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Abstract
The purpose of this study is to develop two-step deep learning models that can automatically detect implant regions on pano-
ramic radiographs and identify several types of implants. A total of 1,574 panoramic radiographs containing 3675 implants 
were included. The implant manufacturers were Kyocera, Dentsply Sirona, Straumann, and Nobel Biocare. Model A was 
created to detect oral implants and identify the manufacturers using You Only Look Once (YOLO) v7. After preparing the 
image patches that cropped the implant regions detected by model A, model B was created to identify the implant types per 
manufacturer using EfficientNet. Model A achieved very high performance, with recall of 1.000, precision of 0.979, and F1 
score of 0.989. It also had accuracy, recall, precision, and F1 score of 0.98 or higher for the classification of the manufactur-
ers. Model B had high classification metrics above 0.92, exception for Nobel’s class 2 (Parallel). In this study, two-step deep 
learning models were built to detect implant regions, identify four manufacturers, and identify implant types per manufacturer.
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Introduction

The advent of osseointegration implants marked a major 
advance in dental prosthetics [1–3]. Currently, treatment 
options that combine aesthetic and functional rehabilita-
tion are now available [1]. As the reliability and success 
rate of dental implant treatment improves, the number of 
patients increases [4–6]. Because of the continued develop-
ment of dental implants, hundreds of manufacturers have 
produced thousands of types of implants since 2000 [7, 8]. 
Implants consist of fixators, abutments, superstructures, and 
screws. Their internal structure and installation tools vary 
between manufacturers and systems [2–4]. If biological 

complications (peri-implantitis) occur and the continued 
use of the implant becomes difficult, the implant must be 
removed [3, 4]. To enable easy removal, it is necessary to 
understand the types of implants [4, 9]. If mechanical com-
plications (fracture or loosening of prosthesis or fixation 
components) occur, the types of implants must be identi-
fied to determine the appropriate treatment [4, 10–13]. If 
implant surgery or the prosthetic procedure was performed 
at another hospital, or if the previous dentist cannot be con-
tacted because the clinic is closed, it may be difficult to 
obtain the details of implants [9]. It has also been reported 
that it is difficult to identify the types of implants, which 
makes continuous maintenance impossible and forces the 
removal of implants [14]. Clinicians have used radiographic 
images along with clinical information to confirm implant 
types [9]. Even if implant characteristics can be identified 
on radiographic images, clinicians without sufficient experi-
ence and knowledge of implant systems may have difficulty 
identifying them by type [9].

Deep learning has resulted in great advances in the 
medical field. It has demonstrated excellent performance, 
particularly in the classification of medical images [15]. It 
improves performance by learning large amounts of data and 
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adjusting neural network weights as required [16]. Recently, 
deep learning researchers in dentistry have reported the pre-
liminary value of clinical applications and reliable perfor-
mance comparable to that of dentists [9]. Studies have been 
conducted in which deep learning has been used to identify 
implant types [10, 12, 13, 17, 18]. The results have demon-
strated that the performance of implant type identification 
on periapical and panoramic radiographs can be significantly 
improved by turning a large number of deep parameters [10, 
12, 13, 17, 18]. In these studies, researchers evaluated 3–11 
types of implants [10, 12, 13, 17]. However, in actual clinical 
practice, thousands of types of dental implants with similar 
shapes are sold [16].

Two major challenges exist in creating deep learning 
models to clarify implant types on panoramic radiographs. 
The first challenge is to create a model that can identify 
thousands of types of implants. Since the 2000s, hundreds 
of manufacturers and thousands of implant systems have 
been produced, and the number continues to grow [8, 19]. 
Kong et al. were challenged to create a model to identify 130 
different implants [16]. However, the identification of each 
implant type was insufficient with only 73–74% of top-1 
accuracy, and was predictable within the top-5. This may be 
because the performance of the classification deep learning 
model decreased as the number of classes increased [20]. To 
overcome this limitation, a different approach is required.

The second challenge is to build a system to automati-
cally detect and diagnose implant regions. In many stud-
ies in which implant types have been identified, researchers 
have created classification models by manually cropping the 
image patches of the implant regions on panoramic radio-
graphs. With this method, even if a practical model was cre-
ated, the input test data must be a manually cropped image 
of the implant area, rather than the panoramic radiograph 
itself. This challenge may be solved using neural networks 
for object detection. You Only Look Once (YOLO) is a neu-
ral network for object detection. It divides the entire image 
into grids, and predicts the bounding boxes and correspond-
ing classes for each grid [21]. It is open source and widely 
applied because of its high detection sensitivity and pre-
cision [22]. If the implant area can be detected, an auto-
matically cropped image of that area can be easily prepared. 
Furthermore, by identifying the type of implant by manu-
facturer, it will be possible to construct a model for more 
accurate type identification.

The purpose of this study is to develop deep learning 
models that can automatically detect implant regions on 
panoramic radiographs and identify implant types. First, 
we created a model (model A) to detect implant regions and 
classify the manufacturers on panoramic radiographs using 
the detection neural network YOLO. After preparing the 
image patches that cropped the implant regions detected by 

model A, second, we created model B to identify implant 
types by manufacturer using classification networks.

Materials and methods

This study was approved by the author’s University Ethics 
Committee (Approval No. 111195–0). The requirement for 
informed consent from the study subjects was waived by the 
Committee because of the retrospective study design. Ethics 
approval was also obtained from the co-authors' institution 
for the use of external testing dataset (Approval No. 586). 
All procedures were conducted in accordance with the ethi-
cal guidelines of the 1964 Helsinki Declaration and its sub-
sequent Ethical Guidelines for Medical and Health Research.

Dataset

Subjects were selected from patients who underwent pre-
operative panoramic radiography at the Department of Oral 
and Maxillofacial Radiology, the author’s University Hos-
pital. They received oral implants at the Department of Oral 
Implantology from January 2016 to August 2023. The final 
study consisted of 730 patients (267 men and 463 women, 
age range 18 to 88 years, mean 56.1 ± 13.7 years). A total 
of 1,574 panoramic radiographs containing 3,675 implants 
were included. No images were excluded due to image 
quality. Table 1 shows the number of patients, panoramic 
radiographs, and oral implants by manufacturer, and num-
ber of implants by type. The implant manufacturers were 
Kyocera, Dentsply Sirona, Straumann, and Nobel Biocare. 
The implant types were Kyocera’s Finesia, Dentsply Sirona’s 
Astra Tech OsseoSpeed EV and TX, Straumann’s Standard 
(S)/Standard Plus (SP) and Bone Level (BL)/Bone-Level 
Tapered (BLT), and Nobel's Active, Replace, and Parallel.

Panoramic radiographs were taken using Veraviewepocs 
(Morita, Kyoto, Japan) at 73–76 kV, 10 mA, and 8.0 s. The 
panoramic radiographs were cropped to include the upper 
and lower dentition, downloaded from the image database 
of the hospital at 1000 × 700 pixels, 96 dpi, and 24-bit depth, 
and saved in JPEG format.

The study procedure is shown in Fig. 1. First, deep learn-
ing model A was created to detect oral implants and identify 
the manufacturers on panoramic radiographs using YOLO-
v7 neural network. After preparing the image patches that 
cropped the implant regions detected by model A,　next, 
models B was created to identify the implant types per man-
ufacturer using EfficientNet.
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Table 1  Summary of subjects

Astra EV Astra Tech Implant System  Osseospeed™ EV, TX Astra Tech Implant System  Osseospeed™ TX, 
Straumann S tissue level standard, SP tissue level standard plus, BL bone level, BLT bone level tapered

Manufactures No of patients No of panoramic 
radiographs

Implant types No of 
implants per 
type

Total 
No of 
implants

Kyocera 86 159 Finesia 263 263
Dentsply Sirona 263 588 Astra EV 1427 1650

Astra TX 223
Straumann 242 528 Straumann S/SP 20 1097

Straumann BL/BLT 1077
Nobel Biocare 139 299 Nobel Active™ 65 665

Nobel Replace 480
Nobel Parallel™ 120

Total 730 1574 3675 3675

Fig. 1  Diagram of the deep 
learning system. Deep learning 
model A was created for the 
detection of implant regions and 
classification of manufacturers 
on panoramic radiographs using 
YOLO-v7. After preparing the 
image patches that cropped the 
implant regions detected by 
model A, models B was created 
to identify the implant types 
per manufacturer or identify 
the diameters of Straumann 
implants using EfficientNet
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Model A

Image assignment and annotation

The panoramic radiographs were randomly assigned as train-
ing, validation, or test data in the ratio 8:1:1. The number of 
images per manufacturer was adjusted to the aforementioned 
ratio. The images of patients assigned as test data were not 
assigned as training or validation data. The details are shown 
in Table 2.

Labels containing the classes and coordinates of the 
implant manufacturers were created on the training and 
validation images. Classification was determined as fol-
lows: Kyocera to class 0, Dentsply Sirona to class 1, 
Straumann to class 2, and Nobel Biocare to class 3. Rec-
tangles surrounding the implant regions were set by one 
radiologist (YA) using labelImg software (https:// github. 
com/ heart exlabs/ label Img/ relea ses), and the upper left and 
lower right coordinates were recorded.

Deep learning neural network architecture

The deep learning procedure was performed on a desktop 
computer equipped with a 24-GB GPU (NVIDIA GeForce 
RTX 3090, Santa Clara, CA, USA) and running Windows 
10 Pro (Microsoft).

The YOLO-v7 network was downloaded from the 
GitHub repository (https:// github. com/ WongK inYiu/ 
yolov7). YOLO-v7 consists of four general modules: input 
terminal, backbone, head, and prediction [22, 23]. Addi-
tionally, it has five basic components: community bridging 
services, max pooling, efficient layer aggregation network 
(ELAN), ELAN-higher, and spatial pyramid pooling-cross 
stage partial convolution. YOLO works by dividing images 
into grid cells and predicting bounding boxes for each cell. 
For each bounding box, it predicts the class probability 
and confidence score. The confidence score is the prob-
ability that the bounding box contains a particular object.

Training details

The YOLO-v7 architecture was used unchanged. A total of 
1,000 learning epochs were performed using the training and 

validation image and label datasets. The number of learn-
ing epochs was determined after confirming that the loss 
during learning converged sufficiently. The initial learning 
rate was set to 0.01, and was adopted, because learning with 
this setting yielded sufficient diagnostic accuracy. As the 
confidence score affects the balance between precision and 
recall, it was set to the score that showed a high F1 value 
after analysis across all bounding boxes, and was selected 
from 0.1, 0.3, and 0.5.

Evaluation metrics for model A

Test data were applied to the created model A to evaluate 
the model’s performance.

To evaluate the detection performance for implants on 
panoramic radiographs, the following metrics were acquired:

Recall = TP/ (TP + FN).
Precision = TP/ (TP + FP).
F1 score = 2 × Recall x Precision/ (Recall + Precision).
False positive per images = FP/number of images,
where TP denoted true-positive, which is the number of 

cases in which the trained model correctly detected areas 
where implants actually exist; FN denoted false-negative, 
which is the number of cases in which the model failed to 
detect areas where implants actually exist; and FP denoted 
false-positive, which indicates is the number of cases in 
which the model incorrectly detected areas where implants 
actually did not exist.

For the evaluation of the identification (classification) of 
implant manufacturers, the accuracy, recall, precision, and 
F1 score were acquired. Among the trained models created 
using the three confidence scores, the model with the high-
est performance was adopted; that is, the model with the 
confidence score of 0.1.

To investigate the external validation, 19 panoramic 
radiographs containing 64 implants (16 Dentsply Sirona, 
29 Straumann, and 19 Nobel Biocare) were collected from 
other institution. These were used as external test dataset to 
evaluate the performance of Model A to detect implants and 
identify the manufacturers.

Table 2  Image assignment for 
model A

Class Manufactures No of images Training data Validation data Test data

0 Kyocera 159 129 15 15
1 Dentsply Sirona 588 472 58 58
2 Straumann 528 422 53 53
3 Nobel biocare 299 239 30 30

https://github.com/heartexlabs/labelImg/releases
https://github.com/heartexlabs/labelImg/releases
https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
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Models B

Image assignment and annotation

The implant regions detected by model A were cropped on 
the panoramic radiographs, and then, image patches were 
created. Image patches were randomly assigned as the train-
ing, validation, and test data in the ratio 8:1:1. Image patches 
for the same patient were not split between the test and train-
ing/validation databases. Details of the image patch assign-
ment are shown in Table 3.

Classification by implant type was as follows: Dentsply 
Sirona’s implants were classified as class 0 for the Astra 
Tech Implant System  Osseospeed™ EV (Astra EV), and 
class 1 for the Astra TX. Straumann’s implants were clas-
sified as class 0 for Straumann Tissue Level Standard (S)/
Tissue Level Standard Plus (SP), and class 1 for Bone Level 
(BL)/Bone-Level Tapered (BLT). Nobel Biocare’s implants 
were classified as class 0 for  Active™, class 1 for Replace, 
and class 2 for Parallel™.

Deep learning neural network architecture

The same computer as mentioned above was used. Efficient-
Net B0 was used as neural networks for classification. Effi-
cientNet is a model created by uniformly scaling the depth/
width/resolution dimensions of a neural network, designing 
a new baseline network using neural architecture explora-
tion, and then scaling it up [24, 25]. It achieves high perfor-
mance and efficiency with fewer parameters. EfficientNet-b0 
is a convolutional neural network trained on over 1 million 
images from the ImageNet database and can classify images 
into 1000 object categories.

Training details

EfficientNet was trained for 300 epochs using type-specific 
training and validation datasets for Dentsply, Straumann, 
and Nobel implants. Before training, the input images were 

resized to 256 × 256 pixels and automatically augmented by 
resizing, horizontally and vertically flipping, rotating, and 
adjusting the brightness/contrast of images. The initial learn-
ing rate was set to 0.0001. Training was run three times on 
each dataset, which each yielded three trained model Bs.

Evaluation metrics for model B

To evaluate classification performance, each test dataset by 
type or diameter was applied to each of the three trained 
model Bs. The evaluation metrics were accuracy, recall, pre-
cision, and F1 score. The most accurate model among the 
three was applied. The metrics for that model are shown in 
the Results section.

Regarding the classification of the two types of Dentsply 
and Straumann implants, ROC curves were drawn and the 
areas under the curve (AUCs) were obtained.

Results

Performance of model A

Performance for the detection of implants

Table 4 shows the performance of model A trained using 
YOLO to detect implants on panoramic radiographs. It 
achieved very high performance with a recall of 1.000, pre-
cision of 0.979, and F1 score of 0.989. The false positive per 

Table 3  Image patch 
assignment for model B

Astra EV Astra Tech Implant System  Osseospeed™ EV, TX Astra Tech Implant System  Osseospeed™ TX, 
Straumann S tissue level standard, SP tissue level standard plus, BL bone level, BLT bone level tapered

Manufactures Class Implant types No of 
image 
patches

Training data Validation data Test data

Dentsply 0 Astra EV 1427 1200 114 113
Sirona 1 Astra TX 223 177 22 24
Straumann 0 Straumann S/SP 20 13 4 3

1 Straumann BL/BLT 1077 864 106 107
Nobel biocare 0 Nobel  Active™ 65 50 8 7

1 Nobel Replace 480 395 42 43
2 Nobel  Parallel™ 120 96 12 12

Table 4  Performance of model A using YOLO for the detection of 
implants

Evaluation metrics Values

Recall 1.000
Precision 0.979
F1 score 0.989
False positive per images 0.038
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images was very low at 0.038. There was no difference in 
detection performance depending on implant site. In external 
validation, recall, precision, and F1 score for implant detec-
tion were all 1.000.

Figure 2A shows an example of a false positive. Fig-
ure 2B–D shows examples of successful implant detection.

Performance of the classification of implant manufacturers

The confusion matrix for the classification of implant manu-
facturers by model A trained using YOLO is shown in Fig. 3. 
All implants of class 1 Dentsply and class 3 Nobel were cor-
rectly classified into their respective classes. Only one of the 
class 0 Kyocera implants was incorrectly classified as class 1 
(Dentsply), and two of the class 2 Straumann implants were 
incorrectly classified as class 3 (Nobel).

The classification performance of model A trained using 
YOLO is shown in Table 5. Model A achieved an accuracy, 
recall, precision, and F1 score of 0.98 or higher. The recall 
values for Dentsply and Nobel implants were 1.000. Other 
metrics exceeded 0.95. The performance of model A on the 
external dataset was 0.969 for precision, 0.978 for recall, 
0.965 for precision, and 0.970 for F1 score in distinguishing 
implant manufacturers.

Fig. 2  Successful and unsuc-
cessful examples for the 
detection of implant regions and 
classification of manufacturers 
by model A. A Post/root filling 
in the root canal of the left max-
illary canine (arrow) was incor-
rectly detected as an implant 
(false positive). Class 3 Nobel 
implants in bilateral mandibular 
molars were correctly detected 
and correctly classified as class 
3. B Class 0 Kyocera implants 
in the right mandibular molars 
were correctly detected and 
correctly classified as class 0. C 
Class 1 Dentsply implant in the 
left mandibular second molar 
was correctly detected and 
correctly classified as class 1. 
D Class 2 Straumann implants 
in the right mandibular molars 
were correctly detected but 
incorrectly classified as class 3 
(Nobel)

Fig. 3  Confusion matrix of model A using YOLO for the classifica-
tion of implant manufacturers

Table 5  Performance of model A using YOLO for the classification 
of implant manufacturers

Evaluation 
metrics

Total Class 0
(Kyocera)

Class 1
(Dentsply)

Class 2
(Straumann)

Class 3
(Nobel)

Accuracy 0.989
Recall 0.984 0.957 1.000 0.980 1.000
Precision 0.987 1.000 0.991 1.000 0.957
F1 score 0.985 0.978 0.995 0.990 0.978
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Examples of successful and unsuccessful classifica-
tion are shown in Fig. 2. Figure 2A–C shows examples 
of the successful classification of class 3 (Nobel), class 0 
(Kyocera), and class 1 (Dentsply) implants, respectively. 

Figure 2D shows an example where a class 2 Straumann 
implant was incorrectly classified as class 3 (Nobel).

Performance of model B

The confusion matrix and classification performance 
of model B using EfficientNet are shown in Fig. 4 and 
Table 6. Regarding the classification of implant types of 
Dentsply, model B achieved high metrics above 0.92. Fig-
ure 5A shows a successful example where a class 0 Astra 
EV implant was correctly classified as class 0. Figure 5B 
shows an unsuccessful example where a class 1 Astra TX 
implant was incorrectly classified as class 0 (EV).

Regarding the Nobel Biocare’s implant types, models 
B showed high values above 0.91 for all metrics, except 
the class 2 (Parallel) values. Figure 5E shows a successful 
example where a class 0 Nobel Active implant was correctly 
classified as class 1. Figure 5F shows a successful example 
where a class 1 Nobel Replace implant was correctly clas-
sified as class 1. Figure 5G shows an unsuccessful example 
where a class 2 Parallel implant was incorrectly classified 
as class 1 (Replace).

Fig. 4  Confusion matrix of model B using EfficientNet for classifica-
tion of implant types and diameters

Table 6  Performance of model B using EfficientNet for the classification of implant types and diameters

Dentsplay Sirona’s implant types

Total Class 0
(EV)

Class 1 (TX)

Accuracy 9.978
Recall 0.956 0.991 0.920
Precision 0.978 0.983 0.958
F1 score 0.963 0.987 0.939
AUC 0.996

Straumann’s implant types

Total Class 0
(EV)

Class 1
(TX)

Accuracy 1.000
Recall 1.000 1.000 1.000
Precision 1.000 1.000 1.000
F1 score 1.000 1.000 1.000
AUC 1.000

Nobel Biocare’s implant types

Total Class 0
(3.3 mm)

Class 1
(4.1 mm)

Class 2
(4.8 mm)

Accuracy 0.952
Recall 0.917 1.000 1.000 0.750
Precision 0.978 1.000 0.935 1.000
F1 score 0.941 1.000 0.967 0.857
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Discussion

Implant shapes are complex, and thousands of implant types 
exist. The experienced dentists achieved reliable accuracy 
similar to deep learning methods in identifying several types 
of implants [12]; however, even experienced dentists have 
difficulty in accurately identifying thousands of implants. 
The deep learning could solve this problem [3].

The ultimate goal of deep learning studies to identify 
implant types is to create optimal models for the clas-
sification of implants used around the world on images, 
so that they can be used in actual clinical settings [26]. 
When using classification models, the inference process 
requires inputting manually cropped images of implant 
regions into the trained model, instead of inputting the 
panoramic radiographs themselves. This point is disadvan-
tageous for practical use. This study was designed to create 
deep learning models in two steps. The first step was to 
create a model to automatically detect implants and iden-
tify their manufacturers on panoramic radiographs. After 
preparing image patches created by cropping the implant 
regions detected in the first model, the second step was to 
create models that categorized implant fixture types for 
each manufacturer.

Previous studies on implant type identification have 
included periapical radiographs and dental cone beam 
CT; however, in most studies, panoramic radiographs 
were used [16]. Panoramic radiographic data have the 
advantage of being standardized in size, resolution, and 
projection angle [3]. Panoramic radiography provides 
images of the cervical vertebrae and maxillary sinuses 
that superimposed on the jawbone, which results in distor-
tions depending on the patient's posture, and this distortion 
can reduce the image quality of the implant fixture [17]. 

However, overall, panoramic radiographs are considered 
to be excellent for the specification of the implant location, 
classification of implant fixtures, classification of implant 
diameters, and evaluation of bone around implants [4]. For 
these reasons, we decided to use panoramic radiographs 
in this study.

YOLO-v7 is a network used for object detection [23, 
24]. It divides images into grids, and predicts the object's 
existence probability and bounding box for each cell. This 
means that detection and classification are possible simul-
taneously. Each cell has multiple anchor boxes used to 
detect objects of different shapes, and many objects can be 
detected simultaneously. Prior to training with the object 
detection network, it is necessary to create labels that con-
tain the class names and the coordinates of the implant 
regions. In this study, we solved the complexity of annota-
tion process using labelImg software.

The object detection networks achieved high detection 
performance; whereas they have the disadvantage that 
classification accuracy decreases as the number of classes 
increases [16]. Due to the complexity of implant structures, 
it can be inherently difficult to accurately classify implant 
types using object detection networks [16]. Takahashi et al. 
attempted to detect dental implants from three manufactur-
ers on 1,282 panoramic radiographs using YOLO-v3, and 
reported that the mean average precision for detection was 
0.71–0.72 [17]. In contract, this study achieved high per-
formance with recall of 1.000 and precision of 0.979 for 
the detection of implants from four manufacturers on 1,574 
panoramic radiographs using YOLO-v7. This result can be 
attributed to the technological advances in YOLO and the 
increase in the number of panoramic radiographs. Further-
more, this study achieved high classification performance 
with an accuracy of 0.989 for identifying the four manu-
facturers. We attempted to reduce the number of classes by 

Fig. 5  Examples of the classification of implant types by models B 
using EfficientNet. A Class 0 Dentsply Astra EV implant was cor-
rectly classified as class 0. B Class 1 Dentsply Astra TX implant 
was incorrectly classified as class 0 (EV). C Class 0 Straumann S/
SP implant was correctly classified as class 0. D Class 1 Strau-

mann BL/BLT implant was correctly classified as class 1. E Class 0 
Nobel Active implant correctly classified as class 0. F Class 1 Nobel 
Replace implant was correctly classified as class 1. G Class 2 Nobel 
Parallel implant was incorrectly classified as class 1 (Replace) classi-
fied as class 1 (Replace) by model C
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classifying by manufacturer instead of by implant type. As 
a result, the object detection network may have achieved 
high classification performance. The developers of YOLO 
v7 compared detection performance and processing speeds 
with various networks including past YOLO series. The pro-
cessing of YOLO v7 was so fast that it enabled real-time 
detection on video, reducing network costs while maintain-
ing high diagnostic accuracy [23].

When using classification networks, it is necessary to 
create image patches. This is because the model has bet-
ter classification performance when learning using image 
patches that crop the regions of interest than when learning 
using large images themselves. During the inference process, 
the clinicians should prepare image patches by manually 
cropped the implant regions from images when inputting 
test data into the model. This is a time-consuming task. The 
ROIs in the images include not only the implant fixtures, but 
also many other complex conditions (surrounding alveolar 
bone, covers, screws, and prosthesis) [26]. Therefore, some 
incorrect predictions may occur [27]. In this study, image 
patches could be created almost automatically by cropping 
the implant regions detected by Model A.

Classification performance varies greatly depending 
on the neural network used, amount of training data, and 
number of classes [3, 4, 26]. EfficientNet, a state-of-the-art 
classification network, was used in this study. As deep learn-
ing layers become deeper, the learning time increases and 
deterioration occurs, accuracy saturates, and performance 
decreases [4]. EfficientNet optimizes the network for images 
by setting composite coefficients and adjusting each of the 
three elements of depth, width and input image resolution by 
a specific multiple [25]. It is significantly lighter and more 
accurate than previous networks. It also achieves high accu-
racy for transfer learning.

As the number of training images increases, the accuracy 
of the model increases [3, 26]. This could be improved by 
collecting a more uniform and sufficient number of images 
for each type of implant [3]. Data augmentation techniques 
are often used to increase the number of images for the train-
ing model [27]. EfficientNet performs data augmentation by 
resizing, horizontally and vertically flipping, rotating, and 

adjusting the brightness/contrast of images prior to learning. 
Even when the number of classes increases, data augmenta-
tion may be possible to secure the number of images per 
class and obtain good results [3].

As the number of implant types increases, diagnos-
tic accuracy decreases. In many studies, researchers have 
investigated the identification of 3—13 types of implants 
[4, 10–13]. Researchers analyzed classification performance 
in the previous studies under various conditions; hence, it 
is difficult to make a simple comparison. However, most of 
these studies reported high accuracy over 0.9 was reported. 
Table 7 shows the summary of the previous reports. Prior to 
this study, we examined the same data using ResNet18, and 
showed that the results were comparable to Efficient's diag-
nostic accuracy (data were not shown). For example, Tiryaki 
et al. [11] used VGG on 11,904 images of five different types 
and reported a high accuracy of 0.983. Sukegawa et al. [4] 
used ResNet on 10,191 images of 13 types and reported a 
high accuracy of over 0.949.

On the other hand, Park et al. [9] identified 25 types of 
implants using ResNet, but reported a low accuracy of 0.825. 
Kong et al. [3] classified 130 types of implants using ensem-
ble model of ResNet and EfficientNet. The ensemble model 
combines multiple networks to improve performance [28]. 
Using an ensemble model, Kong et al. [3] showed a top-1 
accuracy of 0.75 and top-5 accuracy of 0.95, which achieved 
higher accuracy than a single model [3]. Creating ensem-
ble models requires engineers who specialize in program-
ming, and this will need to be considered in the future. Even 
implants of the same type may not be compatible depending 
on the diameter or length [16]; hence, it may be necessary 
to create models for every implant, which is difficult. Rather 
than achieving high top-5 accuracy, it may be more conveni-
ent to create two-step models that identifies manufacturers, 
and then classifies types by manufacturer.

Additionally, models used in clinical practice must be 
trained using datasets of implant fixtures with various shapes 
and angles [26]. The report stated that the model trained 
using datasets of implants with various shapes and angles 
achieved an accuracy of over 80% [18]. A study using activa-
tion mapping technology demonstrated that the AI focuses 

Table 7  Reports of accuracy of 
oral implants classification

Ref No Reference No

Author Ref No Numbers of 
implants

Number of 
types

Networks Accuracy

Tiryaki B 11 11,904 5 VGG 0.983
Sukegawa S 10 8859 11 VGG 0.935
Sukegawa S 4 10,191 13 ResNet 0.949
Park W 26 13,291 25 ResNet 0.825
Kong HJ 3 28,112 130 ResNet and

EfficientNet
0.75(top1)
0.95(top5)
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on the implant fixture itself for clarification, and that angular 
and shape factors do not significantly impact type classifica-
tion accuracy [26].

This study has several limitations regarding improving 
the clinical applicability of deep learning for implant identi-
fication. First, the panoramic images used in this study were 
collected from limited institutions. Model A was validated 
using external dataset from other institution and demon-
strated sufficient performance for implant detection and 
manufacturer identification. When many types of images 
are collected from multiple institutions, there may be a lack 
of standardization of images, for example, differences in the 
types of imaging device, image quality, and imaging setting 
conditions, which may reduce the performance of the clas-
sification model [3, 16]. Accuracy can be improved using 
a network that is suitable for implant identification or by 
fine-tuning the model using extensive datasets [16]. Further 
verification will be required.

Next, collecting a supervised dataset requires a large 
number of resources, including funds, time, skilled person-
nel, hardware, and software. Further research is required to 
determine whether the number of datasets can be reduced 
by adopting a network specialized for implant classification 
[3, 26].

Third, the creation of compatible models has not kept 
pace with the development of implants. In this study, models 
were created based on several types of implant images used 
in our hospital. However, many more implants are now avail-
able around the world, and new types of implants are con-
tinuously being developed. It will be necessary to input data 
on new products and continue learning. Therefore, instead 
of building a learning model once, it may be necessary to 
develop a federated deep learning system that continuously 
reflects data uploaded from various facilities.

The fourth issue will require more detailed predictions 
clinically. This includes unresolved issues, such as pre-
dicting implant diameters, distinguishing between similar 
implant types, and prediction the use of angle-changing 
screws. The model developed in our pilot study was able 
to predict the three diameters of Straumann implants; 3.3, 
4.1, and 4.8 mm, with an accuracy of 0.95. As panoramic 
radiographs have many issues regarding the magnification 
rate and visibility depending on the scanned areas, this result 
was not included in this study. Further research is needed.

Conclusion

In this study, two-step deep learning models were built to 
identify implant types on panoramic radiographs. The object 
detection model detects the implant regions with high per-
formance and identified the four manufacturers of implants 
with high accuracy. The classification models identified 

implant types per manufacturer with high performance. In 
the future, further modifications will be made to the models 
by increasing the number of implant types, increasing the 
number of images for each type, and collecting images from 
multiple institutions.
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