
Softw Syst Model (2003) 2: 82–107 / Digital Object Identifier (DOI) 10.1007/s10270-002-0015-5

Regular papers

Specifying and executingbehavioral requirements:
the play-in/play-out approach

David Harel, Rami Marelly

The Weizmann Institute of Science, Rehovot, 76100 Israel

Received: 10 September 2002/Accepted: 28 November 2002

Published online: 2 April 2003 – Springer-Verlag 2003

Abstract. A powerful methodology for scenario-based
specification of reactive systems is described, in which
the behavior is “played in” directly from the system’s
GUI or some abstract version thereof, and can then be
“played out”. The approach is supported and illustrated
by a tool, which we call the play-engine. As the behav-
ior is played in, the play-engine automatically generates
a formal version in an extended version of the language
of live sequence charts (LSCs). As they are played out,
it causes the application to react according to the uni-
versal (“must”) parts of the specification; the existential
(“may”) parts can be monitored to check their success-
ful completion. Play-in is a user-friendly high-level way
of specifying behavior and play-out is a rather surprising
way of working with a fully operational system directly
from its inter-object requirements. The ideas appear to be
relevant to many stages of system development, including
requirements engineering, specification, testing, analysis
and implementation.

Keywords: Live sequence charts (LSCs) – Requirements
engineering – System modeling and execution – Scenarios
– Testing – UML

1 Introduction

Two kinds of behavior in object-oriented analysis and de-
sign are identified and discussed in [8, 13]: inter-object
behavior , which describes the interaction between objects
per scenario, and intra-object behavior , which describes
the way a single object behaves under all possible cir-
cumstances. In [13] there is a discussion of the differ-
ent roles of these within requirements and modeling lan-
guages, respectively. For modeling intra-object behavior,
most object-oriented modeling approaches adopt state-
charts [12, 14]. For the requirements aspect, one of the

most widely used languages is that of message sequence
charts (MSCs), adopted long ago by the ITU [46], or its
UML variant, sequence diagrams [37, 43].
According to many OO-based methodologies for sys-

tem development, the user first specifies the system’s use
cases [24], and the different instantiations of each use case
are then described using sequence charts. In a later mod-
eling step, the behavior of a class is described by an asso-
ciated statechart, which prescribes the behavior of each of
its instances. Finally, the objects are implemented as code
in a specific programming language.1

Parts of this process can be automated, as discussed
in [13]. In particular, the generation of code from object
model diagrams and their statecharts can be carried out,
e.g., by tools based on the ROOMmethod of [39], and by
the Rhapsody tool [23] (based on the executable object
modeling work of [14]). In fact the main pair of languages
of [14, 23] – namely, object model diagrams and state-
charts – constitute the core executable part of the UML.
As discussed in [8], using sequence charts to specify

requirements and substantiate use-cases leaves a lot to
be desired: sequence charts (whether MSCs or the UML
variant) possess an extremely weak partial-order seman-
tics that does not make it possible to capture interest-
ing behavioral requirements of a system. They are far
weaker than, e.g., temporal logic or other formal lan-
guages for requirements and constraints, and are used
in practice mainly to specify possible scenarios against
which to test the system later on. To address this, while
remaining within the general spirit of scenario-based vi-
sual formalisms, a rather broad extension of the language
of MSCs was proposed in 1999, called live sequence charts
(LSCs) [8]. LSCs distinguish between scenarios that may

1 The paper uses object-oriented terminology quite extensively.
However, there is very little here that is particularly object-
orientation-oriented. The ideas can be used equally well within
a non-OO system development approach.

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 83

happen in the system (existential charts) from those that
must happen (universal charts). Also, they can specify
messages that may be received (cold) and ones that must
(hot). A condition too can be cold, meaning that it may
be true (otherwise control moves out of the current block
or chart), or hot, meaning that itmust be true (otherwise
the system aborts).
Since its expressive power is far greater than that of

MSCs, the language of LSCs makes it possible to start
looking more seriously at the relationships and possible
transitions between the behavioral artifacts of these mod-
eling steps: on the one hand use cases and LSCs, which
represent the system’s requirements in an inter-object
style, and on the other hand statecharts, which represent
its implementable model in the intra-object style. Given
the discussion in [13], we should strive to be able to verify
that the former is true of the latter, but also to synthesize
the latter from the former. Indeed, a first-cut algorithm
for synthesis has been proposed in [16]. This algorithm
is only a first step, since the resulting statecharts can be
extremely large. However, we do believe that useful and
efficient synthesis algorithms will become available in due
time, and are working towards that end. So much for the
relationships between the requirements and the system.
How should the more expressive requirements them-

selves be specified? One cannot imagine automatically
synthesizing the LSCs or temporal logic from the use
cases, since use cases are informal and highly abstract.
This leaves us with having to construct the LSCs manu-
ally. In a world in which we would like as much automa-
tion as possible this is somewhat problematic, because
LSCs constitute a formal (albeit, visual) language, and
constructing them requires the skill of working in an ab-
stract language, and detailed knowledge of its syntax and
semantics. It would be better to find a way to avoid hav-
ing to actually construct the charts.
Towards the end of [13], this problem was addressed,

and a higher-level approach to the problem of specifying
scenario-based behavior – termed play-in scenarios – was
proposed and briefly sketched. We have worked out the
details of this proposal, and have implemented it in our
play-engine, which we describe in this paper. However,
play-in has turned out to be a secondary benefit. The
main contribution we shall discuss is play-out , which is
the ability to execute the requirements directly, without
the need to build or synthesize an intra-object state-based
system model.2

The main idea of the play-in process is to raise the
level of abstraction in requirements engineering, and to
work with a look-alike version of the system under de-
velopment. This enables people who are unfamiliar with
LSCs, or who do not want to work with such formal lan-
guages directly, to specify the behavioral requirements of
systems using an intuitive and user-friendly mechanism.

2 The play-in and play-out methodology and the algorithms un-
derlying the play-engine are patent pending.

These could include domain experts, application engi-
neers, requirements engineers, and even potential users.
What “play-in” means is that the system’s developer

(we will often call him/her a user – not to be confused
with the eventual end users of the system under develop-
ment, which we will refer to as an end user or an actor)
first builds the GUI of the system, with no behavior built
into it. In systems for which there is a meaning to the
layout of hidden objects (e.g., a board of an electrical sys-
tem), the user may build the graphical representation of
these objects as well. In fact, for GUI-less systems, or for
sets of internal objects, we simply use the object model
diagram as a GUI. In any case, the user “plays” the GUI
by clicking buttons, rotating knobs and sending messages
(calling functions) to hidden objects in an intuitive drag
& drop manner. (With an object model diagram as the
interface, the user clicks the objects and/or the methods
and the parameters). By similarly playing the GUI, the
user describes the desired reactions of the system and the
conditions that may or must hold. As this is being done,
the play-engine continuously constructs LSCs automati-
cally. It queries the application GUI (that was provided
by the user) for its structure, and interacts with it, thus
manipulating the information entered by the user and
building and exhibiting the appropriate LSCs. We have
attempted to enable the user to carry out as much of the
play-in as possible by manipulating the GUI directly.
We should remark that there is no inherent difficulty

in modifying the play-engine to produce the formal ver-
sion of the behavior in scenario-oriented languages other
than LSCs, such as appropriate variants of temporal
logic [33] or timing diagrams [38].
After playing in (a part of) the specification, the nat-

ural thing to do is to verify that it reflects what the user
intended to say. One way of testing an LSC specifica-
tion is by constructing a prototype implementation and
using model execution to test it. Instead, we would like to
extend the power of our interface-oriented play method-
ology, to not only specify the behavior, but to test and
validate it as well. And here is where the play-out mech-
anism enters.
In play-out, the user simply plays the GUI applica-

tion as he/she would have done when executing a system
model, or the final system, but limiting him/herself to
“end-user” and external environment actions. While do-
ing this, the play-engine keeps track of the actions and
causes other actions and events to occur as dictated by
the universal charts in the specification. Here too, the en-
gine interacts with the GUI application and uses it to
reflect the system state at any given moment. This pro-
cess of the user operating the GUI application and the
play-engine causing it to react according to the specifica-
tion has the effect of working with an executable model,
but with no intra-object model having to be built or syn-
thesized. This makes it very easy to let all kinds of people
participate in the process of debugging the specification,
since they do not need to know anything about the speci-

84 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

fication or the language used. It yields a specification that
is well tested and which has a lower probability of errors
in later phases, which are a lot more expensive to detect
and eliminate.
We should emphasize that the behavior played out

need not be the behavior that was played in. As we shall
see later, the language of LSCs enables the user to spec-
ify scenario fragments that interleave with each other and
combine in different ways under different circumstances,
as well as forbidden scenarios and other modalities of
behavior. Therefore, the user is not merely tracing sce-
narios, but is executing the requirements freely, as he/she
sees fit. The algorithmic mechanism underlying play-out
is nontrivial, and will be described in more detail later on.
Section 2 gives a short description of the LSC language

as utilized in our methodology and implementation. Sec-
tion 3 overviews the principles of the play-in/play-out
approach. The play-engine tool is described in Sect. 4
and a sample session is given in Sect. 5. Section 6 shows
how the play-in/play-out methodology can be used when
making the transition from requirements to design. An
overview of the execution mechanisms and the main al-
gorithms is given in Sect. 7, while Sect. 8 shows how the
play-engine can interact with external tools. Section 9
overviews advanced features of LSCs that we have de-
veloped and implemented, and which are not described
in detail here. Related work is discussed in Sect. 10. We
conclude with a discussion of some future plans.
A full-scale manuscript we have written [18], contains

a far more detailed exposition of the entire play-in/play-
out approach, including a fully worked-out operational
semantics of the LSCs language and its extensions.

2 The language of LSCs

In this section we go briefly through the elements and con-
structs of LSCs that we use in our work. Some of these

Fig. 1. LSC Sample – Quick Dialing

are taken as is from the original definition in [8]. There
are a couple of extensions we have made to enable the
specification of richer and more realistic behavior. Sec-
tion 9 contains several additional extensions. The user is
referred to [8] for a more complete description of the ori-
ginal language.
LSCs have two types of charts: universal (annotated

by a solid borderline) and existential (annotated by
a dashed borderline). Universal charts are used to spec-
ify restrictions over all possible system runs. A universal
chart is associated with a prechart that specifies the sce-
nario which, if successfully executed, forces the system
to satisfy the scenario given in the actual chart body.
Universal charts can also be viewed as behavioral con-
straints of the form if <Prechart> then <Chart-Body>
that must be satisfied by all systems runs. Existential
charts are used in LSCs to specify sample interactions
between the system and its environment. Existential
charts must be satisfied by at least one system run.
They thus do not force the application to behave in
a certain way in all cases, but rather state that there
is at least one set of circumstances under which a cer-
tain behavior occurs. Existential charts can be used
to specify system tests, or simply to illustrate longer
(non-restricting) scenarios that provide a broader pic-
ture of the behavioral possibilities to which the system
gives rise.
We will use a cellular phone system to illustrate the

basic concepts and constructs of the language. In the
LSC of Fig. 1, the prechart (top dashed hexagon) contains
three messages denoting the events of the user clicking the
‘*’ key, then clicking some digit (denoted by Digit), and
then clicking the SEND button. Following this, in the chart
body, the chip sends a message to the memory asking it to
retrieve the number stored in cell #Digit .
After this message comes an assignment in which the

variable Num is assigned the value of the Number property
of the memory. Assignments are internal to a chart and

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 85

are something we propose adding to pure LSCs. Using an
assignment, the user may save values of the properties of
objects, or of functions applied to variables holding such
values. The assigned-to variable stores the value for later
use in the LSC. The expression on the right hand side
contains either a reference to a property of some object
(this is the typical usage) or a function applied to some
predefined variables. It is important to note that the as-
signment’s variable is local to the containing chart and
can be used for the specification of that chart only, as op-
posed to the system’s state variables, which may be used
in several charts. Each assignment may have several par-
ticipating objects, which synchronize at the location of
the assignment. Synchronizing at an assignment means
that none of the synchronized instances may progress be-
yond the assignment until all of them reach it and it is
actually performed. In the assignment shown in Fig. 1,
the current number present in the memory is stored in
a variable Num.
After the assignment comes a loop construct. There

are three types of such constructs; this one is a bounded
loop, denoted by a constant number (3 in this case), which
means that it is performed at most that number of times.
It can also be exited when a cold condition inside it is
violated, as described shortly. There are also unbounded
loops, denoted by a ‘*’ and performed an a priori un-
known number of times, and dynamic loops, annotated
by a ‘?’, for which the user determines the number of it-
erations at run time. Inside the loop of Fig. 1, the chip
tries (at most three times) to call the number Num. After
sending the message to the environment, the chip waits
for a signal to come back from it.
The loop ends with a cold condition that requires Sig-

nal to be Busy. If a cold condition is true, the chart pro-
gresses to the location that immediately follows the con-
dition, whereas if it is false, the surrounding (sub)chart is
exited. A hot condition, on the other hand, must always
be true, otherwise the requirements are violated and the
system aborts.
Note that placing a cold condition C at the beginning

or end of an unbounded loop creates while C do and re-
peat until ¬C constructs, respectively. In our current im-
plementation, we support conjunctive-query conditions,
namely ones that are conjunctions of primitive equalities
or inequalities.
In Fig. 1, the chip will continue sending messages to

the environment as long as the received signal is Busy,
but no more than three times. Note how the use of
variables and assignments in the chart makes this sce-
nario a generic one, standing for many different specific
scenarios.
The chip and memory objects consist of hot loca-

tions (denoted by solid instance lines), thus forcing their
progress, while the ‘*’, ‘Key’ and ‘SEND’ objects have
cold locations (denoted by dashed instance lines), mean-
ing that they need not progress andmay stay at a location
forever without violating the chart.

We end this section with a short discussion regard-
ing the choice of LSCs as our specification language. Like
other scenario-based languages (e.g., MSCs [46] and UML
sequence diagrams [43]), LSCs are visual, which appeals
to engineers, but they are far more expressive and are
thus suitable for specifying the actual behavioral proper-
ties of reactive systems. Conventional sequence languages
mostly specify scenarios that may happen during a sys-
tem run, whereas LSCs can also specify what must hap-
pen. Precharts in universal charts can specify that when-
ever some behavior occurs, the system is obligated to
response in a specific way. Events and conditions may
be symbolic and can themselves be hot (mandatory) or
cold (provisional), which provides considerable additional
power. A cold condition at the beginning of a chart, for
example, is equivalent to specifying a precondition. A hot
constant false condition standing alone in a chart means
that the scenarios specified in the prechart are forbidden,
thus enabling the user to specify anti-scenarios (forbid-
den ones) as an integral part of the language.

3 The play-in/play-out approach

3.1 Playing in behavior

Consider a typical situation, where a user and a system
designer meet in order to specify a new reactive system.
One of the first things they might do is to discuss the func-
tionality of the system on an abstract level and to prepare
a first-cut drawing of the system’s graphical user inter-
face (GUI). At this point, our methodology recommends
that the designer prepare an application representing the
GUI. The GUI application has no logic built into it, but
should provide a trivial predefined interface required by
the engine, containing such functions as setting and re-
ceiving object values, highlighting objects, and being able
to retrieve information about an object’s properties.3

With the GUI application at hand, the user may spec-
ify use cases. In most currentmethodologies, a domain ex-
pert writes a use case description in an informal language
and then has the system engineers describe its implemen-
tation, or instantiations, formally using more rigorous
means, such as sequence charts. In contrast, we provide
means for the domain expert to “play in” the instantia-
tions of the use cases directly (including constraints and
forbidden scenarios), and the play-engine then creates the
charts automatically. The system engineers can then con-
tinue from these same scenarios by adding objects and
refining the system design incrementally.
Playing in behavior consists of demonstrating user ac-

tions and specifying possible or mandatory system reac-
tions. User actions are specified simply by operating the
GUI application in the way it would be done in the final

3 The current implementation of our play-engine uses a COM [7]
interface, but we could have used any appropriate agreed-upon
format.

86 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

product. This includes clicking buttons, rotating knobs,
flipping switches, etc. System reactions are specified in
a similar way, only now the user sets values for displays,
indicates the status of LEDs and lights, and specifies the
state of other output devices. This is done typically by
right-clicking the relevant element in the GUI to access
the possibilities. Each object may have several properties,
that can be changed independently. Thus, the user may
specify that after switching on a calculator, the display
should become green (using a background color property)
and should show 0 (a value property). (If an abstract
GUI is used, such as an object model diagram, methods
and properties can be specified by a similar click/select
mechanism.)
The play-engine provides convenient, user-friendly

means to state the modality (hot or cold) of messages, lo-
cations and conditions. Conjunctive conditions are also
specified by operating objects in the GUI as described
above, and graphically determining the values of each ob-
ject (e.g., turning a switch on to add to the condition that
the switch ought to be on). Conditions may be used as
stand-alone guards or as part of if-then-else constructs. In
all cases, the engine provides friendly wizards to help the
user define the construct.
Often it is natural to play-in a small number of sam-

ple cases that represent more general scenarios. For ex-
ample, in a standard pocket calculator, the user might
describe a scenario where pressing 9, + and 7 in that
order (prechart) causes 16 to be displayed as a result
(chart body). The play-engine can be instructed to con-
sider this kind of play-in process as the generalized ver-
sion, using loops and symbolic messages, as explained in
Sect. 2. For example, if the 9+7 = 16 scenario is played
in via symbolic mode, this might be shown in the chart as
a sequence in which “X1”, “+” and “X2” are pressed in
order, and the result is shown to be “X1+X2”.
The play-engine also allows specifying an event value

as a function applied to variables. These functions may
be predefined, like the identity function and constant
functions, or can be user-implemented. The latter makes
it possible to include external activities that cannot be
easily specified otherwise (e.g., computing a complicated
mathematical function, executing an algorithm or re-
trieving data from a database).

3.2 Playing out behavior

Playing out is the process of testing the behavior of the
system by providing any user actions, in any order, and
checking the system’s ongoing responses. The play-out
process calls for the play-engine to monitor the applicable
precharts of all universal charts, and if successfully com-
pleted to then execute their bodies. As discussed earlier,
the universal charts contain the system’s required reac-
tions to other actions. By executing the events in these
charts and causing the GUI application and object map
to reflect the effect of these events on the system objects,

the user is provided with a simulation of an executable
application.
Note that in order to play out scenarios, the user does

not need to know anything about LSCs or even about the
use cases and requirements entered so far. All he/she has
to do is to operate the GUI application as if it were a final
system and check whether it reacts according to his/her
expectations.
Moreover, the possible runs of the system are not sim-

ply different orders of the same sequences of inputs, but
can include totally different runs that contain unexpected
events and messages. This is doubly true in the presence
of symbolic messages and dynamic/unbounded loops.
The underlying play-out mechanism can be likened

to an over-obedient citizen who walks around with the
Grand Book of Rules on him/her at all times. He/she
doesn’t lift a finger unless some rule in the book explicitly
prescribes it, and never does anything if it violates some
other rule. He/she constantly scans and monitors all rules
at all times and upon executing any action (e.g., lifting
a finger), carries out any required consequences thereof,
in an iterative manner. Clearly, in so acting, there might
be choices to be made, and inconsistencies in the book
could be discovered. More about this later.
Thus, by playing out scenarios the user actually tests

the behavior of the specified system directly from the
inter-object behavioral requirements – scenarios and for-
bidden scenarios as well as other constraints – without the
need to prepare statecharts, to write or generate code, or
to provide any other detailed intra-object behavioral spe-
cification. The process is simple enough for many kinds of
end-users and domain experts, and can greatly increase
the chance of finding errors early on. If the specification is
large and the user wishes to focus only on certain aspects
of the system behavior, he/she may specify to the engine
which universal charts should participate in the play-out
process.
The play-engine can react to user and environment ac-

tions in two modes: step and super-step. When in step
mode, the user is prompted before each event, condition
evaluation, etc, and the next event to be carried out is
marked on all relevant charts. In the super-step mode, the
play-engine carries out as many events as possible, until
reaching a “stable” state in which the system can do noth-
ing further, and then simply waits for some input from the
user.
During play-out, charts are opened whenever they are

activated (possibly including multiple occurrences of the
same chart) and are closed when they are violated or
when they terminate. Each displayed chart shows a “cut”
(a kind of rectilinear “slice”), denoting the current loca-
tion of each instance. When in step mode the currently
executed event is highlighted in the relevant LSCs. The
play-engine continuously interacts with the GUI appli-
cation and the object map, causing them to reflect the
changes prescribed by the executed events. As this is
happening, the user may examine values of assignments,

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 87

conditions and message variables by moving the mouse
over them in the chart. Whenever relevant, we have pro-
grammed the play-engine to cause the effects to show up
in the GUI.

3.3 Using play-out for testing

Universal charts “drive” the model by their action/re-
action nature, whereas existential charts can be used
as system tests or as examples of required interactions.
Rather than serving to drive the play-out, existential
charts are monitored , that is, the play-engine simply
tracks the events in the chart as they occur. When (and
if) a traced chart reaches its end, it is highlighted, and the
user is informed that it was successfully traced to com-
pletion. Here also, the user may select the charts to be
monitored, thus saving the play-engine the need to track
charts which might currently not be of interest.
When playing out the GUI application, a run trace

is produced, which includes all the user actions and the
system reactions. Such runs can be recorded and saved
(in XML format [44]) and then reloaded, to provide tes-
timonies (that can be re-played) of satisfied existential
LSCs. In re-playing a run, the user may select both exist-
ential and universal charts to be traced. Existential LSCs
can thus be shown to be satisfied, and with universal
charts the run shows when the charts were activated and
how they participated in creating the system’s reactions
in the run. And, of course, the engine provides a notifica-
tion if a universal chart is violated.
Recorded runs can be manipulated by the user, by

changing the order of events and checking whether the
resulting run is also a legal one. One of the interesting
built-in manipulations is that of deleting all system re-
actions and leaving only user and environment actions.
After applying this manipulation, the resulting run can
be re-played. The user can then specify that universal
charts should also be activated (and not only monitored).
In this case, events from the recorded run are injected as
before, but now the selected universal charts activate the
system and trigger events as specified in their bodies.
This feature may be used for regression testing in the

following way. While fulfilling (part of) the existential
LSCs, the runs are recorded. Later on, if some of the
universal charts change, the runs can be manipulated to
contain only user actions and then re-played to verify that
existential LSCs are still successfully fulfilled and no uni-
versal charts are violated.
Besides being recorded from the play-engine itself,

runs can be imported from different sources and re-played
in the same manner. These external sources can be differ-
ent implementations of the specification, either given as
executable programs or as more detailed design models,
(e.g., statecharts [12], labeled transition systems [29],
etc.). Importing a run from an implementation and re-
playing it, while tracing all charts, can be used to show
that the implementation is consistent with the require-

ments, in the sense that existential charts are successfully
traced and universal charts are not violated.

4 The play-engine environment

We now describe the main elements involved in the play-
engine’s development environment; see Fig. 2. They are
numbered in what follows, to match the numbers overlay-
ing the screen shot in the figure:

1. The Application Section
This section contains the elements defined in the GUI
application. The play-engine queries the application
for this information and displays it in a tree format.
The information contains:
•Object classes (In our example there is one – Oper).
Objects can be declared as instances of high-level
classes, thus enabling the specification of more gen-
eral behavior. More about that in Sect. 9.
•GUI objects defined in the application (e.g., Key,
Display, Switch, etc.). Each object has a unique id
that is used in the interaction between the engine
and the GUI application. Properties may be defined
for each object, such as value, color, state, etc.
• Internal objects defined in the application (in our ex-
ample there are two – Controller and Memory).
•Types upon which the properties of objects in the
application can be based (e.g., Color, Number, etc.)
•Functions implemented by the application. These
functions are external to the engine and can be used
within the played-in behavior (e.g., ComputeDis-
play updates the value of the display after a digit
is clicked, by multiplying the old value by 10 and
adding the value of the key).

2. The Specification Section
This section contains the elements specified by the
user.
•Use cases and LSCs. This is the main part of the re-
quirements specification, and it consists of the LSCs
(constructed by the engine as a result of the play-in),
clustered into use cases. The idea is that the LSCs as-
sociated with a use case capture the behaviors that
implement/instantiate it. As in many methodolo-
gies, the user starts by identifying a use case and
giving it a name and a short description.
• Jump Starts. Users often describe different scenar-
ios, assuming different initial system configurations.
The play-engine allows one to define Jump Starts .
A Jump Start is a set of the properties of objects that
are associated with initial values, and it can be used
to move the system to one of its initial configurations
by a single mouse click.

3. The GUI Application
The GUI application (in our example, the calcula-
tor) is pre-created by the user. It may be constructed
using any means, providing it supports the interface
required by the play-engine. Our calculator GUI was

88 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 2. The play-engine environment

written in Visual Basic. In Sect. 11 we discuss another
possible way to write GUI applications.

4. The LSCs
This area shows the LSC that is currently being con-
structed by the play-engine during play-in, or, alter-
natively, the LSCs that are currently being executed
during play-out.

As explained earlier, we consider one of the main ad-
vantages of the play-engine to be the intuitive manner
of the play-in process. We have tried to have the user
interact with the GUI application directly as much as pos-
sible. One example of such a use is in the way conditions
are shown. When a user points to a condition in an LSC
(see Fig. 2 for an example of a condition being pointed
at), several useful things happen. Within the LSC itself
the condition is highlighted, as are all the participating
instances, and the current true/false value of the condi-
tion is shown. At the same time, the GUI application (the
calculator panel in our case) highlights the objects that

participate in the condition, and each of them displays
a tool tip (the kind of yellow label used in standard PC
tools) that contains a description of the object’s part in
the condition.4 It seems obvious to us that a more pow-
erful HCI effort could further improve the slickness and
convenience of our play-in techniques.

5 A sample play session

We now illustrate the methodology with a short play-in
and play-out session. As an example, we use the pocket
calculator shown in Fig. 2, even though it is somewhat
trivial, since it does possess characteristics of real sys-
tems, like high reactivity and computations, and exhibits
the need for symbolic representations of certain scenarios.

4 Since the rectangular tool tips may overlap, we have used
a variant of the layout algorithm of [15] to arrange them nicely.
This is done by defining an attractive force between each object
and its tip and a repulsive force between every two tips, and then
letting the physics of equilibrium do the rest.

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 89

5.1 Play-in

The first thing our user would like to specify is what hap-
pens when the calculator is turned on. Since this is done
using a switch, the action of clicking the switch is put in
the prechart, and the appropriate system reactions are
put in the chart body. In our case, we want the system, as
a response, to turn on the light, to turn on the display, to
display a 0 and to change the display’s color to green.
The process of specifying this behavior is very simple.

First, the user clicks the switch on the GUI, thus changing
its state5 from off to on. When the play-engine is noti-
fied of this event, it adds the appropriate message in the
(initially empty) prechart of the LSC from the user in-
stance to the switch instance. See Fig. 3. The user then
moves the cursor (a dashed purple line) into the chart
body and right-clicks the light on the GUI. The engine
knows the properties of the light (in this case, there is just
one) and pops a menu, from which the user chooses the
State property and sets it to on. Figure 3 shows the situ-
ation after the switch is clicked and just before the state
of the light is set to on. Similar processes are then car-
ried out for the state and background properties of the
display. After each of these actions, the engine adds an
appropriate message in the LSC, showing the change in
the property. The play-engine also sends a message to the
GUI application, telling it to change the object’s property
in the GUI itself so that it reflects the correct value after
the actions were taken. Thus, when this stage is finished,
the GUI shows the switch on, the light on, and the display
colored green and displaying 0.
Suppose now that the user wishes to specify what hap-

pens when the switch is turned off. In this case the light

5 We use the word “state” to describe a property of the switch.
This should not to be confused with the term “state” from
statecharts.

Fig. 3. Turning the calculator on

and display should turn off and the display should change
its color to white and erase any displayed characters. The
user may of course play in another scenario for this, but
these two scenarios will be very similar, and they are bet-
ter represented in a single LSC. This can be done using
symbolic messages.We play a scenario as before, with the
switch being clicked as part of the prechart, and the sys-
tem’s reactions being played-in as the chart’s body. How-
ever, this time we do it with the symbolic flag on. When
in symbolic mode, the values shown in message’s labels
are the names of variables (or functions) rather than ac-
tual values. So the user will now not say that the light
should turn on or off as a result of the prechart, but that
it should take on the same state as the switch did in the
prechart. The play-engine provides a number of ways of
doing this. A variable can be selected from a table of de-
fined variables, or, as shown in Fig. 4, we can indicate that
the value should be the same as in some message in the
LSC. If the second option is taken, the user simply clicks
the desired message inside the LSC, and its variable will
be attached to the new message as well. Note that after
clicking the message, the selected variable with its type
and value are shown to the user as a tool tip. In case the
selected message is associated with a function that has
more than one variable, a dialog pops up, showing the
function with its actual parameters, and the user can then
click any one of these parameters, to be attached to the
newly created message.
This takes care of turning the light on or off. We

now want to deal with the display’s color. In one case
it should become green and in the other white. We can
use an if-then-else construct for this. The user clicks the
If-Then button on the toolbar and in response a wiz-
ard and a condition form are opened. Conditions can
be specified conveniently via the GUI, as when operat-
ing objects or specifying system reactions, except that

90 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 4. Using symbolic messages

here several kinds of relation operators can be used (e.g.,
<,≤, >, etc.). Figure 5 shows the system after the wiz-
ard opens and the user clicks the switch on the GUI.
Note that in the condition form, the value of the switch
is specified, and the switch itself is highlighted in the
GUI. Conditions may refer to properties of GUI objects,
to values of variables, or even contain free expressions
that the user will be requested to instantiate during
play-out.
An object can participate in a condition without hav-

ing any of its property values actually constrained. This

Fig. 5. Specifying a condition

is usually done when we want the object’s progress to be
synchronized with the condition’s evaluation, but to have
no effect on its value. Synchronizing an object with a con-
dition (i.e., making the object a non-influential part of the
condition) is done by right-clicking the object and choos-
ing Synchronize from the popup menu.
A condition hexagon can be stretched along several in-

stances in the LSC in order to reach those that it refers
to. To distinguish those from the instances that do not
participate in the condition’s definition or are not to be
synchronized with it, we draw small semi-circular connec-

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 91

Fig. 6. Turning the calculator on or off

tors at the intersection points of a participating instance
line with the condition.
After the If-Then condition is specified, the user con-

tinues playing in the behavior of the If part in the usual
way. When this is completed, he/she clicks the Specify
the ELSE part on the wizard and plays in the behavior for
the Else part. The resulting LSC is shown in Fig. 6. Simi-
lar assistance is provided by the play-engine for specifying
the various kinds of loops.
Sometimes we want to use data manipulation algo-

rithms and functions, that are applied to specified vari-
ables. These functions cannot (and should not) be de-
scribed using LSC-style interactions between objects but

Fig. 7. Prechart of the sum operation

rather as external pieces of computation or logic to be
worked into the requirements. Accordingly, we now play
in the procedure for summing two numbers, which will il-
lustrate how the play-engine supports such implemented
functions. Since in our calculator example the process of
entering numbers and displaying them on the screen is
common to many scenarios, we have handled it in a sep-
arate chart (explained later; Fig. 10a). Therefore, what
we show now deals only with the sum operation itself,
assuming that entering the numbers has been specified
separately.
To specify the prechart (see Fig. 7) the user first clicks

the ‘+’ button on the GUI. We now want the value of
the display to be stored. This is done by right-clicking the
GUI’s display, choosing Store and then Value from the
popup menu, which will result in an appropriate assign-
ment statement in the LSC. Since after storing a value
we might like to refer to it later, and for this a meaning-
ful name is helpful, the play-engine lets the user name
the assigned variable; here we use Num1 . Note that even
though the assignment refers only to the display, the Plus
object can be seen in the figure to also be synchronized
with it. This forces the assignment to be carried out only
after the ‘+’ was clicked (otherwise, there is no partial
order restriction to prevent the assignment from being
performed immediately upon activation of the chart).
The same actions repeat with the ‘=’ button clicked and
the display’s value stored in Num2 . We thus arrive at the
situation shown in Fig. 7.
After the prechart is specified, the user wants to

say that the display should show the value of Num1+

92 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 8. LSC for the sum operation

Num2.6 The user right-clicks the GUI’s display and
chooses the Value property from the popup menu. Now,
instead of entering a fixed value or choosing an existing
variable, the user clicks the Function button (which in
Fig. 7 happens to be hidden by the selected function), and
a list of implemented functions pops up. He/she selects
one of them, and proceeds to substitute each of its for-
mal parameters with a fixed value or a variable from the
LSC. Figure 7 shows that the ‘+’ function has two pa-
rameters, and that the one currently pointed at is of type
“Number”. Figure 8 shows the final LSC for summation.
Often, a reactive system works in the presence of

other elements, besides the user interacting with it (other
machines, computers, sensors etc.). The collection of all
these elements is referred to as the system’s environment .
When playing in the required behavior of a reactive sys-
tem, it is necessary to be able to express its reactions with
this environment. The play-engine allows the designer to
specify how the environment reacts to the system in a way

6 Even though the summation operation is simple and could have
been provided by the play-engine itself, we consider it, for the sake
of the example, as a function taken from the application domain,
which could not be provided by a general purpose tool.

Fig. 9. Referring to the environment

that is very similar to the way the interaction with the
user is played in. In order to specify a change in one
of the properties of some object, caused by the environ-
ment, the object is right-clicked, and the designer chooses
External Change. Then, from the sub-menu, the designer
chooses the property to be changed. The property’s value
is then inserted in the same way as it would have been for
any other change. The play-engine, then inserts a special
instance representing the environment, and an appropri-
ate message going from it to the target object. Figure 9
shows the menu opened when specifying an external (en-
vironment) change in the state of the light. The chart
as a whole specifies that whenever the light is turned off
by some external environment (not the user), the display
shows “Power Off”.

5.2 Play-out

Here is a short illustration of a play-out session.
We illustrate play-out using the LSCs for turning the

calculator on or off (Fig. 6) and for showing the sum op-
eration (Fig. 8), as well as the three additional charts
shown in Fig. 10. The LSCs “Show Number” and “Plus
– New” in Fig. 10 take care of showing the clicked digits
on the display. When the ‘+’ button is clicked, the dis-
play changes its NewNum property to true. When a digit
is clicked, if the display’s NewNum property is true, the
digit is displayed as is and NewNum is set to false. If
NewNum is false, the clicked digit is concatenated to the
end of the currently displayed number. The concatena-
tion is provided by the implemented function Compute-
Display. Chart “Sum” is an existential LSC, denoted by
a dashed borderline. It shows a sample scenario for sum-
ming two numbers. Dynamic loops are used in it to spec-
ify an unknown number of key clicks, and the hot condi-
tion at the end is intended to enforce the fact that when
the scenario terminates the display’s value should indeed
be the number Num1+Num2.
As mentioned earlier, when playing out a scenario,

the user can choose which universal charts are to partic-
ipate, and thus drive the execution, and which (existen-
tial) charts are to be monitored. In this case, we have

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 93

Fig. 10. Additional charts used in the play-out

decided that all the aforementioned universal charts will
participate and that the existential chart “Sum” will be
monitored. The charts actually shown during the play-
out are those that are currently active. New charts appear
as they become active. A comb-like thick line in each
chart indicates the current cut of the chart – blue for cold
cuts and red for hot ones. The cut line moves along in
an animated fashion as the play-out proceeds. (Of course,
one doesn’t have to see the charts being animated during
play-out; playing out the requirements can be done with
the GUI only, with everything else being invisible to the
user.)
We would now like to play out the scenario of cal-

culating 345+121. Accordingly, we select the Play-out
mode from the play-engine’s menu and then simply work
with the calculator. Figure 11 shows the situation after
the user has turned the calculator on and has clicked in
the sequence 3, 4, 5,+, 1, 2.
The top chart on the left, “Show Number”, was ac-

tivated by the click on 2. Since the display’s NewNum
property was false, it went to the Else part of the chart
body and arranged for the new display value to be dis-
played (as can be seen in the calculator GUI). This chart
has essentially terminated, as can be seen from the cut7,

7 Notice that the cut line has moved beyond the If-Then-Else
box, but only along the instance lines that are relevant to the box;

and is thus enclosed in a thick blue frame. At this point
a message to the user pops up – not shown here – indi-
cating that the chart has ended. Once the user OKs the
message, the chart is closed.
The bottom chart on the left, “Show Sum”, is at the

point immediately after the ‘+’ was clicked and the value
of the display was stored in N1. On the right is the ex-
istential chart, “Sum”, which is monitored, or traced, by
the play-out. This is depicted by a magnifying glass con-
taining a “T”. The chart is currently inside the second
loop, at the end of its second traversal, as the numbers
on the top right of the loop box shows. The first loop
was traversed three times. The existential chart is shown
when the mouse is located over the first assignment. Lo-
cating the mouse over the assignment in this chart has
two effects: the current value of the assigned-to variable is
shown in a tooltip (345 in our case), and a line is stretched
to all the conditions that refer to this variable (in our case
only the bottom condition).
Also, as mentioned, runs can be recorded and re-

played. Figure 12 shows a situation in which a replayed
run causes a violation of an existential chart. The viola-
tion is caused since the run contains two clicks on the ‘+’
button, whereas the chart specifies only one. When the

this excludes the Key object, which is not relevant to the If-Then-
Else.

94 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 11. Playing out a scenario

Fig. 12. Replaying a recorded violation

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 95

second click is encountered (highlighted in the events list
on the right), a violation is found. The play-engine in-
dicates the violation by “crossing out” the violated LSC
and circling the violating event.

6 Transition to design with internal objects

After playing in the requirements using the GUI applica-
tion, and validating them using play-out, the play-engine
can be used to make a smooth transition into the design
phase. In many development methodologies, the designer
begins the design phase with a requirements specification,
usually given as a text document, and then constructs
scenarios (say, in some variant of sequence diagrams)
to show the interaction between the objects comprising
the system, and to become convinced that these scenar-
ios satisfy the original requirements. Using the play-in
methodology, the designer can begin the design phase
with a set of given (and debugged) LSCs describing the
requirements in terms of allowed, forced, and forbidden
interactions between the system and its users and envi-
ronment. The design phase would then consist of going
through the universal charts and refining them by adding
internal objects and the interactions of these objects with
the GUI objects and with other internal objects. Adding
this information to the charts fills the gap between what
the system should do and how it does it. Note that by
starting with LSCs created by, or on behalf of, the user,
we achieve direct tracability between the behavioral re-
quirements and the design. Moreover, by leaving the ex-

Fig. 13. Playing in internal objects: This snapshot shows the situation right after the
controller was set as the source of the message and before the appropriate

method of the light is selected.

istential charts unmodified, the designer may prove the
correctness of the modified LSCs by performing regres-
sion testing to satisfy the original existential charts.
The play-engine provides means for adding internal

objects on the fly. It also enables the adding of properties
and methods to the new objects and also to the objects
exported by the GUI application. The user may spec-
ify method calls between these objects by right-clicking
the calling object and selecting Call Other Object.
Then, the target object is right-clicked and the appropri-
ate method is selected. Finally, the user instantiates the
method’s formal parameters with actual ones.
Figure 13 shows a snapshot of the play-engine while

a user plays in the interaction between an internal object
(the controller in this case) and a GUI object (the light).
The internal object is operated from within an “Object
Map” which is an object model diagram of sorts, making
the interaction with GUI-less objects quite intuitive. The
LSC in this figure shows that earlier a similar interaction
was specified, this time from the switch to the controller.
When LSCs containing method calls are played out,

the play-engine animates them by drawing thick red ar-
rows between the involved objects and highlighting them
in red. Thus, the play-out mechanism can be used not
only to enable end-users to validate requirements but
also as a useful tool for demonstrating, reviewing and
debugging a design. Figure 14 shows how the interac-
tion between objects is animated in the play-engine. Note
that the arrows are not limited to the GUI application
or to the object map, but can also run from one to the
other.

96 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 14. Playing out internal objects

7 The execution mechanism

In this section we overview the underlying execution
mechanisms for play-out, their high-level architecture
and the main components involved in them.

7.1 An LSC copy and its life cycle

Our behavioral requirements end up being a set of LSCs,
termed an LSC specification in [8]. A single universal
chart may become activated (i.e., its prechart is success-
fully completed) several times during a system run. Some
of these activations might overlap, resulting in a situation
where there are several “live copies” of the same chart
active simultaneously. In order to correctly identify the
activation of universal charts, there is also a need to have
several copies of the prechart (each representing a dif-
ferent tracking status) monitored at the same time. The
notion of a live copy is strongly utilized in our play-out
algorithms.

Definition 1 (LSC live copy). Given an LSC L, the
live copy of L, denoted by CL, is defined by

CL = 〈L,M,Cut〉,

where L is a copy of the original chart (containing distinct
copies of the chart variables), M ∈ {PreActive,Active,
Monitored} is the execution mode of this copy, and Cut is
some legal cut of L representing the current location of the
instances of L in this particular copy.

Definition 2 (minimal event). An event e is minimal
in a chart L if there is no event e′ in L such that e′ <L e,
where <L is the partial order induced by the LSC.8

Definition 3 (enabled event). An event e is enabled
with respect to a cut C if the location in C of every
instance9 participating in the event e is the one exactly
prior to e, and there is no e′ <L e that was not already
processed.

Definition 4 (violating event). An event e violates
a chartL in a cutC if e appears in L but is not enabled with
respect to C.

The general life cycle of an LSC live copy is illus-
trated in Fig. 15. We begin by looking at the life cycle of
a universal LSC. Initially, the copy does not exist. When-
ever a minimal event that appears in L’s prechart occurs,
the copy is created in preactive mode. As long as events
occur and conditions are reached and evaluate to true, the
cut of the copy is propagated. When all locations in the
prechart have been traversed, the copy moves to active
mode. Again, as long as events occur and conditions eval-
uate to true, the cut is propagated. If all locations in the
chart are reached, the copy terminates and stops existing.

8 We have extended the standard partial order defined on se-
quence diagrams, so that the first (played-in) message using a vari-
able precedes other messages that use the same variable.
9 Usually, there will be only one such instance, but some con-
structs (e.g., precharts, conditions, loops, etc.) may have several
participating instances.

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 97

Fig. 15. The life cycle of an LSC live copy

If the prechart is violated or if it meets a false cold con-
dition, the copy terminates and stops existing. A chart in
active mode may exit or abort in several cases:

– If a cold condition in the main chart evaluates to false,
the copy terminates and stops existing. Note that an
evaluation of a cold condition located in a sub-chart
just changes the flow of events but does not cause the
copy to terminate.
– If the chart is violated by an event (i.e., sending or re-
ceiving a message) and the temperature of the current
cut is cold10 the copy terminates and stops existing.
– If the chart is violated by an event (i.e., sending or re-
ceiving a message) and the temperature of the current
cut is hot , the chart aborts, since an illegal run was
just produced.
– If a hot condition is evaluated to false, the chart
aborts, since an illegal run was just produced.

The last case does not occur during the execution of
our algorithms (with one exception), since these algo-
rithms avoid evaluating false hot conditions. The excep-
tional false hot conditions that are evaluated by the ex-
ecution mechanisms are those that contain the reserved
word ‘FALSE’ explicitly. Such conditions can never be-
come true and are usually used to indicate anti-scenarios.
Therefore, the user would like to be notified when such
a condition is reached. The third case cannot be totally
prevented by the choices of the algorithms, since violat-
ing events may be caused by the user or the environment.
However, the algorithms will avoid the initiation of vio-
lating events. This policy may yield a situation where the
play-engine does not trigger events dictated by one chart
because of other charts forbidding them.

10 The temperature of a cut is hot if at least one of the instances is
in a hot location and cold if all the instances are in cold locations.

Existential LSCs go through a similar, though sim-
pler, life cycle. When one of the minimal events in the
chart occurs, the copy is created and enters the moni-
tored state. If the chart is violated, it is simply exited
and deleted. If the chart completes successfully, it moves
through a temporary completed state where different reg-
istration and management actions are taken and then is
exited and deleted.

7.2 High level architecture and main functions

Figure 16 shows the main components involved in the way
the play-engine executes, monitors, records and re-plays,
and the ways these activities interact with each other.

Fig. 16. High-level Architecture of LSCs execution

98 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

The Execution Manager is the main component, re-
sponsible for processing user actions, activating uni-
versal charts accordingly and generating system reac-
tions as dictated by the active universal charts. The
Run Manager is responsible for recording runs, sav-
ing them to files, loading runs from files and re-playing
loaded runs. Both components send information about
the events played, generated and re-played to the LSCs
Monitor , which is responsible for managing and mon-
itoring the LSCs selected to be traced. The execution
manager and run manager also send information about
generated and re-played events to the GUI application,
so it can reflect the changes that result from system
reactions.
Figure 17 shows the call graph of the main functions

used in the various execution processes. We describe the
purpose of the algorithms and the way they are used from
bottom to top.

Fig. 17. Main algorithms in the LSC execution process

The procedure Unify Messages handles message uni-
fication [36]. Since messages may be symbolic and con-
tain variables as well as functions, we must determine
when two messages can be unified. We distinguish be-
tween positive unification, which is used to find enabled
events that can be advanced simultaneously, and negative
unification, which is used to find events that may cause
chart violation if some event is to be carried out. In posi-
tive unification we allow the binding of variables, while in
negative unification we do not. Thus, if there is a disabled
event whose variables are not bounded, it will not be uni-
fied with an event that is about to be carried out, and thus
will not cause a violation.We have adopted this approach,
since it is possible that by the time the event is enabled it
will be bound to other values. A more formal discussion of
variables and unification within LSCs is given in [31].
The functionFindUnifiable Event gets an event and an

LSC and determines whether there is an event in the chart

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 99

that is unifiable with the given one. The function may be
restricted to look only for events that are enabled through-
out the whole chart. The recursive function Get Next Cut
receives an LSC with a given cut and an event. This func-
tion determines whether there is a unifiable event in the
chart that is reachable from the given cut by performing
local steps. The local steps include performing assign-
ments, evaluating conditions, entering flow constructs,
and even skipping dynamic loops (which the usermight in-
dicate should be carried out 0 times). The function returns
the new cut, as well as the unifiable event, since it could be
that other instances that are not directly involvedwith the
event have changed their location.

Fig. 18. Procedure step

The functionMinimal Event in Chart receives an LSC
and an event and determines whether there is a min-
imal event that is unifiable with the given one. This
function uses Get Next Cut , since it is possible that
the event may be reached only after propagating some
local elements. Is Violating Event is a function that
determines whether a given event has a matching unifi-
able event in the currently active LSC copies, which
may cause chart violation if performed. The function
Choose Step is responsible for finding the next event
to be carried out. It searches through the live LSC
copies and tries to find an event that does not vio-
late any other chart. The procedures Propagate Local

100 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Steps and Propagate Conditions are responsible for prop-
agating local steps (e.g., performing assignments, en-
tering and exiting flow constructs etc.) and conditions,
respectively.
The procedure Step is responsible for executing a sin-

gle event. Given an event, it finds all the enabled events
that are unifiable with the given one, advances the ap-
propriate copies, activates universal charts that have this
event as a minimal one in their prechart and terminates
charts that are completed or violated. The pseudo-code of
Step is given in Fig. 18.
The procedure Super-Step tries to perform as many

steps as possible (excluding user and environment initi-
ated actions). It works in iterations, where in each itera-
tion it chooses a step to be taken and then performs it.
Between any two steps, the procedure tries to evaluate
conditions according to the condition evaluation policy
and to propagate local steps. During play-out, this pro-
cedure is invoked after every user action, thus causing the
system to complete its derived reaction to that action.
The procedure Monitor Event is very similar to Step, in
the sense that it also finds all the events that are unifiable
with the one to be carried out and tracks them. It acti-
vates traced charts when one of their reachable minimal
events occurs and closes them when completed or vio-
lated. The main difference is that this procedure is more
“passive” than Step, in the sense that it waits for an event
to happen before it evaluates conditions or enters loops,
so that these actions will be taken only when needed and
will not block other potential courses of progress.
Given all the procedures described so far, the ones

for playing out a scenario and replaying recorded or im-
ported runs are quite straightforward. These are shown in
Fig. 19. Playing out a scenario is carried out by a loop. In
each iteration a user action is translated into an event, the
event is executed and a super step is performed to com-
plete the system reaction.
Re-playing a run is done by going through the list of

events and injecting them into the LSCs-Monitor so that
they can be monitored. A run can also drive universal
LSCs, which is useful when the run contains only user and
environment events, and is thus used as the “recording”
of a regression test. If the option of activating universal

Fig. 19. Top level procedures

charts is chosen, every event is sent to the procedure Step
instead of Monitor-Event , and then a Super-Step is per-
formed to complete the derived system response.

8 Integration with other tools

We have set up the play-engine to store played-in specifi-
cations in XML format [44].11 This enables the engine to
inter-operate with other kinds of applications, regardless
of their internal representation, as we now show.
The play-engine is capable of receiving a system run

in a given format (also written as XML) and playing it,
as if the run was recorded using the play-engine itself. If
the run is complete (i.e., it contains all the events it calls
for), the play-engine simply traces all the charts, show-
ing those that are activated at any given point in time . If
the run contains only user/environment actions, the play-
engine will operate as if the run were input by the user
doing playing out, by activating the universal charts and
causing the application to react according to them. This
capability of playing runs that come from other sources
can be very useful. For example, in [16] an algorithm
is given for checking the consistency of an LSC specifi-
cation. This algorithm can be implemented to provide
a counter example run when the specification is inconsis-
tent, which can then be played out by the engine, so that
the user can track the reason for the inconsistency.
Another kind of inter-operability can be achieved with

system implementations. Suppose that an implementa-
tion is constructed after the specification has been writ-
ten (by applying an appropriate synthesis algorithm, by
constructing a statechart model or by writing code ex-
plicitly). This implementation can be set up to record the
runs it produces, and these can then be re-played by the
engine, so that the user can see if they comply with the
original requirements.
Besides these possibilities, the engine is currently able

to create an LSC representation in a format readable by
a tool we have developed for transforming LSCs into tem-
poral logic [26]. The TL version of the specification can

11 For a more detailed discussion of the advantages of XML as an
interchange format, see [41].

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 101

then be read in by model checkers and other verification
tools, as discussed in Sect. 9.6.

9 Overview of advanced topics

In this section we give a short overview of some advanced
extensions to the language of LSCs and to the play-
in/play-out approach. All these extensions have been im-
plemented within the play-engine, and are, or will be,
described in separate publications.

9.1 Extending LSCs with multiple instances

Sequence diagrams, including MSCs and LSCs, are of
limited value if the requirements themselves can refer
only to fixed concrete objects and to constant and limited
information being passed between them.
To overcome these deficiencies, we have extended the

language of LSCs. A symbolic instance, associated with
a class rather than with an object (possibly parameter-
ized by a variable or other expression), may stand for any
object that is an instance of the class (and which satis-
fies the expression). We extend the language by defining
new constructs and their visual representations. We also
give rigorous semantics (which has to deal with many sub-
tle issues such as identification, unification and binding

Fig. 20. A universally quantified symbolic instance

Fig. 21. Expressing basic timing constraints in time-enriched LSCs

mechanisms) and extend the play-out mechanism to fully
execute symbolic LSCs as well.
Figure 20 shows an LSC with a universally quantified

symbolic instance (denoted by the solid line of the in-
stance head and balloon). This LSC states that when the
switch gets out of order, it sends a cancellationmessage to
all the currently allocated channels.
The various issues, challenges and algorithms involved

with the issue of symbolic instances are described in de-
tail in [18, 31].

9.2 Time and real-time systems

Many kinds of reactive systems must explicitly refer and
react to time. For this purpose, a variety of program-
ming language constructs have been proposed, including
delays, timeouts, watchdogs and clock variables. Exten-
sions of temporal logic, for example, have been proposed
in order to enable quantification of time. These extensions
include bounded temporal operators, freeze quantifiers
and the use of explicit clock variables. Visual scenario-
based languages have also been extended with time con-
structs, such as timers, delay intervals, drawing rules and
timing markers.
We extend the language of LSCs so it can refer to

time and react to it, and implement the extensions in full
in the play-engine. We adopt the basic approach of Alur
and Henzinger [2], according to which a real-time system
can be viewed as a discrete system with clock variables.
We show how by adding a single clock object and using
constructs already existing in (extended) LSCs – namely,
assignments and conditions – we can define rich timing
constraints. We also show how time events can be trig-
gered simply by referring to the clock’s ‘tick’ event.
Figure 21 shows how commonly used timing con-

straints can be expressed using our extensions to LSCs.
Figure 22 shows how a single time event can be referred
to in the extension.
As to the play-engine implementation, the play-in

part provides convenient ways to define timing con-

102 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

Fig. 22. Time events in time-enriched LSCs

straints between any two events (not restricted to being in
a single instance), and for defining time events. As part of
work on extending LSCs with time, we have added a use-
ful feature: Placing the mouse over a timed assignment
causes the play-engine to draw lines from it to all the tim-
ing constraints that may be affected by it and placing
it over a timing constraint shows lines drawn to all the
timed assignments that may affect it. The algorithm for
doing this is not immediate, having to take into account
the partial order in the chart, the bindings of variables,
and a number of additional things.12

Since the play-engine renders LSC specifications exe-
cutable at every point along the way, the timed universal
charts can be executed, fully adhering to the timing con-
straints and the existential charts can be monitored to
check that system tests hold continuously.
The time extensions of the LSC language and the

modifications to the execution mechanism are described
in detail in [18, 19].

9.3 Non-deterministic choice

When executing an LSC specification, there are many
non-deterministic choices that are carried out by the
play-engine. This non-determinism originates from the
fact that the events in a single chart are only partially
ordered and due to the interleaving of events from multi-
ple, simultaneously active, LSCs.
We have extended the language with a SELECT(P)

command to enable the specification of an intended non-
deterministic behavior of the system. A SELECT com-
mand is placed in a condition construct and is associated
with a probability for a successful evaluation. Using SE-
LECT in a cold condition enables a non-deterministic exit
from a (sub)chart, while using it in an if-then-else con-
struct allows for a non-deterministic choice between alter-
natives. Figure 23 shows an example of non-deterministic
choice with equal probabilities for both alternatives. Non-

12 We have actually implemented this algorithm for related as-
signments and conditions in general, and not only for those that
deal with time.

Fig. 23. Non deterministic choice in LSCs

determinism and the SELECT command are described
in [18, 30].

9.4 Forbidden elements

A message that appears in a chart must occur only when
it is expected, otherwise, the chart is violated. We some-
times want to say that a message should not appear while
a chart is active, even if it does not appear explicitly in the
chart. A condition too is evaluated only when reached.
Similarly, we sometimes wish to specify an invariant, i.e.,
a condition that must (or is not allowed to) hold while
a chart is active.
We have extended the LSC language with forbidden

messages and conditions. A forbidden element can con-
strain the entire LSC, its prechart, its main chart or any
subchart therein. Forbidden elements can be hot or cold.
If a hot forbidden message occurs or a hot forbidden
condition is evaluated to true, while the LSC is in the
constrained scope, this is considered a violation of the re-
quirements. If a cold forbidden message occurs or a cold
forbidden condition becomes true, the constrained scope
is gracefully exited. Figure 24 shows an LSC with for-
bidden messages and conditions. As the mouse is placed
over a forbidden element, the play-engine graphically con-
nects the element with its forbidden scope and as it is
placed over a subchart, the subchart is connected with
all the elements it is constrained by (as shown in the
figure).
We have modified the monitoring mechanism to sup-

port detection of forbidden messages and conditions, so
that when such a message occurs or a condition becomes
true, the proper actions are taken. We have also modified
the execution mechanism to consider forbidden messages
and conditions in the algorithm for choosing the next
event to be carried out during play-out. The algorithm
tries to avoid choosing events that are forbidden in some
active charts. Only if no other event is enabled, events
that are coldly forbidden may be selected. Forbidden con-
ditions are also considered in this algorithm. Before an
event is selected, the algorithm simulates the immediate
impact of the event on the objects in the system, and if

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 103

Fig. 24. Forbidden messages and conditions

this event causes some hot forbidden message to become
true, it is not selected to be executed.
Forbidden elements are described in detail in [18, 30].

9.5 External objects

Often, a reactive system works in the presence of other
elements, besides the user who interacts with it. Such
elements might include other machines, computers, sen-
sors, and even Mother Nature. The collection of all these
elements is referred to as the system’s environment .
When playing in the required behavior of a reactive sys-
tem, it is necessary to be able to express its interaction
with this environment. We have shown how the play-
engine allows the user to specify the environment’s inter-
action with the system in a way similar to the interaction
with the end user. The interaction with the environment
is limited to object property changes, and it thus suits
interactions with nature more than communication with
interfacing systems.
We have extended the LSC language to refer to

external objects. External objects can be added on
the fly in the play-engine, in a similar way to inter-
nal objects. The execution mechanism was modified
not to initiate events that originate from external ob-
jects, much as it does not initiate events from the user
or the external environment. While playing out, the
user can simulate property changes of external objects
and can initiate calls from external objects to objects
that are internal to the system. Thus, the user can
control the behavior of different external components
and systems while the target system is being executed
and analyzed. Figure 25 shows an LSC with an exter-

Fig. 25. External objects in LSCs

nal object (the switch). External objects are discussed
in [18, 30].

9.6 Smart play-out

Play-out is actually an iterative process, where after each
step taken by the user the play-engine computes a super-
step, which is a sequence of events carried out by the
system as response to the event input by the user. This
process is rather naive: For example, there can be many
sequences of events possible as a response to a user event,
and some of these may not constitute a “correct” super-
step. We consider a super-step to be correct if when it is
executed no active universal chart is violated. The multi-
plicity of possible sequences of reactions to a user event
is due to the fact that a declarative inter-object behav-
ior language such as LSCs allows high-level requirements
given in pieces (e.g., scenario fragments), leaving open
details that may depend on the implementation. The par-
tial order semantics among events in each chart and the
ability to separate scenarios in different charts without
saying explicitly how they should be composed are very
useful in early requirement stages, but can cause under-
specification and non-determinism when one attempts to
execute them.
With Hillel Kugler, we have enhanced the play-engine

with an ability we call smart play-out . Smart play-out fo-
cuses on executing the behavioral requirements with the
aid of formal analysis methods, mainly model-checking.
Our smart play-out uses model-checking to find a correct
super-step if one exists, or proves that there isn’t one.
We do this by formulating the play-out task as a veri-
fication problem, in such a way that a counter-example
resulting from the model-checking will constitute the de-
sired super-step. The transition relation is defined so that
it allows progress of active universal charts but prevents
violations. The property to be checked is one that states
that always at least one of the universal charts is ac-
tive. In order to falsify it, the model-checker searches for
a run in which eventually none of the universal charts
is active; i.e., all active universal charts completed suc-
cessfully, and by the definition of the transition relation
no violations occurred. Such a counter-example is ex-
actly the desired super-step. If the model-checker man-

104 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

ages to verify the property then no correct super-step
exists.
The other kind of thing smart play-out can do is to

find a way to satisfy an existential chart. Here we can-
not limit ourselves to a single super-step, since the chart
under scrutiny can contain external events, each of which
triggers a super-step of the system. Nevertheless, the for-
mulation as a model-checking problem can be used with
slight modifications for this task too. Also, when trying to
satisfy an existential LSC, we take the approach that as-
sumes the cooperation of the environment.We should add
that the method for satisfying existential LSCs can also
be used to verify safety properties that take the form of an
assertion on the system state. This is done by putting the
property’s negation in an existential chart and verifying
that it cannot be satisfied.
Currently, smart play-out can be applied only to

a subset of our extended LSC language, including mes-
sages, conditions and assignments, but excluding, time,
symbolic instances and forbidden elements. Smart play-
out is integrated as a module in the play-engine, and is
discussed in detail in [17].

10 Related work

A large amount of work has been done on formal require-
ments, sequence charts, and model execution and ani-
mation. We briefly discuss the ones most relevant to our
work.
Amyot and Eberlein [3] provide an extensive survey

of scenario notations. Their paper also defines several
comparison criteria and then uses them to compare the
different notations. It seems that LSCs, the scenario lan-
guage we use as the formal rendition of our behavioral re-
quirements, scores high on most of the criteria presented
therein: it is component centered, it can encapsulate sev-
eral runs in a single scenario, it can be abstract, and can
relate to internal objects and not only to the system as
a whole. Moreover, it is highly visual, a criterion which is
very important when dealing with complex systems. The
survey in [3] does not refer to some of the additional is-
sues crucial to sequence-based languages, that were raised
in [8], such as the ability to specify anti-scenarios, and to
distinguish between “must” and “may” behaviors, etc.,
for which LSCs were in fact developed.
There are a number of commercial tools that suc-

cessfully handle the execution of graphical models (e.g.,
Statemate [20] and Rhapsody by I-Logix [23], Object-
Time [39], and Rose-RT by Rational [35]). Some of these
tools can be connected to a GUI mockup (or a real target
system) and will activate it as the execution progresses.
However, these tools all execute an intra-object design
model (usually, statecharts) rather than an inter-object
scenario-based model. Rhapsody is also able to produce
sequence charts showing the sequence of events generated
by executing the model and to compare it with ones pre-

pared separately by the user to help verifying the model.
In general, however, these tools do not execute require-
ments given in LSCs or in other variants of sequence
charts directly, and they use GUIs for model execution
but not for capturing the requirements.
In a recent, independently written paper, Lettrai and

Klose [27] present a methodology supported by a tool
called TestConductor, which is integrated into Rhap-
sody [23]. The tool is used for monitoring and testing
a model using a subset of LSCs. The charts can be
monitored in a way that is similar to the way we trace
existential charts. In order to be monitored, however,
their charts are transformed into Büchi automata (which
could significantly increase the size required to store each
chart). Their work also briefly mentions the ability to test
an implementation using these sequence charts, by gen-
erating messages on behalf of the environment (or other
un-implemented classes).
Work has been done concerning the execution of for-

mal specifications in non-graphical languages. For ex-
ample, [40] and [32] present an execution and animation
framework for specifications in Z, whereas [22] does so
for the language Albert II. In addition to being non-
sequence-based design models and not having a play-in-
like capability, the animation in these tools does not use
the target application GUI.
Magee et al. [29, 42] present a methodology supported

by a tool called LTSA for specifying and analyzing la-
beled transition systems (LTSs). This tool works with
an animation framework called SceneBeans [34], yield-
ing a nicely animated executable model. The model has
to be an LTS, which, again, is more akin to the intra-
object statecharts than to inter-object sequence based
behavior, and it will usually be larger and more detailed
than sequence charts. The behavior is written in FSP [28]
and is compiled into LTSs, a process that appears to be
somewhat less intuitive than play-in. An interesting idea
would be to use SceneBeans as an animation engine to de-
scribe the behavior of internal (non-GUI) objects in our
play-engine.
Dromey [9] presents a methodology called genetic soft-

ware engineering (GSE), in which a requirement written
in natural language is formalized by a “behavior tree”.
All such trees are then integrated into a single tree. This
comprehensive system behavior tree is transformed by
a variety of manipulations and projections into a com-
ponents architecture diagram, and then into many com-
ponent trees, each describing the internal behavior of one
component. GSE is similar to our work in two aspects:
it tries to bridge the gap between the requirements and
the design phases by using a common representation for
both (i.e., behavior trees) and then attempting to move
from the former to the latter by automated transform-
ations (using domain knowledge when needed). It also
uses a richer specification language than conventional se-
quence charts (e.g., it can specify anti-scenarios). Dromey
mentions the possibility of automatic transformations

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 105

from trees representing single components into their im-
plementation code. GSE does not include any play-in
mechanism or model execution capabilities on the re-
quirements level.
The Software Cost Reduction (SCR) method de-

scribed in [21] also allows the specification and simulation
of requirements for reactive systems. The SCR method
provides a tabular notation for specifying the required
relation between system and environment variables. Ac-
cording to this method, the specification is first modified,
with the aid of an automated tool, to be deterministic
and can then be simulated, using a graphical user inter-
face for capturing user inputs and reflecting the system
state. In [4] model-checking methods are used to verify
that a complete SCR model satisfies certain properties,
by using SMV and Spin model-checkers. SCR is similar
to our work (and to other work as described above) in the
fact that it uses a GUI in the final phase of the simulation.
It is different from our work in the languages used (i.e., ta-
bles of variables vs. visual formalisms) and in the fact that
the requirements are not played in. The SCR requirement
that the final requirements should reflect a deterministic
model is also different in concept from our work.
Interaction interfaces [5] are used to formally spec-

ify the interaction between two or more components that
co-operate as subsystems of a distributed system. Their
format uses predicates to characterize sets of interaction
histories, and they show how to derive component speci-
fications from a general interaction interface specification
(though for liveness properties some external intervention
is required to assign responsibilities to specific compo-
nents). The issue of realizability of components is also
studied in that paper. The same authors also co-designed
a synthesis algorithm from MSCs to state machines, ap-
pearing in [25].
Boger et al. [6] present a development methodology,

called extrememodeling (XM), which tries to combine the
advantages of the programming methodology of extreme
programming [45] with the UML [43]. Since XP relies
mainly on iterative coding and testing, XMmust strongly
rely on a modeling environment that enables execution
and testing of models. For this purpose, a tool called the
UML Virtual Machine is introduced, which can execute
a sublanguage of the UML diagrams. The models that
drive the execution are, again, statecharts, and not a re-
quirements scenario-based language, yet the effect of the
execution can also be shown on collaboration diagrams.
Here also, no GUI is used in the requirements capturing
process nor in the model execution.

11 Conclusions and future work

In summary, we have substantiated the idea of speci-
fying system behavior by playing in scenarios directly
from friendly GUI applications [13], and in so doing have
also worked out a method to play the behavior out di-

rectly. Play-in makes capturing requirements quite in-
tuitive, thus enabling non-professional end-users to par-
ticipate in the process. It is worth noting that as more
complex and sophisticated features of the language are
used, the user is expected to be more familiar with the
language of LSCs. Hence, playing in is somewhat like
programming in an intuitive, visual and high-level pro-
gramming environment. Play-out allows even more end-
users to operate the GUI and validate the requirements
by actually operating the application. All this seems to
have far-reaching potential applications in many stages
of system development, including requirements engineer-
ing, specification, testing, analysis and implementation.
To support the methodology we have built a play-engine
development environment.
Among other things, the play-in/play-out methodol-

ogy substantiates the link between informal use cases and
detailed requirements (e.g., in LSCs or temporal logic),
and makes it more rigorous and useful. In particular, one
could view our work as providing an approach and a tool
for executable use cases. Using the concepts and tech-
niques described herein, we may use the GUI application,
or some abstract version thereof, both in specifying de-
sired behavior and in testing and debugging it. When
more powerful synthesis algorithms become available this
could lead to the automatic generation of implementable
models.We are also coming to believe that for many kinds
of systems the play-engine methodology could serve as
the final implementation too, with the play-out being all
that is needed for running the system itself.
Several issues have not yet found their way into

the play-engine. Some of these are in research stages,
and others we have already worked out and are be-
ing implemented. Here are brief descriptions of some of
them:

Running Coordinated Play-Engines:
We intend to modify the play-engine to be able to

work in coordination with other simulation tools (or more
play-engines) in a coordinated mode, thus supporting
component based development from the initial phase of
requirements analysis and validation. In a project called
SEC (Simulation Engines Coordinator) we are in the
midst of defining both a standard interface and an inter-
action protocol so that several simulation engines (specif-
ically, play-engines) can be used together, each executing
a different part of the system. By using SEC, one could
execute a system, some parts of which are implemented,
some only designed (e.g., with statecharts), and some
only in the requirements phase, described by LSCs in the
play-engine.

Integration of Synthesis Tools:
After the user has finished playing in the system’s

behavior and has debugged it by playing out, the next
desired step (if the resulting executable model is still
inadequate) would be to move smoothly into the next

106 D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach

phase – preparing an intra-object model – that would
lead to implementation (see [13]). Accordingly, we would
like to integrate into our environment a tool to synthe-
size a system model from the requirements; say, stat-
echarts from the LSCs. A first-cut algorithm for this
appears in [16], and efforts are underway to improve it
and come up with a practical and implementable ap-
proach to synthesis that will link fruitfully with the
play-engine.

GUI Development Environments:
We have developed a prototype environment for con-

structing GUI applications that are “aware” of the play-
engine. This environment consists of an add-on to Mi-
crosoft Visual Basic and a set of components that can
be used to create GUI applications. The constructed
applications implement all the interfaces required by
the play-engine, thus enabling the end user to create
GUI applications simply by dragging the components
onto an initially blank GUI application. There are also
several commercial products that enable engineers to
avoid building a real hardware prototype, by having
them build one in software (e.g., Altia FacePlate & De-
sign [1], E-Sim Rapid [10], Macromedia Flash [11], etc.).
We intend to see to it that such tools can be used to-
gether with the play-engine, in order to facilitate the
construction of more complicated and sophisticated GUI
applications.

LSCs as the Final System?
There appear to be many kinds of systems for which

the LSC specification, together with the play-engine, act-
ing as a universal reactive machine, may be considered
to be not just requirements but the final implementa-
tion. For example, a desktop utility such as a phone book
could be created (given a predetermined data-retrieval
function), by playing in the requirements, with no need
to write a single line of code, and play-out could serve
very well as the executable system. In general, the play-
in/play-out methodology could be used to create web-like
applications where most of the user interaction is done
by clicking objects. System prototypes could be created
by first building the application GUI and then playing
in the behavior, instead of coding it. The same holds for
constructing tutorials for system usage prior to actual
system development. Furthermore, electronic home de-
vices such as VCR, toaster-oven, microwave, etc., can be
instrumented with a play-engine and their behavior could
be determined by end-users, using play-in to create an
LSC specification and then loading the specification into
the device. In short, we strongly believe there is a poten-
tial to use the suggested methodology and tool not only
for isolated parts of a development cycle, but through-
out the entire cycle. These ideas do not hold as is for
systems which are time-critical, or ones that have to be
distributed over several machines or processes, but we
have some ideas about these too.

Acknowledgements.We would like to thank Hillel Kugler for many
inspiring discussions on the material reported upon here. We would
also like to thank Evgeniy Bart, Maksim Frenkel and Dan Barak
for helping to implement some of the features discussed in Section
11. Finally, we thank the referees of a previous version of the paper
for their helpful comments.

References

1. Altia Design & Altia FacePlate, web page:
http://www.altia.com

2. Alur, R., Henzinger, T.: Real-time System = Discrete System
+ Clock Variables. Software Tools for Technology Transfer
1: 86–109, 1997

3. Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations
for Telecommunication Systems Development. In: Int. Conf.
on Telecommunication Systems, 2001

4. Bharadwaj, R., Heitmeyer, C.: Model Checking Complete
Requirements Specifications Using Abstraction. Automated
Software Engineering, 6(1): 37–68, January 1999

5. Broy, M., Krüger, I.: Interaction Interfaces – Towards a Sci-
entific Foundation of a Methodological Usage of Message Se-
quence Charts. In: Staples, J., Hinchey, M.G., Liu, S. (eds.)
Formal Engineering Methods, IEEE Computer Society, 1998,
pp. 2–15

6. Boger, M., Baier, T., Wienberg, F., Lamersdorf, W.: Extreme
Modeling. In: Extreme Programming and Flexible Processes
in Software Engineering – XP2000. Addison Wesley, 6 2000

7. Microsoft COM, web page: http://www.microsoft.com/com
8. Damm, W., Harel, D.: LSCs: Breathing Life into Message Se-
quence Charts. Formal Methods in System Design, 19(1) 2001.
Preliminary version in: Ciancarini, P., Fantechi, A., Gorri-
eri, R. (eds.) Proc. 3rd IFIP Int. Conf. on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’99),
Kluwer Academic Publishers, 1999, pp. 293–312

9. Dromey, R.: Genetic Software Engineering. Manuscript, 2001
10. e-SIM Rapid, web page http://www.e-sim.com/home/
11. Macromedia Flash, web page:
http://www.macromedia.com/software/flash/

12. Harel, D.: Statecharts: A Visual Formalism for Complex Sys-
tems. Sci. Comput. Prog., 8: 231–274, 1987. (Preliminary
version: Tech. Report CS84-05, The Weizmann Institute of
Science, Rehovot, Israel, February 1984.)

13. Harel, D.: From Play-In Scenarios to Code: An Achievable
Dream. IEEE Computer, 34(1): 53–60, January 2001

14. Harel, D., Gery, E.: Executable Object Modeling with State-
charts. IEEE Computer, 30(7): 31–42, 1997

15. Harel, D., Koren, Y.: Drawing Graphs with Non-Uniform Ver-
tices. In: Proc. of Working Conference on Advanced Visual
Interfaces (AVI’02). ACM Press, 2002, pp. 157–166

16. Harel, D., Kugler, H.: Synthesizing State-Based Object Sys-
tems from LSC Specifications. Int. J. of Foundations of Com-
puter Science (IJFCS)., 13(1): 5–51, Febuary 2002. (Also,
Proc. Fifth Int. Conf. on Implementation and Application of
Automata (CIAA 2000), July 2000, Lecture Notes in Com-
puter Science, Springer-Verlag, 2000.)

17. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-
Out of Behavioral Requirements. In: Proc. 4th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD’02),
Portland, Oregon, 2002, pp. 378–398. Also available as Tech.
Report MCS02-08, Weizmann Institute of Science, 2002

18. Harel, D., Marelly, R.: Come, Let’s Play: An Executable
Scenario-Based Approach to Reactive Systems. (tentative ti-
tle), manuscript, 2002

19. Harel, D., Marelly, R.: Playing with Time: On the Specifica-
tion and Execution of Time-Enriched LSCs. In: Proc. 10th
IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems
(MASCOTS’02), Fort Worth, Texas, 2002, pp. 193–202

20. Harel, D., Politi, M.: Modeling Reactive Systems with Stat-
echarts: The STATEMATE Approach. McGraw-Hill, 1998.
Early version titled: The Languages of STATEMATE. Techni-
cal Report, i-Logix, Inc., Andover, MA (250 pp.), 1991

D. Harel and R. Marelly: Specifying and executing behavioral requirements: the play-in/play-out approach 107

21. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*:
A Toolset for Specifying and Analyzing Software Require-
ments. In: Hu, A., Vardi, e.M.Y. (eds.) Intl. Conference
on Computer Aided Verification (CAV’98), Lecture Notes
in Computer Science, vol. 1427. Springer-Verlag, New York,
1998, pp. 5–51

22. Heymans, P., Dubois, E.: Scenario-Based Techniques for Sup-
porting the Elaboration and the Validation of Formal Re-
quirements. Requirements Engineering Journal 3: 202–218,
Springer-Verlag, 1998

23. I-Logix,Inc., products web page:
http://www.ilogix.com/fs_prod.htm

24. Jacobson, I.: Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley, Reading, MA, 1992

25. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to
Statecharts. Proc. DIPES’98, Kluwer, 1999

26. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Tem-
poral Logic for Live Sequence Charts. Technical report, Weiz-
mann Institute, 2000

27. Lettrari, M., Klose, J.: Scenario-Based Monitoring and Test-
ing of Real-Time UML Models. In: 4th Int. Conf. on the
Unified Modeling Language, Toronto, Lecture Notes in Com-
puter Science, vol. 2185, October 2001, pp. 317–328

28. Magee, J., Kramer, J.: Concurrency – State Models & Java
Programs. John Wiley & Sons, Chichester, 1999

29. Magee, J., Pryce, N., Giannakopoulou, D., Kramer, J.: Graph-
ical Animation of Behavior Models. 22nd Int. Conf. on Soft.
Eng. (ICSE’00), Limeric, Ireland, 2000

30. Marelly, R.: Specifying and Executing Behavioral Require-
ments: The Play-In/Play-Out Approach. PhD thesis, The
Weizmann Institute of Science, 2002

31. Marelly, R., Harel, D., Kugler, H.: Multiple Instances and
Symbolic Variables in Executable Sequence Charts. In: Proc.
17th Ann. ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’02), Seat-
tle, WA, 2002, pp. 83–100. Also available as Tech. Report
MCS02-05, Weizmann Institute of Science, 2002

32. Özcan, M., Parry, P., Morrey, I., Siddiqi, J.: Visualization of
Executable Formal Specifications for User Validation. Ann.
Soft. Eng., 3: 131–155, 1997

33. Pnueli, A.: The Temporal Semantics of Concurrent Programs.
Theoretical Computer Science, 13: 1–20, 1981

34. Pryce, N., Magee, J.: SceneBeans: A Component-Based Ani-
mation Framework for Java.
http://www-dse.doc.ic.ac.uk/Software/SceneBeans/

35. Rational,Inc., web page: http://www.rational.com
36. Robinson, J.: Logic: Form and Function, chap. 11. North-
Holland, 1979, pp. 182–198

37. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Addison-Wesley, Reading, MA,
1999

38. Schlor, R., Damm, W.: Specification and Verification of
System-Level Hardware Designs using Timing Diagram. In:
Proc. European Conference on Design Automation. IEEE
Computer Society Press, Paris, France, 1993, pp. 518–524

39. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented
Modeling. John Wiley & Sons, New York, 1994

40. Siddiqi, J.I., Morrey, I.C., Roast, C.R., Ozcan, M.B.: Towards
Quality Requirements via Animated Formal Specifications.
Ann. Soft. Eng., 3: 131–155, 1997

41. Suzuki, J., Yamamoto, Y.: Extending UML for Modelling
Reflective Software Components. In: France, R., Rumpe, B.
(eds.) UML’99 – The Unified Modeling Language. Beyond
the Standard. Second International Conference, Fort Collins,
CO, USA, October 28–30 1999, Proceedings, Lecture Notes in

Computer Science, vol. 1723. Springer, New York, 1999, pp.
220–235

42. Uchitel, S., Kramer, J., Magee, J.: Detecting Implied Scenar-
ios in Message Sequence Chart Specifications. In: 9th Euro-
pean Software Engineering Conferece and 9th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (ESEC/FSE’01). Vienna, Austria, September
2001

43. Documentation of the Unified Modeling Language (UML),
available from the Object Management Group(OMG):
http://www.omg.org

44. Web page: http://www.xml.com
45. Web page: http://www.extremeprogramming.org
46. Z.120 ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC). ITU-TS, Geneva, 1996

David Harel is the William
Sussman Professor of Mathe-
matics at The Weizmann Insti-
tute of Science in Israel, and
has been Dean of the Faculty
of Mathematics and Computer
Science there since 1998. He is
also co-founder of I-Logix, Inc.,
Andover, MA. He received his
PhD from MIT in 1978. He has
worked in several areas of theor-
etical computer science, and in

recent years has become involved in other areas, including
software and systems engineering, visual languages, graph
layout, modeling and analysis of biological systems, and smell
communication. He is the inventor of statecharts, and co-
inventor of live sequence charts (LSCs), and was part of the
team that designed the Statemate and Rhapsody tools. He
has received a number of awards, including ACM’s Karlstrom
Outstanding Educator Award in 1992. His latest books are
“Dynamic Logic” (with Kozen and Tiuryn), MIT Press, 2000,
and “Computers Ltd.: What They Really Can’t Do”, Oxford,
2000.

Rami Marelly received his
M.Sc in Computer Science in
1991 from the Technion – Is-
rael Institute of Technology. His
M.Sc. thesis was in the area
of formal verification. In the
years that followed, he worked
as a programmer, a team leader
and a project manager in vari-
ous kinds of systems, including
real-time and GIS systems. He
has just finished his Ph.D. in the

area of requirements engineering and visual languages at the
Weizmann Institute of Science.

