
Softw Syst Model (2003) 2: 164–186 / Digital Object Identifier (DOI) 10.1007/s10270-003-0026-x

Formal semantics of static and temporal state-orientedOCL
constraints

Stephan Flake,Wolfgang Mueller

C-LAB, Paderborn University, Fuerstenallee 11, 33102 Paderborn, Germany, E-mail: {flake,wolfgang}@c-lab.de

Received: 14 February 2003/Accepted: 7 June 2003

Published online: 24 July 2003 –  Springer-Verlag 2003

Abstract. The textual Object Constraint Language
(OCL) is primarily intended to specify restrictions over
UML class diagrams, in particular class invariants, oper-
ation pre-, and postconditions. Based on several improve-
ments in the definition of the language concepts in last
years, a proposal for a new version of OCL has recently
been published [43]. That document provides an exten-
sive OCL semantic description that constitutes a tight
integration into UML. However, OCL still lacks a se-
mantic integration of UML Statecharts, although it can
already be used to refer to states in OCL expressions.
This article presents an approach that closes this gap

and introduces a formal semantics for such integration
through a mathematical model. It also presents the defin-
ition of a temporal OCL extension by means of a UML
Profile based on the metamodel of the latest OCL pro-
posal. Our OCL extension enables modelers to specify be-
havioral state-oriented real-time constraints. It provides
an intuitive understanding and readability at application
level since common OCL syntax and concepts are pre-
served. A well-defined formal semantics is given through
the mapping of temporal OCL expressions to temporal
logics formulae.

Keywords: Object Constraint Language – UML State-
charts – UML Profile – Real-time constraints – Temporal
logics

1 Introduction

The Object Constraint Language (OCL) has been part of
the UML since UML version 1.3 and enables modelers to
specify constraints in the context of a given UML model.
OCL is used to specify invariants attached to classes, pre-
and postconditions of operations, and guards for state
transitions.

In the official UML 1.5 specification, a concrete syn-
tax of OCL is given, but due to a missing metamodel only
an informal description of the semantics of OCL expres-
sions is provided [26, Chapter 6]. In reply to the OCL 2.0
Request for Proposals by the Object Management Group
(OMG), an extensive OCL metamodel proposal has been
submitted to provide a tighter integration of OCL with
UML [43]. In the remainder of this article, we refer to [43]
as the OCL 2.0 proposal . That document comprises the
work of several significant contributions concerning the
development of OCL in recent years and has been recom-
mended for adoption by the Analysis and Design Plat-
form Task Force of the OMG in March 2003 [27]. The
OCL 2.0 proposal includes two semantic descriptions,
a normative one using UML concepts and an informative
one that is based on the mathematical set-theoretical no-
tion of the object model introduced by Richters [31].1

Most OCL language elements have an impact on
(values of) elements of class diagrams, e.g., attributes,
operations, and associations between classes. But it is
also possible to refer to Statechart states in OCL expres-
sions. However, the semantics of state-related operations
is still only informally described in the OCL 2.0 proposal,
i.e., an integration of UML Statecharts into the language
concepts of OCL on the metalevel is still missing. No
significant work is available that provides a formal defin-
ition of OCL and covers expressions over states in UML
Statecharts.
Moreover, UML andOCL aremissing adequate means

to specify constraints over the dynamic behavior of
a UML model. However, it is essential to support the
definition of temporal constraints already in early phases
of development in order to specify correct system be-
havior over time. While other approaches focus on UML

1 Unfortunately, the two semantic definitions are not consistent
yet, as, e.g., the OclMessage concept is not supported in object
models.

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 165

Collaboration and Sequence Diagrams and consider tem-
poral OCL constraints for event communication (e.g., [6,
22, 44]), we investigate consecutiveness of states and state
transitions in UML Statecharts and time-bounded con-
straints over sequences of states.
This article is based on previous work concerning an

OCL extension that enables modelers to specify state-
oriented real-time constraints. Since the current UML
specification does not come with an OCL metamodel, we
first took the OCL type metamodel presented by Baar
and Hähnle [1] and performed a rather heavyweight ex-
tension by directly extending that metamodel [18]. More
recently, we developed a UML Profile for our temporal
OCL extension based on the OCL 2.0 proposal [17]. This
article is an enhanced version of the latter publication.
We also provide a formal underlying model and clarify se-
mantic issues with respect to the role of Statechart states
in the evaluation of (temporal) OCL expressions. In par-
ticular, we address the following issues in order to over-
come the previously mentioned deficiencies:

1. We perform a semantic integration of UML State-
charts into OCL language concepts by the formal
definition of a Statechart configuration, i.e., a mathe-
matically precise status description that captures the
set of currently activated states of a UML Statechart.
We integrate this notion into the formal object model
approach, which was introduced by Richters and ex-
tend his description of an overall system state accord-
ingly.

2. Based on Step 1, we define a formal semantics of oper-
ation oclInState(s:OclState).

3. In order to be able to specify temporal OCL con-
straints, we introduce the notion of a trace over a given
model. A trace is an (infinite) sequence of system
states. Each element occurring in a trace indicates
that a ‘noteworthy’ change to the model has hap-
pened, e.g., that an operation is called or terminated.

4. Last but not least, for giving a semantics to time-
bounded temporal OCL expressions, traces have to be
equipped with an inherent notion of time. We presume
a given implicit global reference clock. However, we
are aware that this assumption is not generally appli-
cable, e.g., for distributed systems.

For readers not familiar with OCL, Sect. 2 provides
a brief introduction to OCL. Section 3 discusses related
work. In Sect. 4, we integrate syntax and static seman-
tics of UML Statecharts as defined in the official UML 1.5
specification into the Richters’ formal object models [31].
The UML Profile for state-based real-time constraints

is defined in Sect. 5. It is based on temporal logics con-
cepts derived from the domain of formal verification
by Real-Time Model Checking. We present a mapping
of (future-oriented) temporal OCL expressions to time-
annotated formulae expressed in a discrete temporal log-
ics called Clocked CTL [36]. With a mapping of (parts
of) the UML model to a set of finite state machines

it is then possible to apply Real-Time Model Check-
ing, i.e., a given model is checked if it satisfies required
real-time properties specified by state-oriented tempo-
ral OCL expressions. Section 6 gives an application ex-
ample before the final section closes with a summary and
conclusion.

2 Introduction to OCL

OCL is a declarative expression-based language, i.e., eval-
uation of OCL expressions does not have side effects
on the corresponding UML model. To integrate con-
straints into the visual UML modeling approach, invari-
ants, pre- and postconditions are modeled as annotations
and attached to the respective model elements in class
diagrams.
Each OCL expression has a type. Besides user-defined

model types (e.g., classes or interfaces) and some pre-
defined basic types (e.g., Integer, Real, or Boolean),
OCL also has a notion of object collection types (i.e., sets,
ordered sets, sequences, and bags). Collection types are
homogeneous in the sense that all elements of a collec-
tion have a common type. A new feature of the OCL 2.0
proposal is a built-in tuple type. Tuples are sequences of
a fixed number of elements that can be of different types.
A standard library is available that provides operations to
access and manipulate values and objects of OCL types.
In this context, predefined operations to access and select
objects from object collections are of our special interest.
For an example, assume a UML model with classes

Machine and Buffer and an association that connects
those classes. We can navigate from class Machine to
class Buffer via that association and make use of the
role name buffers that is attached to the association-end
at the Buffer side. The following invariant ensures that
each object that is an instance of class Machine has at
least one buffer:

context Machine

inv: self.buffers->notEmpty()

Let us briefly outline how to read this OCL invariant. The
class identifier that follows the context keyword speci-
fies the class for which the following expression should
hold. The keyword inv specifies that this is an invari-
ant, i.e., for each object of the context class the follow-
ing expression must evaluate to true at any time. Note
that an invariant may be violated during execution of
an operation. In Sect. 4.3, we will therefore give a more
accurate definition of what ‘at any time’ means in this
context. The (optional) keyword self refers to the object
for which the constraint is evaluated. Attributes, opera-
tions, and associations can be accessed by dot notation,
e.g., self.buffers results in a (possibly empty) set of
instances of Buffer. The arrow operator indicates that
a collection of objects is manipulated by one of the prede-
fined OCL collection operations. For example, operation
notEmpty() returns true if the accessed set is not empty.

166 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

3 Related work

Currently, commercial UML tools only provide limited
support to specify and check OCL constraints. On the
other hand, several OCL University tools are available.
They implement syntax and type checks, dynamic con-
straint validation, test automation, and code generation
of OCL constraints (see [31, 33] for an overview). OCL
constraints are frequently used in the UML 1.5 specifi-
cation on the UML metamodel level (M2) to define the
static semantics of UML diagrams. Those so-called well-
formedness constraints specify syntactical restrictions on
diagrammatic model elements. Almost no industrial case
study with applications of OCL is available. One recent
study is documented in [45].
Due to the lack of an OCL metamodel in the UML

standard, extensions of OCL have so far been defined
purely on the concrete syntax level, in particular in
the areas of business processes [8, 23], knowledge- and
databases [5, 11], and real-time systems [41]. A semantics
on the language definition level is not given so far. As soon
as an OCL metamodel becomes part of the UML stan-
dard, we expect that extensions of OCL are developed by
means of UML Profiles, just as it has already been done
for other parts of UML, e.g., in the domain of modeling
real-time systems [25, 40].

3.1 Temporal constraints in UML

There exist several approaches that either

(a) extend OCL for temporal constraints specification or
(b) investigate alternative means to express behavioral
real-time constraints for UML diagrams.

Ramakrishnan et al. [30] extend the OCL syntax by
additional grammar rules with unary and binary future-
oriented temporal operators (e.g., always and never)
to specify safety and liveness properties. Ziemann and
Gogolla [44] introduce similar temporal operators based
on a finite linear temporal logic. In that work, Richters’
formal object model [31] is extended to provide a for-
mal definition of system state sequences. However, it is
left open how system state sequences are exactly derived.
A similar approach has been published by Conrad and
Turowski in the area of business modeling [8]. Their ap-
proach additionally considers past-temporal operators,
but a formal semantics is not provided.
Distefano et al. [12] define Object-Based Temporal

Logic (BOTL) in order to facilitate the specification of
static and dynamic properties. BOTL is not directly
an extension of OCL. It rather maps a subset of OCL
into object-oriented Computational Tree Logic (CTL).
Bradfield et al. [4] extend OCL by useful causality-
based templates for dynamic constraints. A template
consists of two clauses, i.e., the cause and the conse-
quence. The cause clause starts with the keyword after
followed by a Boolean expression, while the consequence

is an OCL expression prefaced by eventually, immedi-
ately, infinitely, etc. The templates are formally defined
by a mapping to observational mu-calculus, a two-level
temporal logic, using OCL on the lower level.
In the domain of real-time systems modeling, we

know of three approaches for temporal constraint spe-
cification. Roubtsova et al. [34] define a UML Profile
with stereotyped classes for dense time as well as pa-
rameterized specification templates for deadlines, coun-
ters, and state sequences. Each of these templates has
a structural-equivalent dense-time temporal logics for-
mula in Timed Computation Tree Logic (TCTL). Sendall
and Strohmeier [41] introduce timing constraints on state
transitions in the context of a restricted form of UML
protocol state machines that define the temporal order-
ing between operations. Five time-based attributes on
state transitions are proposed, e.g., (absolute) comple-
tion time, duration time, or frequency of state transitions.
Using these attributes in an extended form of transition
guards, they support exception handling, i.e., specifica-
tion of actions to take when a timing constraint fails.
Cengarle and Knapp [6] present OCL/RT, a temporal
extension of OCL with modal operators always and
sometime over event occurrences. These can be used to
specify deadlines and timeouts of operations and reac-
tions on received signals. Events are equipped with time
stamps by introducing a metaclass Time with attribute
now to refer to the time unit at which an event occurs. In
turn, each object can access the set of currently queued
events at each point in time.

3.2 Model checking

All current temporal OCL extensions with a formal se-
mantics are due to application in formal verification by
Model Checking. Model Checking is well established in
hardware-oriented systems design for electronic circuits
and protocol verification and receives growing interest in
software design. Though the general problem is PSPACE-
complete, symbolic representations like Binary Decision
Diagrams (BDDs) allow verifications with up to 10120

states.
Given a parallel finite state machine (the model) and

a temporal logic formula (the property specification),
a Model Checking tool outputs either ‘yes’ if the model
satisfies the formula or returns a counter example, i.e.,
one execution sequence of the model, which leads to
a state contradicting the property specification.
Model representation is often based on Kripke struc-

tures, i.e., unit-delay temporal structures derived from
finite state machines. A Kripke structureM = (Pr, S, S0,
T, L) is a tuple with a set of atomic propositions Pr,
a set of states S, a set of initial states S0 ⊆ S, a tran-
sition relation T ⊆ S×S between states such that every
state has a successor state, and a state labeling func-
tion L : S→P(Pr), where P(Pr) denotes the power set
of Pr.

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 167

Table 1. Semi-formal description of CCTL operators

Formula Operator Description

g0 |= p (p ∈ Pr) Proposition g0 is valid in p, if p ∈ L(s0)
g0 |= φ∧ψ Conjunction g0 |= φ and g0 |= ψ
g0 |= φ∨ψ Disjunction g0 |= φ or g0 |= ψ
g0 |= ¬φ Negation g0 is satisfied by ¬φ iff g0 |= φ is false.
g0 |= EX[a] φ Next There exists a run r = (g0, . . . , ga, . . .) such that ga |= φ

g0 |= EF[a,b] φ Eventually There exists a run r = (g0, . . . , gi, . . .) and i ∈ N0, a≤ i≤ b, such that gi |= φ

g0 |= EG[a,b] φ Globally There exists a run r = (g0, . . . , gi, . . .), such that for all i ∈ N0, a≤ i≤ b, holds gi |= φ
g0 |= E(φ U[a,b] ψ) Strong Until There exists a run r = (g0, . . . , gi, . . .), and an i ∈ N0, a≤ i≤ b, such that gi |= ψ and

for all j ∈ N0, j < i, holds gj |= φ
g0 |= E(φ U[a,b] ψ) Weak Until There exists a run r = (g0, . . .) and either (a) there exists an i ∈ N0, a≤ i≤ b, such that

gi |= ψ and for all j ∈ N0, j < i, holds gj |= φ, or (b) for all i ∈ N0, i≤ b holds gi |= φ

There are extensions to basic model checking for the
verification of real-time systems. One variation is defined
by Kropf and Ruf in the context of the RAVEN model
checker [36]. They extend Kripke structures to Inter-
val Structures by adding a transition labeling function
I : T →P(N) with [min,max]-delay times. A state may
be basically left at min-time and must be left after max-
time. It is assumed that each Interval Structure has ex-
actly one clock for measuring time. The clock is reset to
zero if a new state is entered. A state may be left, if the
actual clock value corresponds to a delay time labeled at
an outgoing transition. The state must be left where the
maximal delay time of all outgoing transitions is reached.
A clocked state2 g = (s, v) of an Interval Structure I is
a state s associated with a clock value v. The set of all
valid clocked states in I is called G. To enable communi-
cation between a set of Interval Structures, an extension
called I/O-Interval Structures has been proposed in [37].
Most BDD-based model checkers implement branch-

ing-time temporal logic specification for property specifi-
cation. Temporal logic expresses information about states
and future state transition paths. An execution path de-
fines one possible future execution starting from the cur-
rent state as root. All possible execution paths establish
an infinite tree with the current state as its root.
One of the frequently applied branching-time tempo-

ral logics is Computation Tree Logic (CTL). In CTL,
temporal operators specify the ordering of states along
future-oriented execution paths, e.g., operator F specifies
that the associated sub-expression must eventually be-
come true. Temporal operators are always preceded by
a path quantifier. Starting from the current state, the
path quantifier either specifies to consider all possible
execution paths (A) or it specifies that at least one ex-
ecution path must exist (E) that satisfies the following
formula part.
Clocked CTL (CCTL) is an extension of CTL with

time-bounded temporal operators over discrete time [35].

2 Clocked states are originally called configurations, but we are
going to use this term in a different context in the following
sections.

The syntax of CCTL’s main operators is recursively de-
fined by the following grammar:

φ ::= p | true | false | φ∧φ | φ∨φ| ¬φ
| EX[a] φ | EF[a,b] φ | EG[a,b] φ
| E(φ U[a,b] φ) | E(φ U[a,b] φ)
| AX[a] φ | AF[a,b] φ | AG[a,b] φ
| A(φ U[a,b] φ) | A(φ U[a,b] φ)

where p ∈ Pr is a proposition, a ∈ N0, and b ∈ N0∪{∞}.
For the symbol∞, we define ∀i ∈ N0 : i <∞.
In contrast to classical CTL, temporal operators

F (i.e., eventually), G (globally), U (‘weak’ until), and
U (‘strong’ until) are equipped with interval time-bounds
[a, b]. Additional grammar rules, which are not listed
here, allow that these temporal operators can also have
a single time-bound only. In this case the lower bound is
set to zero by default. If no interval is specified, the lower
bound is zero and the upper bound is infinity by default.
The X-operator (i.e., next) can have a single time-bound
[a] only (with a ∈ N). If no time bound is specified, it is
implicitly set to one.
The semantics of CCTL is defined as a validation rela-

tion |=, using the notion of runs, which represent possible
sequences of clocked states that occur at execution time.
Any arbitrary clocked state g0 may be the starting point
of a run. Table 1 shows semi-formal descriptions of the
validation relation for a given Interval Structure I and
a given clocked state g0 = (s0, v0) ∈G. Note that φ and ψ
stand for arbitrary CCTL (sub)formulae.
For reasons of brevity, Table 1 only gives the semantics

for temporal operators with path quantifier E. Seman-
tics for according formulae with path quantifier A (i.e.,
regarding all possible runs) can easily be derived, e.g.,
AX[a]φ is equivalent to ¬EX[a]¬φ. Another example is
AF[a,b]φ, which is equivalent to ¬EG[a,b]φ.

4 Extended object models

The OCL 2.0 proposal specifies a normative OCL se-
mantics by means of UML concepts, structured into

168 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

three packages (cf. Fig. 1). The Ocl-AbstractSyntax
package defines the general structure of OCL expres-
sions based on user-defined classes and predefined OCL
types. The Ocl-Domain package comprises the so-called
semantic domain, i.e., the values OCL expressions may
return as a result as well as rules to determine the re-
sult for a given expression. Note that these two pack-
ages reside on different levels in the 4-layer architecture
of UML. The Ocl-AbstractSyntax package is on level
M2, while the Ocl-Domain package is on level M1. The
Ocl-AS-Domain-Mapping package that connects these
twopackages only specifies associations andnonewclasses.
Note also that the Ocl-AS-Domain-Mappingcannot be as-
signed to any of the UML layers, neitherM1 norM2.
Additionally, an informative semantics of OCL is pro-

vided in the form of a mathematical set-theoretic ap-
proach, which is based on the work of Richters [31, 32]. It
covers significant parts of the current OCL standard and
new OCL 2.0 concepts like nested collections; but not yet
concepts for OCL messages.
The drawback of both semantic descriptions – norma-

tive as well as informative – is that they do not integrate
Statechart states as a basic concept, although it is per-
mitted to apply operation oclInState(s:OclState) on
the syntactical level in order to reason about the cur-
rently activated Statechart state(s) of an object. Con-
sider an example in the context of a manufacturing sce-
nario with a machine that has a limited input buffer to
store items before processing them. The following invari-
ant specifies that there must be at least one vacant input
buffer position as long as the buffer object is in state
WaitingForDelivery, i.e., a Statechart state represent-
ing the situation that delivery of an item is announced,
but the item has not yet arrived.

context InputBuffer inv:

self.oclInState(WaitingForDelivery)

implies

self.storedItems < self.maxItems

Basically, evaluation of an OCL expression is per-
formed over a single snapshot or system state, i.e., a de-
scription of the current status of a model at run-time,
including all objects with all their characteristic values.

Fig. 1. OCL Packages as shown in [43, Chapter 5]

Note, however, that two system states have to be consid-
ered to evaluate operation postconditions when operator
@pre is attached to objects or attributes, i.e., in addition
to the system states after operation execution also values
of the system state right before operation execution have
to be regarded. Generally, evaluation of an OCL expres-
sion results in a value of the semantic domain.
Concerning Statechart states, the OCL 2.0 proposal

simply assumes that according values are defined by
a separate enumeration type called OclState in the se-
mantic domain, such that they can be used as an ar-
gument of operation oclInState (s:OclState). But in
order to be able to evaluate an OCL expression that
makes use of that operation, the system state must com-
prise the set of currently activated states of all objects.
This aspect is still missing in both semantic descriptions
of the OCL 2.0 proposal.
In the remainder of this section, we therefore formally

define the syntax and semantics of extended object models
that use Statecharts as a behavioral description of active
classes. The formalization extends the definition of ob-
ject models as presented by Richters in [31]. The following
concepts have to be introduced:

– signals for classes with corresponding well-formedness
rules,
– Statecharts and their association with classes,
– extension of the formal descriptor of a class,
– extension of the formal definition of a system state,
and
– a definition of system state sequences (i.e., traces).

Section 4.1 formally defines the syntax of extended
object models. The static semantics of extended object
models is given in Sect. 4.2, where object identifiers, links,
and state configurations are introduced that together
build a description of the overall system state of a run-
ning system. A running system in this context is a par-
ticular instantiation of a given extended object model. In
Sect. 4.3, we discuss how particular dynamic semantics of
UML Statecharts affect evaluation of OCL invariants and
state-related OCL operations.

4.1 Syntax

An extended object model is a tuple

M
def
= 〈CLASS,ATT,OP, SIG, SC,ASSOC,

≺,≺sig, associates, roles,multiplicities〉

with

– a set CLASS =ACTIV E∪PASSIV E of active and
passive classes,
– a set ATT of attributes, ATT =

⋃
c∈CLASS ATTc,

– a set OP of operations,OP =
⋃
c∈CLASS OPc,

– a set SIG of signals, SIG⊇
⋃
c∈CLASS SIGc,

– a set SC of Statecharts, SC =
⋃
c∈ACTIV E SCc,

– a set ASSOC of associations between classes,

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 169

– generalization hierarchies ≺ for classes and ≺sig for
signals, and
– functions associates, roles, and multiplicities that
define a mapping for each element in ASSOC to the
participating classes, their according role names, and
multiplicities, respectively.

In the following, the tuple elements ofM are considered
in more detail. For element names inM, let A be an al-
phabet and N ⊆A+ a set of finite, non-empty names.

4.1.1 Types

We assume that there is a set Σ
def
= (T,Ω), where T is a set

of type identifiers and Ω a set of operations over types in
T . T comprises a set of basic standard library types TB,
i.e., Integer, Real, Boolean, String, and OclVoid. The
latter is a subtype of any other type that allows to operate
with unknown values. The only value of OclVoid is called
OclUndefined and is denoted in the following by ⊥. We
call the value set Itype(t) represented by a type t the type
domain.3 In particular, we have

Itype(OclV oid)
def
= {⊥}.

For convenience, we presume that ⊥ is included in each
type domain. Operations in Ω comprise common arith-
metic operations, e.g., +,−, *, / for Integer values. More-
over, so-called collection types are defined in Σ to manage
collections of values, e.g., Set(Integer).

4.1.2 Classes and their characteristics

A class is a description for a set of objects sharing the
same characteristics, i.e., attributes, operations, signals,
and associations. Note that associations are separately
defined in the set ASSOC.

Definition 1. (classes and types)
CLASS is a finite set of names, CLASS ⊆N . CLASS is
the union of two disjoint sets of active and passive classes,

i.e., CLASS
def
= ACTIV E ∪PASSIV E. Active classes

specify entities capable of dynamic behavior, which is spec-
ified by an associated Statechart (see Definition 4).4

Each class c ∈CLASS induces a type tc ∈ TC ⊂ T hav-
ing the same name as the class. A value val ∈ Itype(tc) of
a type tc ∈ TC refers to an object of the corresponding class
c ∈CLASS.

In the remainder of this article, let c ∈ CLASS be a class
and tc ∈ TC be the type of class c.

3 Type domain refers to the values of the semantic domain in the
normative OCL semantics.
4 UML allows multiple Statecharts to be applied to a single class.
We here require that there is at most one Statechart SCc for each
c ∈ ACTIV E. Note that it is possible to combine multiple State-
charts to an equivalent single concurrent Statechart.

Each class c is associated with a setATTc of attributes
that describe characteristics of their objects. An attribute
has a name a ∈ N and a type t ∈ T that specifies the
domain of attribute values. Though attribute names of
a class must be pairwise distinct, attributes with the same
name may appear in several classes, which are not related
by generalization. A class may also be associated with
a number of operations. Operations are used to describe
behavioral characteristics of objects. The behavior might
be specified by an associated Statechart diagram, but we
here only consider signatures of operations that declare
its interface.

Definition 2. (operations)
The operations of class c are defined by a set OPc of oper-
ation signatures,

OPc
def
= {(ω : tc× t1× . . .× tn→ t) |
ω ∈N , n ∈ N0, and t, t1, . . . , tn ∈ T}.

Symbol ω determines the operation name, and parameter
tc denotes the type of c to which operation ω is applied.
Note that UML generally allows operation parameters
to be of kind in, out, inout, or result. The OCL 2.0
proposal also considers these parameter kinds. It only
assumes that at most one parameter of kind result is
specified [43, App. A.3.2]. If neither a result type nor any
inout or out parameters are specified for an operation,
we set the result type t to the predefined type OclVoid
∈ T . If there are inout or out parameters specified, the
operation result type is a tuple in which the relevant pa-
rameter values appear in their specified order, including
the result value (if any) as the last element.
Richters did not consider asynchronous signals that

are communicated between objects in his formal model
so far. Reactions on signals received by an object obj
are specified by a Statechart associated with the class
to which obj belongs to. Consequently, when integrating
Statecharts into the object model, signals now also have
to be regarded as well. In UML, signals are classifiers, i.e.,
signals are generalizable model elements defined indepen-
dently of the classes handling them. The set SIG in the
model description defines all signals of a model. As we
support generalization of signals, SIG is a superset of the
individual signal sets SIGc. The set SIGc of signals that
can be handled by objects of a class c is specified by so-
called receptions [26, Sect. 3.26.6]. Note that signals can
only be handled by instances of active classes, as passive
classes do not have associated Statecharts.

Definition 3. (signals)
The signals that can be handled by instances of a class c ∈
ACTIV E are defined by the set SIGc of signal receptions,

SIGc
def
= {(ω : tc× t1× . . .× tn) |
ω ∈N , n ∈ N0, and t1, . . . , tn ∈ T}.

Symbol ω denotes the signal name, and tc refers to the
type of c to which signal ω is applied. As signals are asyn-

170 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

chronous, no return value is expected, such that all signal
parameters are all input parameters.

4.1.3 Abstract syntax of Statecharts

The UML 1.5 StateMachine package provides concepts
for modeling discrete behavior by means of finite state-
transition systems [26, Sect. 2.12]. The provided state
machine formalism is an object-based variant of Harel’s
Statecharts [21]. Though state machines are applicable to
various model elements within UML, the graphical form
of UML Statechart Diagrams is most frequently used to
model the reactive behavior of objects. The UML stan-
dard only informally defines the dynamic semantics of
Statecharts by natural language and consequently has
to leave open some semantics, e.g., the dispatching pol-
icy for selecting events from the implicit event queue to
perform the next so-called run-to-completion step (RTC-
step). Basically, an RTC-step consists of (a) selecting and
taking an event from an (implicit) queue of perceived,
waiting events, (b) determining the maximum set of tran-
sitions to take in the Statechart, and (c) subsequently
executing the actions associated with exited states, de-
termined transitions, and entered states. In recent years,
numerous approaches have been published to formally
define the dynamic semantics of UML Statecharts. A ex-
cellent overview is provided in [2].
The abstract syntax defined below comprises all rel-

evant information to fully describe a configuration of
a Statechart, i.e., a complete description of what is
informally known in UML by an active state config-
uration reached after completion of an RTC-step [26,
Sect. 2.12.4.3]. We here do not make assumptions of how
an RTC-step is performed to get to the next configu-
ration. This must be formally defined in the dynamic
semantics a particular approach is taking.

Definition 4. (abstract syntax of Statecharts)
Let c ∈ CLASS be a class. Each c ∈ACTIV E has an as-
sociated Statechart SCc representing the reactive behavior
of instances of c.

SCc
def
= 〈Sc, EV TSc, GUARDSc, ACTSc, TRc,

internalT ransc, substatesc, entryc,

exitc, doActivityc, deferrableEventsc 〉

For all c ∈ PASSIV E, we set SCc
def
= ∅.

To keep the definition concise, we omit the class annota-
tor c for Statechart components in the remainder of this
definition. The components of a Statechart SC are then
defined as follows.

1. S ⊆N is a set of states. S is the union of the following
disjoint sets

– pseudo states Pseudo, consisting of seven dis-
joint sets (a) initial states Init, (b) shallow his-
tory states History, (c) deep history states Deep-
History, (d) merging states Join, (e) splitting

states Fork, (f) static conditional branch states
Junction, and (g) dynamic conditional branch
states Choice,
– synchronization states Synch,
– simple states Simple,
– composite states Composite, composed of the two
disjoint sets of sequential composite states Xor
and orthogonal composite states And,
– and final states Final.

We refer to [26, Sect. 2.12.2] for details about these
states. For convenience, we define

Proper
def
= And∪Xor∪Simple.

2. EV TS ⊆ EXPREvts is a set of events. We assume
that there is an expression languageEXPREvts avail-
able to specify events such as operation calls, signals,
timers, etc.

3. GUARDS ⊆EXPRGuards is a set of conditions. We
assume a language EXPRGuards for the definition of
Boolean expressions.5

4. ACTS ⊆EXPRActs is a set of actions. We assume an
expression languageEXPRActs to specify operational
actions such as assignments, operation calls, signals,
etc.

5. TR ⊆ (S \ Final)×EV TS ×GUARDS ×ACTS ×
(S \ Init) is a set of transitions. A transition connects
a source state s ∈ S \Final and a destination state
s′ ∈ S \ Init, may have a trigger event e ∈ EV TS,
a guard condition g ∈GUARDS, and an action ex-
pression a ∈ACTS.

6. internalT rans : Proper → P(EV TS×GUARDS ×
ACTS) gives the set of internal transitions for a given
state S ∈ Proper. Internal transitions semantically
differ from self-transitions. When triggering an inter-
nal transition in a state s, the exit- and entry-actions
of s are not executed.

7. substates : Composite→P(S) gives all substates of
a state, such that

(a) there is a unique state top ∈ Composite such that
∀s ∈ Composite : top �∈ substates(s),

(b)∀s ∈And : substates(s)⊆ Composite,6

(c) ∀s ∈ Composite\{top} there is exactly one path

〈s1, . . . , sn〉 ∈Compositen,

with s1 = top ∧ sn = s ∧ si+1 ∈ substates(si) for
1≤ i≤ n−1.

8. Functions entry, doActivity, exit : Proper → ACTS
give the executed actions when a state is entered, ac-
tive, or left, respectively.

5 In this context, Boolean OCL expressions are frequently
applied.
6 This is a well-formedness rule of the UML standard (see [26,
Sect. 2.12.3.1]). In many alternative formal syntax definitions, even
s′ ∈Xor is required in this case, leading to a normal form of alter-
nating Xor- and And-states in the state hierarchy.

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 171

9. deferrableEvents : Proper → P(EV TS) gives the
set of events to be retained for later consumption.

Definition 4 covers most of the abstract Statechart
syntax as defined in the official UML 1.5 specification [26,
Sect. 2.12.2]. Only a few details are left out, e.g., local
variables and the bound of synch states, but can easily be
added to the definition if required. We also ignore subma-
chine states and stub states without loss of generality, as
submachine states are a syntactical convenience to repre-
sent a ‘call’ to a another state machine as a ‘subroutine’
using stub states as entry and exit points. A submachine
state is semantically equivalent to a composite state, and
we can assume that all these states have already been
copied into SC, such that all submachine states and stub
states are eliminated. Additionally, several syntactical
constraints have to be considered; more than 30 well-
formedness rules are listed for the abstract syntax in the
official UML 1.5 specification [26, Sect. 2.12.3]. Most of
these constraints are already implicitly included in Defin-
ition 4 above, while the remaining ones can easily be
translated into that context.

4.1.4 Associations

Associations are used to model structural relationships
between classes. We here do not provide formal defini-
tions for associations, role names, association multiplic-
ities, and their syntactical restrictions, as they can be
applied unchanged from Richters’ original work [31]. We
define function

navEnds :CLASS→P(N)

to denote the set of role names that can be directly ac-
cessed from a given class by navigating along the associ-
ations this class participates in.

4.1.5 Generalization

By generalization, we refer to a relationship between two
classes, in which a general class is specialized into a more
specific class.

Definition 5. (generalization, child and parent classes)
A generalization ≺ over classes is an irreflexive partial
order on CLASS, i.e., ≺ defines an irreflexive, anti-
symmetric, and transitive relation. Pairs in ≺ describe
generalization relationships between two classes.
For c1, c2 ∈ CLASS with c1 ≺ c2, c1 is called a child

class of c2, and c2 is called a parent class of c1.
Function parents gives the set of all transitive parents

(or: ancestors) of a given class:

parents :

{
CLASS→P(CLASS)
c �→ {c′ | c′ ∈ CLASS ∧ c≺ c′}

A child class transitively inherits characteristics (at-
tributes, operations, signals, and associations) of its par-
ent classes.

Correspondingly, the generalization hierarchy ≺sig
defines an irreflexive partial order on SIG. As a signal
can be specified as the child of another signal, reception
of that child signal may also trigger any transition in
a Statechart that depends on any of its ancestor signals.
The set of characteristics defined in a class together

with its inherited characteristics is called a full descriptor
of a class. Thus, the complete set of attributes of a class c
is defined by

ATT ∗c
def
= ATTc ∪

⋃
c′∈parents(c)

ATTc′.

The complete sets OP ∗c , SIG
∗
c , and navEnds

∗(c) of op-
erations, signals, and navigable role names are defined
correspondingly. Concerning Statecharts and their inher-
itance, we assume that there is exactly one Statechart for
each active class that complies to some inheritance pol-
icy. More details about Statechart inheritance are given
in Sect. 4.2.1.

Definition 6. (full descriptor of a class)
The full descriptor of a class c ∈ CLASS is a tuple

FDc
def
= 〈ATT ∗c , OP

∗
c , SIG

∗
c , SCc, navEnds

∗(c)〉

containing all attributes, operations, signals, navigable
role names, and – in the case of an active class – the asso-
ciated Statechart.

The UML standard requires that characteristics of
a full descriptor must be distinct, i.e., a class may not de-
fine an operation, attribute, or role name that is already
defined in one of its ancestor classes. Such constraints
are already formally captured by Richters in [31], and we
here only list those well-formedness rules that have to be
added for the consideration of signals:

1. A signal may only be defined once in a full class de-
scriptor. The first parameter of a signal signature indi-
cates the class in which the signal is defined. The fol-
lowing condition guarantees that each signal in a full
class descriptor is defined in a single class.

∀ (ω : tc× t1× . . .× tn) ∈ SIG∗c ,
∀ (ω′ : tc′× t

′
1× . . .× t

′
n) ∈ SIG

∗
c :

(ω = ω′∧ t1 = t′1∧ . . .∧ tn = t
′
n) =⇒ tc = tc′ .

2. Operation and signal names (in combination with the
corresponding parameters) must be pairwise distinct.

∀ (ω : tc× t1× . . . tn→ t) ∈OP ∗c ,
∀ (ω′ : tc′× t1× . . . tn) ∈ SIG

∗
c : ω �= ω

′.

Note that types t1, . . . , tn are fixed for ω
′ by the pa-

rameter types of ω.
3. For syntactical consistency among Statecharts and
class definitions, for each operation call expression in
Statechart SCc (either as an event evt ∈ EV Tc or as

172 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

an action act ∈ACTc), a corresponding operation sig-
nature must be defined inOP ∗c . Correspondingly, each
signal in EV Tc or ACTc must have an corresponding
signal signature in SIG∗c .
As we abstract from a particular expression syntax
of EV TSc and ACTc, a formalization is not provided
here.

4.2 Configurations and system state

The domain of a class c ∈ CLASS is the set of objects of
this class and all of its child classes. Objects are referred
to by object identifiers that are unique in the context of
the whole system.

Definition 7. (object identifiers and domain of a class)
The set of object identifiers of a class c ∈ CLASS is de-

fined by an infinite set oid(c)
def
= {oid1, oid2, . . . }. The do-

main of a class c ∈ CLASS is defined as

Iclass(c)
def
=

⋃
c′∈CLASS with c′≺c ∨ c′=c

oid(c′).

In the remainder of this article, we do not distinguish
between objects and their identifiers, i.e., each object is
uniquely determined by its identifier and vice versa.

4.2.1 Statechart inheritance

While the problem of consistency among generalization of
classes and inheritance of characteristics w.r.t. attributes
and operations has been studied extensively for object-
oriented languages, consistency among inheritance of
behavior in object-oriented design notations like UML
has received less attention. Different notions for behav-
ioral consistency have been identified in this context,
e.g., [15, 39, 42]. Corresponding definitions make use of
the dynamic execution of Statecharts by traces, which
are execution runs through (the processes derived from)
Statecharts.
Weak invocation consistency guarantees that each

trace of the Statechart for the superclass is also con-
tained in the set of traces of the Statechart for the
subclass. In other words, a sequence of states (or: activi-
ties) performable on instances of a superclass can also be
performed on instances of a subclass. Second, strong in-
vocation consistency guarantees the latter property even
if states (or: activities) specified for the subclass are arbi-
trarily inserted in that sequence. Finally, in observation
consistency, the Statechart of the superclass specifies an
upper bound to the behavior of the subclasses. It is guar-
anteed that every trace of an instance of a subclass is
identified as a trace of the superclass, when states, events,
and activities added to the subclass are neglected.
UML 1.5 provides an informal description of three

different inheritance policies for state machines [26,
Sect. 2.12.5]. Subtyping requires that a state in the sub-

class retains all its transitions. These transitions may lead
to the same state or a new substate of that state (i.e.,
strengthening of the transition postcondition), and guard
conditions may be weakened by adding disjunctions. (i.e.,
weakening of transition preconditions) This corresponds
to weak invocation consistency and complies to the sub-
stitutability principle. The other two policies provided
by UML 1.5 support neither observation nor invocation
consistency and are instead oriented towards coding and
inheritance issues; UML’s strict inheritance is intended
to reuse implementation rather than preserving behavior,
and general refinement basically places no restrictions on
Statechart inheritance.
If a class c has multiple superclasses, the default State-

chart for c consists of all the Statecharts of its super-
classes as orthogonal regions. This may be overridden
through a specific Statechart inheritance if required.

4.2.2 State configurations

As a result from the previous paragraph, we assume in
the following that an extended object modelM complies
to some predefined policy of Statechart inheritance. This
means that for each active class c ∈ ACTIV E there is
a Statechart specification SCc available that is ‘consis-
tent’ with the Statechart specifications of the superclasses
of c.
In a Statechart with composite and concurrent states,

the term ‘current state’ cannot be applied without any
disambiguities, as more than one state can be active at
the same time. Consequently, UML 1.5 provides the no-
tion of active state configurations [26, Sect. 2.12.4.3] as
follows. If the Statechart is in a simple state that is con-
tained in a composite state, then all the composite states
that (transitively) contain the simple state are also active.
Furthermore, as composite states in the state hierarchy
may be concurrent, the currently active states are actu-
ally represented by a tree of states starting with the single
state topc at the root down to individual simple leaf states
si ∈ Simplec. Such a state tree is referred to as a state
configuration in UML 1.5. In Definition 8, we give the cor-
responding formal definition of state configurations. But
first, we define a convenience function superstatec that
gives the direct superstate of a state s ∈ Sc:

superstatec :



Sc→Compositec

s �→



s′, if ∃s′ ∈ Compositec
with s ∈ substatesc(s′),

∅, else

UML 1.5 does not consider final states in state con-
figurations. In contrast, we include final states in the fol-
lowing definition for state configurations, as they might
be active after an RTC-step. However, a final state that is
a direct child state of topc is not part of any configuration,
since entering that state is equivalent to termination (or:

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 173

destruction) of the corresponding object. Additionally,
we explicitly exclude immediate states. Immediate states
are proper states that are directly run through in anRTC-
step, as they do not have outgoing transitions that have to
wait for a triggering event. Consequently, they can never
be part of an active state configuration after completion
of an RTC-step. We here leave out a formal definition and
simply refer to set Immediatec to denote the set of all
immediate proper states of a Statechart SCc.
Furthermore, we make use of the following help sets

for classes c ∈ACTIV E:

ProperStayc
def
= Properc \ Immediatec

Stayc
def
= ProperStayc ∪
{f ∈ Finalc | f �∈ substatesc(topc)},

Basicc
def
= (Simplec \ Immediatec)∪
{f ∈ Finalc | f �∈ substatesc(topc)}.

Definition 8. (state configurations with respect to state s)
Let c ∈ACTIV E and SCc be the Statechart for c. A state
configuration C with respect to a state s is a maximal set
of states that the Statechart can be simultaneously in, tak-
ing state s as the root. Function cfgc that maps a state
s ∈ ProperStayc to the set of configurations C with respect
to s is defined by

cfgc :




ProperStayc→P(P(Stayc))
s �→ { C ∈ P(Stayc) | s ∈ C ∧
∀s′ ∈ C ∩Andc : substatesc(s′)⊆ C ∧
∀s′ ∈ C ∩Xorc : |substatesc(s′)∩C|= 1
∧ ∀s′ ∈ C \{s} : superstatec(s′) ∈ C }

Definition 9. (state configuration)
The set ISC(c) of overall state configurations for a class
c ∈ACTIV E, which are state configurations with respect
to the top state topc, is determined by cfgc(topc).
For convenience, we define ISC(c) for all c ∈ CLASS by

ISC(c)
def
=

{
cfgc(topc), if c ∈ACTIV E,
∅, if c ∈ PASSIV E.

By definition, each state configuration induces a state
tree. But to uniquely determine a state configuration, it is
sufficient to have information about terminal states, i.e.,
the simple and final states.

Definition 10. (basic state configurations)
Let c ∈ ACTIV E and SCc be the Statechart for c. Let
s ∈ ProperStayc be a state and let C ∈ cfgc(s) be a state
configuration with respect to s. The set

BC
def
= C ∩Basicc

is called a basic state configuration (with respect to C).
The set Bs of all basic configurations with respect to s is
then defined by

Bs
def
= {BC | C ∈ cfgc(s)} ⊆ P(P(Basicc)) .

Fig. 2. Statechart example

Note that the following conditionholds (cf. [28,Lemma1]):

∀s ∈ ProperStayc,∀BC ∈Bs :
superstate∗(BC)∩substates∗(s) = C .

In other words, given a basic state configuration BC,
we can uniquely determine the state configuration C =
cfgc(s) with respect to a state s. For reasons of brevity,
we omit a formal definition of function

superstate∗ : P(Sc)→P(ProperStayc)

here. Basically, that function gives the set of transi-
tive superstates on a given set of states (including that
given set of states). Function substates∗ :ProperStayc→
P(Stayc) in turn gives the set of transitive substates on
a given state (including this state).
Figure 2 gives a Statechart example with corres-

ponding basic state configurations. All proper states
except immediate state K have an outgoing transition
with a specified event ei, 1 ≤ i ≤ 6. As UML does not
provide a textual equivalent for final states, we use
the parent state name, double colons, and the keyword
FinalState to syntactically refer to final states. Note
that S::FinalState is not part of the configuration set
(cf. usage of set Stayc in Definition 8).

4.2.3 System state

In the following, we call a particular instantiation of an
extended object model a system. A system is in differ-
ent states as it changes over time, i.e., the (number of)
objects, their attribute values, Statechart configurations,
and other characteristics change when actually executing
the system. But it still has to be defined what a single

174 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

system state exactly consists of. It is important to point
out here that different notions of a system state are gen-
erally possible, depending on the scope of model analy-
sis one wants to perform. In the original work on object
models [31], a system state is a tuple consisting of three
parts:

– the current set of objects,
– their attribute values, and
– the current links that connect the objects.

A semantics of a large part of standard OCL expres-
sions is defined over such systems states in [31, Sect. 5.2].
However, as Statecharts are not considered in that
work, state-related operations such as oclInState
(s:OclState) cannot be handled.
In our approach, we additionally investigate sequences

of system states, i.e., we are going to perform an analysis
over possible future system states and thus reason about
evolution of Statechart states. For this, we need a concise
notion of system state sequences that also covers State-
chart configurations. In order to be able to formally define
such sequences, we need to define which operations are
to be executed next (for operation preconditions) and
which operations terminate later (for operation postcon-
ditions). In this context, we adopt ideas of [44] to formal-
ize currently executed operations and define additional
functions to capture that information.

Definition 11. (system state)
A system state for an extended object modelM is a tuple

σ(M)
def
= 〈ΣCLASS ,ΣATT ,ΣASSOC ,
ΣCONF ,ΣOP ,ΣPARAM 〉

where

1. ΣCLASS
def
=
⋃
c∈CLASS ΣCLASS,c.

The finite sets ΣCLASS,c contain all objects of a class
c ∈ CLASS existing in the system state, i.e.,

ΣCLASS,c ⊆ oid(c)⊆ Iclass(c).

For further application, we define ΣACTIV E,c for ac-
tive and ΣPASSIV E,c for passive classes correspond-
ingly.

2. The current attribute values are kept in set ΣATT . It
is the union of functions σATT,a : ΣCLASS,c→ Itype(t),
where a∈ATT ∗c . Each function σATT,a assigns a value
to a certain attribute of each object of a given class c ∈
CLASS.

3. ΣASSOC
def
=
⋃
as∈ASSOC ΣASSOC,as comprises the fi-

nite sets ΣASSOC,as that contain links that connect
objects, where

∀as ∈ASSOC : ΣASSOC,as ⊆ IASSOC(as).

We refer to [31] for detailed information about links,
i.e., elements of IASSOC(as), and formalization of
multiplicity specifications.

4. The current Statechart configurations are kept by

σCONF
def
=⋃

c∈ACTIV E {σCONF,c : ΣACTIV E,c→ ISC(c)}.

Each function σCONF,c assigns a state configuration
with respect to the corresponding top state topc to
each object of a given class c ∈ACTIV E.

5. Let ID be an infinite enumerable set, e.g., ID = N.
The set of currently executed operations is denoted
by

ΣOP
def
=⋃

c∈CLASS{σOP,c : ΣCLASS,c×OPc→P(ID)}.

Each function σOP,c gives a set of unique identifiers
∈ ID that represents all currently executed opera-
tions for a given object oid and operation name op. At
the starting point of an operation execution, a unique
identifier ∈ ID is associated with that operation ex-
ecution. We require that the associated identifier
must not change until the execution of that operation
terminates.

6. ΣPARAM
def
=⋃

c∈CLASS{σPARAM,c : ΣCLASS,c×OPc×ID→
Itype(t1)× . . .× Itype(tn)× Itype(t) }

is a set of functions that gives the parameter values
of each of the currently executed operations. For each
c ∈ CLASS, we define σPARAM,c as follows, where
op= (ω : tc× t1× . . .× tn→ t) ∈OPc:

σPARAM,c(oid, op, id) �→{
〈val(t1), ..., val(tn), val(t)〉, if id ∈ σOP,c(oid, op)

∅, otherwise

In the definition above, val(tj) ∈ Itype(tj) denotes an
arbitrary value defined for type tj ∈ T , 1≤ j ≤ n. The
same holds for val(t) ∈ Itype(t). If an operation is not
returning a result, the result type t of operation op is
OclVoid. In that case, we set val(t) =⊥.

Of course there are additional Statechart characteris-
tics that could also be taken into account to be part of
a system state, e.g., event queues and changes occurring
to them, additional information required for re-entering
composite states via history states, etc. While this can
make sense in some specific approaches, the definition
above is sufficient for reasoning about currently activated
states and executed operations.

4.2.4 Semantics of operation oclInState

According to the OCL 2.0 proposal, the operation signa-
ture of oclInState is defined by

oclInState :OclAny×OclState→Boolean,

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 175

where the domain of OclAny is formally defined by

Itype(OclAny) =


 ⋃
t∈TB∪TE∪TC

Itype(t)


∪{⊥}.

In this context, TB, TE, and TC represent basic OCL
types, enumeration types, and types induced by user-
defined classes, respectively. We formally define the do-
main of type OclState by

Itype(OclState) =

(⋃
c∈ACTIV E

Stayc

)
∪{⊥}.

For an operation op = (ω : tc× t1× . . .× tn → t) ∈
OPc, a semantics is generally defined by a total function
with signature

Iop : Itype(tc)× Itype(t1)× . . .× Itype(tn)→ Itype(t).

Accordingly, we define the semantics of operation oclIn-
State on a given system state σ(M), a given object oid∈
ΣCLASS,c, and a state name s ∈ Itype(OclState) by

I(oclInState:OclAny×OclState→Boolean)(oid, s)
def
=



true, if oid ∈ ΣACTIV E,c∧s ∈ Stayc
∧ s ∈ σCONF,c(oid),

false, if oid ∈ ΣACTIV E,c∧s ∈ Stayc
∧ s �∈ σCONF,c(oid),

⊥, if oid �∈ ΣACTIV E,c,
⊥, if oid ∈ ΣACTIV E,c∧s �∈ Stayc∪{⊥},
⊥, if s=⊥ .

Note here that oclInState returns ⊥ when oid is
a passive object or when state s is not defined in State-
chart Stayc of an active class c ∈ ACTIV Ec. Alterna-
tively, we could have chosen to return false instead in
these cases. Neither the UML 1.5 standard nor the OCL
2.0 proposal give any information about this issue.

4.3 Dynamic semantics

We can now consider sequences of system states (or:
traces). At this point, we have to decide and formally
define a valid trace, i.e., when a new system state is ap-
pended to the trace at execution time. In the context of
checking OCL constraints, we are, for instance, not inter-
ested in every single attribute value change that occurs
during execution of an operation. Instead, we are inter-
ested in system states in which an operation has been
completed or a signal has been consumed.
In the simplest case, e.g., when (an implementation

of) the system is executed on a single CPU, there is a clear
temporal order of operations. But when (the implementa-
tion of) the system is distributed, we have a partial order
between configurations of different objects. This problem
can be treated in an ideal case by introducing a global
clock that allows for a global view on the system.

Definition 12. (trace)
A well-defined system state sequence called trace for an
instantiation of an extended object modelM is an (infi-
nite) sequence of system states as defined in Definition 11,

trace(M)
def
= 〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉

The first trace element σ(M)[0] denotes the initial system
state. Given a system state σ(M)[i], i ∈ N0, the next sys-
tem state σ(M)[i+1] is added to the trace when for at least
one object in ΣCLASS[i]7 one of the following happens at
execution time:

– an operation is called,
– an operation has terminated, or
– a new Statechart state configuration is reached.

In the following, let

X[i] =
⋃

op∈OPc

σOP,c(oid, op)[i]

denote the operation identifier set of a given object oid
in a system state σ(M)[i], i ∈ N0. We presume that the
following restrictions apply to traces:

1. Two adjacent sequence elements may differ in at most
one begin or end (i.e., termination) of operation exe-
cution per object .
More formally, for each pair of adjacent system states
σ(M)[i] and σ(M)[i+1] in trace(M), it must hold that

∀c ∈CLASS,∀oid ∈ ΣCLASS,c[i] :
oid ∈ ΣCLASS,c[i+1] =⇒

abs(|X[i]∪X[i+1]|− |X[i]∩X[i+1]|)≤ 1

2. Each operation call occurring in the trace must
eventually be terminated, i.e., for each system state
σ(M)[i], i ∈ N0, it must hold that

∀c ∈ CLASS,∀oid ∈ ΣCLASS,c[i] :
∀execOp ∈X[i] ∃j ∈ N, j > i : execOp �∈X[j]
∧ ∀k ∈ {i, . . . , j} : oid ∈ ΣCLASS,c[k]

The formula above additionally requires that an ob-
ject must not be destroyed when one of its operations
is still executed.

3. Values of operation parameters must not change un-
til termination of the operation. The values of pa-
rameters of kind inout and out may change exactly
when the operation call terminates. Values of pa-
rameters of kind in must not even change at termi-
nation of the operation. For operation return types
t �= OclV oid, the value of the (implicitly defined) re-
sult variable changes from ⊥ to a well-defined value
val(t) ∈ IType(t) when the operation call terminates.

7 In the remainder, we are using the [i]-annotation for the com-
ponents and functions defined in σ(M)[i], i ∈ N0, correspondingly.

176 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

Traces as defined above should be seen as a rather
general approach to capture those parts of the system
runtime information that is necessary to reason about
(sequences of) system states.

When to Check Invariants. In addition to checking in-
variants for all objects that exist in the initial state
σ(M)[0], we require to check invariants on an object each
time when the object status changes, i.e., we evaluate
invariants for object oid ∈ ΣCLASS,c[i] at location i of
trace(M), i≥ 1, when it holds that

oid �∈ΣCLASS,c[i−1] ∨ // new object
X[i] �=X[i−1] ∨

σCONF,c(oid)[i] �=σCONF,c(oid)[i−1].

The first condition states that the object has been newly
created. Note that this coincides with an operation call of
some other object. This is considered in the second condi-
tion, i.e., the callee object’s setX[i] differs fromX[i−1] be-
cause of an operation call. Operation termination is cap-
tured analogously by that condition. The third condition
ensures that invariants are also checked when the state
configuration of an active object changes. This condition
is necessary, as not every configuration change is due to
operation calls. In UML Statecharts, so-called time events
and change events can be specified attached to transi-
tions, e.g., after(1 sec) or when(value > 100). Those
observers are permanently checking for the condition to
become true and then raise an internal event to trigger
the corresponding transition in the next RTC-step. Thus,
a new Statechart configuration can also be entered with-
out any operation call. Similarly, signals consumed in an
RTC-step also cause a new Statechart configuration to be
entered.

4.4 Time in UML

The current UML standard does not have an inherent
notion of time. This has been investigated by different
groups for the design of time-dependent systems, e.g.,
RT-UML [13], UML-RT based on ROOM [40], and UML
Profile for Scheduling, Performance and Time [25].
The UML 1.5 standard leaves several issues open that

inhibit a unique formal definition for the dynamic seman-
tics of UML Statecharts. E.g., there is no particular dis-
patching policy defined, and it is not clear which event
is selected next from the event queue to trigger the next
RTC-step within the Statechart. Studying the numerous
publications on formal semantics of UML Statecharts, it
can be observed that none of these covers all concepts of
the extensive syntax of UML Statecharts. An overview is,
for instance, given in [2]. Nevertheless, it is often not ne-
cessary to regard the whole syntax of UML Statecharts
in a specific modeling approach; the sublanguage and
the dynamic semantics for the specific context must be
clearly identified. Thus, a precise modeling approach that

makes use of UML Statecharts must still additionally de-
fine a formal dynamic semantics, either by referring to an
existing one or defining a new one.
In our work, we use a timed variant of syntactically

restricted UML Statecharts. Basically, we neglect some
pseudo-state concepts (e.g., synch states) and do not al-
low transitions to cross borders of And-states. Further-
more, we annotate operations in Class Diagrams by oper-
ation times. This is possible with standard UML means
by a stereotyped note attached to an operation (cf. the
UML Language User Guide [3, p. 324]). Another, though
non-standard, way is to simply attach a time or timing
interval directly to the operation as shown in Fig. 3.
A time expression attached to an operation in such

ways specifies the operation’s time complexity, typically
the minimal/maximal time of expected completion of an
operation execution. Such specifications can be used in
different ways, e.g., the resulting running system can be
compared with the asserted times specified in the model.
Alternatively, by adding up (asserted or actual) opera-
tion times, compound times of entire transactions can be
computed. Dynamic semantics of our Statechart variant
(that takes such operation times into account) is given
by a mapping to I/O-Interval Structures as briefly intro-
duced in Sect. 3.2. As the approach is similar to other
works, e.g., [10, 24], we do not go into further details here.
When UML Statecharts are equipped with time, sys-

tem state traces as given by Definition 12 must be ex-
tended to capture timing information as well. In this
context, the UML Profile for Scheduling, Performance
and Time provides a variety of timing concepts [25, Chap-
ter 5]. In particular, timing mechanisms by means of
a stereotype � RTclock� can be introduced together
with appropriate tagged values, e.g., RTresolution.
Progress of time is usually measured by counting the
number of expired cycles of a strictly periodic reference
clock . This results in a discretization of time, i.e., dis-
tinct physical instants might be associated with the same
clock instant when they are temporally ‘too close’ to
each other. Therefore, a sufficient resolution of the refer-

Fig. 3. Operations specified with execution times, (a) in standard
UML notation using structured text, and (b) our shorthand

notation

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 177

ence clock must be chosen for the particular model under
investigation.
We assume in the following that a system-wide refer-

ence clock is defined together with a known resolution.
The duration between two time instants is referred to as
one time unit . This leads to an Integer-based notion of
unit time delay, i.e., each time instant can be represented
by an Integer value (in contrast to dense time, where time
instants are represented by Real values). A trace in such
a timed model is then defined as follows.

Definition 13. (time-based trace)
A time-based trace for an instantiation of an extended ob-
ject modelM is an (infinite) sequence of system states,

trace(M)
def
= 〈 σ(M)[0], σ(M)[1], . . . , σ(M)[i], . . . 〉,

where each σ(M)[i], i ∈ N0, represents the system state i
time units after start of execution. In particular, σ(M)[0]
denotes the initial system state.

Note that we still require the same properties as in
common traces, in particular, only one operation call per
object is permitted in consecutive elements of the trace.
This can be guaranteed by assuming that execution of an
operation takes at least one time unit. System states of
time-based traces can be compared to clocked states of
runs for Interval Structures as described in Sect. 3.2 and
Table 1.

5 UML Profile for real-time constraints with
OCL

The integration of Statechart states into the formal model
for OCL expressions allows to extend OCL towards spe-
cification of constraints that regard the state-related dy-
namic behavior of a model.
For example, consider again the manufacturing sce-

nario with classes Machine and InputBuffer. Assume
that class InputBuffer has an associated Statechart in
which state configuration Set{Loading} represents that
an item is currently being loaded into the buffer. In such
simple cases, we allow to omit the set-notation and may
simply specify Loading to denote a configuration.
To ensure production progress, we require that items

have to periodically arrive at the input buffer within 400
time units. With other words, state Loading is always
reached again within 400 time units. In our temporal
OCL extension, an according OCL constraint is

context InputBuffer inv:

self@post(1,400)->forAll(trace |

trace->includes(Loading))

Operation post(a,b) basically returns the set of all
possible traces of state configurations starting in the
current system state. Parameters a and b are timing
delimiters that specify the timing interval to consider.
In the example, this is the next 400 time units, i.e.,

post(1,400) returns a set of traces, where each trace
is a sequence of 400 elements. The elements of a trace
in turn are state configurations (formally, we restrict
on the component ΣCONF of trace σ(M) as defined in
Definition 12). In the example, state Loading already
specifies a state configuration, such that we can apply
p->includes(Loading) to require that trace p must in-
clude state configuration Loading.
Further examples can be found in Sect. 6. In the re-

mainder of this section, we define an according language
extension based on the OCL 2.0 proposal by the following
approach.
Syntactically, we first extend the abstract OCL syn-

tax by stereotypes for temporal expressions in Sect. 5.1.
But to support modeling at the user level, a concrete syn-
tax and operations have additionally to be defined for
this extension on layer M1 of the UML 4-layer architec-
ture. Therefore, we add some new production rules to
the concrete syntax grammar of the OCL 2.0 proposal in
Sect. 5.2. Note that we cannot avoid the overlap with the
M1 layer in an OCL Profile, since OCL predefines types
and operations on that level. As the concrete OCL syn-
tax only partly provides the operations that are defined
in OCL expressions, a standard library of predefined OCL
operations is specified in [43, Chapter 6]. Correspond-
ingly, we define operations in the context of temporal
expressions in Sect. 5.3.
Semantically, our proposed state-based temporal OCL

extension makes use of the notion of time-based traces as
given in Definition 13). We describe the according seman-
tic mapping in Sect. 5.4.

5.1 OCL metamodel extensions

The OCL 2.0 proposal distinguishes two subpackages for
its metamodel package Ocl-AbstractSyntax (see Fig. 1);
the OCL type metamodel describes the predefined OCL
types and affiliated UML types, while theOCL expression
metamodel describes the structure of OCL expressions.

States in OCL. In the OCL type metamodel, the meta-
class for Statechart states is OclModelElementType.
Generally, the metaclass OclModelElementType repre-
sents the types of elements that are ModelElements in the
UMLmetamodel. In that particular case, the model elem-
ents are states (or more precisely, instances of a concrete
subclass of the abstract metaclass State), and the corres-
ponding instance of OclModelElementType on layer M1
is the predefined OCL type OclState.
For each state, there implicitly exists a corresponding

enumeration literal in OclState, i.e., OclState is seen
as an enumeration type on the M1 layer, accumulating
the state names of all Statechart diagrams. As there is
no particular information provided how these enumera-
tion literals are syntactically defined, we require here that
the complete path – excluding the top state – is used
(cf. Definition 4, item 7(c)). The state names along the

178 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

path are syntactically separated by double colons, e.g.,
state N in Fig. 2 becomes the enumeration literal X::B::N.
In anticipation of the concrete syntax changes to be intro-
duced, we identify final Statechart states by the new OCL
keyword FinalState.

Configurations. The building blocks of Statecharts are
hierarchically ordered states. Note that we do not regard
pseudo states (like synch, stub, or history states) in this
context and recall that a composite state is known as
a state that has a set of substates and can be concurrent ,
i.e., consisting of orthogonal regions which in turn are
(composite) states. Simple states are non-pseudo, non-
composite states. To uniquely identify an active state
configuration, it is sufficient to list the comprising simple
states, which we denote as a basic configuration in accor-
dance with Definition 10.
However, several other notions are imaginable in

this context and can be easily adapted, e.g., the ap-
proach of UML 1.5 that takes the whole state tree as
a configuration. For explicit specification purposes, we
might also allow for underspecified configurations to
represent sets of valid configurations. For instance, in
Fig. 2, Set{X::A::J,X::B} could be a valid configura-
tion specification in the sense that it denotes the set of
configurations

{ Set{X::A::J,X::B::M},

Set{X::A::J,X::B::N},

Set{X::A::J,X::B::FinalState} }

Temporal Expressions. In the OCL expression meta-
model, we introduce a new kind of operation call, i.e.,
stereotype TemporalExp represents a temporal expres-
sion that refers to traces of state configurations (cf.
Fig. 4)8. It is the abstract superclass of stereotypes

8 For our stereotype definitions, we make use of the graphi-
cal notation suggested in the official UML 1.5 specification [26,

Fig. 5. Parts of the OCL expression metamodel with stereotypes for traces

Fig. 4. Stereotypes for temporal expressions

PastTemporalExp for past-oriented and FutureTem-
poralExp for future-oriented temporal expressions, re-
spectively. We need these two stereotypes in order to
define a semantics for corresponding temporal operations
(see Sect. 5.4).

Trace Literals. As we want to reason about traces by
means of states and configurations, we also need a mech-
anism to explicitly specify traces with annotated tim-
ing intervals by literals. We therefore define stereotypes

Sects. 3.17, 3.18, 3.35, and 4.3]. In Figs. 4 and 5, metaclasses taken
from the OCL 2.0 metamodel proposal are marked by gray boxes.

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 179

TraceLiteralExp and TraceLiteralPart as illustrated
in Fig. 5. The following restrictions apply here, leaving
out the corresponding well-formedness rules by means of
OCL for reasons of brevity.

1. The collection kind of stereotype TraceLiteralExp is
CollectionKind::Sequence.

2. The type associated with a TraceLiteralPart must
be Set(OclState). Note that we do not require ex-
plicit specification of a set when a state configuration
can already be specified by one state only. In this case,
type OclState is implicitly casted to Set(OclState).

3. Each TraceLiteralPart has a lower bound and an
upper bound.

4. Lower bounds must evaluate to non-negative Integer
values.

5. Upper bounds must evaluate to non-negative Integer
values or to the String ′inf′ (for infinity). In the first
case, the upper bound value must be greater or equal
to the corresponding lower bound value.

5.2 Concrete syntax changes

Having defined new classes for temporal expressions on
the abstract syntax level, modelers are not yet able to
use these extensions, as they specify OCL expressions by
means of a concrete syntax. In Chapter 4 of the OCL 2.0
metamodel proposal, a concrete syntax is given that is
compliant with the current OCL standard. The new con-
crete syntax is defined by an attributed grammar with
production rules in EBNF that are annotated with syn-
thesized and inherited attributes as well as disambiguat-
ing rules. Inherited attributes are defined for elements
on the right hand side of production rules. Their values
are derived from attributes defined for the left hand side
of the corresponding production rule. For instance, each
production rule has an inherited attribute env (environ-
ment) that represents the rule’s namespace. Synthesized
attributes are used to keep results from evaluating the
right hand sides of production rules. For instance, each
production rule has a synthesized attribute ast (abstract
syntax tree) that constitutes the formal mapping from
concrete to abstract syntax. Disambiguating rules allow
to uniquely determine a production rule if there are syn-
tactically ambiguous production rules to choose from.
In the following, we present some additional produc-

tion rules for the concrete syntax of the OCL 2.0 meta-
model proposal. A mapping to the extended abstract
OCL syntax is provided for each new production rule.

OperationCallExpCS9

Eight different forms of operation calls are already de-
fined in the OCL 2.0 concrete syntax. In particular, it is

9 All non-terminals are postfixed by ‘CS’ (short for Concrete
Syntax) to better distinguish between concrete syntax elements
and their abstract syntax counterparts.

distinguished between infix and unary operations, oper-
ation calls on collections, and operation calls on objects
(with or without ‘@pre’ annotation) or whole classes.
We additionally introduce rule [J] for temporal operation
calls and list the synthesized and inherited attributes for
syntax [J] below. Disambiguating rules for syntax [J] are
defined in the specific rules for temporal expressions.

[A] OperationCallExpCS ::= OclExpressionCS[1]

simpleNameCS OclExpressionCS[2]

[B] OperationCallExpCS ::= OclExpressionCS ’->’

simpleNameCS ’(’ argumentsCS? ’)’

[C] OperationCallExpCS ::= OclExpressionCS ’.’

simpleNameCS ’(’ argumentsCS? ’)’

...

[J] OperationCallExpCS ::= TemporalExpCS

Abstract Syntax Mapping:

-- (Re)type the abstract syntax tree variable ’ast’

OperationCallExpCS.ast : OperationCallExp

Synthesized Attributes:

-- Build the abstract syntax tree

[J] OperationCallExpCS.ast = TemporalExpCS.ast

Inherited Attributes:

-- Derive the namespace stored in variable ’env’

[J] TemporalExpCS.env = OperationCallExpCS.env

TemporalExpCS
A temporal expression is either a past- or future-oriented
temporal expression.

[A] TemporalExpCS ::= PastTemporalExpCS

[B] TemporalExpCS ::= FutureTemporalExpCS

We leave out the rather simple attribute definitions
here. Basically, the abstract syntax mapping defines
TemporalExpCS.ast to be of type TemporalExp, the
synthesized attribute ast is built from the right hand
sides, and the inherited attribute env is derived from
TemporalExpCS.

FutureTemporalExpCS
A future-oriented temporal expression is a kind of opera-
tion call. We additionally have to introduce the operator
‘@’ to indicate a subsequent temporal operation. Note
that an operation call in the abstract syntax has a source,
a referred operation, and operation arguments, so the ab-
stract syntax tree ast must be built with corresponding
synthesized attributes.

FutureTemporalExpCS ::= OclExpressionCS ’@’

simpleNameCS ’(’ argumentsCS? ’)’

Abstract Syntax Mapping:

FutureTemporalExpCS.ast : FutureTemporalExp

Synthesized Attributes:

FutureTemporalExpCS.ast.source= OclExpressionCS.ast

FutureTemporalExpCS.ast.arguments= argumentsCS.ast

FutureTemporalExpCS.ast.referredOperation=

OclExpressionCS.ast.type.lookupOperation(

simpleNameCS.ast,

if argumentsCS->notEmpty()

180 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

then argumentsCS.ast->collect(type)

else Sequence{}

endif)

Inherited Attributes:

OclExpressionCS.env = FutureTemporalExpCS.env

argumentsCS.env = FutureTemporalExpCS.env

Disambiguating Rules:

-- Operation name must be a (future-oriented)

-- temporal operator.

[1] Set{’post’}->includes(simpleNameCS.ast)

-- The operation signature must be valid.

[2] not FutureTemporalExpCS.ast.

referredOperation.oclIsUndefined()

If other temporal operations than @ post(a,b) need
to be introduced at a later point of time, only disam-
biguating rule [1] has to be modified correspondingly. For
instance, next() might be introduced as a shortcut for
post(1,1), or post() without any parameters could be
the shortcut for post(1,’inf’).
A corresponding extension to past temporal opera-

tions can be easily introduced, e.g., by means of the op-
eration name pre(). In the remainder of this article, we
only focus on FutureTemporalExpCS. Note that pre and
post as operation names cannot be mixed up with pre-
and postcondition labels or the @ pre time marker, be-
cause operations require subsequent brackets.

TraceLiteralExpCS
Trace literal expressions are a special form of collection
literal expressions, as they represent sequences of explic-
itly specified configurations. In order to allow interval def-
initions for trace specifications, we have to specify some
new production rules. We first introduce a new chain pro-
duction rule to provide an alternative to common collec-
tion literal expressions.

[A] CollectionLiteralExpCS ::=

CollectionTypeIdentifierCS

’{’ CollectionLiteralPartsCS? ’}’

[B] CollectionLiteralExpCS ::= TraceLiteralExpCS

Abstract Syntax Mapping:

CollectionLiteralExpCS : CollectionLiteralExp

Synthesized Attributes:

...

[B] CollectionLiteralExpCS.ast.parts =

TraceLiteralExpCS.ast.parts

[B] CollectionLiteralExpCS.ast.kind =

TraceLiteralExpCS.ast.kind

Inherited Attributes:

...

[B] TraceLiteralExpCS.env =

CollectionLiteralExpCS.env

In syntax [A], CollectionTypeIdentifierCS distin-
guishes between literals for collections (Set, OrderedSet,
Sequence, and Bag), and production rule Collection-
LiteralPartsCS collects a number of expressions. Op-
tion [B] is added to provide a notation for traces. The

collection kind of traces is CollectionKind::Sequence
by default, as specified below.

TraceLiteralExpCS ::= ’Trace’

’{’ TraceLiteralPartsCS ’}’

Abstract Syntax Mapping:

TraceLiteralExpCS.ast : TraceLiteralExp

Synthesized Attributes:

TraceLiteralExpCS.ast.parts =

TraceLiteralPartsCS.ast

TraceLiteralExpCS.ast.kind =

CollectionKind::Sequence

Inherited Attributes:

TraceLiteralPartsCS.env = TraceLiteralExpCS.env

We here introduce the new keyword Trace to denote
trace specifications, but note that no new kind of collec-
tion type is necessary on the metalevel, as we treat traces
simply as sequences.

TraceLiteralPartCS
The production rule TraceLiteralPartsCS assembles
the individual elements of a trace specification. It is de-
fined correspondingly to the already existing production
rule for collection literal parts, such that definitions of
ast and env are left out for reasons of brevity.

TraceLiteralPartsCS[1] ::= TraceLiteralPartCS

(’,’ TraceLiteralPartsCS[2])?

For each trace literal part, a timing interval may be
associated, which specifies how long a configuration is
active. Intervals are of the syntactical form [a,b], with
a evaluating to a non-negative Integer, and b either a non-
negative Integer with b≥ a or the String literal ’inf’ (cf.
well-formedness rules of TraceLiteralExp in Sect. 5.1).
If only one delimiter is specified, this is taken as the up-
per bound, and the lower time bound is implicitly set to
zero. If no interval is specified at all, the bounds are im-
plicitly set to [0,’inf’]. The according grammar rule is
as follows.

TraceLiteralPartCS ::= OclExpressionCS[1]

(’[’ (OclExpressionCS[2] ’,’)?

(OclExpressionCS[3] | ’inf’) ’]’

)?

Abstract Syntax Mapping:

TraceLiteralPartCS.ast : TraceLiteralPart

Synthesized Attributes:

TraceLiteralPartCS.ast.item =

OclExpressionCS[1].ast

TraceLiteralPartCS.ast.lowerBound =

if OclExpressionCS[2]->notEmpty()

then OclExpressionCS[2].ast

else ’0’

endif

TraceLiteralPartCS.ast.upperBound =

if OclExpressionCS[3]->notEmpty()

then OclExpressionCS[3].ast

else ’inf’

endif

Inherited Attributes:

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 181

OclExpressionCS[1].env = TraceLiteralPartCS.env

OclExpressionCS[2].env = TraceLiteralPartCS.env

OclExpressionCS[3].env = TraceLiteralPartCS.env

CollectionTypeCS
To allow trace specifications as part of variable definitions
and provide a means for explicit typing on the concrete
syntax level, we need to add a rule for explicit referencing
to a type called Trace. We therefore add an alternative
production rule in the context of collectionTypeCS.

[A] collectionTypeCS ::= collectionTypeIdentifierCS

’(’ typeCS ’)’

[B] collectionTypeCS ::= ’Trace’

Abstract Syntax Mapping:

typeCS.ast : CollectionType

Synthesized Attributes:

...

[B] collectionTypeCS.ast.oclIsKindOf(SequenceType)

[B] collectionTypeCS.ast.elementType.

oclIsKindOf(SetType)

[B] collectionTypeCS.ast.elementType.elementType.

oclIsKindOf{OclState)

Inherited Attributes:

-- none for [B]

5.3 Standard library operations

In our previous work [18], we introduced two new built-
in types called OclConfiguration and OclPath on the
M1 layer to handle temporal expressions. We present an
alternative approach that avoids to introduce new types
and instead operates on the already existing OCL collec-
tion types.

Configuration Operations. For configurations as a special
form of sets of states, we have to elaborate on opera-
tions applicable to sets that return collections since the
resulting collection can be an invalid configuration with
an arbitrary set of states. Nevertheless, most of the ex-
isting general collection operations [43, Sect. 6.5.1] can
be directly applied to configurations. These are: =, <>,
size(), count(), isEmpty(), notEmpty(), includes(), in-
cludesAll(), excludes(), and excludesAll(). In addition,
iterator operations exists(), forAll(), any(), one() are ap-
plicable as well [43, Sect. 6.6.1]. Other OCL set operations
applied to configurations, e.g., union() and intersection(),
might result in arbitrary sets of states rather than in valid
configurations. We allow such operations, but explicitly
mention that they have to be used with care.

Trace Operations. Similar to configurations, many of
the existing OCL sequence operations can immediately
be applied to traces of configurations. These operations
are: =, <>, size(), isEmpty(), notEmpty(), includes(),
includesAll(), excludes(), excludesAll(), subSequence(),
prepend(), first(), at(), exists(), forAll(), any(), one().
Operations last() and append() can be applied to traces

of finite length only. Note that some sequence operations
may result in invalid traces, e.g., select() and collect().

Additional Operations for OclAny. We introduce an op-
eration oclInConf() that checks for an active config-
uration. Given a system state σ(M), an object oid ∈
ΣCLASS,c, and a set of states cfg ∈ Itype(Set(OclState)),
the semantics of operation oclInConf() is then defined
by function

I(oclInConf :OclAny×Set(OclState)→Boolean)(oid, cfg)
def
=



true, if oid ∈ ΣACTIV E,c∧ cfg ∈Bc
∧ cfg = σCONF,c(oid),

false, if oid ∈ ΣACTIV E,c∧ cfg ∈Bc
∧ cfg �= σCONF,c(oid),

⊥, if oid �∈ ΣACTIV E,c,
⊥, if oid ∈ ΣACTIV E,c∧ cfg �∈Bc∪{⊥},
⊥, if cfg =⊥

In the definition above, Bc denotes the set of basic con-
figurations of Statechart SCc (based on Definition 10).
The definition does not consider underspecified configu-
rations as discussed in Sect. 5.1. We here only describe
the idea how to achieve the complete formal semantics.
First, we additionally define the set UnderSpecifiedc
of valid underspecified configurations for a given State-
chart SCc. Then, we provide a mapping basicConfsc :
UnderSpecifiedc→ Bc that gives for each underspeci-
fied configuration the according set of basic configura-
tions. Finally, the conditions of the formal semantics are
adjusted, e.g., UnderSpecifiedc replaces Bc and con-
dition cfg = σCONF,c(oid) is replaced by the condition
∀b ∈ basicConfsc(cfg) : b ∈ σCONF,c(oid).
We also introduce operation post(a,b) as a new tem-

poral operation of OclAny and allow the @-operator to be
used only for such temporal operations. @ post(a,b) re-
turns a set of possible future traces in the interval [a,b].
First, all possible traces that start with the current con-
figuration are regarded, and then the timing interval [a,b]
determines the subtraces that have to be returned by the
operation. The result has to be a set of traces, as there
are typically different orders of executions possible in the
future steps of a Statechart. Note that in an actual exe-
cution of a Statechart there is of course only exactly one
of the possible traces selected. An informal semantics of
post(a,b) is given as follows.

OclAny.post(a:Integer,b:OclAny):

Set(Sequence(Set(OclState)))

pre: a >= 0 and

((b.oclIsTypeOf(Integer) and b >= a) or

(b.oclIsTypeOf(String) and b = ’inf’))

The operation returns a set of possible future state

configuration traces in the interval [a,b] including

the configurations of time points a and b.

Additional operations, such as @ post(a:Integer)or
@ next(), can be easily added [18]. These are operations
basically derived from @ post(a,b).

182 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

5.4 Semantics of temporal expressions

In this subsection, we define a formal semantics of oper-
ation post(a,b). We make use of the nested collection

type TRACE
def
= Sequence(Set(OclState)).

Given a system state σ(M)[i] at time instant i, an ob-
ject oid ∈ ΣCLASS,c, an integer value a ∈ Itype(Integer),
and a value b ∈ Itype(Integer)∪{∞}. For parameter b,
we assume here that the string ’inf’ defined in the con-
crete syntax is directly mapped to∞. For the symbol∞,
it holds that

∀i ∈ N0 : i <∞ ∧ i+∞=∞ ∧ i−∞=∞.

A trace traceoid,a,b[i] ∈ Itype(TRACE)) for object oid
that starts at time i+a and ends at time i+ b−a is then
defined by

traceoid,a,b [i]
def
= 〈cfg0, . . . , cfgb−a〉,

where ∀j ∈ {0, . . . , b−a} :

cfgj ∈ σCONF (oid)[i+j]

Each traceoid,a,b [i] is interpreted as a possible future
execution path. It is just a possible trace, as is is not de-
termined at time i whether cfgj , j ∈ {1, . . . , b−a}, will
be reached at the later point of time i+ j.
In the case that b=∞, a trace traceoid,a,b [i] is of in-

finite length. An explicit instantiation of such traces as
part of the model is therefore not intended. However,
it is possible to give according formal specifications by
means of temporal logics, as illustrated below. Temporal
logics specifications can then be directly used by model
checkers.
Denoting the set of all possible future execution paths

by {traceoid,a,b [i]}, the semantics of operation post(a,b)
is then defined by

I(post:OclAny×Integer×OclAny→Set(TRACE))(oid, a, b)
def
=



{ traceoid,a,b [i] }, if oid ∈ΣACTIV E,c
∧ a≥ 0 ∧ b≥ a,

⊥, if oid �∈ΣACTIV E,c,
⊥, if a < 0 ∨ a= ⊥

∨ b < a ∨ b= ⊥ .

Table 2. Mapping temporal OCL expressions to CCTL formulae

Temporal OCL Expression CCTL Formula

inv: obj@post(a,b)→exists(p | p→forAll(c | expr)) AG EG[a,b](cctlExpr)
inv: obj@post(a,b)→exists(p | p→exists(c | expr)) AG EF[a,b](cctlExpr)

inv: obj@post(a,b)→exists(p | p→includes(cfg)) AG EF[a,b](cctlCfg)

inv: obj@post(a,b)→forAll(p | p→forAll(c | expr)) AG AG[a,b](cctlExpr)

inv: obj@post(a,b)→forAll(p | p→exists(c | expr)) AG AF[a,b](cctlExpr)

inv: obj@post(a,b)→forAll(p | p→includes(cfg)) AG AF[a,b](cctlCfg)

In the remainder of this section, we provide a map-
ping from instances of FutureTemporalExpCS to CCTL
formulae as described in Sect. 3.2.
By definition, OCL invariants for a given class must

be true for all its instances at any time [43, Sect. 2.3.3].
In the context of (time-based) traces, this means that the
invariant expression must be true on all possible traces
at each position. Consequently, corresponding CCTL for-
mulae have to start with the AG operator (‘On All paths
Globally’), i.e., the expression following AG must be true
on all possible future execution paths at all times. Table 2
lists OCL operations that directly match to CCTL ex-
pressions. In that table, expr denotes a Boolean OCL
expression. cctlExpr is the equivalent Boolean expres-
sion in CCTL syntax. cfg denotes a valid configuration
and cctlCfg is the corresponding set of states in CCTL
syntax. p and c are iterator variables for traces and con-
figurations, respectively.
Consider, for example, the last row of Table 2. When

taking the particular interval [1,100] and a configura-
tion from Fig. 2 for cfg, the resulting OCL expression is:

inv: obj@post(1,100)->forAll(trace |

trace->includes(Set{X::A::L,X::B::N}))

We read that formula as: At any time, given the cur-
rent configuration of the Statechart associated to object
obj, all future traces p starting from the current configu-
ration reach – at a certain point of time within the next
100 time units – the configuration represented by Set{
X::A::L,X::B::N}.
Note that with the CCTL formulae of Table 2 we can

only investigate models with ‘persistent’ active objects,
i.e., corresponding objects must exist from the initial sys-
tem state onwards during the complete execution time.
Otherwise, we have to determine the maximal number
of created objects for a model in advance. Only then
we are able to build a corresponding set of communicat-
ing finite state machines by means of I/O-Interval Struc-
tures for each object. Dynamic object creation and dele-
tion has to be explicitly handled by additional variables
within the Interval Structures, e.g., by a Boolean variable
obj1.isAlive for an object obj1. The value of that vari-
able is then additionally checked in the CCTL formulae
of the mapping. E.g., in the example above, the resulting
CCTL formula is

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 183

AG(obj1.isAlive→
A(obj1.isAlive U[1,100]
(!obj1.isAlive | (obj1.isAlive &

obj1.S_X_A = L &

obj1.S_X_B = N)

)))

Formapping trace literal expressions, let e1, e2, . . . , en
be the trace literal parts of TraceLiteralExpCS with
timing intervals [ai, bi], 1≤ i≤ n−1. The temporal OCL
expression

inv: obj@post(a,b)-> includes (

Sequence {e1[a1, b1], e2[a2, b2], . . . , en})
maps to CCTL applying the strong until temporal oper-
ator (i.e., expr1 U[a,b] expr2 requires that expr1 must be
true between a and b time units until expr2 becomes true)
as follows:

AG[a,b] EF(E(e1 U[a1,b1] E(e2 U[a2,b2] E(...
E(en−1 U[an−1,bn−1] en)...))))

Though we have given only some examples here,
more complex formulae can be easily derived from the
above.

6 Example

As a case study, we have applied our temporal OCL ex-
tension in the context of MFERT. MFERT stands for
‘Modell der FERTigung’ (German for: Model of Manufac-
turing) and provides means for specification and imple-
mentation of planning and control assignments in manu-
facturing processes [38]. In MFERT, nodes represent ei-
ther storages for production elements or production pro-
cesses. Production Element Nodes (PENs) are used to
model logical storages of material and resources and are
drawn as annotated shaded triangles. Production Process
Nodes (PPNs) represent logical locations where material
is transformed and are drawn as annotated rectangles.
PENs and PPNs are composed to form a bipartite graph
connected by directed edges, which define the flow of pro-
duction elements.
MFERT graphs establish both a static and a dynamic

view of a manufacturing system. On the one hand, the
nodes are statically representing the participating pro-
duction processes and element storages. On the other
hand, edges represent the dynamic flow of production
elements (i.e., material and resources) within the manu-
facturing system.
A sample MFERT graph is shown in Fig. 6, where

transportation of items by means of automated guided
vehicles (AGVs) between processing steps is illustrated.
This is a small outtake of a model that is composed of dif-
ferent manufacturing stations and transport vehicles that
transport items between stations.
In MFERT, processing is specified by means of finite

state machines that are associated with PPNs. Although
several variations to formally define the behavior of PPNs

Fig. 6. Transporting Items between Machine Buffers with
Automated Guided Vehicles (AGVs)

are presented in literature10, we focus in our work on
UML Statecharts. A corresponding profile for MFERT
can be found in [16, 17].
The UML Statechart in Fig. 7 shows parts of the be-

havior specification of PPN Transporting – details of the
negotiation part for accepting transportation orders are
left out here, as we want to concentrate on temporal
requirements for performing transportations. The trans-
port part basically consists of a chain of activities to
perform – an instance of PPN Transporting is thus con-
trolling the activities of an AGV object. The activities
are initiated by operation calls on AGVs, such as move(),
load(), and unload().
Recall that we allow to associate (estimated) execu-

tion times to these operations in class diagrams, as shown

10 E.g., Quintanilla uses a graphical representation called interac-
tion diagrams and formally defines them in [29].

Fig. 7. Transporting Statechart

184 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

in Sect. 4.4. E.g., operations load() and unload()might
take between 3 and 5 time units, while operation move()
might take between 20 and 50 time units (depending on
distances and the need of detours to avoid collisions).
We now specify some requirements, provide corres-

ponding OCL expressions, and start with a non-temporal
constraint that makes use of operation oclInConf().
We want to specify that the Statechart must never

be in an accepting state in the negotiation part while
it is performing a transport. This can be expressed by
excluding that states WaitingForAcknowledgement and
Performing are both active at the same time. An accord-
ing OCL constraint is

context Transporting inv:

not self.oclInConf(

Set{Negotiator::WaitingForAcknowledgement,

Transport::Performing}

)

Note that the configuration employed above is an un-
derspecified configuration, as state Performing is a com-
posite state (cf. Sect. 5.1). Such a notation is a useful
shortcut, and in this case it represents a set of four ba-
sic configurations. The corresponding CCTL expression
is expressed by

AG !(transporting_negotiator =

waitingForAcknowledgement

& (transporting_transport = movingToLoad |

transporting_transport = loading |

transporting_transport = movingToUnload |

transporting_transport = unloading)

)

Next, we require that each item that is loaded must
be unloaded within 120 time units. In the context of PPN
Transporting, the corresponding temporal OCL invari-
ant may be

context Transporting inv:

self.oclInState(Transport::Performing::Loading)

implies

self@post(1,120)->forAll(trace |

trace->exists(conf:Set(OclState) |

conf->includes(Transport::Performing::

Unloading)

))

In the case that we do not consider dynamic creation
and deletion of objects, a corresponding CCTL formula is

AG(transporting_transport = loading→
AF[1,120](transporting_transport = unloading))

To ensure production progress, we require that a trans-
porting object is not idle for too long, e.g., after at most
400 time units it has to again load an item. Note here
that it is not sufficient to specify that state Idle will
eventually be left within 400 time units, as leaving state
Idlemay also be due to a movement to vacate a position.
Thus, a corresponding OCL constraint is, e.g.,

context Transporting inv:

self@post(1,400)->forAll(trace |

trace->exists(conf:Set(OclState) |

conf->includes(Transport::Performing::

Loading)))

The resulting CCTL formula can directly be derived
from Table 2. For further readings, more examples can be
found in [16, 19].
To investigate the potential for domain-independent

application of our temporal OCL approach, we have
mapped the general property patterns identified by Dwyer
et al. [14] to corresponding temporal OCL expressions [20].
It turned out that only some minor extensions are neces-
sary to cover all property patterns. First, a new opera-
tion needs to be introduced that is particularly applica-
ble to traces, i.e., operation startsWith(Sequence(Set
(OclState))):Boolean that checks for a matching sub-
sequence of configurations. And second, specification
means for trace literal parts have to be extended. A trace
literal part becomes a logical expression with configura-
tions as operands and unary and binary operators (such
as not, and, or) as connectives.

7 Summary and conclusion

Though Statechart states can be already referred to
in OCL syntax, their semantics in the context of OCL
expressions has not been sufficiently regarded so far.
To overcome this, we formalized UML Statechart con-
figurations in the first part of this article and added
them to Richters’ formal object model. This builds the
foundation for a semantics of OCL expressions that
make use of Statechart states and predefined operation
oclInState(). We see this work as one important issue
to complete the formal semantics description of the OCL
2.0 proposal. Nevertheless, a clear definition of the OCL
message concept is still missing.
We have presented a UML Profile for the specification

of state-oriented real-time constraints on the basis of the
latest OCL 2.0 metamodel proposal. Our approach is the
first one that extends OCL using UML extension mech-
anisms by profiles, i.e., stereotypes, tagged values, and
constraints. The approach demonstrates that an OCL ex-
tension bymeans of a UMLProfile towards temporal real-
time constraints can be seamlessly applied on M2 layer.
Nevertheless, extensions have to be made on the M1 layer
as well in order to enable modelers to use OCL exten-
sions like the temporal one we have proposed here. The
presented extensions are based on a future-oriented tem-
poral logic. We currently also work on the extension to
past-oriented logics.
As an example, we applied our temporal OCL ex-

tensions to MFERT [17]. A semantics is given to both,
MFERT Profile and temporal OCL expressions, by
a mapping to synchronous time-annotated finite state
machines (I/O-Interval Structures) and temporal logics
formulae (CCTL), respectively. This provides a sound ba-
sis for formal verification by Real-Time Model Checking
with the RAVEN model checker [35].

S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints 185

We additionally have implemented an editor for
MFERT [9]. Code generation for I/O-Interval Structures
is currently under implementation. The temporal OCL
extensions as presented here have been integrated into
our OCL parser and type checker [18], which translates
constraints with temporal operations to CCTL formulae.

Acknowledgements. This work receives funding through the DFG
project GRASP within the DFG priority programme 1064 ‘In-
tegration von Techniken der Softwarespezifikation für ingenieur-
wissenschaftliche Anwendungen’ and partial funding through
the DFG Research Centre 614 ‘Selbstoptimierende Systeme des
Maschinenbaus’.
We would like to thank our colleagues from those projects for

many fruitful discussions. In particular, we appreciate the cooper-
ation with Juergen Ruf from Tuebingen University and with Ulrich
Pape from the Heinz Nixdorf Institut, Paderborn.
Additionally, we gratefully thank the anonymous reviewers for

their valuable comments and suggestions, which helped to improve
the initial version of this article.

References

1. Baar, T., Hähnle, R.: An Integrated Metamodel for OCL
Types. In: France, R., Rumpe, B., Bruel, J.-M., Moreira, A.,
Whittle, J., Ober, I. (eds.) Refactoring the UML – In Search
of the Core. Workshop at OOPSLA’2000, Minneapolis, MN,
USA, October 2000

2. v. d. Beeck, M.: A Structured Operational Semantics for UML-
Statecharts. Software and Systems Modeling (SoSyM) 1(2):
130–141, Springer, December 2002

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling
Language User Guide. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1999

4. Bradfield, J., Kuester Filipe, J., Stevens, P.: Enriching OCL
Using Observational mu-Calculus. In: Kutsche, R.-D., Weber,
H. (eds.) Fundamental Approaches to Software Engineering
(FASE 2002), Grenoble, France, LNCS, vol. 2306. Springer,
April 2002, pp. 203–217

5. Casanova,M.,Wallet, T.,D’Hondt,M.:EnsuringQuality ofGe-
ographicDatawithUMLandOCL. In:Evans,A.,Kent,S.,Selic,
B. (eds.) UML2000 –TheUnifiedModelingLanguage. Advanc-
ing the Standard. 3rd International Conference, York, UK, Oc-
tober 2000, LNCS, vol. 1939. Springer, 2000, pp. 225–239

6. Cengarle, M., Knapp, A.: Towards OCL/RT. In: Eriksson,
L.-H., Lindsay, P. (eds.) Formal Methods – Getting IT Right,
International Symposium of Formal Methods Europe, Copen-
hagen, Denmark, LNCS, vol. 2391. Springer, July 2002, pp.
389–408

7. Clark, T., Warmer, J., editors. Object Modeling with the
OCL, LNCS, vol. 2263. Springer, Heidelberg, Germany, Febru-
ary 2002

8. Conrad, S., Turowski, K.: Temporal OCL: Meeting Specifica-
tions Demands for Business Components. In: Siau, K., Halpin,
T. (eds.) Unified Modeling Language: Systems Analysis, De-
sign, and Development Issues. IDEA Group Publishing, 2001,
pp. 151–165

9. Dangelmaier, W., Darnedde, C., Flake, S., Mueller, W., Pape,
U., Zabel, H.: Graphische Spezifikation und Echtzeitverifi-
kation von Produktionsautomatisierungssystemen. In: 4. Pa-
derborner Frühlingstagung 2002, ALB-HNI-Verlagsschriften-
reihe, Paderborn, Germany, April 2002. (in German)

10. David, A., Möller, M., Yi, W.: Formal Verification of UML
Statecharts with Real-Time Extensions. In: Kutsche, R.-D.,
Weber, H. (eds.) 5th International Conference on Fundamen-
tal Approaches to Software Engineering (FASE 2002), April
2002, Grenoble, France, LNCS, vol. 2306. Springer, 2002,
pp. 218–232

11. Demuth, B., Hussmann, H., Loecher, S.: OCL as a Specifica-
tion Language for Business Rules in Database Applications.
In: Gogolla, M., Kobryn, C. (eds.) UML 2001 – The Uni-

fied Modeling Language. Modeling Languages, Concepts, and
Tools. 4th International Conference, Toronto, Canada, Octo-
ber 2001, LNCS, vol. 2185. Springer, 2001, pp. 104–117

12. Distefano, D., Katoen, J.-P., Rensink, A.: On a Temporal
Logic for Object-Based Systems. In: Smith, S.F., Talcott, C.L.
(eds.) Formal Methods for Open Object-Based Distributed
Systems IV (FMOODS’2000), Stanford, CA, USA. Kluwer
Academic Publishers, September 2000, pp. 285–304

13. Douglass, B.P.: Doing Hard Time: Developing Real Time
Systems with UML, Objects, Frameworks, and Patterns.
Addison-Wesley, 2000

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Prop-
erty Specifications for Finite-State Verification. In: Proceed-
ings of the 21st International Conference on Software Engin-
eering (ICSE99), May 1999, Los Angeles, CA, USA. ACM
Press, May 1999, pp. 411–420

15. Ebert, J., Engels, G.: Observable or Invocable Behaviour:
You have to Choose. Technical report, Universität Koblenz,
Koblenz, Germany, 1994

16. Flake, S., Mueller, W.: A UML Profile for MFERT. Tech-
nical report, C-LAB, Paderborn, Germany, March 2002.
http://www.c-lab.de/vis/flake/publications/index.html

17. Flake, S., Mueller, W.: A UML Profile for Real-Time Con-
straints with the OCL. In: Jézéquel, J.-M., Hussmann,
H., Cook, S. (eds.) UML 2002 – The Unified Modeling
Language. Model Engineering, Languages, Concepts, and
Tools. 5th International Conference, Dresden, Germany,
September/October 2002, LNCS, vol. 2460. Springer, 2002,
pp. 179–195

18. Flake, S., Mueller, W.: An OCL Extension for Real-Time Con-
straints. In: Clark, T., Warmer, J. [7], pp. 150–171

19. Flake, S., Mueller, W.: Specification of Real-Time Properties
for UML Models. In: Sprague, R.H., Jr. (ed.) Proceedings of
the 35th Hawaii International Conference on System Sciences
(HICSS-35), Hawaii, USA, IEEE Computer Society, January
2002

20. Flake, S., Mueller, W.: Expressing Property Specification Pat-
terns with OCL. In: The 2003 International Conference on
Software Engineering Research and Practice (SERP’03), Las
Vegas, Nevada, USA, June 2003. CSREA Press, 2003

21. Harel, D.: Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming 8(3): 231–274, June
1987

22. Kleppe, A., Warmer, J.: Extending OCL to include Actions.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000 – The
Unified Modeling Language. Advancing the Standard. 3rd In-
ternational Conference, York, UK, October 2000, LNCS, vol.
1939. Springer, 2000, pp. 440–450

23. Knapman, J.: Statistical Constraints and Verification. In:
Clark, T., Warmer, J. [7], pp. 172–188

24. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML
State Machines and Collaborations. In: Damm, W., Olderog,
E.-R. (eds.) 7th International Symposium on Formal Tech-
niques in Real-Time and Fault Tolerant Systems (FTRTFT
2002), Oldenburg, September 2002, LNCS, vol. 2469. Springer,
2002, pp. 395–416

25. Object Management Group (OMG). UML Profile for Sched-
ulability, Performance, and Time Specification. OMG Docu-
ment ptc/02-03-02, September 2002. http://cgi.omg.org/-
docs/ptc/02-03-02.pdf

26. Object Management Group (OMG). Unified Modeling Lan-
guage 1.5 Specification. OMG Document formal/03-03-01,
March 2003. http://www.omg.org/technology/documents/-
formal/uml.htm

27. Object Management Group Technology Committee, Analy-
sis and Design Platform Task Force. UML 2.0 OCL RFP,
May 2003. http://www.omg.org/techprocess/meetings/-
schedule/UML_2.0_OCL_RFP.html (visited June 7th, 2003)

28. Petersohn, C., Urbina, L.: A Timed Semantics for the STATE-
MATE Implementation of Statecharts. In: Fitzgerald, J.,
Jones, C., Lucas, P. (eds.) Proceedings of 4th Int. Symposium
of Formal Methods Europe (FME’97): Industrial Applications
and Strengthened Foundations of Formal Methods, Septem-
ber 1997, Graz, Austria, LNCS, vol. 1313. Springer, 1997,
pp. 553–572

186 S. Flake, W. Mueller: Formal semantics of static and temporal state-oriented OCL constraints

29. Quintanilla de Simsek, J.: Ein Verifikationsansatz für eine
netzbasierte Modellierungsmethode für Fertigungssysteme.
PhD thesis, Heinz Nixdorf Institute, HNI-Verlagsschriftenrei-
he, Band 87, Paderborn, Germany, 2001. (in German)

30. Ramakrishnan, S., McGregor, J.: Extending OCL to Sup-
port Temporal Operators. In: 21st International Conference
on Software Engineering (ICSE99), Workshop on Testing Dis-
tributed Component-Based Systems, Los Angeles, CA, USA,
May 1999

31. Richters, M.: A Precise Approach to Validating UML Models
and OCL Constraints. PhD thesis, Universität Bremen, Bre-
men, Germany, 2001

32. Richters, M., Gogolla, M.: A Metamodel for OCL. In: France,
R., Rumpe, B. (eds.) UML 1999 – The Unified Modeling
Language. Beyond the Standard. Second International Confer-
ence, Fort Collins, CO, USA, LNCS, vol. 1723. Springer, 1999,
pp. 156–171

33. Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and
Tools. In: Clark, T., Warmer, J. [7], pp. 42–68

34. Roubtsova, E.E., van Katwijk, J., Toetenel, W.J., de Rooij,
R.C.M.: Real-Time Systems: Specification of Properties in
UML. In: Proceedings of the 7th Annual Conference of the Ad-
vanced School for Computing and Imaging (ASCI 2001). Het
Heijderbos, Heijen, The Netherlands, May 2001, pp. 188–195

35. Ruf, J.: RAVEN: Real-Time Analyzing and Verification En-
vironment. Journal on Universal Computer Science (J.UCS),
Springer, 7(1): 89–104, February 2001

36. Ruf, J., Kropf, T.: Symbolic Model Checking for a Discrete
Clocked Temporal Logic with Intervals. In: Cerny, E., Probst,
D. (eds.) Conference on Correct Hardware Design and Verifi-
cation Methods (CHARME’97), Montreal, Canada. IFIP WG
10.5, Chapman and Hall, October 1997, pp. 146–166

37. Ruf, J., Kropf, T.: Modeling and Checking Networks of Com-
municating Real-Time Systems. In: Conference on Correct
Hardware Design and Verification Methods (CHARME’99),
Bad Herrenalb, Germany. IFIP WG 10.5, Springer, September
1999, pp. 265–279

38. Schneider, U.: Ein formales Modell und eine Klassifikation für
die Fertigungssteuerung – Ein Beitrag zur Systematisierung
der Fertigungssteuerung. PhD thesis, Heinz Nixdorf Insti-
tute, HNI-Verlagsschriftenreihe, Band 16, Paderborn, Ger-
many, 1996. (in German)

39. Schrefl, M., Stumptner, M.: Behavior Consistent Specializa-
tion of Object Life Cycles. ACM Transactions of Software
Engineering and Methodology (ACM TOSEM), ACM Press
11(1): 92–148, January 2002

40. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex
Real-Time Systems. White Paper, 1998.
http://www.rational.com/media/whitepapers/umlrt.pdf

41. Sendall, S., Strohmeier, A.: Specifying Concurrent System Be-
havior and Timing Constraints Using OCL and UML. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001 – The Unified Mod-
eling Language. Modeling Languages, Concepts, and Tools.
4th International Conference, Toronto, Canada, October 2001,
LNCS, vol. 2185. Springer, 2001, pp. 391–405

42. Stumptner, M., Schrefl, M.: Behavior Consistent Inheritance
in UML. In: Laender, A., Liddle, S., Storey, V. (eds.) Pro-
ceedings of the 19th International Conference on Conceptual
Modeling (ER 2000), Salt Lake City, UT, USA, October 2000,
LNCS, vol. 1920. Springer, 2000, pp. 527–542

43. Warmer, J., Ivner, A., Johnston, S., Knox, D., Rivett, P.: Re-
sponse to the UML2.0 OCL RfP, Version 1.6 (Submitters:
Boldsoft, Rational, IONA, Adaptive Ltd., et al.). OMG Docu-
ment ad/03-01-07, January 2003

44. Ziemann, P., Gogolla, M.: An Extension of OCL with Tem-
poral Logic. In: Jürjens, J., Cengarle, M.V., Fernandez, E.B.,
Rumpe, B., Sandner, R. (eds.) Critical Systems Development
with UML. Technische Universität München, Institut für In-
formatik, 2002, pp. 53–62

45. Zschaler, S.: Evaluation der Praxistauglichkeit von OCL-
Spezifikationen. Master’s thesis, Technical University of Dres-
den, Faculty of Computer Science, Dresden, Germany, August
2002. (in German)

Stephan Flake is currently
a research assistant at the Co-
operative Computing & Commu-
nication Laboratory (C-LAB),
a joint R&D institute operated
by Paderborn University and
Siemens Business Services in
Paderborn, Germany.
Stephan received the degree Di-
plom-Informatiker (M.Sc. in
Computer Science) from Pader-
born University, Germany, in

1999.
His research interests include UML, especially the semantics
of Statecharts and OCL, formal verification by model check-
ing, abstraction means for temporal logics, and multi-agent
systems.

Wolfgang Mueller received
his Diploma in Computer Sci-
ence from Paderborn University,
Germany, in 1989 and his doc-
toral degree in 1996. He is em-
ployed at C-LAB since 1989.
There, he is heading the group
Advanced Design Technologies
(ADT).
Dr. Mueller was and is mem-
ber of several programme and
executive committees of vari-

ous conferences like DATE and FDL. Since 1989 he au-
thored more than 100 national and international publications
in the areas of user interfaces, system design methodolo-
gies, system description languages, and system integration
technologies.

