural modification that introduces a complementary place for each
existing one.

Fig. 11. 1-safe Petri nets: modifying semantics by rule refinement

– In the dynamic parts, the only new rule is safeEnableR,
which is a proper refinement of the former version of
the rule enableTransR, since a new negative condition
has been introduced that prescribes that no outgoing
places (see place P1) are permitted to contain a to-
ken M prior to enabling the transition T , except for
those that are also serve as incoming places for the
same transition (connected by InArcs as well). One can
easily check that the rule refinement relation holds
between rules enableTransR and safeEnableR by the fol-
lowing argument.

– LhssafeEnableR � LhsenableTransR, since they are
identical (and the refinement of tokens from a con-
nection to a mapping is valid).
– NegsafeEnableR � NegenableTransR, since an ad-
ditional negative condition has been introduced
while all existing conditions are left unaltered.
– Conditions 3 and 4 trivially hold as the right-hand
sides of rules are identical.

As a result, we enabled the reuse of dynamic oper-
ational semantics of a modeling language by providing
a precise means of refining graph transformation rules in
addition to the conventional reuse of structural elements.

Transformations between modeling languages. Graph
transformation rules frequently serve as a visual but
mathematically precise way to capture model transform-
ations between modeling languages [15, 43]. In a UML
environment, such transformations typically include the
mapping of UML models into semantic domains or into
executable target code.

200 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

Although a detailed discussion of this model trans-
formation problem is out of the scope for the current pa-
per (see [7, 11, 43] for further details of our approach), it
is worth noting that the VPM formalism provides a direct
support for such transformations.

1. We first construct the VPM metamodel of the source
language (which is typically UML itself) and target
language (i.e., the metamodel of the mathematical
paradigm such as Petri nets, dataflow nets; or the
metamodel of a programming language).

2. Then we design a reference metamodel that captures
the interconnections of source and target model elem-
ents. Since entity containment is not strict in VPM
(i.e., a model element can be contained by multiple
entities), one can easily reuse the source and target
metamodels for this purpose.

3. Later, we construct a model transition system to for-
malize the model transformation problem. In VPM
terms, we provide an operational semantics for this
reference metamodel. These graph transformation
rules typically preserve all the constructs in the source
language and generate new elements only in the target
language.

4. Graph transformation rules are directly executable
therefore the concrete model transformation process
can largely be automated (using, for instance, the
VIATRA tool [11]).

5 Static consistency analysis of metamodels

Although, in the Sect. 3, the concepts of models and
metamodels have been formalized precisely, in the sequel,
we introduce an equivalent representation (called refine-
ment graphs) to visualize and automatically detect flaws
in the refinement hierarchy. Refinement graphs eliminate
the distinction between entities, connections and map-
pings, however, all type information is preserved. After
that, we show (i) how one can judge whether a certain
model is (in a consistent way) more abstract or more re-
fined than another one, and (ii) how certain inconsisten-
cies in merging models (packages) can be corrected auto-
matically based directly on the abstract representation.
The practical feasibility of our approach is demon-

strated on formalizing advanced concepts of metamod-
eling including structural extensions, type restrictions
and recent concepts from the upcoming UML 2.0 stan-
dard [38] (like import, redefine and package merge
constructs).

5.1 Refinement graphs

Definition 9 (Refinement graph). The refinement
graph RG = (Nodes,Edges) of a given model space is
a directed graph defined as follows.

– A refinement node n ∈ Nodes is either an entity,
a connection, or a mapping.

– A refinement edge e∈Edges (that can be interpreted
informally as implication) leads from node n1 to node
n2 (denoted as n1

e
−→ n2, or simply n1 −→ n2) when

1. Inheritance: for the corresponding model elem-
ents of nodes n1 and n2, (the model element of) n1
is (directly or indirectly) inherited from (the model
element related to) n2;

2. Instantiation: for the corresponding model elem-
ents of nodes n1 and n2, n1 is (directly or indirectly)
an instance of n2;

3. Source of Connection/Mapping: n1 is related
to a connection (mapping) leading from the entity
itself associated to n2 or one of its subentities;

4. Target of Connection/Mapping: n1 is related
to a connection (mapping) leading to the entity it-
self associated to n2 or one of its subentities;

– Extensions: For the mathematical treatment, let n⊥
be a node having only outgoing edges that is linked to all
the other nodes, and let n� be a node (corresponding to
Universe) having only incoming edges leading from all
other nodes.

Informally, an entity node has an outgoing edge to all
its “super” entity nodes (by merging the concepts of in-
heritance and instance of relations), while a connection
(mapping) node has an outgoing edge to all its “super”
connections (mappings) edges, plus all the “super”enti-
ties of its source and target entity node.

Example 1. In Fig. 12, the refinement graph of simple
model space containing the concepts of State and Transi-
tion of a finite automaton can be observed. For the sake of
clarity, the model space is incomplete (not well-formed) in
the sense that containment relations are not depicted.
The figure in the middle explicitly depicts all the edges
of the refinement graph (except for self loops, and exten-
sion edges leading from n⊥ and to n�). The figure in the
right depicts (which will be our standard notation for the
rest of the paper to improve clarity) only the direct re-
finement edges. The entire set of edges can be calculated
by the transitive (and reflexive) closure of the explicitly
depicted edges.
Moreover, the edges with a white arrowhead (like UML
generalizations) will refer to inheritance and instantia-
tion relations in the model (instantiation edges are la-
beled with inst), while edges with ordinary arrowhead
(like navigable associations in UML) denote source and
target restrictions (labeled with src and trg , respectively)
for connections and mappings.
According to a final notational convention, nodes derived
from entities appear in black, nodes related to connec-
tions in white, while nodes of mappings have a striped
background.

A refinement graph of a model explicitly depicts all
the type constraints expressed by the metamodels and
models in the sense that whenever an edge is leading

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 201

Fig. 12.Model graph and model lattice of transition systems

from a node n1 to node n2 we can deduce that n2 is
more abstract than n1. In other words, the definition of
model element n2 must exist prior to introducing model
element n1.

5.2 The lattice of a refinement graph

In the following, we formally introduce two lattices rep-
resenting (i) a single refinement graph and (ii) the set of
refinement graphs to provide a formal analysis mechan-
ism for type compliant evolution of models, e.g., to decide
whether (i) a specific model is well-typed, (ii) and a model
is a proper refinement of another (more abstract) model.
Moreover, lower and upper bound operations will provide
means to integrate different versions or different aspects
of a model (e.g., created by different designers) into a safe
and consistent global viewpoint of the system that is re-
quired by the advanced package merge constructs in the
upcoming UML 2.0 standard.

Definition 10. A latticeL(N) = (�N ,⊥N ,�N ,�N ,�N)
is a five tuple where

1. �N is a partial order on the set N ,
2. ⊥N is the infimum of N , that is ∀n ∈N⊥N �N n
3. �N is the supremum of N , i.e., ∀n ∈Nn�N �N
4. �N is the least upper bound of a set N1 ⊆ N is de-
fined as �NN1 = u ⇐⇒ ∀n ∈ N1 : n � u∧∀u′ ∈ N :
n� u′ ⊃ u� u′.

5. �N is the greatest lower bound of a set N1 ⊆N is de-
fined as �NN1 = u ⇐⇒ ∀n ∈ N1 : u � n∧∀u′ ∈ N :
u′ � n⊃ u′ � u.

The least upper bound �N of a set N1 ⊆N is the least
element that is larger than any elements in N1. This can
be determined by, for instance, a reachability analysis: (i)
initially, the �N element is added as singleton to the cur-
rent set as it is an upper bound of all elements n ∈ N1;
(ii) all the predecessors of elements in the current set
are tested whether they are still an upper bound of N1.

Those that satisfy this condition become the next cur-
rent set , and this process is iterated until a fixpoint is
reached.
The calculation of the greatest lower bound �N is simi-

lar, but this time one should start from the bottom elem-
ent ⊥N element and perform the dual steps.
As a direct consequence of its definition, one can show

that the nodes of refinement graphs form a lattice.

Proposition 4. The nodes of the refinement graph
RG = (Nodes,Edges) form a lattice L(Nodes) = (�,
⊥,�,�,�) with �= Edges (the partial order of nodes
is imposed by the edges), ⊥ = n⊥ (the bottom extension
node as infimum), � = n� (the top extension node as
supremum), while � and � are defined as usual according
to �.

As a result, many type conformance questions of a sin-
gle model (like the following ones) can be answered di-
rectly on refinement graphs by the least upper bound and
greatest lower bound operations of the lattice.

– Is a model element A a supertype of model element
B? = the least upper bound of A and B is equal
to B.
– What is the common supertype of a set of model elem-
ents? = the least upper bound of the set.
– Does a link (model-level connection) correspond to its
association (meta-level connection)? = the least up-
per bound of link connection L, its source object en-
tity Osrc, the association connection Asup of the link
and the source class entity Csrc is equal to Csrc (due
to the confluency of instantiation and connection end
edges in the refinement graph);
– Is there such a model element that is inherited (in-
stantiated) from both model element A and B? = the
greatest lower bound of A and B is not equal to ⊥.

Surprisingly, even more interesting results can be ob-
tained if we establish another lattice for a set of refine-
ment graphs.

202 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

5.3 The lattice of the sets of refinement graphs

In order to show that the set of refinement graphs also
forms a lattice, we need to establish the notions of (1)
the partial order relation on the set, (2) the infimum, and
(3) the supremum of the set, and finally, (4) the least
upper bound (lub) and (5) greatest lower bound (glb)
operations.

Proposition 5. Let Set(RG) be the (finite) set of all fi-
nite refinement graphs (relevant for a specific purpose).
The traditional subgraph relation is a partial order � on
the set Set(RG) of refinement graphs (which is an elemen-
tary result from graph theory).

This time the calculation of greatest lower bound and
least upper bound of a subset X ⊆ Set(RG) needs some
precautions in order to maintain the property that they
both yield a well-formed refinement graph as the result.

Greatest lower bound. The calculation of the greatest
lower bound �X of a subsetX ⊆ Set(RG) takes the inter-
section of all the refinement graphs inX, and the result is
expected to be a common consistent abstract model of all
the models inX. For that reason, at most those nodes and
edges are included in the result lattice that appear in all
x ∈X lattices.
However, different models that share the same nodes

may be in a conflict. Suppose that there is a refinement
graphM1 where n1 −→ n2 but in another modelM2, it is
just the opposite n2 −→ n1. Since −→ is a partial order,
n1 −→ n2∧n2 −→ n1 ⊃ n1 = n2, which also fulfills our ex-
pectations, as both configurations can be refined from an
abstract model where the two nodes have not been distin-
guished yet. As there are no other refined models where
these conditions could also be satisfied, we showed that
by this method exactly the greatest lower bound of X is
derived.
Note that the refinement graph consisting of the single

n� node is the infimum of the entire set Set(RG). Thus
we have the following proposition.

Proposition 6. The set Set(RG) of refinement graphs
has an infimum ⊥G (which is the graph consisting of the
single node n�), and a greatest lower bound �GX =
RG(Nodes,Edges) defined as

1. ∀n ∈ Nodes : n ∈ x1.Nodes ∧ . . . xn.Nodes, x1, . . . ,
xn ∈X (all the common nodes in the refinement graphs
xi are included)

2. ∀n1, n2 ∈ Nodes : n1 −→ n2 ∧ n2 −→ n1 ⊃ n1 = n2
(conflicting nodes are merged into a single node as
a consequence of −→ being a partial order)

3. ∀e ∈ Edges : e ∈ x1.Edges ∧ · · · ∧ xn.Edges, x1, . . . ,
xn ∈X∧e.from ∈Nodes∧e.to∈Nodes (all the com-
mon edges are added that have both source and target
nodes in Nodes)

Corollary 1. For allG1, G2 ∈ Set(MG) :�G{G1, G2} �
G1 and �G{G1, G2} �G2.

Informally, the greatest lower bound of two refinement
graphs is a refinement of both of them.

Least upper bound. When calculating the least upper
bound of some X ⊆ Set(RG), one has to take the union
of all the graphs x ∈X, and, according to our informal
expectations, this union should be a refinement of all in-
dividual model graphs. Unfortunately, in the case of con-
tradicting models, this property cannot be established.
When taking the union of graphs x ∈X, a merging is

required along the nodes that appear in more than a sin-
gle model. After that, the calculation of the union of the
edges adds an edge from node ni to node nj if there is
at least one model xk with such an edge but there are
no models with an edge leading to the opposite direction
(i.e., from nj to ni). In the latter case, no edges are estab-
lished in the result refinement graph between ni and nj in
accordance with the properties of implication ni −→ nj ∨
nj −→ ni =�.
For the practical use, when a least upper bound of the

set X is not a refinement of one or more models, the user
can automatically return to the greatest consistent global
state in the past by taking the greatest lower bound of
X, which is inevitably a proper abstraction, and the re-
finement process can be redone from there in a controlled
way.

Proposition 7. The set Set(RG) of refinement graphs
and a least upper bound �GX =M(Nodes,Edges) such
that

1. ∀n ∈Nodes, x1, . . . , xn ∈X : n ∈ x1.Nodes∨· · ·∨xn.
Nodes (all the common nodes)

2. ∀e ∈ Edges, x1, . . . , xn ∈ X : e ∈ x1.Edges∨ · · ·∨xn.
Edges∧e.from ∈Nodes∧e.to ∈Nodes (all the com-
mon edges)

3. ∀n1, n2 ∈ Nodes : ¬(n1 −→ n2∧n2 −→ n1) (conflict-
ing edges are removed as a consequence of −→ being
a partial order)

If the set Set(RG) of refinement graphs is not con-
troversial then we have a supremum �G = �GSet(RG),
which is the least upper bound of all graphs in Set(RG).

Example 2. In Fig. 13 the greatest lower bound and least
upper bound of a set consisting of two models (introduc-
ing accepting and initial states in a deliberately contra-
dicting way for finite automata) is calculated. For better
understanding, the visual representations of the models
are also depicted.

– In the case of the least upper bound (lub), the exam-
ination of the refinement graph detects that nodes Acc
and Init are contradicting. For this reason, the lub sup-
poses that both were introduced on purpose and keeps
both of them, but the ordering relation between them
is removed. As a result, we have an AccState and Init-
State derived by object inheritance from State, which
is not a refinement of the two models (due to the con-
tradicting inheritance).

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 203

Fig. 13. Calculating upper and lower bounds

– In the case of the greatest lower bound (glb), the
examination of the refinement graph detects that
nodes Acc and Init are equal. For this reason, they
are treated as if all the edges entering one of them
ends in this common state. As a result, we have an
AccState derived by object inheritance from State but
InitState must be reintroduced later in the design (or
vice versa).

Proposition 8. The set Set(RG) of refinement graphs
(ordered by the subgraph relation) forms a lattice LG =
(�G,⊥G,�G,�G,�G).

Although we showed that the refinement graph struc-
ture of a single model is preserved when calculating
lower and upper bounds of sets of refinement graphs,
the result might be unexpected at the diagram level.
For instance, if a connection (mapping) is redirected
from one entity to another entity, the intersection of
the two models might contain only the edge between
the source entity and the connection (mapping) while
the target of the connection (mapping) remains unspec-
ified. However, this situation can easily be detected by
comparing the degrees of each connection (mapping)
node with the ones in the original refinement graph.

Similarly, when taking the union of model representa-
tion, a connection (mapping) node may have additional
outgoing edges, which fact can be detected similarly
within the semantic domain. Both modeling contradic-
tions are resolved automatically by our technique to
a common consistent view as much as (theoretically)
possible.
The final definition captures the notion of model

(space) refinement in accordance with the previous re-
sults stating when a specific model is more detailed than
another one.

Definition 11. Let M1,M2 ∈ Set(RG). If M1 �G M2
then M1 is an abstraction of M2, or conversely saying,
M2 is a refinement ofM1.

5.4 Practical uses of model refinement

In Fig. 14, we demonstrate how some major concepts of
object–oriented metamodeling can be captured formally
by model refinement on our running examples of finite
automata.

Structural extension. In a structural extension, a new
model element is added to the model by refining (by in-

204 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

Fig. 14. Structural extension, relation restriction, instantiation

heritance or instantiation) an existing model element fol-
lowing our axioms.
For instance, a new entity (class) AccState has been

derived by inheritance to the original diagram of Fig. 12
from the existing entity State. Although this time the
designer can be quite certain that the refinement step
he or she performed is correct, this can be verified
formally on the semantic level by comparing the new
refinement graph Model1 to Model0 of Fig. 12. One
can conclude that the refinement step is correct as
Model0 �G Model1 because node Acc and its incom-
ing and outgoing edges were introduced by the refining
operation.
Up to this point, the diagrams contained only the re-

lationship on the class level. Now, when derivingModel3
from Model1 (and, similarly, Model4 from Model2), an
instance S1 of classAccState is introduced by refinement.
This example demonstrates that classes and instances
can be treated uniformly by the refinement graph: an
instance is another node of the refinement graph de-
rived from its class by instantiation. In many cases, both
instantiation and inheritance holds between two enti-
ties (connections, mappings), which stems from the fact,
mathematically, that a singleton (new element intro-
duced as a leaf) only contains its own identifier.
Moreover, altering a model by the following set of op-

erations turns out to be formally a model refinement in
our sense (not proven here).

– Inserting an entity (e.g., a UML class) consistently as
a leaf element or between two existing entities (refin-
ing the entity inheritance tree).
– Inserting an entity (e.g., a UML object) consistently
as a leaf element into the instantiation hierarchy.
– Inserting a connection (e.g., a UML association or
link) consistently (i.e., maintaining type constraints)
as a leaf element or between two existing connection
records (refining the connection inheritance tree).
– Inserting a mapping (e.g., a UML attribute or slot)
consistently (i.e., maintaining type constraints) as
a leaf element or between two existing connection
records (refining the connection inheritance
tree).
– Introducing multiple inheritance (or instantiation) for
entities, connections or mappings (in which case the
inheritance structure is no longer a tree but a directed
acyclic graph).

On the one hand, several incorrectness properties
(such as circularity in the inheritance structure, or in-
valid type refinements) can be detected on the refinement
graph itself. In fact, they will never be introduced if the
model refinement process is guided by the glb �G and lub
�G operations.
On the other hand, the uniform refinement graph

structure also allows a particular metamodeling approach
to distinguish between classes and instances by introduc-

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 205

ing instantiation as a connection and thus deriving in-
stances by connection instantiation.

Type restriction. In a type restriction, our model is not
extended but altered by redirecting the refinement of an
entity, connection or mapping. This could possibly mean
that

– An entity refinement (either inheritance or instan-
tiation) relation is established between two entities
having previously the same parent in the inheritance
structure. However, note that the inheritance of con-
nections and mappings cannot always be redirected in
this way as the proper inheritance of sources and tar-
gets may not be assured.
– The source (target) of a connection (or mapping) is
redirected to a subtype of its former source (target)
entity.

Our running example covers the latter case when
Model2 is generated from Model1 (and, additionally,
when Model4 is derived from Model3). In Fig. 14, the
dashed lines can be derived by the transitive closure of
solid lines; however, they are depicted explicitly to im-
prove clarity of the subgraph relation when verifying that
Model2 is a proper refinement ofModel1.

“Future” concepts: redefine, import, package merge. The
metamodeling concepts of the latest proposal for the up-
coming UML 2.0 standard [38] are based upon three con-
structs (represented by dependencies with corresponding

Fig. 15. Package merge

stereotypes) interpreted on packages (i.e., thus handling
models and metamodels), namely, redefine, import , and
package merge.
By the redefine operation (already well-known from

many object-oriented programming languages that allow
overriding of methods and properties), one can intro-
duce a class derived from an existing one by inheritance
with identical names but altered content in a new con-
text (package). In a strict mathematical sense, the result
of redefine should be a proper refinement of the redefined
class. Therefore, as our VPM framework (and their refine-
ment graph representation) does not depend on names,
we can simply say that a redefine operation (if consistent)
introduces new refinement (inheritance, to be precise) re-
lations into the model space with identical names.
The import construct (that always leads between two

packages) prescribes that all the contents of the source
package are implicitly included in the target package. In
our framework, the import construct is redundant in the
sense that (i) on the one hand, a model element can be
contained bymultiple packages, (ii) on the other hand, re-
finement relations can “cross the borders of a package”,
thus there is no need to include them first in order to cap-
ture the intended refinement.
The package merge construct (demonstrated in

Fig. 15) is probably the most complex metamodeling con-
cept in the upcoming UML 2.0.
The overall idea is to derive metamodels (Package C

in the figure) by merging existing ones (Package A and B)

206 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

using the redefine and import operations in such a way
that all the original associations and generalizations are
also included in the result for the target package (Package
Result).

– If two model elements with identical names appear
both in the target and in a source package (for in-
stance, see State in Package A and C), the package
merge construct introduces a new generalization, and
the class in the target package (C:State) is inherited
from the class in the source (A:State).
– If such a model element is encountered that only ap-
pears in (at least) one of the source package but not in
the target package (like the from connection in Pack-
age A or B but not in Package C), the model element
is simply added.

However, the UML proposal [38] does not specify what
happens (in the very common case) if the merge of mul-
tiple source packages results in inconsistencies (like the
unclear intension of generalization between AccState and
InitState in Fig. 15).
From a VPM point of view, package merges can be

specified as multiple entity inheritance (in case of com-
pound entities) between the source entities and the target
entity. As a result of our static consistency analysis tech-
nique based upon the lub and glb calculation for refine-
ment graphs, we can pinpoint such inconsistencies dur-
ing package merge, furthermore, a consistent viewpoint
(i.e., consistent from a refinement point of view and not
from the viewpoint of package merge) is automatically
obtained (see Fig. 13).

6 Case study: Uninterpreted modeling
of UML designs

In the current section, we demonstrate the expressiveness
of VPM on the application level by a complex case study
that provides uninterpreted modeling facilities for UML
designs. First, we briefly summarized the main ideas be-
hind our uninterpreted modeling framework.

6.1 An introduction to uninterpreted modeling

Current formal methods fail to completely validate and
verify detailed models of medium and large scale appli-
cations due to run-time and state space complexity lim-
itations. Advanced analysis methods use a combination
of different techniques to overcome these problems, like
abstraction, exploitation of symmetries, result dependent
model refinement, etc.
One of the standard approaches in abstraction based

model analysis is uninterpreted (or non-interpreted) mod-
eling. Fully interpreted models represent the flow of data
through the system under evaluation by their appear-
ance at the processing units and their respective timing
and value. Non-interpreted abstraction reduces data rep-
resentation to the appearance and temporal attributes of

data at the nodes of the system and they omit value re-
lated information.
While this principle is most widely used in the con-

text of data-flow networks, the most simple example is
the decoloring of Petri-nets. A colored Petri-net, as a kind
of interpreted model, can express both the dynamics and
functionality of the modeled system by assigning color
domains to the tokens corresponding to the type and do-
main, and by time stamps to the temporal attributes of
the individual data. The initial marking and transition
rules define the dynamics of the system. The abstrac-
tion leading to the uninterpreted model generates a non-
colored Petri-net by keeping the structure of the system
(all the places, transitions and edges between them) unal-
tered, but removing all the color domains from the model
(place and transition domains, value dependent transi-
tion guards, etc.), thus substituting the colored tokens
with uncolored ones.

– Obviously, this is a true abstraction in the sense, that
every state sequence (trajectory) in the colored net
has his counterpart in the uncolored net (a Galois con-
nection is kept).
– On the other hand, the information loss originating
in this abstraction may introduce spurious trajecto-
ries as well. For instance, the termination of a loop
with a counter in a colored Petri-net model can be
proven, but the elimination of the value depending
guard in the loop branch simplifies the loop control
to a random choice between the “continue” and “exit”
branches, thus allowing even an infinite loop.

The uninterpreted model has a counterpart for each
state transition sequence in the interpreted model, mak-
ing uninterpreted modeling a favorite candidate for
semi-decision techniques in validation and verification
problems [30].

– If an exhaustive analysis performed on the uninter-
preted model shows no violation of the validation ob-
jective, the user can be certain, that no problems will
occur in the detailed, interpreted model. Note that the
space and run-time complexities of an uninterpreted
analysis is by orders of magnitude smaller than in the
interpreted case due to the huge reduction of the state
space by eliminating the rich domains associated with
the different data types.
– However, a violation detected on the uninterpreted
model may originate only from a spurious solution due
to the abstraction, thus a detailed analysis performed
on the uninterpreted model is required to filter out
them.

6.2 Qualitative fault and error modeling

The assessment of dependability attributes necessitates
the modeling of two basic phenomena:

– The local effects of faults at the location, where they
attack the system.

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 207

– The propagation of errors (fault induced wrong states
of the system components) across the system in order
to estimate, which faultsmay cause a failure, i.e. an ob-
servable deviation from the specified systembehavior.

This way dependability analysis necessitates the sim-
ultaneous tracing of the information flow in the fault-free
and in a faulty instance (or all candidate faulty instances)
of the system in order to estimate where an observable
difference in their behavior can be detected. The faithful
mapping of the primary physical origins of faults to the
model level necessitates a proper modeling of the under-
lying platform, and the deployment of the logic objects
to physical (engineering) ones. [31] presents a model con-
struction method to extend GRM [24] based models by
the notion of errors and faults.
Qualitative fault modeling uses a small set of qual-

itative values from an enumerated type such as good ,
faulty , illegal (distinguishing between cases when (i) the
data value is correct, (ii) syntactically correct, but differ-
ent from the good value, or (iii) syntactically incorrect)
to construct an abstract model reflecting the state of the
resources and the potential propagation of errors. The de-
signer can select this set of qualitative values arbitrarily
according to the objective of the analysis. For instance,
for timeliness analysis the set described above can be ex-
tended by the values of early and late.
The behavior of the system components may become

non-deterministic due to uninterpreted modeling. For in-
stance, a faulty value at one of the inputs of a multiplier
propagates to the output, if the other input has a nonzero
value, but this error propagation will be blocked by a zero
on the other input. This way the transfer relation has to

Fig. 16. Uninterpreted modeling of UML designs in VPM

include both (faulty,good,good), (faulty,good,faulty) triples,
as well.
The fault modeling methodology composes the model

of two major parts:

– The qualitative model is constructed from the func-
tional model by keeping all the objects and object
references, but substituting the domain of every data
type with the set of qualitative values.
– The model of each method is extended by the qual-
itative description of its reactions to an invocation
having a faulty input value combination. By default,
an action having a faulty value on at least one of its in-
put pins reacts as randomly placing potentially illegal
values (values randomly selected from the set {good ,
faulty , illegal}) at his outputs.
Naturally, the designer can override these defaults.

For instance, the designer may exclude illegal values at the
output of a fault-tolerant method.
Statefulmethods execute their dynamics in anabstract

form, where data dependent branches are transformed to
random selections. The state space is extended by the fail-
ure state illegal, whichmodels unhandled failures. Usually,
this state should be unreachable in a proper design having
a complete error exception handling system.

6.3 Uninterpreted modeling in VPM

An overview on how the previous uninterpreted modeling
of UML designs can be captured within VPM in confor-
mance with the four layer MOF architecture is provided
in Fig. 16.

208 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

– The metamodel of UML (UML-Meta on MOF level
M2) serves as the underlying basis for both inter-
preted and uninterpreted modeling. The UML meta-
model defines the traditional concepts on class and
instances levels (like classes vs. objects, attributes vs.
slots).
– All user models on level M1 (either interpreted or un-
interpreted) are instances of the metamodel. However,
the UML language definition also introduces some
predefined types (and instances) like the class of Inte-
gers, and Booleans or the instances 1 , 2 , etc. that has to
be implicitly included in any well-formed UMLmodel.
In this respect, the UML language definition not only
contains the metamodel, but it also defines elements
on the model (M1) level, which latter forms a minimal
UML model (UML-Min).
– Given a specific UML design UML-Model (introducing,
for instance, Sensors having an Integer attribute for
storing temperature), this M1-level model is, naturally,
an instance of UML-Meta, but simultaneously, it is also
inherited from the minimal UML model UML-Min in
order to expressed that all constructs in the minimal
UML model are included.
– In order to capture uninterpreted modeling of UML
designs we introduce intermediate levels of abstrac-
tion between the UML metamodel UML-Meta and the
model instance UML-Model.

– First, we must introduce on the language level
a class NIType (non-interpreted type) on level M1
(thus as an instance of UML-Meta) together with its
corresponding instances (like good , faulty or illegal).
This also forms a minimal non-interpreted core
model NIUML-Min that must be contained by all
user models. As an uninterpreted model should be
more abstract than an interpreted one, we need to
introduce refinement (inheritance) relations stat-
ing that NIType is a generalization of both Integer
and Boolean, and all value instances (1 , false, etc.)
of these basic predefined types of UML are re-
finements of all uninterpreted values (like good ,
faulty).
– Afterwards, the uninterpreted version of the user’s
UML model NIUML-model will be derived by
inheritance from NIUML-Min (as each construct
in NIUML-Min has to be refined or included) and
by abstraction from UML-Model of in the
meantime.

As a result, the generalization relations of interpreted
and uninterpreted models are confluent in the sense ad-
ditional levels of abstraction can be inserted at any point
within the VPM hierarchy. Moreover, the case study also
demonstrated that the language definition of UML is
not situated merely on the M2 level, as it also encapsu-
lates certain M1 level classes and instances that should
be explicitly refined (contained) by any well-formed user
model.

7 Conclusions

We presented a visual, and formally precise metamodel-
ing (VPM) framework that is capable of uniformly hand-
ling arbitrary models from engineering and mathematical
domains. Our approach based upon a simple refinement
calculus provides a multilevel solution covering the vi-
sual definition and widespread reuse of both static struc-
ture and dynamic behavior. In addition, our static con-
sistency analysis technique based on the notion of refine-
ment graphs can detect and automatically resolve con-
flicting models and metamodels, thus providing a prime
mathematical bases for appropriately handling the ad-
vanced modeling concepts (like package merges) of the
upcoming UML 2.0 kernel language.
Note, however, that even though our metamodeling

framework is much more concise (concerning the num-
ber of elements introduced as the kernel) and expressive
(with dynamically reconfigurable metalevels), a meta-
model alone cannot capture all the static well-formedness
constraints of a modeling language. In the paper, we
decided not to fix the way how domain engineers can
specify additional static restrictions. On one hand, such
constraints can be expressed by using OCL, in which
sense our methodology is complimentary to existing tech-
niques. On the other hand, a graph transformation rule
without side effects (i.e., with identical left-hand side and
right-hand side) can be interpreted as a static graphical
constraint, in which case our rule refinement method pro-
vides in turn a certain level of reuseability.
Compared to dominating metamodeling approaches,

VPM has the following distinguishing characteristics.

– VPM is a multilevel metamodeling framework . The
majority of metamodeling approaches (including ones
that build upon the MOF standard [25]; GME [20],
PROGRES [35], BOOM [28], or [21]) considers only
a predefined number of metalevels. While only [4]
(a framework for MML) and [5] supports multilevel
metamodeling. By the dynamic reconfiguration of
type-instance relationship between models, VPM pro-
vides such a solution that avoids the problem of repli-
cation of concepts (from which [4] suffers as identified
in [5]).
– VPM has a visual (UML-based) and mathematically
precise specification language for dynamic behavior.
Like [14, 35] VPM uses a variant of graph transform-
ation systems (introduced in [43]) for capturing the
dynamic behavior of models, which provides a purely
visual specification technique that fits well to a variety
of engineering domains. However, the explicit inclu-
sion of dynamic concepts in the metamodel is novel.
– VPM provides a reusable and hierarchical library of
models and operations. Extending existing static and
dynamic metamodeling approaches, models and oper-
ations on them are arranged in a hierarchical struc-
ture based on a simple refinement calculus that allows
a controlled reuse of information in different domains.

D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework 209

Initiatives for a reusable and hierarchical static meta-
modeling framework include MML [9] and GME [20],
however, none of them provides reusability for rules.
– VPM supports model transformations within and be-
tween metamodels. The model transformation con-
cepts of VPM is built on results of previous re-
search [11, 41, 43] in the field. Similar applications
have been reported recently in [15, 16, 44].
– VPM can precisely handle both engineering and math-
ematical domains as demonstrated e.g., in [40] (for
UML statecharts) and by the running examples of the
paper (for Petri nets and finite automata).

The theoretical foundations introduced in the paper
are supported by a prototype tool called VIATRA (VI-
sual Automated model TRAnsformations) [43]. VIATRA
has been designed and implemented to provide auto-
mated transformations from between models defined by
a corresponding MOF metamodel (tailored, especially, to
transformation from UML to various mathematical do-
mains). Recently, this tool is being extended to support
the multilevel aspects of the VPM approach.
Further research is primarily aiming at to provide

automated verification facilities for arbitrary model
transformations within VPM. Our idea (following con-
ceptually [10], which is a recent semantic framework for
capturing transformations of programming languages) is
to reason about the behavioral consistency of two models
(let us call them source and target) taken possibly from
different modeling languages by transforming their struc-
ture into a common abstract modeling language by graph
transformation rules. Afterwards, the behavioral specifi-
cation of the two models in the common representation
should be derived automatically based upon (i) the oper-
ational semantics of the source and the target modeling
language, and (ii) the model transformation rules. As
a practical result, domain experts would obtain a frame-
work for automated dynamic consistency between arbi-
trary dynamic UML diagrams (and profiles).
Additional future work is focused on an automated

translation of mathematical structures (from formal defi-
nitions given in a MathML format) into their correspond-
ing VPM metamodel in order to ease the handling of
mathematical domains for transformation engineers.

Acknowledgements. The authors are grateful to Gergely Varró,
John Rushby and many of his colleagues for their valuable
comments.

References

1. Petri Net Markup Language.
http://www.informatik.hu-berlin.de/top/pnml

2. Akehurst, D.: Model Translation: A UML-based specification
technique and active implementation approach. Ph.D. thesis,
University of Kent, Canterbury, 2000

3. Akehurst, D., Kent, S.: A relational approach to defining
transformations in a metamodel. In: Jézéquel, J.-M., Huss-
mann, H., Cook, S. (eds.) Proc. Fifth International Conference
on the Unified Modeling Language – The Language and its

Applications, LNCS, vol. 2460. Springer-Verlag, Dresden, Ger-
many, 2002, pp. 243–258

4. Alvarez, J., Evans, A., Sammut, P.: Mapping between levels
in the metamodel architecture. In: Gogolla, M., Kobryn, C.
(eds.) Proc. UML 2001 – The Unified Modeling Language.
Modeling Languages, Concepts and Tools, LNCS, vol. 2185.
Springer, 2001, pp. 34–46

5. Atkinson, C., Kühne, T.: The essence of multilevel metamod-
elling. In: Gogolla, M., Kobryn, C. (eds.) Proc. UML 2001 –
The Unified Modeling Language. Modeling Languages, Con-
cepts and Tools, LNCS, vol. 2185. Springer, 2001, pp. 19–33

6. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Stereotypical
encounters of the third kind. In: Jézéquel, J.-M., Hussmann,
H., Cook, S. (eds.) Proc. Fifth International Conference on the
Unified Modeling Language – The Language and its Appli-
cations, LNCS, vol. 2460. Springer, Dresden, Germany, 2002,
pp. 100–114

7. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza,
A., Savoia, G.: Dependability analysis in the early phases of
UML based system design. International Journal of Computer
Systems - Science & Engineering, 16(5): 265–275, 2001

8. Bondavalli, A., Majzik, I., Mura, I.: Automatic dependabil-
ity analyses for supporting design decisions in UML. In: Proc.
HASE’99: The 4th IEEE International Symposium on High
Assurance Systems Engineering. 1999, pp. 64–71

9. Clark, T., Evans, A., Kent, S.: The Metamodelling Language
Calculus: Foundation semantics for UML. In: Hussmann, H.
(ed.) Proc. Fundamental Approaches to Software Engineering,
FASE 2001 Genova, Italy, LNCS, vol. 2029. Springer, 2001,
pp. 17–31

10. Cousot, P., Cousot, R.: Systematic design of program trans-
formation frameworks by abstract interpretation. In: Confer-
ence Record of the Twentyninth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages. ACM Press, New York, NY, Portland, Oregon, 2002,
pp. 178–190

11. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A.,
Varró, D.: VIATRA: Visual automated transformations for
formal verification and validation of UML models. In: Proc.
ASE 2002: 17th IEEE International Conference on Automated
Software Engineering. IEEE Press, Edinburgh, UK, 2002,
pp. 267–270

12. Csertán, G., Pataricza, A., Harang, P., Dobán, O., Biros,
G., Dancsecz, A., Friedler, F.: BPM based robust E-Business
application development. In: Proc EDCC-4 Fourth Euro-
pean Dependable Computing Conference, LNCS, vol. 2485.
Springer, Toulouse, France, 2002, pp. 32–43

13. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
Handbook on Graph Grammars and Computing by Graph
Transformation, vol. 2: Applications, Languages and Tools.
World Scientific, 1999

14. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic
meta modeling: A graphical approach to the operational se-
mantics of behavioral diagrams in UML. In: Evans, A., Kent,
S., Selic, B. (eds.) UML 2000 – The Unified Modeling Lan-
guage. Advancing the Standard, LNCS, vol. 1939. Springer,
2000, pp. 323–337

15. Engels, G., Heckel, R., Küster, J.M.: Rule-based specification
of behavioral consistency based on the UML meta-model. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001: The Unified Mod-
eling Language. Modeling Languages, Concepts and Tools,
LNCS, vol. 2185. Springer, 2001, pp. 272–286

16. Heckel, R., Küster, J., Taentzer, G.: Towards automatic trans-
lation of UML models into semantic domains. In: Proc. AGT
2002: Workshop on Applied Graph Transformation. Grenoble,
France, 2002, pp. 11–21

17. Huszerl, G., Majzik, I.: Quantitative analysis of dependability
critical systems based on UML statechart models. In: HASE
2000, Fifth IEEE International Symposium on High Assur-
ance Systems Engineering. 2000, pp. 83–92

18. Kobryn, C.: UML 2001: A standardization Odyssey. Commu-
nications of the ACM, 42(10), 1999

19. Latella, D., Majzik, I., Massink, M.: Automatic verification
of UML statechart diagrams using the SPIN model-checker.
Formal Aspects of Computing, 11(6): 637–664, 1999

210 D. Varró, A. Pataricza: VPM: A multilevel metamodeling framework

20. Ledeczi, A.:, Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The
Generic Modeling Environment. In: Proc. Workshop on Intel-
ligent Signal Processing. 2001

21. Naumenko, A., Wegmann, A.: A metamodel for the unified
modeling language. In: Jézéquel, J.-M., Hussmann, H., Cook,
S. (eds.) Proc. Fifth International Conference on the Uni-
fied Modeling Language – The Language and its Applications,
LNCS, vol. 2460. Springer, Dresden, Germany, 2002, pp. 2–17

22. Object Management Group. Software Process Engineering
Metamodel (SPEM). http://www.omg.org

23. Object Management Group. UML Profile for Enterprise Dis-
tributed Object Computing (EDOC). http://www.omg.org

24. Object Management Group. UML Profile for Schedulability,
Performance and Time. http://www.omg.org

25. Object Management Group. Meta Object Facility Version 1.3,
1999. http://www.omg.org

26. Object Management Group. Model Driven Architecture –
A Technical Perspective, 2001. http://www.omg.org

27. Object Management Group. Object Constraint Language Spe-
cification (in UML 1.4), 2001. http://www.omg.org

28. Övergaard, G.: Formal specification of object-oriented meta-
modelling. In: Maibaum, T. (ed.) Proc. Fundamental Ap-
proaches to Software Engineering (FASE 2000), Berlin, Ger-
many, LNCS, vol. 1783. Springer, 2000

29. Pap, Z., Majzik, I., Pataricza, A.: Checking general safety
criteria on UML statecharts. In: Voges, U. (ed.) Com-
puter Safety, Reliability and Security (Proc. 20th Int. Conf.,
SAFECOMP-2001), LNCS, vol. 2187. Springer, 2001,
pp. 46–55

30. Pataricza, A.: Semi-decisions in the validation of dependable
systems. In: Suppl. Proc. DSN 2001: The International IEEE
Conference on Dependable Systems and Networks. Göteborg,
Sweden, 2001, pp. 114–115

31. Pataricza, A.: From the general resource model to a general
fault modeling paradigm? In: Workshop on Critical Systems
Development with UML at UML 2002. Dresden, Germany,
2002

32. Rozenberg, G. (ed.) Handbook of Graph Grammars and Com-
puting by Graph Transformations: Foundations. World Scien-
tific, 1997

33. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999

34. Schürr, A., Sim, S.E., Holt, R., Winter, A.: The GXL Graph
eXchange Language. http://www.gupro.de/GXL/

35. Schürr, A., Winter, A.J., Zündorf, A.: In: [13], chap. The
PROGRES Approach: Language and Environment. World
Scientific, 1999, pp. 487–550

36. Singh, A., Billington, J.: A formal service specification for
IIOP based on ISO/IEC 14752. In: Jacobs, B., Rensink,
A. (eds.) Proc. Fifth International Conference on For-
mal Methods for Open Object-Based Distributed Systems
(FMOODS 2002). Kluwer, Enschede, The Netherlands, 2002,
pp. 111–126

37. Taentzer, G.: Towards common exchange formats for graphs
and graph transformation systems. In: Padberg, J. (ed.) UN-
IGRA 2001: Uniform Approaches to Graphical Process Speci-
fication Techniques, ENTCS, vol. 44(4). 2001

38. U2-Partners. UML: Infrastructure v. 2.0 (Third revised pro-
posal), 2003. http://www.u2-partners.org/artifacts.htm

39. Varró, D.: Automatic program generation for and by model
transformation systems. In: Kreowski, H.-J., Knirsch, P. (eds.)
Proc. AGT 2002: Workshop on Applied Graph Transform-
ation. Grenoble, France, 2002, pp. 161–173

40. Varró, D.: A formal semantics of UML Statecharts by model
transition systems. In: Corradini, A., Ehrig, H., Kreowski,
H.-J., Rozenberg, G. (eds.) Proc. ICGT 2002: 1st Interna-

tional Conference on Graph Transformation, LNCS, vol. 2505.
Springer-Verlag, Barcelona, Spain, 2002, pp. 378–392

41. Varró, D., Gyapay, S., Pataricza, A.: Automatic transform-
ation of UML models for system verification. In: Aranjo,
J., Whittle, J., Toval, A., France, R., Moreira, A. (eds.)
WTUML’01: Workshop on Transformations in UML. Genova,
Italy, 2001, pp. 123–127

42. Varró, D., Pataricza, A.:Metamodelingmathematics: A precise
and visual framework for describing semantics domains of UML
models. In: Jézéquel, J.-M.,Hussmann,H.,Cook, S. (eds.) Proc.
Fifth International Conference on the Unified Modeling Lan-
guage – The Language and its Applications, LNCS, vol. 2460.
Springer-Verlag, Dresden, Germany, 2002, pp. 18–33

43. Varró, D., G. Varró, Pataricza, A.: Designing the automatic
transformation of visual languages. Science of Computer Pro-
gramming, 44(2): 205–227, 2002

44. Whittle, J.: Transformations and software modeling lan-
guages: Automating transformations in UML. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) Proc. Fifth International
Conference on the Unified Modeling Language – The Lan-
guage and its Applications, LNCS, vol. 2460. Springer-Verlag,
Dresden, Germany, 2002, pp. 227–242

45. World Wide Web Consortium. MathML 2.0.
http://www.w3c.org/Math

András Pataricza is an as-
sociate professor at the Depart-
ment of Measurement and In-
formation Systems of Budapest
University of Technology and
Economics. He lead several na-
tional and international research
projects in the field of trans-
formation based analysis of UML
models. He held tutorials on the
topic of UML and dependabil-
ity at Safecomp 2001, UML 2002,

and at the IEEE Dependable Systems and Networks Confer-
ence (DSN 2003). He was the leader of the IBM-sponsored
project to create an E-Business Academy curriculum, which is
currently used by more than 30 higher education institutions.

Dániel Varró was graduated
at the Budapest University of
Technology and Economics, and
currently, he is a final year PhD
student at the Department of
Measurement and Information
Systems. His main research in-
terest is to design automated and
provenly correct model trans-
formations within and between
visual modeling languages with
a special focus on UML. He was

a former visiting researcher at SRI International and at the
University of Paderborn.

