
Softw Syst Model (2002) 1: 130–141 / Digital Object Identifier (DOI) 10.1007/s10270-002-0012-8

Astructured operational semantics forUML-statecharts

Michael von der Beeck

BMW Group, Funktionsentwicklungsprozess, Max-Diamand-Str. 5, 80937 München, Germany;
E-mail: Michael.Beeck@bmw.de

Initial submission: 19 February 2002/Revised submission: 28 October 2002

Published online: 2 December 2002 –  Springer-Verlag 2002

Abstract. The Unified Modeling Language (UML) has
gained wide acceptance in very short time because of its
variety of well-known and intuitive graphical notations.
However, this comes at the price of an unprecise and
incomplete semantics definition. This insufficiency con-
cerns single UML diagram notations on their own as well
as their integration. In this paper, we focus on the nota-
tion of UML-statecharts. Starting with a precise textual
syntax definition, we develop a precise structured opera-
tional semantics (SOS) for UML-statecharts. Besides the
support of interlevel transitions and in contrast to re-
lated work, our semantics definition supports character-
istic UML-statechart features like the history mechanism
as well as entry and exit actions.

Keywords: Statecharts – UML – UML-statecharts –
Formal semantics – Structured operational semantics
(SOS) – Labeled transition systems

1 Introduction

The Unified Modeling Language (UML) [23] has become
a very successful analysis and design language in very
short time. It already constitutes the de-facto-standard
for industrial applications in many areas – especially in
the object-oriented domain, but it also gains in impor-
tance for the modeling of embedded real-time systems. Its
very advantages are given by a great variety of intuitive
and mostly well-known notations for different kind of in-
formation to be specified: requirements, static structure,
interactive and dynamic behaviour as well as physical im-
plementation structures. However, this intuitive appeal
suffers from an insufficient definition. Whereas the UML
syntax is defined in quite a precise and complete man-
ner, its semantics is not. The official UML documenta-
tion [17] contains a chapter titled “semantics”, but on the

one hand a considerable part of it only considers what
usually is called “static semantics” in compiler theory,
i.e. the parts of the syntax which are not context-free, on
the other hand the parts which in fact consider semantics
contain English prose and therefore lack preciseness and
completeness. This serious insufficiency concerns single
diagram notations of the UML like statecharts, sequence
diagrams, and class diagrams as well as their integra-
tion. In this paper we focus on the statecharts version
contained in UML – in the following denoted as UML-
statecharts.
The “classical” statecharts language, developed by

Harel [6], constitutes a very successful intuitive graph-
ical state-based specification language which enhances
finite automata by hierarchy, concurrency, and a sort of
broadcast communication. However, its semantics defin-
ition required tremendous efforts. A lot of work deals
with precisely defining the statecharts semantics in such
a way that certain semantic properties – statecharts
specific ones like causality as well as general ones like
compositionality – are fulfilled [7, 13–16, 21, 25, 26]. Some
of the semantic difficulties therein also exist for UML-
statecharts e.g. with respect to interlevel transitions,
whereas some intricacies – e.g. those caused by set-valued
events or negated events – do not exist. However, in
comparison with the huge amount of published work on
classical statecharts only a relatively small amount of
work has been published on UML-statecharts up to now.
The main contribution of this paper consists of a for-

mal, structured operational semantics (SOS) definition
for a subset of UML-statecharts. The SOS-approach of
Plotkin [20] combines an intuitive operational under-
standing with precisenenss and supports the definition of
a compositional semantics.
Our work is partly based on earlier work of Latella,

Majzik, and Massink [10] for UML-statecharts, but to
some extent also on previous work for classical state-

M. von der Beeck: A structured operational semantics for UML-statecharts 131

charts, namely on the work of Mikk, Lakhnech, and
Siegel [16], on the work of Lüttgen, von der Beeck, and
Cleaveland [13, 14], as well as on our previous work [26].
Furthermore, this article represents an elaborated version
of [27].
In contrast to the work of Latella et al. [10]1 our

approach

– includes the history mechanism (shallow and deep
cases),2

– supports entry and exit actions,
– uses statechart terms for the syntax definition which
are “more similar” to the original UML-statecharts
syntax than Enhanced Hierarchical Automata (EHA)
which are used in [10] (and [16]),

– enables a more liberal modeling of interlevel transi-
tions, because we use complete as well as incomplete
configurations for specifiying the source states and the
target states of interlevel transitions, and

– reduces the complexity of the semantics definition by
reducing redundant information.

As opposed to our above-mentioned earlier work [27]
this contribution presents the following improvements:

– consideration of sequences of UML-statechart transi-
tion executions instead of only single UML-statechart
transition executions by use of Kripke structures as
the semantic domain,

– introduction of nondeterminism in the semantics
definition concerning the execution of
• entry and exit actions in And-terms and
• action parts in And-terms,

– redefinition of subconfigurations as well as of (com-
plete and incomplete) potential configurations,

– comprehensive explanation of taken design decisions
concerning our syntax and semantics definition as e.g.
• only local (as opposed to global) separation of struc-
tural and behavioural information,
• use of stuttering rules in the formal semantics defin-
ition, and
• avoidance of redundancy.

The rest of the paper is organized as follows: We
briefly discuss differences between classical statecharts
and UML-statecharts in Sect. 2. In Sect. 3 we define our
textual syntax of UML-statecharts, whereas in Sect. 4
we present our formal operational semantics for UML-
statecharts. Related work is discussed in Sect. 5. We con-
clude and discuss future work in Sect. 6.

2 UML-statecharts versus classical statecharts

Some of the problems inherent in classical statecharts
also exist in UML-statecharts. However, there are some

1 The work of Latella et al. [10] for UML-statecharts is based on
the work of Mikk et al. [16] for classical statecharts.
2 Note that the history mechanism has been neglected in most of

the semantics definitions of classical statecharts.

important differences which simplify or complicate the se-
mantics definition, respectively. In contrast to classical
statecharts, the UML-statechart language shows the fol-
lowing features:

– Only one input event is processed at each point of
time. Especially, a generated event is not sensed
within the same “step”, i.e. it can not trigger a tran-
sition within the same step.

– The trigger part of a transition label neither contains
conjunctions of events nor negated events.

– If an event is taken from the input event queue which
does not enable any transitions in the currently active
state, then this event is simply ignored.3

– If several conflicting transitions, i.e. transitions which
must not be taken simultaneously, are simultaneously
enabled, then a transition on a lower level has priority
over transitions on a higher level (for short: lower-
first priority). In the case of classical statecharts either
no priority or upper-first priority (e.g. in the STATE-
MATE tool) is given.

– Entry/exit actions associated to states exist which are
executed whenever the corresponding state is entered
or exited, respectively.

The first two restrictions considerably simplify the
semantics definition of UML-statecharts in comparison
with classical statecharts. For example the problem of
achieving global consistency does not occur. In general,
causality conflicts – caused by cyclic transition executions
– do not exist.
We take all of these differences into account when

defining the UML-statecharts semantics. Furthermore,
we also consider the history mechanism which has been
presented by Harel [6], but which has been neglected in
most of the semantics definitions of classical statecharts.

3 Syntax

UML-statechart terms. UML-statecharts is a visual lan-
guage. However, for our aim to define a formal semantics,
it is convenient to represent UML-statecharts not visu-
ally but by textual terms. This is also done in related
work for classical statecharts [15, 25] as well as for UML-
statecharts [10]. Essentially, our term syntax enhances
the syntax presented in [15] by entry and exit actions, by
a possibility to model interlevel transitions, and by a pos-
sibilty to specify different history types.
Let N , T ,Π,A be countable sets of state names,

transition names, events, and actions, respectively, with
Π⊆A.4 We denote events and actions by a, b, c, . . . and
sequences of events as well as sequences of actions by
α, β, γ, For a set M let M∗ denote the set of fi-
nite sequences over M . Then, the set UML-SC of UML-
statechart terms is inductively defined to be the least

3 We do not consider deferring of events.
4 At a later stage we have to identify the sets Π and A.

132 M. von der Beeck: A structured operational semantics for UML-statecharts

set satisfying the following conditions, where n ∈N and
en, ex ∈ A∗. (The interpretations of n, en and ex will be
given later.)

1. Basic term: s = [n, (en, ex)] is a UML-statechart
term with type(s) = basic. Therefore s is also called
a basic term.

2. Or-term: If s1, . . . , sk are UML-statechart terms for
k > 0, ρ= {1, . . ., k}, l ∈ ρ,HT= {none, deep, shallow},
and T ⊆ TR =df T × ρ× 2N ×Π×A∗× 2N × ρ×HT,
then s= [n, (s1, . . . , sk), l, T, (en, ex)] is a UML-State-
chart term with type(s) = or. Therefore, s is also called
an Or-term. Here, s1, . . . , sk are the subterms of s, T
is the set of transitions between the subterms of s, s1
is the default subterm of s, l is called the active state
index of s (or for short: the index of s), and sl is the
currently active subterm of s (or for short: sl is active).
Note that active state index l ∈ {1, . . . , k} denotes the
l-th term within the k-tuple (s1, . . . , sk) of the sub-
terms of s.
For each transition t = (t̂, i, sr, e, α, td, j, ht) ∈ T we
require that additional constraints are fulfilled, name-
ly sr ∈ confAll(si) and td ∈ confAll(sj)5. Furthermore,
we define name(t) =df t̂, sou(t) =df si, souRes(t) =df
sr, ev(t) =df e, act(t) =df α, tarDet(t) =df td, tar(t) =df
sj , and historyType(t) =df ht. name(t) is called the
transition name of t, ev(t) and act(t) are called the
trigger part and action part of t, respectively,6 sou(t)
and tar(t) are called the source and target of t, respec-
tively, whereas souRes(t) and tarDet(t) are called the
source restriction and target determinator. Source re-
striction and target determinator provide a means for
modeling an interlevel transition by a simple transi-
tion on the level of the uppermost states the interlevel
transition exits and enters. The source and target of
the interlevel transition are represented as additional
label information by the source restriction and the
target determinator.7 Transition t is called an inter-
level transition, if its source restriction sr or its tar-
get determinator td differ from the empty set. Finally,
historyType(t) is called the history type of t.

3. And-term: If s1, . . . , sk are UML-statechart terms
for k > 0, then s= [n, (s1, . . . , sk), (en, ex)] is a UML-
statechart term with type(s) = and. Thus, s is also
called an And-term. Here, s1, . . . , sk are the (parallel)
subterms of s.

In all three cases we refer to n as the root name of
s and write root(s) =df n. Furthermore, en and ex are
the sequence of entry and the sequence of exit actions
of s, respectively. If a1, . . . , ak are actions, then the se-
quence of actions a1, . . . , ak is denoted by 〈a1, . . . , ak〉.
In particular, the empty sequence is denoted by 〈〉. We

5 The definition of confAll(sj) is postponed to the end of this
section.
6 Note that the trigger part e is a single element of Π, whereas

the action part α is a sequence of elements of A (with Π⊆A).
7 This idea stems from Mikk et al. [16].

assume that all root names and transition names are mu-
tually disjoint, so that terms and transitions within UML-
statechart terms are uniquely referred to by their names.
For convenience, we sometimes write “state” instead of
“term” and abbreviate (s1, . . . , sk) by (s1..k).
In the following we will discuss some of our design de-

cisions taken within the definition of UML-SC :

– We have decided to only include the indexes of
states, but not the states themselves in the defin-
ition of transitions. The reason is that we do not
want to overwhelm the definition of UML-statechart
terms. To be more precise, in the definition of an Or-
term s = [n, (s1, . . . , sk), l, T, (en, ex)] the definition
of transition set T reduces redundancy (and therefore
also complexity) within s: the substate information
is already contained in tupel (s1, . . . , sk), but not re-
peated within T .

– Note that according to our definition of Or-terms
a UML-statechart term does not only contain the
static term structure (e.g. the information which sub-
terms exist), but also dynamic information, i.e. the
information which of the subterms of an Or-term is
the currently active one. One could discuss whether
it would be better to separate these two kinds of in-
formation (structure and behaviour) completely. We
decided to define statecharts terms in a way which
closely resembles the intuitive notion of statecharts,
such that each substate of an Or-term on each level
contains structural as well as behavioural information.

– In contrast to the work of Mikk et al. [16] we decided
to define our (formal) syntax in a way that the for-
mulation of Or- and And-states is not mingled in one
common structure as it is the case with EHAs (En-
hanced Hierarchical Automata), but to clearly sepa-
rate And- and Or-states, because this is also the case
in the graphical syntax of UML-statecharts. Therefore
the comprehension of the translation between graphi-
cal and formal (textual) syntax is simplified.

We explain our term syntax with Fig. 1. The term syn-
tax of the UML-statechart of Fig. 1 is as follows:

s1 = [n1, (s2, s3), (〈〉, 〈〉)]
s2 = [n2, (s4, s5), 1, {t1, t4, t5, t6}, (〈〉, 〈〉)]
s3 = [n3, (s6, s7), 1, {t2}, (〈〉, 〈〉)]
s4 = [n4, (s8, s9), 1, {t3}, (〈〉, 〈d〉)]
s5 = [n5, (〈e〉, 〈〉)]
si = [ni, (〈〉, 〈〉)] (6≤ i≤ 9)

where s1 is an And-state, s2, s3, and s4 are Or-states, and
s5, . . . , s9 are basic states. Only s4 has an exit action and
only s5 has an entry action. For the Or-states, we have
selected the default substate as the currently active sub-
state. Therefore, the active state index equals 1 for all the
Or-states considered before.
A UML-statechart transition (t̂, i, sr, e, α, td, j, ht)

with sr = ∅ = td and ht= none is represented by an ar-
row from state si to sj with label t : e/α. Therefore, the

M. von der Beeck: A structured operational semantics for UML-statecharts 133

Fig. 1. UML-statechart example

transitions t1, t2, . . . , t6 are given as follows:

t1 = (t̂1, 1, ∅, a, 〈c〉, ∅, 2, none)
t2 = (t̂2, 1, ∅, a, 〈d〉, ∅, 2, none)
t3 = (t̂3, 1, ∅, a, 〈b〉, ∅, 2, none)
t4 = (t̂4, 1, {n9}, c, 〈a〉, ∅, 2, none)
t5 = (t̂5, 2, ∅, d, 〈〉, ∅, 1, shallow)
t6 = (t̂6, 1, ∅, b, 〈〉, ∅, 2, none)

Note that components two and seven of a transi-
tion t = (t̂, i, sr, e, α, td, j, ht) ∈ T – namely i and j – of
an Or-term s = [n, (s1, . . . , sk), l, T, (en, ex)] refer to the
i-th and j-th term of the k-tuple (s1, . . . , sk), respec-
tively, but not to the indexes of the states’ names in the
k-tuple. Otherwise, e.g. transition t1 would be given by
t1 = (t̂1, 4, ∅, a, 〈c〉, ∅, 5, none).
Transition t4 is the only interlevel transition, because

its source restriction {n9} differs from the empty set. Fur-
thermore, t5 is the only transition which uses the history
mechanism. We say that a transition t uses the history
mechanism, if its history type is shallow or deep (i.e.
historyType(t) ∈ {deep, shallow}).
Later on, interlevel transitions and history-mechanism

will be dealt with in more detail.

Configurations. In the following we consider different
kinds of configurations. Function conf : UML-SC −→ 2N

which is inductively defined along the structure of UML-
statechart terms computes the (complete) current config-
uration of a given UML-statechart term s, i.e. the set of
the root names of all currently active substates within s
also including the root name of s.8

conf([n, _]) =df {n}
conf([n, (s1..k), l, T, _]) =df {n}∪ conf(sl)

conf([n, (s1..k), _]) =df {n}∪
⋃k
i=1 conf(si)

8 The underscore “_” is used as a placeholder for arguments
which can be neglected for the present consideration.

For example in the UML-statechart of Fig. 1 we have:9

conf(s1)= {n1, n2, n4, n8, n3, n6} conf(s2)= {n2, n4, n8}

For the sake of brevity, in the following we sometimes
use subconfigurations instead of (complete) configura-
tions. Intuitively, a subconfiguration of a UML-statechart
term s is the set of all root names in the configuration of s
which denote basic states. Formally, we define a function
subconf : UML-SC−→ 2N by

subconf([n, _]) =df {n}
subconf([n, (s1..k), l, T, _]) =df subconf(sl)

subconf([n, (s1..k), _]) =df
⋃k
i=1 subconf(si)

For example, in the UML-statechart of Fig. 1 we have:

subconf(s1) = {n8, n6} subconf(s2) = {n8}

Function confAll : UML-SC −→ 22
N
applied to UML-

statechart s computes the set of all potential configura-
tions of s, which can be complete or incomplete.10

– The term “potential” denotes that not only the cur-
rently active substate of each Or-state s′ within
s is considered, but all possibilities for choosing
a substate of s′. This difference between conf and
subconf on the one side and confAll on the other
side implies that conf([n, (s1..k), l, T, _]) as well as
subconf([n, (s1..k), l, T, _]) depend on active state in-
dex l, whereas confAll([n, (s1..k), l, T, _]) does not.

– The term “incomplete” denotes a configuration which
results from an application of confAll to state s, where
the recursion within confAll terminates before the ba-
sic states of s are reached. Therefore, an incomplete

9 Remember that for the present consideration we assume that
the currently active substate of a (currently active) Or-state is
given by the default substate of the Or-state.
10 Remember that we have used function confAll to define con-
straints on the transition syntax.

134 M. von der Beeck: A structured operational semantics for UML-statecharts

configuration is upward-closed with respect to the
state hierarchy, but not downward-closed, whereas
a complete configuration is both.

Function confAll is also defined along the structure of
UML-SC:11

confAll([n, _]) =df {{n}}
confAll([n, (s1..k), l, T, _])

=df {{n}∪ c | ∃j ∈ {1..k} . c ∈ confAll(sj)}∪{{n}}
confAll([n, (s1..k), _])

=df {{n}∪
⋃k
i=1 ci | ci ∈ confAll(si)}∪{{n}}

Incomplete configurations are realized in the second
and third case of the definition of confAll by the union
with term {{n}}. Note that conf(s) is an element of
confAll(s) for each UML-statechart term s, formally ∀s ∈
UML-SC : conf(s) ∈ confAll(s).
We explain the notion of confAll by the UML-state-

chart of Fig. 1:

confAll(s1)⊇ {{n1, n2, n4, n8, n3, n6},
{n1, n2, n4, n9, n3, n6}, {n1, n2, n5, n3, n6},
{n1, n2, n4, n8, n3, n7},
{n1, n2, n4, n9, n3, n7}, {n1, n2, n5, n3, n7}}

confAll(s2)⊇ {{n2, n4, n8}, {n2, n4, n9}, {n2, n5}}

In this example, we have only listed the set of all com-
plete potential configurations, but not the incomplete po-
tential ones.
Having defined confAll and assuming that transition

t= (_, i, sr, _, _, td, j, _) with source si, target sj , source
restriction sr �= ∅, and target determinator td �= ∅ is given,
now the reason for the constraints sr ∈ confAll(si) and
td ∈ confAll(sj) stated in the definition of transitions in
Or-terms becomes clear. The source restriction and the
target determinator are (possibly incomplete) configura-
tions of si and sj and specify that transition t models an
interlevel transition as follows:

– Source restriction sr of t specifies the source state of
the interlevel transition.

– Target determinator td of t specifies the target state of
the interlevel transition.

Let us consider an example: The only interlevel tran-
sition of UML-statechart term s1 of Fig. 1 is t4 =
(t̂4, 1, {n9}, c, 〈a〉, ∅, 2, none), because in all other tran-
sitions both the source restriction as well as the target
determinator equal the empty set. Due to the source re-
striction {n9} of t4 this transition is represented in Fig. 1
by an arrow from state s9 (instead of s4) to s5 with label
t4 : c/〈a〉.
Note that our definition of confAll which allows in-

complete configurations enables – together with the
conditions sr, td ∈ confAll(si) – a more liberal model-
ing of interlevel transitions than the definition of tran-

11 We will abbreviate tuple {1, . . . , k} by {1..k}.

sitions in the work of Mikk et al. [16], where source
restriction and target determinator must be complete
configurations.
As can be seen from our UML-statecharts term syntax

and as in the work of [10] we do not consider the following
features of UML-statecharts:

– initial, final, and junction pseudostates,
– deferred, time, and change events,
– branch segments and completion transitions,
– guards, variables, and data dependencies in transition
labels,

– termination, creation, destruction of objects and send
clauses within actions as well as do actions, and

– dynamic choicepoints.

4 Semantics

In the following subsections, we proceed as follows: At
first we recall the intuitive semantics definition of UML-
statecharts. Afterwards we formalize the treatment of
entry and exit actions. Then we define how the state re-
sulting from transition execution is computed. Finally, we
use the achieved results to formally define the semantics
of UML-statecharts.

4.1 Intuition

We recall the intuitive semantics definition of UML-
statecharts by considering again our example of Fig. 1.
Initially, UML-statechart term s1 is in subconfiguration
{n8, n6}. If the input event queue offers event

– b, then transition t6 can be taken, so that the next
subconfiguration of s1 will be {n5, n6} and the se-
quence 〈d, e〉 of actions is executed, because 〈d〉 is the
sequence of exit actions of state s4, t6 has the empty
sequence 〈〉 as action part, and 〈e〉 is the sequence of
entry actions of state s5,

– a, then transitions t3 and t2 can simultaneously be
taken, so that {n9, n7} will be the next subconfigura-
tion and the sequence 〈b, d〉 of actions will be executed.
In this case it is not allowed that only one of both
transitions is taken. Note that due to the lower-first
priority in UML-statecharts the transition t1 can not
be taken if state s8 is active, because the source s8 of
transition t3 is on a lower level than the source s4 of
transition t1,12

– e ∈Π\{a, b}, then the configuration does not change,
because no transition can be taken.

History mechanism. Harel already presented the history
mechanism in his early classical statecharts paper [6].

12 The level of a transition t is defined by the level of the source of
t, not by the level of its source restriction.

M. von der Beeck: A structured operational semantics for UML-statecharts 135

However, most proposals for a precise semantics defin-
ition of classical statecharts neglected it.
The history mechanism allows to reenter an Or-state

s, such that the same substate of s becomes the currently
active substate as it has been the case, when s has been
active the last time. If the Or-state has never been active
before, the default substate of the Or-state becomes the
currently active substate.
The history mechanism allows two kinds of scoping:

the “memory” effect can be restricted to the direct sub-
states of the considered Or-state (“shallow”, graphical
symbol: “H”) or can be unrestricted (“deep”, graphical
symbol: “H∗”), such that it recursively remembers the ac-
tive substates along the state hierarchy down to the basic
states. We will consider both cases in our semantics.
In the UML-statechart of Fig. 1 only transition t5 uses

the history mechanism – with historyType(t5) = shallow.
If t5 is performed, then state s4 becomes active. Further-
more, substate s8 (s9) becomes active, if s8 (s9) has been
active, when s4 has been active last time before. In the
case that s4 has never been active before, then the default
state s8 of s4 becomes active.

Semantic problem. The main difficulty in our enhance-
ments with respect to the work of Latella et al. [10]
(and Mikk et al. [16]) arises from the fact that our se-
mantics shall additionally support the history mechanism
which exhibits quite intricate dependencies with inter-
level transitions.13 To clarify this point let us assume that
transition t5 in Fig. 1 which uses the history mechanism
(cf. historyType(t5) = shallow) is modified to an interlevel
transition t′5 by changing its target determinator from
empty set ∅ to {n8}. If t′5 is taken one could argue that
due to the history mechanism the next currently active
subterm of s4 should be s9 if s9 had been the last ac-
tive subterm of s4. Alternatively, one could argue that
due to the target determinator {n8} of t′5 the next cur-
rently active subterm of s4 should be s8. However, we will
define the semantics such that the target determinator
information of a transition has priority over the history
mechanism. For the above-mentioned example this means
that the second possibility is chosen.

4.2 Entry and exit actions

When a UML-statechart transition t is taken, a (possibly
empty) set of actions is executed: at first the sequence of
exit actions of the source of t is executed (according to an
inner-first approach), then the action part act(t) of t, and
finally the sequence of entry actions of t (according to an
outer-first approach).
We explain the execution of entry and exit actions

with the UML-statechart example of Fig. 1. If transition

13 Remember that our UML-statecharts term syntax represents
interlevel transitions by using additional information in the tran-
sition labels (i.e. source restriction and target determinator) based
on the approach of [16].

t1 is taken then the action sequence 〈d, c, e〉 is generated,
because at first the sequence 〈d〉 of exit actions of source
s4 of transition t1 is executed, then the action part 〈c〉 of
t1, and finally the sequence 〈e〉 of entry actions of target
s5 of t1.
In general, if a transition (_, l, _, _, α, _, i, _) from state

sl to state si with action part α is taken, then a sequence
ex :: α :: en of actions is executed, with ex ∈ exit(sl), en ∈
entry(si). Intuitively, exit(sl) is the set of all possible se-
quences of exit actions of sl and entry(si) is the set of all
possible sequences of entry actions of si. Here, we assume
that :: is an operator in infix-notation which concate-
nates action sequences.14 The mentioned intuitive mean-
ings of functions exit and entry already indicate that we
introduce a sort of nondeterminism when defining the
UML-statecharts semantics. The UML definition in [17]
does not define in which order the entry actions of the
substates of an And-state [n, (s1..k), (en, ex)] have to be
executed with respect to each other. The same is valid
for the exit actions of the substates of an And-state.
Therefore we allow each permutation of the entry ac-
tions and each permutation of the exit actions as possible
execution sequences. This nondeterminism is achieved
by defining entry and exit as two set-valued functions
entry :UML-SC−→ 2A

∗
and exit : UML-SC−→ 2A

∗
which

are inductively defined along the structure of UML-SC as
follows:

entry([n, (en, ex)]) =df {en}
entry([n, (s1..k), l, T, (en, ex)])

=df {en :: en′ | en′ ∈ entry(sl)}
entry([n, (s1..k), (en, ex)])

=df {en ::m1 :: . . . ::mk |
∃ bijection b : {1..k} −→ {1..k} .
mi ∈ entry(sb(i))∀i ∈ {1..k}}

exit([n, (en, ex)]) =df {ex}
exit([n, (s1..k), l, T, (en, ex)])

=df {ex′ :: ex | ex′ ∈ exit(sl)}
exit([n, (s1..k), (en, ex)])

=df {m1 :: . . . ::mk :: ex |
∃ bijection b : {1..k} −→ {1..k} .
mi ∈ exit(sb(i))∀i ∈ {1..k}}

In the definition of both functions entry and exit the
nondeterminism is realized by existential quantification
over bijections in order to consider all possible permuta-
tions of the corresponding sequences of entry actions and
exit actions, respectively.

4.3 Computing the next state

If a UML-statechart transition t is executed, particularly
its history type and – if t is an interlevel transition – t’s

14 The above-mentioned term ex ::α :: en will be used in SOS rule
OR-1 of the (auxiliary) semantics of UML-statecharts to be pre-
sented in Sect. 4.4.

136 M. von der Beeck: A structured operational semantics for UML-statecharts

target determinator have to be considered. Therefore we
define function next which computes the state which re-
sults from a transition execution. Later on this function is
used in the SOS rule which handles transition execution
(in an OR-state).
Given a UML-statechart transition t with target

s, history type ht = historyType(t), and target deter-
minator N = tarDet(t) of t, the function next : HT×
N ×UML-SC−→ UML-SC computes the UML-statechart
term s′ = next(ht, tarDet(t), s) which results after execu-
tion of transition t. Note that the terms s and s′ have
identical static structure, only their dynamic informa-
tion – specifying the currently active substates – may
differ. In order to simplify the presentation of next as
well as the presentation of several subsequent definitions
(functions next_stop, default, and the SOS rules), in the
following we sometimes abstract from entry and exit ac-
tions within UML-statechart terms: for example, we write
[n] instead of [n, (en, ex)], we write [n, (s1..k), l, T] instead
of [n, (s1..k), l, T, (en, ex)], and we write [n, (s1..k)] instead
of [n, (s1..k), (en, ex)]. Furthermore, we use the substi-
tution notation .[./.] as follows: If t is a term, then t[a/b]
is the term which results from replacing all occurrences
of a in t by b. Finally, for l ∈ {1, . . . , k} we abbreviate
(s1, . . . , sl−1, s

′
l, sl+1, . . . , sk) by (s1..k)[sl/s′l].

next(ht,N, [n]) =df [n]
next(ht,N, [n, (s1..k), l, T])

=df




[n, (s1..k)[sj/next(ht,N,sj)], j, T] if ∃n′ ∈N,

j ∈ {1, . . . , k} .

n′ = name(sj)

next_stop(ht, [n, (s1..k), l, T]) otherwise

next(ht,N, [n, (s1..k)])
=df [n, (next(ht,N, s1), . . . , next(ht,N, sk))]

The second case of the definition – application of func-
tion next to an Or-state [n, (s1..k), l, T] – requires some
explanation:

– IfN contains a name n′ of one of the state names of the
substates s1, . . . , sk, i.e. ∃n′ ∈N, j ∈ {1, . . . , k}, such
that n′ = name(sj) (denoted as condition ∗), then ac-
tive state index l will be replaced by active state index
j and function next is recursively applied to sj . There-
fore, if N = tarDet(t), then the target determinator
information of t is exploited in function next when
zooming into the state hierarchy as long as condition ∗
is fulfilled, i.e. as long as adequate target determinator
information exists.

– Otherwise, i.e. if N does not contain a name n′ of one
of the state names of the substates s1, . . . , sk, func-
tion next_stop : HT×UML-SC-OR−→ UML-SC-OR is
called which uses the history type information to de-
termine currently active substates of a state, with
UML-SC-OR =df {s | s ∈ UML-SC, type(s) = or}, i.e.

UML-SC-OR is the set of all UML-statechart terms
which are Or-states. In the definition of function
next_stop the following case distinction occurs:
• If history type ht = deep, then the state [n, (s1..k),
l, T] does not change at all.
• If history type ht= none, then active state index l is
replaced by active state index 1 and function default
is used to initialize substate s1.
• If history type ht= shallow, then active state index
l does not change, but function default initializes all
lower levels of sl.

next_stop(ht, [n, (s1..k), l, T])

=df




[n, (s1..k), l, T] if ht= deep

[n, (s1..k)[s1/default(s1)], 1, T] if ht= none

[n, (s1..k)[sl/default(sl)], l, T] if ht= shallow

Note the difference between the second and third case
of the definition of next_stop:

– The second case (ht= none) is independent from l, i.e.
from the active state index of the currently active sub-
state of the Or-state – default(s1) becomes the new
currently active substate of s1.

– In contrast the third case (ht= shallow) depends on l,
because default(sl) becomes the new currently active
substate of the Or-state.

The definition of next_stop uses function default :
UML-SC−→ UML-SC which defines for an Or-state that
its currently active substate is given by its default sub-
state.

default([n]) =df [n]
default([n, (s1..k), l, T]) =df [n, (s1..k)[s1/default(s1)], 1, T]
default([n, (s1..k)])

=df [n, (default(s1), . . . , default(sk))]

4.4 Semantics definition

In this section we will develop a formal UML-statecharts
semantics definition. The semantics will be defined for
the textual UML-statecharts syntax as given by the set
UML-SC of UML-statechart terms.
To develop a comprehensible – though precise – UML-

statecharts semantics definition we will modularize it as
follows: First of all we will define the semantics in two
phases: In the first phase we will define an auxiliary
UML-statecharts semantics which only deals with pro-
cessing single input events, but not with sequences of in-
put events. In a second phase we use this auxiliary seman-
tics to define the (complete) UML-statecharts semantics
dealing with processing sequences of input events. This
separation already supports modularity. Furthermore, for
the first phase we follow the SOS-approach of Plotkin:We

M. von der Beeck: A structured operational semantics for UML-statecharts 137

take labeled transition systems as semantic domain and
use SOS-rules to define the (auxiliary) semantics of UML-
statecharts – restricted to the processing of single input
events – in a modular way. More precisely, we will define
the auxiliary semantics by a function [[.]]aux :UML-SC−→
LTS, where LTS is the set of labeled transition systems and
where the (semantic) transitions15 work on single input
events e ∈ Π. For the second phase we use Kripke struc-
tures as semantic domain, because this selection simpli-
fies the processing of event sequences considerably, since
Kripke structures are very appropriate for modeling that
the output of one step serves as (part of) the input of the
next step.
Both phases constitute an operational and modular

approach, such that comprehension as well as flexibility
(e.g. with respect to subsequent enhancements) are sup-
ported – without restricting preciseness.

Priority mechanism. As opposed to the work of Latella et
al. [10] we will not parameterize our semantics definition
with a priority mechanism for transition execution, since
lower-first priority is stipulated in the official UML spe-
cification of the OMG [17]. Therefore, we directly encode
lower-first priority in our semantics.

Auxiliary semantics. The auxiliary semantics [[s]]aux of
a UML-statechart term s ∈ UML-SC is given by the la-
beled transition system (UML-SC, L,−→, s)∈ LTS, where

– UML-SC is the set of states,16

– L=Π×A∗×{0, 1} is the set of labels,
– −→⊆ UML-SC×L×UML-SC is the transition rela-
tion, and

– s is the start state.

15 We use the term “semantic transition” in order to distin-
guish transitions of the semantics of UML-statecharts from “UML-
statechart transitions”, which occur in the syntax, more precisely
in UML-statechart terms of type Or.
16 This implies that each state of the transition system is given by
a UML-statechart term.

Table 1. SOS rules of the auxiliary semantics

BAS
true

[n]
e
〈〉→0 [n]

OR-1
(_, l, sr, e, α, td, i, ht) ∈ T, sr ⊆ conf(sl), sl �

e
→1

[n, (s1..k), l, T]
e

ex::α::en→1 [n, (s1..k)[si/next(ht,td,si)], i, T]

(
ex ∈ exit(sl),

en ∈ entry(next(ht, td, si))

)

OR-2
sl
e
α
→1 s

′
l,

[n, (s1..k), l, T]
e
α
→1 [n, (s1..k)[sl/s′l], l, T]

OR-3
sl
e
〈〉→0 sl, [n, (s1..k), l, T] �

e
→1

[n, (s1..k), l, T]
e
〈〉→0 [n, (s1..k), l, T]

AND
∀j ∈ {1, . . . , k} . sj

e
αj
→fj s

′
j

[n, (s1..k)]
e
α→
∨k
j=1 fj

[n, (s′1..k)]

(
α ∈ {αb(1) :: . . . :: αb(k) |

∃ bijection b : {1..k} −→ {1..k}}

)

For the sake of simplicity, we write s
e

α
→f s′ instead of

(s, (e, α, f), s′) ∈−→ and s �
e
→f instead of � ∃s

′, α. s
e

α
→f s′,

where s and s′ are called the source and the target of these
(semantic) transitions, respectively, e and α are called the
input and output, respectively, and f is called the stut-
tering flag (or for short flag). We say that term s may
perform a (semantic) transition with input e, output α,
and flag f to term s′. If appropriate, we do no mention the
input, output, and/or target of the transition. Intuitively,
stuttering flag f states whether a semantic transition is
performed,

– either because at least one UML-statechart transition
is taken (in this case f = 1, denoted as positive flag)

– or without taking any UML-statechart transition (in
this case f = 0, denoted as negative flag). In this case
only the input event is “consumed”, whereas source
and target are identical. This is usually denoted as
a stuttering step.

The flag is needed to assure that stuttering steps can
only occur, if no non-stuttering step is possible.
In contrast to the work of Latella et al. [10] we do not

need to annotate a semantic transition with the explicit
set of UML-statechart transitions which are taken when
the semantic transition is performed. Instead, in our case
it suffices to annotate the boolean information whether at
least one UML-statechart transition is taken. This sim-
plification reduces the complexity of the semantics and
therefore could ease the implementation of the semantics.
Furthermore, a better performance of the implemented
semantics could result.
Transition relation −→ is defined as presented in

Table 1 by five SOS rules using the following rule format:

name
premise

conclusion
(condition)

Explanation of the SOS rules:

– BAS (stuttering)
A basic state may perform a semantic transition with

138 M. von der Beeck: A structured operational semantics for UML-statecharts

arbitrary input event e, empty output, and negative
flag such that the state does not change, i.e. that the
input event is just consumed.

– OR-1 (progress)
If t is a UML-statechart transition of an Or-state s
with trigger part e, then s can perform a semantic
transition with input e and positive flag
• if the source restriction sr of t is a subset of the com-
plete current configuration of the currently active
substate sl of s (sr ⊆ conf(sl)) and
• if sl cannot perform a semantic transition with input
e and positive flag (sl �

e
→1).

The former condition assures the enabledness of tran-
sition t, whereas the last condition assures the lower-
first priority of UML-statecharts. Rule OR-1 treats
the execution of entry and exit actions: it is the only
rule in which additional entry and exit actions, i.e.
entry and exit actions not already occuring in the out-
put part of the transition in the rule’s premise, can
occur in the output part of the transition in the con-
clusion. Note that the source restriction sr and the
target determinator td of a UML-statechart transi-
tion only appear in this rule: sr ⊆ conf(sl) assures the
enabledness of the considered transition, whereas td
– used within next(ht, td, si) – precisely defines the
target state and therefore also the entry actions to
be executed. The target of the semantic transition
differs from its source by changing the currently ac-
tive substate from sl to si, because sl and si are the
source and target of the UML-statechart transition
t, respectively. Furthermore, the dynamic informa-
tion of si is updated according to the history type
ht and the target determinator td of t using function
next. This update is performed by the substitution
(s1..k)[si/next(ht,td,si)]. Finally, the output of the seman-
tic transition is given by concatenating a sequence ex
of the exit actions of the old currently active substate
sl with the output part α of the UML-statechart tran-
sition t and with a sequence en of the entry actions of
the new currently active substate s′i, where s′i is the
result of updating si using function next as explained
before.

– OR-2 (propagation of progress)
If a substate of an Or-state may perform a semantic
transition with a positive flag, then the Or-state may
perform a semantic transition with the same label.

– OR-3 (propagation of stuttering)
If a substate of an Or-state may perform a semantic
transition with a negative flag (i.e. no UML-statechart
transition can be taken within the Or-state) and if the
Or-state cannot perform a semantic transition with
positive flag, then the Or-state may also perform a se-
mantic transition with the same label (in particular
with negative flag). The condition, that the Or-state
cannot perform a semantic transition with positive
flag supports the maximality condition which will be
dealt with later on in more detail.

– AND (composition)
If every substate sj of an And-state s can perform a se-
mantic transition with input e, output αj , and flag bj ,
then And-state s can also perform a semantic transi-
tion with the same input e, but with output α result-
ing from concatenating the substate outputs αj in an

arbitrary order, and with flag
∨k
j=1 fj given by the log-

ical disjunction of all flags fj . Here, we identify “0”
and “1” with the boolean values “false” and “true”,
respectively, to evaluate term

∨k
j=1 fj .

Summing up, the SOS rules define that for every input
event e ∈Π and for every state s ∈ UML-SC

– either a semantic transition s
e

α
→1 s

′ with output
α ∈A∗ and state s′ ∈ UML-SC exists or

– a semantic transition s
e

〈〉
→0 s exists – with empty out-

put and without a state change.

In particular our semantics definition fulfills the maxi-
mality condition of UML-statecharts: a maximal number
of non-conflicting UML-statechart transitions is taken,
when a semantic transition is performed. This condition
is assured by the following facts:

– The AND-rule assures that an And-term can only per-
form a semantic transition, if all of its (parallel) sub-
states perform a (semantic) transition.

– The set of Or-rules make sure that performing a se-
mantic transition with positive flag (denoting the
execution of at least one UML-statechart transition)
has priority over performing a semantic transition
with negative flag (denoting the execution of no
UML-statechart transition): the premise of rule OR-3
(propagation of stuttering) can only become true, if
the premise of rule OR-1 (progress) evaluates to false.

In the SOS rules we have used stuttering steps in order
to simplify the formulation of (parallel) composition in
rule AND: by allowing stuttering steps we can (and in fact
must) assume that all its parallel substates perform a se-
mantic transition. If we would not use stuttering steps, it
would be difficult to define the semantics such that the
aforementioned maximality condition will be satisfied.
As an example Fig. 2 presents the auxiliary seman-

tics, i.e. a labeled transition system lts, for the UML-
statechart of Fig. 1 in a graphical way as state transition
diagram std, where each std-state represents an lts-state
s by the current subconfiguration of s. For the sake of
simplicity, Fig. 2 only presents those semantic transitions
which have positive flags. Semantic transitions with nega-
tive flags would have to be presented by cyclic transitions
at every state. More precisely for every state s of the tran-
sition diagram of Fig. 2 for which there does not exist
an outgoing transition with input e ∈ Π a cyclic transi-
tion with label e/〈〉 at state s would have to be drawn.
Furthermore, Fig. 2 only shows those states which are
reachable from the start state (n8, n6).

Complete semantics. In order to define the UML-
statechart semantics in a more complete way, we have to

M. von der Beeck: A structured operational semantics for UML-statecharts 139

Fig. 2. Auxiliary semantics of UML-statechart from Fig. 1

consider that – given a sequence of input events – a UML-
statechart performs a sequence of steps, such that during
each of these steps

– one event of the current sequence of input events is
consumed and therefore deleted from this sequence
and

– a sequence of actions is generated which is added to
the shortened sequence of input events resulting in
a new sequence of input events to be used in the fol-
lowing step.

Kripke structures can be used to model this processing.
In particular, they are very appropriate for modeling that
the output of one step serves as the input for the following
step. Therefore, after having defined the auxiliary seman-
tics [[.]]aux in a first phase, in a second phase we use Kripke
structures and the (auxiliary) semantics [[.]]aux to define
the (complete) semantics [[.]] : UML-SC −→ K for UML-
statechart terms, where K is the set of Kripke structures.
The (complete) semantics [[s]] of a UML-statechart

term s ∈ UML-SC is given by a Kripke structure K =
(S, st,−→�) ∈ K, where
– S = UML-SC×Π∗ is the set of Kripke states ofK,
– st= (s, ε0) ∈ S is the start state ofK with ε0 ∈Π∗

– −→�⊆ S×S is the transition relation ofK.

Due to the choice of Kripke structures as semantic do-
main we have to require Π =A, because the “output” of
a step of a Kripke structure serves as the “input” of the
next step.17

For the sake of simplicity, we write (s, ε)→� (s′, α) in-
stead of (s, ε, s′, α) ∈−→�.
The following SOS rule (called get-inp) defines tran-

sition relation −→� of the complete semantics by use of
transition relation −→ of the auxiliary semantics.

get-inp
s
e
α f
→s′

(s,ε)→�(s′,ε′′) (∃(ε, e, ε
′) ∈ sel,∃(α, ε′, ε′′) ∈ join)

Explanation of SOS rule get-inp:
If a sequence ε of events is given, such that relation

17 Up to now, we only had to require Π⊆A.

sel can separate it in a single event e and the rest se-
quence ε′ and if state s may perform a transition ac-
cording to transition relation −→ with input e (being
a single event), output α, and flag f to state s′, then
Kripke state (s, ε) may also perform a transition accord-
ing to transition relation −→� to state (s′, ε′′), if rela-
tion join can compose output α and rest sequence ε′ to
sequence ε′′.
According to the UML definition which does not de-

fine the scheduling strategy of the input event queue of
UML-statecharts (and thereby following [10]) we use two
relations sel ⊆ Π∗× (Π×Π∗) and join ⊆ (Π∗×Π∗)×Π∗

which still have to be defined accordingly for a concrete
scheduling strategy of the input event queue.

After having defined the semantics we will discuss the
advantages and disadvantages of interlevel transitions.

– On the one hand interlevel transitions are included
in Harel’s classical statecharts [6] as well as in UML-
statecharts of all UML versions 1.x [17] and also in the
UML 2.0 Proposal of the U2-partners [18].

– On the other hand interlevel transitions imply that
(UML-)statecharts are not defined in a modular way,
so that the definition of a compositional (UML-)
statecharts semantics is impeded. Therefore interlevel
transition are not allowed in most work related to the
formalization of statecharts semantics [11, 12, 15, 21,
24, 25] (also in our previous work [13, 14, 26, 27]).

– However, in the work presented above we have in-
corporated interlevel transitions within our UML-
statechart term syntax, although their prohibition
would have significantly simplified our syntax and se-
mantics definition of UML-statecharts:
•Syntax:
Transitions of Or-states would neither contain source
restriction nor target determinator information.
Therefore also function confAll would not be neces-
sary any more.
•Semantics:
We could skip function conf which is used in SOS-
rule OR-1. Furthermore, the definition of function
next would be significantly less complex.

140 M. von der Beeck: A structured operational semantics for UML-statecharts

5 Related work

In the following we discuss related work dealing with
a precise semantics definition of UML-statecharts.
The work of Latella et al. [10] has been one starting

point of our work. The enhancements of our work with
respect to their work have already been described before.
Paltor and Lilius [19] as well as Kwon [9] define an

operational semantics for UML-statecharts in terms of
rewrite rules. Since Paltor et al. do not use a structured
approach like SOS their semantics does not offer the same
level of clarity as ours.
Compton et al. [2] outline a UML-statecharts seman-

tics based on Abstract State Machines. They consider
entry and exit actions, but – in contrast to our work – not
the history mechanism.
Gogolla et al. [5] present a formal semantics of UML-

statecharts by mapping UML-statecharts into a more
simplified machine using graph rewriting techniques.
Reggio et al. [22] define the semantics of a UML-

statechart associated with an active UML-class by a la-
beled transition system which is formally specified by the
algebraic specification language CASL. In contrast to our
approach the authors neither consider entry and exit ac-
tions nor the history mechanism.
Börger et al. [1] present a precise and quite modular

semantics for UML-statecharts based on Abstract State
Machines in particular covering the history mechanism as
well as entry and exit actions.
Engels, Hausmann, Heckel, and Sauer [3] propose

a meta modeling approach to define the operational se-
mantics of behavioural UML diagrams – especially a frag-
ment of UML-statecharts – based on collaboration di-
agrams. The way how collaboration diagrams are used
resembles Plotkin’s Structured Operational Semantics.
Eshuis and Wieringa [4] present a formal semantics of

UML-statecharts in terms of labelled transition systems.
In contrast to our work they do not include the history
mechanism.
Kuske [8] proposes a formal operational semantics for

a subset of UML-statecharts – not including the history
mechanism – based on structured graph transformations.

6 Conclusions and further work

We presented a formal semantics of UML-statecharts.
In contrast to related work (like the approach of Latella
et al. [10] which has been one starting point of our
work) we additionally include UML-statechart features
like the history mechanism (in both kinds) as well as
entry and exit actions. Furthermore, the use of our syn-
tax, namely UML-statechart terms, as well as our ap-
proach of defining an SOS-style semantics results in quite
a succinct and well adaptable semantics which could
be used as the basis for formal analysis techniques like
model checking, equivalence checking, refinement check-

ing, consistency checking or for defining transformations
between tools which support different UML-statechart
dialects.
In future, we will consider additional features of UML-

statecharts – e.g. guards and deferred events – within the
semantics definition. Furthermore, we will examine how
our approach can be adapted to other behavioural UML
notations like sequence diagrams.
Another major point of our future work is given by the

development of adequate formal notions for equivalence,
refinement, and consistency based on the semantics defin-
ition of UML behavioural notations providing the basis of
a development method for UML behavioural notations.

Acknowledgements. We would like to thank the anonymous
reviewers for very constructive and detailed suggestions for
improvements.

References

1. Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynam-
ics of UML state machines. In: Abstract State Machines. The-
ory and Applications. LNCS, vol. 1912. Springer, 2000

2. Compton, K., Huggins, J., Shen, W.: A Semantic Model for
the State Machine in the Unified Modeling Language. In: Pro-
ceedings Dynamic Behaviour in UML Models: Semantic Ques-
tions. Ludwig-Maximilians-Universität München, Institut für
Informatik, Bericht 0006, 2000, pp. 25–31

3. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic
meta modeling: A graphical approach to the operational se-
mantics of behavioral diagrams in UML. In: Evans, A., Kent,
S., Selic, B. (eds.) UML 2000 – The Unified Modeling Lan-
guage. Advancing the Standard. Third International Confer-
ence, York, UK, October 2000, Proceedings. LNCS, vol. 1939.
Springer, 2000, pp. 323–337

4. Eshuis, R., Wieringa, R.: Requirements-level semantics for
UML-statecharts. In: Proceedings of FMOODS 2000. Kluwer,
2000

5. Gogolla, M., Parisi-Presicce, F.: State diagrams in UML:
A formal semantics using graph transformations. In: Broy, M.,
Coleman, D., Maibaum, T.S.E., Rumpe, B. (eds.) Proceedings
PSMT’98 Workshop on Precise Semantics for Modeling Tech-
niques. Technische Universität München, TUM-I9803, 1998

6. Harel, D.: Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8: 231–274, 1987

7. Harel, D., Naamad, A.: The STATEMATE semantics of Stat-
echarts. ACM Transactions on Software Engineering, 5(4):
293–333, October 1996

8. Kuske, S.: A Formal Semantics of UML State Machines Based
on Structured Graph Transformation. In: Gogolla, M., Ko-
bryn, C. (eds.) UML 2001 – The Unified Modeling Language:
Modeling Languages, Concepts, Tools. Lecture Notes in Com-
puter Science, vol. 2185. Springer-Verlag, 2001, pp. 241–256

9. Kwon, G.: Rewrite rules and operational semantics for model
checking UML statecharts. In: Evans, A., Kent, S., Selic, B.
(eds.) UML 2000 – The Unified Modeling Language. Advanc-
ing the Standard. Third International Conference, York, UK,
October 2000, Proceedings. LNCS, vol. 1939. Springer, 2000,
pp. 528–540

10. Latella, D., Majzik, I., Massink, M.: Towards a formal op-
erational semantics of UML statechart diagrams. In: Formal
Methods for Open Object-based Distributed Systems. Chap-
man & Hall, 1999

11. Levi, F.: Verification of Temporal and Real-Time Properties
of Statecharts. PhD thesis, University of Pisa-Genova-Udine,
Pisa, Italy, February 1997

12. Lüttgen, G., Mendler, M.: The intuitionism behind statecharts
steps. In: ICALP 2000. Lecture Notes in Computer Science,
vol. 1853. Springer-Verlag, 2000, pp. 163–174

M. von der Beeck: A structured operational semantics for UML-statecharts 141

13. Lüttgen, G., von der Beeck, M., Cleaveland, R.: Statecharts
via process algebra. In: Baeten, J.C.M., Mauw, S. (eds.) Con-
currency Theory (CONCUR ’99). Lecture Notes in Computer
Science, vol. 1664. Springer-Verlag, Eindhoven, The Nether-
lands, August 1999, pp. 399–414

14. Lüttgen, G., von der Beeck, M., Cleaveland, R.: A Composi-
tional Approach to Statecharts Semantics. In: Proc. of ACM
SIGSOFT Eighth Int. Symp. on the Foundations of Software
Engineering (FSE-8). ACM, 2000, pp. 120–129

15. Maggiolo-Schettini, A., Peron, A., Tini, S.: Equivalences of
Statecharts. In: Montanari, U., Sassone, V. (eds.) CON-
CUR ’96 (Concurrency Theory). Lecture Notes in Computer
Science, vol. 1119. Springer-Verlag, Pisa, Italy, August 1996,
pp. 687–702

16. Mikk, E., Lakhnech, Y., Siegel, M.: Hierarchical automata as
model for Statecharts. In: Proceedings of Asian Computing
Science Conference (ASIAN ’97). Lecture Notes in Computer
Science, vol. 1345. Springer-Verlag, December 1997

17. OMG. OMG Unified Modeling Language Specification. Ver-
sion 1.4, 2001

18. U2 Partners. Unified Modeling Language 2.0 Proposal, version
0.671 (draft). http://www.u2-partners.org, 2002

19. Paltor, I., Lilius, J.: Formalising UML state machines for
model checking. In: France, R., Rumpe, B. (eds.) UML’99
– The Unified Modeling Language. Beyond the Standard.
LNCS, vol. 1723. Springer, 1999

20. Plotkin, G.: A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science Depart-
ment, Aarhus University, Denmark, 1981

21. Pnueli, A., Shalev, M.: What is in a step: On the semantics of
Statecharts. In: Ito, T., Meyer, A. (eds.) Theoretical Aspects
of Computer Software (TACS ’91) Lecture Notes in Computer
Science, vol. 526. Springer-Verlag, Sendai, Japan, September
1991, pp. 244–264

22. Reggio, G., Astesiano, E., Choppy, C., Hussmann, H.: Ana-
lysing UML Active Classes and Associated State Machines –
A Lightwight Formal Approach. In: Fundamental Approaches
to Software Engineering. LNCS, vol. 1783. Springer, 2000,
pp. 127–146

23. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998

24. Scholz, P.: Design of Reactive Systems and their Distrib-
uted Implementation with Statecharts. PhD thesis,
Munich University of Technology, Munich, Germany, August
1998

25. Uselton, A., Smolka, S.: A compositional semantics for State-
charts using labeled transition systems. In: Jonsson, B., Par-
row, J. (eds.) CONCUR ’94 (Concurrency Theory). Lecture
Notes in Computer Science, vol. 836. Springer-Verlag, Upp-
sala, Sweden, August 1994, pp. 2–17

26. von der Beeck, M.: A Concise Compositional Statecharts Se-
mantics Definition. In: Proc. of FORTE/PSTV 2000. Kluwer,
2000, pp. 335–350

27. von der Beeck, M.: Formalization of UML-Statecharts. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001 – The Unified Mod-
eling Language: Modeling Languages, Concepts, and Tools.
Lecture Notes in Computer Science, vol. 2185. Springer-
Verlag, 2001, pp. 406–421

Michael von der Beeck works
as research and development en-
gineer in the department Func-
tion Development Process of
BMWGroup, Munich, Germany.
He is the author or co-author
of more than twenty refereed
conference and workshop pa-
pers on software engineering and
formal description techniques,
in particular on the UML and
statecharts. He has been work-

ing for program committees of several international
workshops.

