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Abstract Oral health is maintained by the coordinated

function of many organs including the teeth and salivary

glands. Dysfunction of these organs causes many problems,

such as dental caries, swallowing dysfunction and peri-

odontal disease. Regenerative therapy for salivary gland

tissue repair and whole-salivary gland replacement is cur-

rently considered a novel therapeutic concept that may have

potential for the full recovery of salivary gland function.

Salivary gland tissue stem cells are thought to be candidate

cell sources for salivary gland tissue repair therapies. In

addition, whole-salivary gland replacement therapy may

become a novel next-generation organ regenerative therapy.

Almost all organs arise from reciprocal epithelial and

mesenchymal interactions of the germ layers. We devel-

oped a novel bioengineering method, an organ germ method

that can reproduce organogenesis through the epithelial–

mesenchymal interaction. A bioengineered salivary gland

germ can regenerate a structurally correct salivary gland

in vitro, and bioengineered salivary glands successfully

secrete saliva into the oral cavity from ducts in the recipient

through the reestablishment of the afferent–efferent neural

network. The bioengineered salivary gland can also

improve the symptoms of xerostomia, such as bacterial

infection and swallowing dysfunction. In this review, we

describe recent findings and technological developments of

salivary gland regenerative therapy.

Keywords Salivary gland regeneration � Organ germ

method � Bioengineered salivary gland � Epithelial–
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therapy

Introduction

Teeth and saliva play an important role in maintaining the

health and homeostasis of the oral cavity by participating in

functions such as chewing, digestion, cleaning and swal-

lowing. Moreover, 95 % of the saliva that is secreted into

the oral cavity is secreted from the main three pairs of

salivary glands, which include the submandibular gland

(SMG), sublingual gland (SLG) and parotid gland (PG),

and the remaining 5 % is secreted from minor salivary

glands [1–4]. The salivary gland is an ectodermal organ

that arises from the salivary gland germ under the regula-

tion of reciprocal epithelial–mesenchymal interactions and

is composed of acinar, myoepithelial and duct cells. Serous

saliva, which is rich in amylase protein, is secreted from

the PG and contributes mainly to the digestion of food. In

contrast, mucous saliva is secreted from the SLG, mainly

contains glycoproteins such as mucin proteins and protects

the oral cavity from drying. SMG secretes the seromucous

saliva, which has both the mucous and serous character.

Therefore, salivary gland dysfunction results in xerostomia

and influences bodily health [5, 6].

Xerostomia is caused by autoimmune diseases such as

Sjogren’s syndrome, radiation therapy for head and neck

cancer, aging and side effects of various drugs [5–10]. As a

result, clinical problems in oral health, such as dental

decay, bacterial infection, mastication dysfunction and

swallowing, are induced and result in a general reduction in

quality of life [8]. Current therapies for xerostomia include
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administration of artificial saliva or saliva substitutes and

parasympathetic stimulation drugs that promote salivation

[9]. However, these therapies provide temporary effects

and cannot restore salivary gland function. Therefore, the

development of novel treatments for restoration of salivary

gland function is needed [11].

Salivary gland regeneration therapy involving stem cell

transplantation or gene modification may eventually be

used to restore damaged tissue and recover the flow of

saliva [12–16]. In addition, organ replacement therapy of

ectodermal organs such as the teeth and hair follicles,

which can be achieved by transplantation of bioengineered

organ germs that have been reconstituted by organ culture

methods, has been reported [17–20]. Recently, we induced

salivary gland and the lacrimal gland regeneration using

this method [21, 22]. In this review, we will discuss the

novel findings and technologies for salivary gland regen-

eration and the possibility and feasibility of organ regen-

erative medicine for the salivary glands.

Salivary grand development

Ectodermal organs such as the teeth, hair follicles, salivary

glands and lacrimal glands are generated from the organ

germ induced by epithelial and mesenchymal stem cell

interactions in the developing embryo (Fig. 1) [23, 24].

The development of the submandibular gland in mice is

produced by the invagination of the oral epithelium into the

mesenchymal region derived from the neural crest cells at

the base of the tongue on mice embryonic day (ED) 11

(prebud) [2, 3, 25–27]. Invaginated epithelial tissue pro-

liferates to form an epithelial stalk and a terminal bud at the

tip (initial bud). During development, the epithelial stalk

differentiates into duct cells and forms the excretory, stri-

ated and intercalated ducts that close the opening. The

terminal bulb forms the branched structure of the gland by

repeating the elongation and branching process during ED

12.5–13.5 (pseudoglandular) [28–30]. From ED 15.0

onward, the terminal bulbs differentiate into the acinar

cells and mature to allow the synthesis of secretary proteins

[31]. The types of secretory proteins differ depending on

the type of salivary glands that produce them. The parotid

and submandibular glands secrete serous saliva, which

contains a large amount of digestive enzymes such as

amylase, and the sublingual gland secretes mucous saliva,

which, in mice, contains rich mucin protein. In humans, the

submandibular gland is known as a seromucous gland that

secretes both serous and mucous saliva [32–34]. After

salivary gland development is complete, adult tissue stem

cells are maintained in the excretory duct and contribute to

the repair of injured tissue [35–37].

Salivary gland disease and treatment

Dysfunction of the salivary glands has been shown to cause

atrophy of acinar cells and saliva reduction, resulting in

xerostomia (dry mouth). In Europe, approximately 20 % of

the population is said to suffer from dry mouth, and this

disease has been estimated to occur in approximately 800

million people in Japan. Dry mouth can be caused by Sjög-

ren’s syndrome (SS), radiation therapy for head and neck

cancer, aging and side effects of various drugs [10]. The

annual number of SS patients has been reported to be

approximately 15,000–20,000 [38]. SS is an autoimmune

disease that occurs frequently in middle-aged and elderly

women, and it affects the salivary glands as well as other

glands such as the lacrimal glands, resulting in dry eyes. Of

all SS patients, approximately 70 % are positive for the SS

antibody SSA (anti-Rho), and 40 % are positive for the SS

antibody SSB (anti-La) [39–41]. However, these antibodies

are not common to all patients, and the details of the

pathogenic mechanism are not clear. Current therapies for

dry mouth is administration of artificial saliva or saliva

substitutes for increasing the moisture retention of the oral

cavity [9, 40] and biologicals such as rituximab [41], abat-

acept [42] and belimumab [43] for suppressing the function

of T cells and B cells. In addition, parasympathomimetic

drugs, such as pilocarpine and cevimeline, have been used to

stimulate residual functional salivary gland tissues. These

drugs act on the M3 receptor and induce salivary flow.

Salivary gland regeneration using tissue repair

Transplantation of tissue stem cells has provided a method

for regenerative therapy to restore damaged tissues and

organs in diverse diseases [44, 45]. For salivary gland

regeneration, tissue stem cell transplantation will be useful

for partial acinar tissue repair, and gene therapy will affect

the recovery of the amount of saliva produced [10, 46–55].

Tissue repair using adult tissue stem cells

Current studies of stem/progenitor cell studies indicate that

tissue stem cells have the capacity to repair tissues in the

intercalated duct of adult salivary glands. Atrophy of acinar

cells induced by salivary gland duct obstruction can be

repaired by tissue stem cells that are c-kit and sca-1 positive

[12, 56]. Furthermore, stem cells that exhibit pluripotency

can differentiate into liver or pancreas tissue [57, 58].

The acinar cells of the salivary gland are very suscep-

tible to radiation; therefore, radiation therapy for head and

neck cancer can induce atrophy in acinar cells and a

reduction in saliva secretion. It is possible to culture c-kit
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positive salivary gland stem cells while maintaining the

tissue repair capacity in vitro, and these cells can restore

the amount of saliva produced by transplantation to the

atrophied acinar cell region [12, 15, 59–61]. In addition,

bone marrow-derived mesenchymal stem cells can increase

the regenerative capacity of the salivary gland stem cells

that remain in damaged salivary glands after irradiation

[62]. Stem cell transplantation is expected to be an effec-

tive means for salivary gland regeneration.

Gene therapy for salivary gland regeneration

Genes can be introduced into salivary glands directly

through a conduit from the opening of the oral cavity.

Therefore, functional regeneration of salivary glands by

gene therapy for the purpose of increasing the amount of

saliva secreted into the oral cavity has been attempted.

After infecting the dysfunctional adult salivary gland with

irradiated adenovirus expressing the water channel aqua-

porin-1 (AQP1), the secretion of saliva, which was

reduced by irradiation, was reported to be significantly

restored [10, 16, 63]. The salivary gland not only func-

tions as an exocrine gland to secrete saliva into the oral

cavity, but also secretes material into the bloodstream that

is circulated throughout the body. Gene transfer to sali-

vary glands has also been performed as a treatment for

other diseases [64–67]. It has been reported that some

material, such as IL-17 receptor antibodies, growth hor-

mones and erythropoietin, has been expressed in adult

salivary glands by gene transfer and circulated throughout

the body by the bloodstream [68–70]. Gene therapy, in

addition to stem cell transfer therapy, is expected to be a

new treatment strategy for salivary gland disorders and

other diseases.

Whole-salivary gland regeneration by organ
replacement

The possibility of partial tissue repair and recovery of the

amount of secreted saliva has been demonstrated by stem

cell transfer therapy and gene therapy. However, the final
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representation of the
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goal of regeneration of the salivary glands is the replace-

ment of fully functional salivary glands in injured organs

[54]. A recent study of salivary gland regeneration

demonstrated that the only epithelial cell aggregation is

produced by self-organization and branching in vitro.

Moreover, the addition of mesenchymal cells to epithelial

cells in this aggregate has been reported to increase the

number and rate of formation of branches [71].

Recently, we showed the possibility of fully functional

regeneration of ectodermal organs such as the teeth, hair

follicles, salivary glands and lacrimal glands using ‘‘organ

germ methods’’ that involved epithelial and mesenchymal

stem cell manipulation techniques to induce the organ germ

formation [17–20]. With this technique, it is possible to

control the size, number and morphology of the regener-

ated organ; therefore, we expected to be able to control the

invagination direction of the salivary gland [72]. The

submandibular, sublingual and parotid gland germs were

isolated from embryonic day (ED) 13.5–14.5 mice. The

bioengineered salivary gland germ cells were acquired

from single epithelial stem cells and mesenchymal stem

cells by enzymatic treatment. The bioengineered salivary

gland germ showed epithelial–mesenchymal interactions

after 1 day and epithelial bud formation after 2 days in

organ culture. (Fig. 2a, b) The regenerated sublingual and

parotid glands also showed patterns similar to that of the

submandibular gland.

Regeneration of functional salivary glands in vivo

Oral functions are achieved using the acini, ducts and

muscles under the control of the central nervous system.

For successful salivary gland replacement therapy, bio-

engineered germ cells must be capable of connecting to

ducts to secrete saliva into the oral cavity and achieve full

functionality, including responsivity to afferent and effer-

ent nervous stimulation from the oral cavity and regulation

of water and protein secretion in response to sympathetic

and parasympathetic stimulation.

Salivary gland regeneration by transplantation

of the bioengineered germ

Saliva must be secreted into the oral cavity for functions such

as food digestion, oral health, swallowing, pronunciation and

the maintenance of tooth hard tissues [1–3]. In the clinical

application of humans, by transfer of the submandibular

gland to the submental space, salivary gland function may be

successfully maintained and radiation-induced xerostomia

prevented [73]. Therefore, for transplantation, it is important

that the regenerated salivary glands secrete saliva into the

oral cavity. Salivary gland defect model mice, which have

excised submandibular, sublingual and parotid glands, show

little secretion of saliva. A bioengineered salivary gland,

transplanted into adult mice using an interepithelial tissue-
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Fig. 2 Reconstitution of

salivary gland using organ germ

methods. a Schematic

representation of the
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cells using the organ germ
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invaginates into the
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the epithelial stalk and terminal
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connecting plastic method [20], was engrafted and con-

nected to the parotid gland duct and bioengineered salivary

gland epithelium (Fig. 3a) [21]. The tissue structure of the

bioengineered salivary gland, including the localization of

myoepithelial cells (Fig. 3b), the water channel aquaporin5

(AQP5) and neuronal connections (Fig. 3b), was similar to

that of the natural tissue [21].

Saliva secretion from the bioengineered salivary

gland

Saliva secretion from the salivary glands is controlled by a

balance between protein secretion by the sympathetic nervous

system and water secretion by the parasympathetic nervous

system [74–77]. The treatment for dry mouth includes pilo-

carpine acid and cevimeline, which is known to promote the

secretion of saliva by stimulating muscarinic M3 receptors of

the parasympathetic nervous system (Fig. 4a) [36]. Saliva

secretion from the bioengineered submandibular gland is

similar to that of the natural salivary gland and shows reac-

tivity, which is induced by pilocarpine acid stimulation and

inhibited by atropine, an antagonist of pilocarpine acid

(Fig. 4b) [21]. In addition, although natural saliva contains

amylase protein, which facilitates digestive functions, the

secreted saliva from the bioengineered salivary gland contains

amylase protein that also degrades starch [21].

Control of saliva secretion by the central nervous

system

Stimulation, such as food, heat and pain, induces saliva secre-

tion via the afferent and efferent neural networks (Fig. 5a). In

addition, saliva plays an important role in taste perception [78–

80]. The saliva secretion from the bioengineered salivary gland

via the central nervous system was analyzed using five tastes

that are used in gustatory tests, including sour (citrate), bitter
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Fig. 3 In vivo transplantation of the bioengineered salivary gland

germ. a Photographs of the bioengineered submandibular gland at day

30 after transplantation. The bioengineered submandibular gland and

parotid gland duct connection was observed. b Histological analysis

of the submandibular gland (upper columns) and the sublingual gland

(lower columns). Images of HE staining (left) and periodic acid and

Schiff (PAS) staining (second from the left). The bioengineered

submandibular gland was a mucous gland that showed a strongly

positive PAS staining. Immunohistochemical images of calponin

(red) and E-cadherin (green; third from the left) and calponin (red)

and NF-H (green; right) are shown
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(quinine hydrochloride), salty (NaCl), sweet (sucrose) and

umami (glutamate) [81, 82]. Gustatory stimulation with citrate

induced significant quantities of saliva secretion compared to

the control (Fig. 5b) [82]. Saliva secretion was induced in

response to all tastes, not only the sour stimulus, and the

secretion amount depended on the type of stimulus and

exhibited the following order: sour[bit-

ter[umami[ salty = sweet (Fig. 5c) [82]. Analysis of sal-

iva secretion by gustatory stimuli from bioengineered salivary

glands demonstrates the potential for these glands to be con-

trolled through the afferent–efferent neural network.

Functional recovery of dry mouth symptoms

by saliva secretion

Saliva contains many proteins and cytokines, such as

amylase, lysozyme, IgA, lactoferrin, myeloperoxidase,

NGF, EGF and parotin, which are essential to the main-

tenance of oral health and homeostasis [83, 84]. Dysfunc-

tion of the salivary glands causes various problems such as

dental caries, bacterial infection, sleep disorders and

swallowing dysfunction [34]. The oral epithelium was

protected from dryness and bacterial growth by secreted

saliva from bioengineered salivary glands [21].

Among salivary gland functions, the swallowing func-

tion, which promotes the formation of a bolus of food or

water, is critical for nutrition and reducing the risk of

aspiration, which can cause chronic lung disease as well as

affect the survival, quality of life, health and aging of an

animal [85]. In salivary gland defect model mice, the body

weight was abnormally decreased and all mice died within

5 days despite having free access to food and water (Fig. 6)

[21]. The loss of body weight was rapid under conditions

that did not provide water compared with those that did not

provide food in natural mice, and the rate of decrease was

consistent with the salivary gland defect model mice. Be-

cause dry mouth patients cannot swallow water, they often

drink high-viscosity water. The salivary gland defect model

mice exhibited a recovery of body weight and an increased

survival rate by drinking high-viscosity water, which raises

the possibility that dysphagia may occur in these animals.

In contrast, all of the bioengineered salivary gland-en-

grafted mice survived, and their body weight increased

4 days after transplantation (Fig. 6) [21]. These findings

indicate that the bioengineered salivary gland can improve

the swallowing function associated with the maintenance

of oral health.

Future perspectives for salivary gland
regenerative therapy

The progress that has been made in regenerative technol-

ogy is remarkable, and many patients may be treated with

salivary gland regenerative therapy. To achieve future

clinical applications of salivary gland replacement therapy,

suitable cell sources must be identified. Recent investiga-

tions of stem cell biology have led to the identification of

candidate cell sources for salivary gland tissue regeneration

and salivary gland replacement therapy [35–37]. Salivary
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gland adult tissue-derived stem cells, such as c-kit- and

sca-1-positive cells and mesenchymal stem cells, can repair

the injured acinar cells and partially recover the function of

saliva secretion [12, 59–62]. Salivary gland adult stem cells

would be valuable cell sources for stem cell transplantation

therapy aimed toward salivary gland tissue regeneration.

However, the potential of these stem cells to induce a

salivary gland similar to that induced by an epithelial–

mesenchymal interaction has not been reported. Pluripotent

stem cells, such as embryonic stem (ES) cells and induced

pluripotent stem (iPS) cells, are capable of differentiating

into endodermal, ectodermal and mesodermal cells [86–88]

and are also candidate cell sources for salivary gland

regeneration. These pluripotent stem cells may be used to

establish methods to induce salivary gland formation.

However, dry mouth due to SS is an autoimmune disease,

and salivary gland damage such as atrophy of the acinar cells

is caused by autoantigens [39–44]. Therefore, the possibility

exists that acinar cells may again become atrophied due to

autoimmune responses in the transplanted regenerated sali-

vary glands in patients. Use of biologicals, which is one of

the recent therapies for SS, can also aim at reducing disease

activity and even regeneration of diseased tissue [42, 43, 89–

91]. To achieve future clinical applications of salivary gland

replacement therapy, it is necessary to perform a genetic

modification that decreases the expression of autoantigens

against patient-derived stem cells used for salivary gland

regeneration in combination with the biologicals.

In this study, we have described the feasibility of sali-

vary gland regenerative therapy. Recently, a novel
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treatment method for dry eye demonstrated the possibility

of functional lacrimal gland regeneration by transplantation

of bioengineered lacrimal gland germs [22]. Furthermore,

by promoting fundamental technology development and

clinical application of research for the regeneration of

exocrine glands, organ replacement and the regeneration of

exocrine glands may be realized.
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