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Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathol-
ogy characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory 
infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an 
inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metallo-
proteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses 
the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts 
as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and 
immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the 
immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial pep-
tides as therapeutic agents to treat the disease.
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Abbreviations
P. gingivalis	� Porphyromonas gingivalis
MMPs	� Metalloproteinases
LPS	� Lipopolysaccharide
NDK	� Nucleoside diphosphate kinase
TLRs	� Toll-like receptors
NO	� Nitric Oxide
iNOS	� Inducible nitric oxide synthase enzyme
RANKL	� Receptor activator of nuclear-κ B ligand

OPG	� Osteoprotegerin
AMPs	� Antimicrobial peptides
MIC	� Minimum inhibitory concentration

Introduction

Oral health depends on the homeostatic balance between the 
host immune response and the microbiota of the oral cavity, 
constituted by approximately 700 microbial species [1, 2]. 
Biological and non-biological surfaces of the oral cavity are 
covered by antimicrobial film—for instance, the periodontal 
biofilm could be a source for dissemination and develop-
ment systemic infections, and for this reason, the regulation 
of this balance, between the host and oral microorganisms, 
is essential for the maintenance of this homeostasis in the 
oral cavity [3]. The disequilibrium of this balance induces 
dysbiosis and inflammation that can lead to periodontal dis-
eases [4]. Periodontal diseases are a group of inflammatory 
pathologies with a high worldwide incidence and prevalence 
[5]. Periodontitis is a prevalent disease, with an inflamma-
tory infectious etiology, of tooth supporting tissue, whose 
etiopathogenesis is linked to an imbalance between oral 
microbiota and host’s response [6]. Periodontal disease is 
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classified + by The Global Burden of Disease as the 11th 
chronic disease with the highest prevalence worldwide [7]. 
The World Health Organization (WHO) has reported that it 
affects 10–15% of the world's population [8, 9]. However, 
the American Academy of Periodontology (AAP) reported 
that 70.1% of the American population over 65 years courses 
with this disease and a prevalence of 67.2% indicated has 
been in the Mexican population [10, 11].

Periodontitis leads to tooth loss due to a chronic inflam-
matory process that destroys the support tissues (gingiva, 
periodontal ligament, radicular cement, and alveolar bone) 
[12, 13]. In the inflammatory infiltrate of these lesions, Por-
phyromonas gingivalis is the etiological agent of the most 
severe forms of the disease [4]. This bacterium expresses 
diverse virulence factors that interact with cellular popula-
tions, including epithelial and endothelial cells, neutrophils, 
fibroblasts, and macrophages [14, 15]. Macrophages par-
ticipate in the tissue repair process and the defense against 
microorganisms [16]. However, P. gingivalis can persist 
intracellularly in macrophages and induce effector mecha-
nisms that contribute to the inflammatory response in peri-
odontal disease [17, 18]. Additionally, macrophage depletion 
in the periodontitis murine model induced by P. gingivalis 
showed a low-grade chronic inflammation and periodontal 
tissue destruction compared with wild-type animals [18], 
demonstrating the central role of macrophages in the immu-
nopathology induced by the bacterium.

Saliva is a natural defense mechanism that produces anti-
microbial molecules that protect oral tissues from the pro-
teolytic and inflammatory activity caused by the virulence 
factors of P. gingivalis [19, 20]. These molecules are named 
oral peptides because they are produced by the salivary 
glands and oral epithelium [21]. The presence of 45 pep-
tides has been reported in human saliva [22], some of them 
can interact with the macrophages present on the surface of 
oral lesions, inducing their stimulation, chemotaxis, phago-
cytosis, and regulation of the inflammatory process [23, 24]. 
In this review, we analyze the role of macrophages during 
P. gingivalis infection and the possible immunomodulatory 
role of oral antimicrobial peptides.

P. gingivalis in periodontitis

Two main groups of periodontal disease have been 
described: gingivitis and periodontitis. Gingivitis is con-
sidered the initial inflammatory stage of gums, limited 
to the soft adjacent tooth tissues [25]. On the other hand, 
periodontitis is considered a chronic inflammatory stage 
of the periodontal support tissues [26]. The development 
of both pathologies is associated with the presence of a 
dysbiotic subgingival microbial biofilm [27], composed 
of the red complex, which groups periodontopathogenic 

microorganisms like Treponema denticola, Tannerella for-
sythia, and P. gingivalis [28]. Recent studies have reported 
that P. gingivalis has been isolated in 75.8% of the peri-
odontal pockets of patients with periodontitis [29]. In murine 
models, this bacterium can induce experimental periodonti-
tis [30]. P. gingivalis is a Gram-negative rod-shaped, anaer-
obic, strictly facultative, and asaccharolytic bacterium. In 
blood agar plates, it forms black pigment colonies that con-
tain a heme-group on the cellular surface, which comes from 
hemoproteins, gingival crevicular fluid, and erythrocytes. 
For these factors, the growth of P. gingivalis is conditioned 
in iron and vitamin K-rich nutritional complexes [8, 31, 32].

Inside the oral environment, the bacterium finds its ideal 
niche in the subgingival sulcus within three microenviron-
ments: the radicular surface of the tooth, gingival crev-
icular fluid, and the gingival epithelium [14]. Survival in 
these microenvironments depends on the expression of its 
virulence factors: cysteine proteases (gingipains), hemag-
glutinins, lipopolysaccharide (LPS), nucleoside diphosphate 
kinase (NDK), and fimbriae [33, 34, 35]. Recent studies 
have shown that LPS, gingipains, and fimbriae are the most 
important pathogenic molecules that contribute to the estab-
lishment of P. gingivalis [34].

During the early stages of P. gingivalis infection, the gin-
gival epithelial cells recognize these virulence factors of the 
bacterium through Toll-like receptors (TLRs), NOD (NLR), 
and lectin receptors (CLRs). The interaction of these recep-
tors with virulence factors induces inflammatory cytokines, 
like IL-1β, IL-6, and TNF-α in these cells [34, 36]. The 
presence of inflammatory cytokines and the persistence of P. 
gingivalis in the oral cavity induce recruitment of monocytes 
and infiltration of macrophages toward the injury site [37, 
38, 39]. This inflammatory environment generates subse-
quent pathological conditions, including metalloproteinases 
production, responsible for the degradation of the connec-
tive tissue of the gum and the periodontal ligament [40, 41], 
and an unbalanced production of osteoblasts and osteoclasts, 
which leads to the reabsorption of the alveolar bone, eventu-
ally bringing about tooth loss [42].

Importance of macrophages in periodontitis

The macrophages population comprises 5–30% of the cells 
recruited in the inflammatory infiltrate of patients with peri-
odontitis [43]. These cells are the main source of IL-1β, 
TNF-α, IL-6, and IL-8, which are the cytokines responsible 
for the migration and activation of cells like neutrophils and 
lymphocytes to the inflammatory infiltrate [41, 44, 45]. The 
relevance of macrophages in the periodontal disease has 
been demonstrated in a murine model of periodontitis using 
mice infected with P. gingivalis for 58 days. In this work, 
F4/80 + macrophages were increased four-times in the gum. 



780	 Odontology (2023) 111:778–792

1 3

Depletion of these cells with clodronate liposomes reduced 
the levels of bone resorption compared to the controls with-
out treatment [37]. These data suggest that macrophages are 
the main responsible for the development of bone loss in 
periodontitis.

Macrophages play distinct roles during periodontitis 
stages, the chronic phase is associated with the presence 
of M1 and M2 phenotypes in the inflammatory infiltrate, 
being the M1 macrophages the most abundant [46, 47]. Mac-
rophages arrive at the inflammatory infiltrate and are differ-
entiated into M1 macrophages by the presence of cytokines 
like IFN-γ and TNF-α [48], which are secreted by epithelial 
cells following bacterial challenge [49]. Another differentia-
tion pathway is through the direct stimulation of the TLRs 
of the macrophage by the pathogen-associated molecular 
patterns (PAMPs). For example, the LPS of P. gingivalis 
can induce differentiation toward M1 macrophages [50, 51]. 
M1 macrophages activation induces inflammatory mediators 
production, such as IL-1β, IL-6, IL-8, and TNF-α, and the 
inducible nitric oxide synthase enzyme (iNOS) [52], some of 
these mediators, such as nitric oxide (NO) and IL-8, amplify 
the inflammatory response by increasing the local blood flow 
and the recruitment of leukocytes [53, 54]. Furthermore, 
IL-1β and TNF-α increase the expression of matrix metal-
loproteinases (MMPs), like MMP-1, MMP-13, MMP-8, and 
MMP-9 [40, 55], which have as main substrates collagen I, 
III, and IV proteins, as well as components of the extracellu-
lar matrix, such as fibronectin and tenascin [56]. These data 
suggest that the inflammatory mediators favor degradation 
of the extracellular matrix by MMP activation [57].

M2 macrophages play a role in relieving inflammation 
and inducing tissue repair in periodontitis. They produce 
anti-inflammatory cytokines, such as IL-10, IL-4, and 
TGF-β [45]. These cytokines downregulate pro-inflamma-
tory cytokines, MMPs, and the stimulation of osteoblasts 
inhibiting bone resorption [57]. These events promote tis-
sue regeneration, angiogenesis, restore the inflammatory 
mediators produced by M1 macrophages, and contribute to 
regulating the osteoclastogenesis process [58, 59]. Osteo-
clastogenesis is mediated by the ligand of the activator 
receptor for the nuclear κB (RANKL) factor, its RANK 
receptor, and osteoprotegerin (OPG). RANK and RANKL 
are expressed in the dental follicles during tooth eruption 
and in the periodontal tissue in the adult age [60]. The acti-
vation of RANK-RANKL in osteoclasts activates the tran-
scription of genes related to NFATc1, c-Fos, and NF-κB 
that modulate differentiation and activation of osteoclasts, 
inducing bone loss and the subsequent loss of the tooth [61, 
62]. OPG is a homeostatic control factor that protects the 
dental cement and bone against radicular reabsorption [60, 
63]. In the periodontal disease, TNF- α and IL-1β produced 
by M1 macrophages increase RANKL and diminish OPG 
[52, 64], inducing bone loss. These data add evidence to 

the notion that the M1 macrophage is highly involved in 
the loss of bone tissue due to its inflammatory role in peri-
odontal disease.

M2 macrophages play a role in relieving inflammation 
and inducing tissue repair in periodontitis. They produce 
anti-inflammatory cytokines, such as IL-10, IL-4, and 
TGF-β. These cytokines downregulate pro-inflammatory 
cytokines, MMPs, and stimulate osteoblasts, inhibiting 
bone resorption. These events promote tissue regeneration, 
angiogenesis, and restore homeostasis [46]. The injection of 
M2 macrophages decreases the inflammatory response and 
osteoclast differentiation in mice infected with P. gingivalis 
compared to the unstimulated control group [65] indicating 
that the polarization toward the M2 phenotype could favor 
the regulation of the inflammatory response and protect 
against bone resorption.

Another role of macrophages in P. gingivalis infection is 
their capacity as host cells. This phenomenon is helped by 
the capsule from P. gingivalis, in which macrophages can 
phagocyte non-encapsulated ATCC 33277 and encapsulated 
W83 strains of P. gingivalis. However, W83 invaded these 
immune cells better than all other strains tested, demonstrat-
ing that encapsulated strain has a greater invasiveness capac-
ity than the no-encapsulated [17]. It also demonstrated that 
bacteria survive inside macrophages [8].

These data suggest that the balance of M1 and M2 mac-
rophages could mediate bone resorption due to regulating 
the inflammatory conditions in periodontitis. Additionally, 
macrophages can internalize P. gingivalis, which can survive 
inside of these cells.

Modulation of macrophages by P. gingivalis 
virulence factors

Virulence factors from P. gingivalis are associated with 
pathogenicity and evasion mechanisms from the host 
immune response. They favor the persistence of P. gingi-
valis in the oral environment and the subsequent progression 
to periodontitis [66]. These virulence factors include LPS, 
gingipains, cysteine proteases, fimbriae, and NKD (Fig. 1), 
which are the most important virulence factors involved in P. 
gingivalis establishment [34, 67]. These molecules are rec-
ognized by PRRs, like TLRs [34]. TLRs induce microbicidal 
mechanisms for the elimination of pathogens. However, they 
have been related to the development of pathological condi-
tions caused by the inflammatory process [68]. Case–control 
studies in adolescent patients with periodontitis revealed the 
connection between the establishment of the disease and 
single-nucleotide polymorphism (SNP) in the TLR 1, 4, 7, 
and 8 genes [69]. This suggests that TLRs and the virulence 
factors of P. gingivalis are responsible for the development 
of periodontitis. In the following paragraphs, the main P. 
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gingivalis virulence factors are described, and their relation-
ship with the immune response mechanisms in macrophages.

LPS

The main virulence factor of P. gingivalis is its LPS, due 
to its abundance on the bacterial surface and its ability to 
activate the innate immune system from the host [15]. LPS 
has heterogeneous and atypical variations that condition 
its recognition by TLR receptors (Fig. 1). LPS from P. 
gingivalis has two isoforms of lipid A, one tetra-acylated 
and one penta-acylated, which are expressed depending on 
the hemin concentration present in the microenvironment 
inhabited by the bacterium [69, 70]. When there is less 
amount of hemin, lipid A is penta-acylated and induces 
activation of the TLR4 receptor. At a higher amount of 
hemin, lipid A is tetra-acylated and dephosphorylated and 
acts as an antagonist of the TLR4 receptor [70]. In the 
blood flow, the LPS of P. gingivalis is associated with the 

lipopolysaccharide-binding protein (LBP). The LBP–LPS 
complex is subsequently transported to the membrane of 
macrophages, with CD14 allowing the oligomerization 
and activation of TLR4 [15].

Recognition of P. gingivalis mediated by TLR4 induces 
the activation of intracellular signaling cascades that acti-
vate transcriptional factors like NF-κB [71]. The canonical 
pathway of this receptor is mediated by the adaptor pro-
tein, MyD88, recruited through its TIR domain toward the 
receptor. Once MyD88 has bound to the TLR4, the cytoplas-
mic kinase, IRAK4, is recruited and activated, followed by 
IRAK1 and IRAK2, inducing their interaction with TRAF6, 
an E3-type ligase that recruits TAK1 complexes [72]. TAK1 
phosphorylates Iκκβ, which allows the phosphorylation and 
degradation of IκBα, promoting the translocation of NF-κB 
to the nucleus and inducing the production of inflamma-
tory mediators, like IL-1β, IL-6, IL-12, TNF-α, and iNOS 
[73]. The aforementioned case suggests that LPS is involved 
in inflammatory cytokines production that contributes to 

Fig. 1   Immunomodulation induced by Porphyromonas gingivalis vir-
ulence factors on macrophages. A Recognition of LPS of P. gingivalis 
by TLR4. The canonical activation of this receptor favors the translo-
cation of NF-κB to the nucleus, inducing the production of inflamma-
tory cytokines. B TLR2 recognizes bacterial fimbriae, which induces 
the production of inflammatory mediators, via MyD88. TLR2 also 
activates a Mal/TIRAP-dependent pathway with PI3K activation, 
reducing phagocytosis and phagolysosome maturation. TLR2 activa-
tion transactivates CR3, increasing its affinity toward fimbriae. Acti-

vation of CR3 induces the ERK 1/2 signaling pathway that reduces 
IL-12 production. C The gingipains of P. gingivalis degrade C5 to 
C5a, increasing cAMP production, which activates PKA, allowing 
the binding of CREB to CBP, inhibiting the NF-κB. D The P2X7 
receptor is activated by binding to eATP. NDK hydrolyzes ATPe to 
ADP, which inhibits P2X7 activation; preventing inflammasome acti-
vation and cell death by determining its intracellular survival in mac-
rophages
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the destruction of the periodontal tissue in P. gingivalis 
infection.

Fimbriae

The P. gingivalis fimbriae are filamentous protein polymers 
located on the cell surface of the bacterium [74]. This viru-
lence factor is responsible for the colonization and invasion 
process; besides, it can induce the production of cytokines, 
such as IL-1β, IL-6, and TNF-α, and metalloproteinases like 
MMP-9 [71]. TLR2 has been implicated in the regulation of 
these processes described below.

Macrophages recognize bacterial fimbriae through TLR2, 
which induces their activation in a MyD88-dependent path-
way with subsequent nuclear NF-kB translocation that 
promotes the production of inflammatory mediators [75]. 
However, activation of TLR2 by fimbriae also triggers 
a Myd88-independent pathway, in which TLR2 recruits 
the Mal/TIRAP adapter protein that interacts with PI3K. 
It has been shown that the TLR2-PI3K pathway can pre-
vent phagosome–lysosome fusion into macrophages, which 
reduces the number of intracellular bacteria and promotes 
the survival of internalized bacteria [76].

In neutrophils, the co-activation of TLR2-C5aR induced 
by P. gingivalis fimbriae has been described. These events 
decrease phagocytosis through RhoA inhibition, a GTPase 
that favors actin polymerization [77, 78] (Fig. 1), suggesting 
that the bacterium can alter phagocytosis, avoiding intracel-
lular microbicidal mechanisms of macrophages. On the other 
hand, TLR2 activation by P. gingivalis fimbriae can induce 
transactivation of the complement receptor 3 (CR3). This 
event increases CR3 affinity, allowing P. gingivalis fimbriae 
to interact with this receptor, whose signaling reduces intra-
cellular bacterial death and decreases IL-12 production in 
macrophages through activation of ERK 1/2 [14, 79].

Fimbriae contribute to the evasion of macrophage’s 
microbicidal mechanisms due to the TLR2-PI3K activation 
pathway involved in phagosome–lysosome fusion, which 
could favor P. gingivalis survival.

Cysteine proteases or gingipains

Cysteine proteases are extracellular structures of P. gingi-
valis responsible for the proteolytic activity of the bacterium 
[80, 81]. Based on the specific substrate, they are divided 
into arginine-dependent Rgp cysteine proteases (RgpA, 
RgpB) and lysine-dependent Kgp cysteine proteases [81]. 
These proteases contribute to evading complement lysis 
since they degrade components such as the C3, which pre-
vents the production of the C3b opsonin, the C5 convertase 
enzymatic complex, and the generation of C5b, which par-
ticipate in the formation of the membrane attack complex 
(MAC) on the surface of P. gingivalis [82, 83].

Cysteine proteases act analogously to the convertase 
C5 enzymatic complex of the complement system gener-
ating more than 30 nM of C5a in the human serum [34, 
84]. In macrophages, C5a binds to the complement recep-
tor, C5aR. The co-incubation of C5a and P. gingivalis with 
macrophages synergizes the production of cyclic adenosine 
3′,5′-monophosphate (cAMP) (Fig. 1), whose increment 
activates the protein kinase A (PKA), which promotes the 
binding to the cAMP response element-binding protein 
(CREB) and the nuclear coactivator CREB-binding protein 
(CBP) [85]. This binding suppresses the NF-κB pathway, 
reducing NO production, and decreasing the bactericidal 
mechanism of the macrophage [34]. These findings suggest 
that the generation of C5a by P. gingivalis cysteine proteases 
prevents the complement-mediated lysis leading to the inhi-
bition of macrophage microbicidal mechanisms, such as NO 
production.

NDK

Porphyromonas gingivalis can secrete NDK, a virulence 
factor whose mechanism of action consists of catalyzing 
the hydrolysis of extracellular ATP (eATP) toward ADP, 
interfering with the activation of the P2X7 receptor in mac-
rophages [33, 86]. The interaction of ATP with the P2X7 
receptor in macrophages induces a great variety of cellular 
events, including cell death, generation of reactive oxygen 
species, inflammasome activation, and the release of inflam-
matory cytokines, such as IL-1β and IL-18 [87] (Fig. 1). 
On the other hand, NDK reduces epithelial cell death by 
phosphorylating heat-shock-protein-27 (HSP27)-associated 
human gingival epithelial cells. This mechanism blocks 
mitochondrial cytochrome c release and reduces the activa-
tion of caspase 9. Furthermore, it has been shown that NDK 
reduces staurosporine-induced apoptosis in epithelial cells 
[88].

These studies suggest that NDK is a multifunctional mol-
ecule that contributes to P. gingivalis survival. It decreases 
microbicidal mechanisms, reduces the activation of the 
inflammasome, and inhibits cell death by apoptosis.

NO‑induced by P. gingivalis in periodontitis

Nitric oxide synthases (NOS) produce NO in different tis-
sues. There are three main NOS isoforms in mammals: 
endothelial NOS3 (eNOS), neuronal NOS1 (nNOS), and an 
inducible NOS (iNOS or NOS 2). The first two are con-
stitutively expressed in endothelial and neuronal tissue, 
respectively. In contrast, NOS2 (iNOS) could be induced by 
bacterial endotoxins or pro-inflammatory cytokines, and has 
been identified in activated macrophages. The three isoforms 
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catalyze substrates, such as L-arginine and molecular oxy-
gen, for NO generation and L-citrulline [89].

NO is a free radical with bactericidal action, which inter-
acts with thiol groups and superoxide anion (O2–), which 
favors reactive oxygen and nitrogen species (RONS) pro-
duction, such as S-nitrosothiols (RSNO), nitrogen dioxide 
(NO2), peroxynitrite (ONOO–), dinitrogen trioxide, and 
dinitrosyl–iron complexes. These intermediaries are respon-
sible for microbial death, induced by DNA deamination, 
rupture of DNA, inhibition of DNA repair, protein modi-
fication, and lipid peroxidation in the bacterium [90, 91].

Patients with periodontitis have increased NO concen-
tration in the saliva compared to healthy individuals [92]. 
Reher et al. reported that NO concentrations range from 
7.78 to 15.79 μM in the saliva of patients with periodonti-
tis, whereas the healthy individual’s NO range is 5.86 μM. 
Furthermore, there is a correlation between NO level and the 
number of teeth with a probing depth [93]. P. gingivalis W83 
survives to NO levels ranging between 4.9 and 19.2 μM [92], 
which could favor its survival in the oral cavity, participat-
ing in the progression and severity of the disease. This pro-
duction might be an early host defense mechanism against 
bacterial biofilm proliferation. However, it is involved in the 
immuno-pathogenic process.

The resistance to oxidative stress generated by NO is due 
to several mechanisms. The first mechanism is the PG0893 
gene expression, which encodes a hybrid cluster protein 
(HCP) with oxidoreductase activity. This enzyme catalyzes 
the reduction of hydroxylamine to form ammonia (NH3) and 
water (H2O), which decreases nitric oxide concentrations 
[94]. The second mechanism consists of the rubrerythrin 
(Rbr) expression by P. gingivalis, a protein that acts as a 
cytoplasmic peroxidase, reducing hydrogen peroxide (H2O2) 
into water [95]. In addition, Rbr protects against reactive 
nitrogen, which allows the survival of P. gingivalis in the 
host [96]. The third mechanism is the hemin binding to 
the P. gingivalis surface. The hemin-containing pigment is 
constituted of two iron (III) protoporphyrin IX molecules 
covalently linked via an oxygen atom that, when interact-
ing with dioxygen, acts as a protective barrier against ROS-
mediated death. In addition, binding of the μ-oxodimeric and 
μ-oxobishaem forms of protoporphyrin IX on the bacterial 
surface allows the inactivation of H2O2, protecting the bac-
terium from oxidative stress [95].

Although high NO levels do not contribute to P. gin-
givalis elimination, they induce a side effect on the peri-
odontal tissue, increasing vasodilation and diminishing 
platelet aggregation, which can contribute to gingival 
bleeding, aside from having cytotoxic effects on the sur-
rounding tissue, increasing the severity of the disease 
[94]. In rats with experimental periodontitis, increases in 
the expression of iNOS and NO are associated with bone 

resorption [97]. These data suggest that NO participates in 
the pathogenesis of periodontitis because it induces cyto-
toxic effects on the gingival and bone tissue that favor the 
progression of the disease.

Conventional treatment and oral 
antimicrobial peptides

The periodontal disease therapeutics is based on control-
ling infection by mechanical elimination, affected tissue 
scaling and root planing [98], and the use of bactericides, 
like chlorhexidine [94], and antimicrobials, such as metro-
nidazole, which can inhibit P. gingivalis growth at a mini-
mal inhibitory concentration (CMI) of 0.5–8 µg/mL [99]. 
Although metronidazole is effective against extracellular 
P. gingivalis, it cannot penetrate infected cells [100]. Fur-
thermore, the use of metronidazole has the disadvantage 
of side effects for the host, such as diarrhea, vomiting, 
metallic taste, headache, and dizziness [101, 102]. The 
clinical application of chlorhexidine is limited by its bit-
ter taste and the generation of extrinsic stains in the teeth 
and tongue [103]. It should be noted that both therapeutic 
approaches are limited only to eliminate the bacterium, 
leaving aside the resolution of the secondary inflammatory 
process generated by the infection. It has been reported 
that the mechanical removal of bacteria and the use of 
antimicrobials do not significantly reduce the produc-
tion of IL-1β after treatment [40]. Hence, the develop-
ment of a treatment that could offer an alternative for the 
inflammatory process control in the periodontal disease is 
utterly relevant. The antimicrobial peptides (AMPs) arise 
as promising molecules due to their microbicidal effect 
and the immunoregulation exerted by them [104].

AMPs are amphipathic molecules usually short (less 
than 100 amino acids). They have a cationic and an amphi-
philic end, constituted mainly by cationic amino acids, like 
arginine and lysine, that grant them a net positive charge in 
the order of + 2 to + 9 [105, 106]. In the oral cavity, AMPs 
are known as oral antimicrobial peptides and are expressed 
in the oral epithelium, crevicular fluid, neutrophils, sali-
vary glands, and saliva [107].

Forty-five oral antimicrobial peptides have been 
described and are grouped into functional families: cati-
onic peptides, bacterial agglutination or adhesion peptides, 
metallic ion chelating agents, peroxidases, proteases inhib-
itors, and peptides against cell wall [108]. This diversity is 
essential to protect the oral cavity from microorganisms, 
as well as for the regulation of immunomodulatory activi-
ties [109]. Therefore, they could be used in therapeutic 
schemes in periodontal disease.
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Microbiocide and immunomodulatory effect 
of oral antimicrobial peptides

Oral antimicrobial peptides depict a potent and wide-spec-
trum antimicrobial activity against bacteria, yeasts, fungi, 
and viruses [110]. This activity is based on electrostatic 
interactions with the surfaces of the negatively charged 
microbial membranes [104]. The AMPs interact with phos-
phate groups and divalent cations, such as Mg2+ and Ca2+ of 
bacterial LPS, leading to alterations in the permeability of 
the cytoplasmic membrane of the bacterium and eventual 
lysis of Gram (−) bacteria [106]. Furthermore, AMPs can 
also insert into the membrane forming pores that alter the 
integrity of the microbial membrane, fostering peptide inter-
action with specific intracellular targets and causing DNA 
fragmentation and inhibition of protein synthesis [111].

The AMPs immunomodulatory capacity has been 
related to different factors, environmental stimuli, the 
type of cells, and tissues on which they act. Their func-
tion depends on interaction mechanisms with cellular 
receptors and the concentration of the peptides [104, 112]. 
This immunomodulation could generate pro-inflammatory 
responses that contribute to eliminating pathogens. On the 
other side, antimicrobial peptides induce anti-inflamma-
tory effects limiting the inflammation severity [113].

The immunoregulatory role of AMPs is shown in stud-
ies about deficiency or reduction of these molecules, which 
demonstrate the increase of inflammatory responses. For 
example, Crohn's disease is associated with β-defensin 2 
(hBD2) reduced expression in human enterocytes [114]. 
LL-37 cathelicidin absence is related to the develop-
ment of periodontal disease in patients with Kostmann’s 
syndrome [115]. Additionally, the presence of LL-37 in 
macrophages infected with Mycobacterium tuberculosis 
decreases the production of TNF-α and IL-17 and reduces 
IL-10 and TGF-β production [116].

The immunomodulatory capacity of AMPs is mediated 
by their intracellular uptake through endocytosis processes, 
direct penetration, or the interaction with cellular receptors 
that induce the phosphorylation adaptor proteins in intra-
cellular signal transduction [106, 117]. They can bind to 
chemokine receptor type 6 (CCR6), formyl peptide receptor 
coupled to protein type 1 (FPRL-1), or amplify the inflam-
matory response mediated by TLRs [117, 118]. Hemshek-
har et al. demonstrated that the activity of LL-37 is due to 
G-protein-coupled receptors (GPCR) and JNK mitogen-acti-
vated protein kinase (MAPK) signaling in human monocytic 
THP-1 cells. Furthermore, the receptor activation facilitates 
chemokine and anti-inflammatory cytokine-induced inter-
leukin-1 receptor antagonist (IL-1RA) production [119].

These findings demonstrate that these peptides exhibit 
antimicrobial and immunomodulatory properties. Both 

mechanisms could contribute to P. gingivalis elimination 
in the macrophage and decrease the inflammatory response 
associated with the severity of periodontitis. Therefore, 
we describe some oral AMPs that could affect the mac-
rophage and participate in the therapy against P. gingivalis 
(Table 1).

Histatins

Histatins are an antimicrobial peptides family produced only 
in humans and higher primates [118]. They are polypeptides 
rich in histidine that are secreted by parotid and subman-
dibular glands and released into the saliva where the mean 
concentration is 53 µg/mL [121]. In this fluid, three types 
of histatins have been reported; histatin-1, histatin-3, and 
histatin-5, of which histatin-5 has been shown to have better 
antimicrobial activity [122].

Histatin-5 exerts antifungal activity against Candida 
albicans by binding to this microorganism and inducing the 
release of cellular ATP, inhibiting fungus growth in 23–46% 
[121, 123]. It has been demonstrated that histatin-5 exerts 
antibacterial activity against Streptococcus mutans, with 
interruptions in the peptidoglycan and the cytoplasmatic 
membrane, and induces DNA alterations [124]. Addition-
ally, histatin-5 inhibits P. gingivalis gingipains and the activ-
ity of MMP-2 and MMP-9 [125].

Histatin-5 has immuno-regulatory activity and inhibits 
the inflammatory response and tissue damage induced by P. 
gingivalis. It has been demonstrated in silico that binding of 
the peptide to the hemagglutinin B (HagB) of the bacterium 
decreases the production of chemokines like CCL3/MIP 
CCL4/MIP-1β in 49.8% and 39.6%, respectively, as well 
as TNF-α in 42.4% in dendritic cells [126]. Furthermore, 
in fibroblasts stimulated with P. gingivalis outer membrane 
proteins, histatin-5 decreased the production of IL-6 and 
IL-8 by 37% and 47%, respectively, compared to the con-
trol without the peptide [127]. Likewise, histatin-1 nega-
tively regulated the JNK and NF-κB signaling pathway in 
RAW264.7 macrophages, which decreased the production 
of NO and cytokines, such as IL-6, IL-1β, and TNF-α [128] 
(Fig. 2).

These results reveal the histatin-5's antimicrobial and 
immunomodulatory activity that could regulate the inflam-
matory response in periodontitis, avoiding tissue destruction.

Cystatin C

This antimicrobial peptide belongs to the type 2 cystatin 
superfamily, which is ubiquitously distributed in plants, 
animals, and microorganisms [129]. In humans, it is pre-
sent in the saliva at 0.9 µg/mL of concentration [130]. One 
function of cystatin C is cysteine proteases inhibition by 
binding to their active sites, evading the cleavage of peptide 
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bonds Cystatin C inhibits the proteolytic activity of P. gin-
givalis culture supernatant, decreasing its growth by 50% 
[131]. Other studies have reported that cystatin C inhibits 
the growth of S. mutans and Enterococcus faecalis, exhibit-
ing ultrastructural damage in their cell walls, peptidoglycan 
breaks, and a decrease in the electron density of the cyto-
plasm [132].

Some studies have demonstrated that Ds-cystatin, a 
homologous molecule of cystatin C, isolated from the 
Dermacentor silvarum tick, internalizes into mouse mac-
rophages stimulated with LPS from Borrelia burgdorferi, 
inducing a decrease in inflammatory cytokines, such as 
IL-1β, IFN-γ, TNF-α, and IL-6. This decrease is mediated 
by the degradation of TRAF6, which prevented the phos-
phorylation of IκBα and the subsequent nuclear transport 
of NF-κB, decreasing the inflammatory response induced 
by the bacterium [133]. Additionally, it has been reported 
that human cystatin C internalizes through endocytosis, 
diminishes phosphorylation of the ERK 1/2 in human mono-
cytes, and decreases IL-1β and TNF-α production in human 
peripheral blood mononuclear cells stimulated with LPS 
[134].

The immunoregulatory activity of this peptide has also 
been tested in other models. Schistosoma japonicum-secreted 
cystatin C induces the polarization of the M2 macrophage, 
favoring the production of anti-inflammatory cytokines, such 

as IL-10 and TGF-β. In addition, the adoptive transfer of this 
cell phenotype favored survival and improved the systemic 
clinical manifestations of sepsis in a mouse model [135].

These findings show that, in addition to the antimicrobial 
effect, cystatin C regulates inflammatory mechanisms and 
polarizes into alternatively activated M2 macrophages, sug-
gesting the therapeutic use of cystatin C against P. gingivalis 
to prevent further damage by periodontitis (Fig. 2).

Defensins

Defensins are a cationic and amphipathic family of small 
peptides (2–5 kDa), classified into the α and β subfamilies in 
humans [136, 137]. Neutrophils and epithelial cells produce 
salivary α- (HNP1, HNP2, HNP3,) and β-defensins (hBD1, 
hBD2, hBD3), found at a concentration of 2.7–8.6 µg/mL 
and 0.15–0.31 µg/mL, respectively [21, 129]. Their anti-
microbial effect is based on the peptide integration into the 
bacterial membranes that results in transmembrane pores 
formation and the subsequent rupture of the membrane, 
which leads to the destruction of the bacterium [138].

The hBD3 defensin can bind to LPS and TLR4, in the 
extracellular space of macrophages incubated with the 
Escherichia coli glycolipid, this blocks TLR4, reduc-
ing the activity of MyD88, TRIFF, and NF-κB, and the 
production of TNF-α, IL-12p40, and IL-6 [139, 140]. 

Table 1   Antimicrobial and immuno-regulatory activity of oral antimicrobial peptides against P. gingivalis 

a MIC minimal inhibitory concentration
b MBC minimal bactericide concentration

Antimicrobial peptide Total concentration in 
saliva

Antimicrobial activity Immuno-regulatory 
activity

Concentration ver-
sus P. gingivalis

References

Histatin-5 53 µg/mL Binding to hemagglutinin 
(HagB) of P. gingivalis

Decrease in NO, CCL3/
MIP, CCL4/MIP-1β, 
TNF-α, IL-6 and IL-1β 
production

Unknown [123, 124]

Cystatin C 0.9 µg/mL Inhibition of proteolytic 
activity

Induction of structural 
damage in cell wall and 
peptidoglycan

Inhibitions of TNF-α, 
IL-1β and IL-6 produc-
tion due to blocking 
NF-κB activation

Unknown [129, 130, 131, 
132, 136]

LL-37 4–6 µM Neutralization of LPS—P. 
gingivalis

Osteoclastogenesis reduc-
tion

Decrease in TNF-α pro-
duction

MIC: > 125 µg/mLa [141, 143, 144, 
145]

β-Defensin saliva 0.15 µg/mK–0.31 µg/mL Membrane pores forma-
tion

Inhibits TLR4 activation; 
reduces cell death

MIC: 42.1 µg/mL [129, 136, 139]

Lactoferrin 20 µg/mL Binding to LPS-P. gin-
givalis

Decrease TNF-α, and 
IL-6 production

MIC:2 mg/mL [127, 149]

Nal-P 113 Unknown Membrane pores forma-
tion

Inhibits IL-1β and TNF-α 
production

MIC:320 µg/mL [152]

Pep-7 Unknown Membrane pores forma-
tion

Decrease in
IL-1β y TNF-a
production

MBC:1.7 µM/mLb [153]
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Furthermore, hBD3 also suppresses neutrophils apoptosis, 
acting on the CCR6 chemokine receptor that induces nega-
tive regulation in the Bid pro-apoptotic protein, as well as 
alterations in the mitochondrial membrane potential and 
caspase 3 activity [141].

In addition, hBD3 suppresses the NF-kB signaling path-
way induced by P. gingivalis LPS on murine macrophages 
and RAW264.7 cells. This inhibition decreases the expres-
sion of iNOS mRNA and the production of cytokines, such 
as MCP-1, IL-6, and TNF-α. Additionally, hBD3 induces 
the expression of Arg 1 mRNA [142]. These findings indi-
cate the role of this peptide in macrophage polarization 
toward the M2 phenotype and its participation in the anti-
inflammatory response in P. gingivalis infection. These 
data suggest that hBD3 defensin could kill P. gingivalis 
and block the interaction of its LPS with TLR4, which 
could reduce inflammation and exert a protective role in 
periodontitis (Fig. 2).

LL‑37

Cathelicidin LL-37 is a peptide secreted by neutrophils, 
found in the saliva at a concentration that ranges from 
4 to 6 µM [143]. The cationic and amphipathic LL-37 
structure neutralizes the LPS anionic glycolipid, altering 
the cell wall of Gram-negative bacteria, favoring their 
death [144, 145]. In macrophages stimulated with LPS 
purified from Salmonella typhimurium and E. coli, LL-37 
inhibits TNF-α production [146]. In addition, it inhibits 
osteoclastogenesis processes by inhibiting the transloca-
tion of NFAT2 which reduces the formation of osteoclast 
progenitor cells [147].

These data provide evidence that LL-37 could have 
antimicrobial activity against P. gingivalis; furthermore, 
participating in the reduction of the inflammatory and 
osteoclastogenesis process characteristic of periodontitis 
(Fig. 2).

Fig. 2   Antimicrobial effect of oral peptides and their possible target 
in macrophage infected with Porphyromonas gingivalis. A LL-37 
can neutralize at LPS, altering the cell wall of the bacterium. hBD3 
and lactoferrin can also bind at this virulence factor. hBD3 also 
binds to TLR4, blocking its activation, whereas lactoferrin can also 
bind to CD14, blocking its interaction with this receptor. B Cysta-
tin C induces TRAF6 degradation, which decreases inflammatory 
cytokines production, such as TNF-α, IL-1β e IL-6 (G). C Lacto-
ferrin can stimulate phagolysosomal maturation on the macrophage 

infected with P. gingivalis, allowing for bacterial elimination. D Cys-
tatin C decreases ERK 1/2 phosphorylation, which could favor IL-12 
production in the infected macrophage. E Histatin-5 and cystatin C 
inhibit P. gingivalis gingipains. F Histatin 1 negatively regulates 
the NF-κB signaling pathway in infected macrophages, which could 
decrease the production of NO (K) and cytokines, such as TNF-α, 
IL-1β e IL-6 (G). H hBD3, LL-37 (I), Nal-P-113 (J), and Pep-7 (L) 
can also decrease inflammatory cytokines production
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Lactoferrin

Lactoferrin is an iron-binding glycoprotein present in the 
saliva. It can bind to LPS from P. gingivalis and CD14, 
interfering with the formation of the CD14-LPS complex 
and downregulating the TLR4 signaling pathway [147, 
148]. Additionally, the gene polymorphisms of this peptide 
have been associated with the development of periodontitis 
in a Taiwanese population [149]. Studies in infected mac-
rophages with Mycobacterium avium incubated with lacto-
ferrin showed reduced intracellular bacterial growth. Lacto-
ferrin also enhanced the antimicrobial activity of ethambutol 
in human macrophages, promoting phagosomal maturation 
and inflammatory cytokine production, such as TNF-α and 
IL-6, which foster host resistance to infection [150].

These data suggest that lactoferrin is a key mediator for 
the inflammatory process control in periodontitis, due to its 
microbicidal mechanisms against P. gingivalis (Fig. 2).

Nal‑P‑113 and Pep‑7

Nal-P-113 is a cationic peptide rich in histidine derived 
from histatin-5 [151, 152]. This peptide at a concentration 
of 320 µg/mL induces cell death in P. gingivalis Further-
more, in P. gingivalis-induced periodontitis in a rat model, 
a decrease of IL-1β and TNF-α production and inhibition of 
bone loss was observed after incubating P. gingivalis with 
this peptide [153].

Pep-7 inhibits the growth of two P. gingivalis strains, 
ATCC 33277 and ATCC 53978 (wp50), at a minimal inhibi-
tory concentration (MIC) of 1.7 µM. Besides, at this concen-
tration, the production of inflammatory cytokines, like IL-1β 
and TNF-α, was not observed in human gingival fibroblasts 
[154, 155].

Both peptides display the ability to modulate the inflam-
matory responses and exhibit remarkable antimicrobial 
activity. However, further studies are required to elucidate 
the immunoregulatory mechanism that allows these peptides 
to modulate macrophage function (Fig. 2).

Conclusion

The macrophages’ interaction with the periodontal pathogen 
P. gingivalis is a determining factor for periodontitis immu-
nopathology. This pathogen has evolved several mechanisms 
to evade the host immune system, which are determined by 
its arsenal of virulence factors, disrupting the signaling path-
ways of inflammatory cytokines, and leading during chronic 
infection to the destruction of periodontal tissue. However, 
oral peptides could act as macrophage regulators and control 

the inflammatory process, contributing to P. gingivalis elimi-
nation. Therefore, their use in therapeutic regimens could be 
promising against periodontitis.
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