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Abstract
Asteraceae (synonym as Compositae) is one of the largest angiosperm families among flowering plants comprising one-
tenth of all agri-horticultural species grown across various habitats except in Antarctica. These are commercially utilized 
as cut and loose flowers as well as pot and bedding plants in landscape gardens due to their unique floral traits. Conse-
quently, ineffective seed setting and presence of an intraspecific reproductive barrier known as self-incompatibility (SI) 
severely reduces the effectiveness of hybridization and self-fertilization by traditional crossing. There have been very few 
detailed studies of pollen-stigma interactions in this family. Moreover, about 63% of Aster species can barely self-fertilize due 
to self-incompatibility (SI). The chrysanthemum (Chrysanthemum × morifolium) is one of the most economically important 
ornamental plants in the Asteraceae family which hugely shows incompatibility. Reasons for the low fertility and reproduc-
tive capacity of species are still indefinite or not clear. Hence, the temporal pattern of inheritance of self-incompatibility and 
its effect on reproductive biology needs to be investigated further to improve the breeding efficiency. This review highlights 
the self-incompatible (SI) system operating in important Astraceous (ornamental) crops which are adversely affected by this 
mechanism along with different physiological and molecular techniques involved in breaking down self-incompatibility.
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Introduction

Plants have developed a variety of strategies to avoid self-
pollination, such as the distinct placement of female and 
male reproductive parts within the flower or the pres-
ence of flowers on various plants to induce unique genetic 
recombinations (Mraz 2003; Yang et al. 2018b). In most 
angiosperms, self-incompatibility (SI) is one of the genetic 
mechanisms that serves as a pre-fertilization barrier where 
growth of the pollen tube can be inhibited on the stigma 
or in the style following inbreeding (Ascher 1976; Brennan 
et al. 2011). Self-incompatibility or self-infertility (SI) is 
the failure of the pollen grains to germinate on the stigma of 
the same flower following self-pollination (Brewbaker 1957; 
Hiscock et al. 2003; Nettancourt 1997; Wang et al. 2018). 
The recognition and rejection of self-pollen is the rule that 
prevents inbreeding depression (Vijayakumar et al. 2018) 

and promotes out-crossing in flowering plants (Hiscock and 
Kues 1999; Ortiz et al. 2006). Origin of this phenomenon 
dates back to 90 million years ago and is reported in several 
eudicot families (Igic et al. 2004). Self-sterility was first 
reported in Verbascum species. where cross-pollinations 
were carried out to develop interspecific hybrids (East and 
Park 1917). Darwin's traditional genetic studies, dating back 
to the end of the eighteenth century, have documented the 
presence of these self-inhibitory mechanisms as tactics to 
increase genetic diversity (Silva and Goring 2001). The 
majority of self-incompatible systems are regulated by the 
S-locus with two tightly linked polymorphic genes, one of 
which regulates the identity of the pollen and the other regu-
lates the identity of the pistil, although the number varies 
with the crop (Brennan et al. 2011). In pollen, S allele domi-
nance is regulated at the transcription (mRNA) level but in 
the pistil, it is modulated at the post-transcriptional (protein) 
level (Hatakeyama et al. 2001; Shiba et al. 2002). Along with 
that, many other genes linked to the S-locus are also crucial 
for a fully functioning self-incompatibility trait (Kitashiba 
and Nasrallah 2014). Genetic studies in diverse crops 
showed that S genes encode for proteins that necessitates 
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signaling downstream pathways of the S-protein-mediated 
self-recognition machinery (Jeong et al. 2014). It is note-
worthy that many researchers have been able to support 
this genetic observation over the past two decades through 
molecular and biochemical studies in several crops that have 
made a substantial contribution in understanding the intri-
cate web of interactions occurring at the pollen-stigma inter-
face viz.; Crepis foetida and Parthenium argentatum (Gerstel 
1950), Cosmos bipinnatus (Crowe 1954), Helianthus ann-
uus (Habura 1957), Chrysanthemum cinerarifolium (Brewer 
and Parlevliet 1969) and Carthamus flavescens (Imrie and 
Knowles 1971) among which garden chrysanthemum is a 
hexaploidy and all other Compositae members with spo-
rophytically determined self-incompatibility are diploids 
(Drewlow et al. 1973).

In general, usually for a compatible response, no inhibi-
tory compounds are produced, more so, pollen germination 
and pollen tube expansion are normal leading to an effective 
fertilization. However, for self-incompatibility responses, a 
number of studies have mentioned different systems based 
on varied interactions. Bateman (1954) classified self-
incompatibility into complementary and oppositional sys-
tems depending on pollen-pistil interaction following pol-
lination. In a complementary or stimulatory system, when 
pollen from one self-incompatible group falls on the stigma 
of another self-incompatible group, specific stimulatory 
chemicals are produced that promote pollen germination and 
pollen tube growth which culminates in successful fertiliza-
tion. On the contrary, in case of an oppositional or inhibi-
tory system, if the stigma and pollen both are members of 
the same self-incompatible group, no stimulatory chemicals 
will be produced, preventing pollen germination and further 
growth of the pollen tube. In the same year, Lewis (1954) 
classified self-incompatibility into homomorphic and hetero-
morphic systems based on gene action and floral morphol-
ogy (Barrett 1992; Nettancourt 1997). The homomorphic 
self-incompatibility is again sub-classified into gameto-
phytic and sporophytic self-incompatibility (Hiscock and 
Kues 1999). In a gametophytic system, the haploid pollen 
genome controls the incompatibility response, whereas, in 
a sporophytic system, the parental plant's diploid genome 
controls the incompatibility reaction. Gametophytic self-
incompatibility which persists in 17–25 families is the most 
prevalent of the two types (Charlesworth 1985; Clure 2006; 
Iwano et al. 2012; Steinbachs and Holsinger 2002; Weller 
et al. 1995), whereas sporophytic self-incompatibility is less 
common and is only found in five families viz., Asteraceae 
(Hiscock 2000; Hughes and Babcock 1950; Wollenweber 
et al. 2021), Brassicaceae (Bateman 1954), Convolvulaceae 
(Martin 1968; Mehlenbacher 1997), Betulaceae (Prigoda 
et al. 2005; Schierup et al. 2006; Thompson 1979) and Car-
yophyllaceae (Lundqvist 1990). The gametophytic system 
comprises binucleate pollen characterized by slow growth 

of pollen tubes in the style (Brewbaker 1957). Trinucleate 
pollen in the sporophytic system inhibits pollen germination 
and pollen tube penetration into the stigma. In plants with 
homomorphic self-incompatibility, specificity is encoded by 
the S-locus that carries the identity of both the alleles ‘S and 
s’ from the sporophyte that interact on the stigmatic surface. 
In heteromorphic self-incompatibility, two types of flowers 
are present viz., pin and thrum type which differ in their 
floral morphology (Barrett 1992). Flowers with short sta-
mens and long style are referred as pin type flowers and the 
opposite condition is termed as thrum type having long sta-
mens and short style being present on different plants. This 
condition is referred as distyly governed by a single S-locus 
with two alleles (S and s). The only compatible mating in 
this case is between pin and thrum flowers. Three varied 
self-incompatible systems have been observed at molecular 
levels where sporophytic self-incompatibility (SSI) was elu-
cidated in Brassicaceae and Asteraceae while two divergent 
types of gametophytic self-incompatibility (GSI) (S-RNase 
based SI) were studied in Solanaceae and Rosaceae along 
with programmed cell death (PCD) in the Papaver system 
(Charlesworth 2010; Sanz et al. 2020).

One-tenth of the angiosperm species belong to the fam-
ily Asteraceae that owns attractive ornamental plants with 
unique floral traits for which they are valued at the interna-
tional market (Nakano 2021). Floral parts of these plants 
are utilized as cut flowers for making floral arrangements, 
as loose flowers, ornamental pot plants and also as bedding 
plants for beautifying the landscape gardens throughout the 
world (Joshi et al. 2010; Ohmiya 2018). Major flower crops 
belonging to this family with high ornamental value in both 
domestic and international markets are chrysanthemum 
(Chrysanthemum × morifolium Ramat.), gerbera (Gerbera 
hybrida L.), dahlia (Dahlia × pinnata) and asters (Hao et al. 
2011). Among all these, chrysanthemum (Chrysanthemum 
× morifolium) is a significant floriculture crop with diverse 
uses (Anderson 2007; Teng et al. 2008) in the floral market. 
In recent times, a huge increase in demand is evident in the 
ornamental crops particularly in chrysanthemums (Chry-
santhemum × morifolium) because of diverse flower colors, 
forms and improved vase life. This flower finds its place in 
making of floral ornaments, garlands, hair decorations and 
as a bedding plant in landscape gardens (Joshi et al. 2010).

The existence of the sporophytic self-incompatibility 
mechanism was first reported in the Asteraceae crop Crepis 
foetida (Hughes and Babcock 1950) followed by Parthe-
nium argentatum (Gerstel 1950), Cosmos bipinnatus (Crowe 
1954), Helianthus annuus (Habura 1957), Chrysanthemum 
cinerarifolium (Brewer and Parlevliet 1969), Carthamus 
flavescens (Imrie and Knowles 1971), Cichorium intybus 
(Eenink 1981; Gonthier et al. 2013) and Senecio squalidus 
(Allen et al. 2011). Numerous factors are responsible for 
the failure of self-pollination that include pre-fertilization 
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barriers (lack of pollen germination, presence of trinucleate 
pollen, unusual pollen tube growth on stigma or style before 
fertilization, reciprocal crossing differences), and post-
fertilization barriers (embryo abortion or hybrid inviabil-
ity) resulting in low seed setting thereby decreasing breeding 
efficiency in plants (Deng et al. 2010; Hu 2005; Jing 2000; 
Sun et al. 2009a, 2011). Garden chrysanthemums are self-
incompatible, highly heterozygous aneuploids with complex 
genetic makeup and unclear trait inheritance patterns. Addi-
tionally, the reproductive biology of the chrysanthemum is 
particular to pollen viability, pistil receptivity, pollen germi-
nation on stigma, growth of embryo and seed set percent-
age, which differs noticeably among various genotypes in 
relation to their reproductive capacity and affects the shape 
and size of populations (Rehana and Bala 2021). Nonethe-
less, most of the chrysanthemum cultivars are unable to get 
through these pre-fertilization barriers, hence; overcoming 
self-incompatibility becomes peremptory for successful 
breeding and crop production (Sun et al. 2011).

In light of the current importance of self-incompatibility 
acting in the family Asteraceae, an attempt has been made 
to understand the concept and work done so far to review 
the recent advances in assessing self-incompatibility. Also, 
different physiological and molecular techniques involved in 
breaking down self-incompatibility in important ornamen-
tal Asteraceae crops are discussed, thereby giving a holis-
tic approach to the understanding of the trait. Along with 
that, evolutionary events that led to the transition from self-
compatibility (SI) to self-compatibility (SC) are explained 
as well.

Floral reproductive biology

The anatomy of floral reproductive parts in ornamental 
crops may participate in bringing complexities like self-
incompatibility. The inflorescence of Asteraceae members 
is a composite head or capitulum consisting of a cluster of 
small flowers aligned together with both female and perfect 
flowers aligned in a single flower head. The outer whorls of 
a flower head comprise of ray florets (pistillate or female) 
followed by disc florets (perfect or bisexual) located at the 
center of the inflorescence. Ray florets are attractive and 
bigger in size with different hues to attract insects for pol-
lination whereas the disc florets are minute and located at 
the center of the capitulum in gerbera and chrysanthemum 
respectively (Jaime and Silva 2014; Laitinen et al. 2006). 
The capitula of Gerbera aurantiaca comprises of 100 central 
disc (bisexual) florets being surrounded by 100 ray florets 
(female) and distributed in the outer three whorls (Johnson 
et al. 2004, 2021). In chrysanthemum, anthesis progress 
from outer to inner whorls i.e., ray florets open first fol-
lowed by disc florets that open in the morning hours. Pollen 

viability is highest from 11:00–14:00 h on the third day after 
anthesis and the staminate florets start to lose powder even-
tually from the third day until they gradually wither on the 
eleventh day (Xu et al. 2012). Stigma receptivity is highest 
during 01:00–02:00 pm in the afternoon and it is strongest 
during the fifth to seventh day after flower opening. Four 
different forms of stigmas are present in which I-shaped 
stigmas are seen from the third to sixth day after flower 
opening which gradually turns to Y-shape and eventually 
develop into horns and wilt type. Among all, Y-type stig-
mas are highly receptive which could be pollinated between 
11:00–14:00 h on sunny days to achieve high pollination effi-
ciency (Yang et al. 2018a). Stigmas located at the center of a 
capitulum are highly receptive with strong mucus secretions 
than those situated at the outer edges. Pistil development 
may get delayed by 1–2 days when emasculation is coupled 
with wiping off the petals of ray florets. However, emascu-
lating the disc florets during hybridization does not influ-
ence the pistil development in ray florets (Zhao et al. 2008). 
Another Asteraceae flower namely, Senecio squalidus, has 
an inflorescence that resembles a capitulum, consisting of 
an outer whorl of carpellate ray florets and interior whorls 
of bisexual disc florets. The individual disc florets grow in 
whorls, with the outer whorls of the inflorescence maturing 
before the inner whorls. The pistil possesses a style, bilobed 
semi-dry stigma and a single ovary. In immature pistils, two 
stigmatic lobes are packed tightly to protect the stigmatic 
papillae. As the pistil matures and develops anthers, sterile 
pseudo-papillae at the tips of the stigmatic lobes receive 
pollen from anthers and deliver it to pollinators. When the 
stigma reaches maturity, two lobes get separate to show the 
receptive papillae cells (Allen et al. 2011). Figure 1 depicts 
the floral morphology of general Astereceae species indicat-
ing its different flower parts.

Causes of self‑incompatibility

Lack of seed set in polyploid crops due to low fertility, 
inbreeding depression or the existence of self-incompati-
bility is a major problem faced by breeders (Anderson et al. 
1992, 2007; Miler and Wozny 2021). Biparental inbreeding 
depression after selfing have resulted in  F1 seedlings with 
low survival rate, irregular phenotypic traits and stunted 
plant growth in Gaillardia pulchella (Heywood 1993). Addi-
tionally, this problem has made breeders incorporate other 
species into the crosses with chrysanthemum (syn. Den-
dranthema) genome (Smith 1913). Random outcross pol-
linations between unrelated and non-inbred genotypes have 
resulted in a low seed set of 36–71% and even lower up to 
24.5–38.5% (Ronald 1974) with a maximum not exceeding 
50% (Anderson and Ascher 2000). Low seed setting effi-
ciency in Chrysanthemum species may be related to the fact 
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that most of the greenhouse cultivars are developed through 
induced mutagenesis, which rendered a loss of their natural 
reproductive abilities (Miler and Kulus 2022). Also, lack of 
pollen (trinucleate) germination, inhibition of pollen tubes 
on stigma and reciprocal crossing differences are the main 
causes of low seed set (Sun et al. 2010). Similarly, both in 
the case of gerbera and Hymenoxys herbacea, pollen limita-
tion is a major constraint in self-pollination (Campbell and 
Husband 2007; Johnson et al. 2004). These factors have been 
linked to the presence of a sporophytic self-incompatible 
system whose expression is regulated by S loci. The garden 
chrysanthemum is a hexaploid with 3 loci governing self-
incompatibility. If these three loci are active, each clone may 
contain six S-alleles and the offspring of a compatible cross 
may include up to 12 distinct S-alleles. When individuals 
with three separate loci and a compatible cross are produced, 
only 0.25% of the crosses are predicted to be compatible. In 
contrast, 2.8% of crosses are compatible when one locus is 
operational and 25% of compatible crosses with two loci are 
predicted (Drewlow et al. 1973).

Self-incompatibility (SI) promoting out crossing in cul-
tivated chrysanthemum (syn. Dendranthema grandiflora) 
was first reported by Niwa (1931) and it has been docu-
mented in the chrysanthemum complex at all ploidy lev-
els, including diploid (Dendranthema boreale), hexaploid 
(Dendranthema japonense), octaploid (Dendranthema 
ornatum) and decaploid (Dendranthema shiwogiku). Both 
garden and greenhouse chrysanthemums are extremely 
self-sterile (Teynor et al. 1989) and produce very low 
seed after selfing or outbreeding between genotypes shar-
ing similar S alleles (Anderson and Ascher 2000). Other 
economically important species viz., octaploid dahlia 
(Dahlia variabilis) (Lawrence 1931; Broertjes and Bal-
lego 1967), pyrethrum (Chrysanthemum cinerarifolium, 
syn. Tanacetum cinerariifolium) also possess sporophytic 
self-incompatibility (Thorpe 1940). Reports on incompat-
ibility are also evident in Cosmos bipinnatus (Little et al. 
1940), Parthenium argentatum (Gerstel 1950) and Crepis 
frtida (Hughes and Babcock 1950) where one incompat-
ibility gene is predicted with multiple alleles which act 

Fig. 1  General floral morphology of Asteraceae species (Gerbera)
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individually in the style as in nicotiana, but the behav-
iour of the pollen is determined by the sporophyte and 
the alleles exhibit dominance, both features being associ-
ated with the heteromorphic outbreeding types. Senecio 
squalidus and Cichorium species are vital model crops 
for the study of SSI in Asteraceae because their recent 
population history has been well documented comprising 
extreme population events that are probable to have an 
impact on the behaviour of their SSI mating system (Bren-
nan et al. 2011; Palumbo et al. 2023). Self-compatibility 
and ability for autonomous seed set was studied among 
twelve invasive Asteraceae species in China by Hao et al. 
(2011) where in the percentages of self-compatible spe-
cies (66.7%) and species capable of autonomous seed set 
(83.3%), including self-fertilizing and apomictic species, 
were significantly larger than expected from the percent-
ages of such species in the global data sets of Asteraceae 
(36.8% and 46.0% respectively). These results support 
the predictions of Baker's Law that self-compatible spe-
cies, and particularly those capable of autonomous seed 
production, are more likely to establish and spread in a 
new range. High polyploidy levels are typically associated 
with bigger plants since most of the greenhouse chrysan-
themums are segmental allohexaploids possessing huge 
capitula impeding the genetic analysis studies. These con-
straints have made it impossible to use the cutting-edge 
breeding techniques utilized for other crops, therefore, the 
standard breeding method for chrysanthemums still relies 
on straightforward crossings and clonal multiplication 
through stem cuttings.

Other causes

There are other morphological factors that bring physiologi-
cal changes in floral parts following inbreeding that may elu-
cidate the presence of self-incompatibility system in varied 
species of the Asteraceae family.

Pollen morphology and viability

Seed set is often pollen limited in self-incompatible species 
because of the inadequate quantity or quality (compatible) 
of pollen being received by the female (Larson and Barrett 
2000). The structural morphology of pollen also affects its 
germination on stigma as abnormal pollen morphology leads 
to low pollen germination in chrysanthemum as reported by 
Wang et al. (2018). The percentage of available viable pollen 
is also an important factor for a successful fertilization. Fig-
ure 2 is showing the visual examination of chrysanthemum 
pollen as seen under fluorescent microscope.

Stigma morphology

Angiosperm stigmas are classified into three broad catego-
ries viz., wet, dry and semi-dry types on the basis of surface 
extrusions (Harrison 1981; Harrison and Shivanna 1977). In 
the case of dry type stigma, pollen hydration on the stigma 
is a regulated mechanism and pollen capture along with its 
adhesion depends on s gene specificity of species (Dick-
inson 1995; Zinkl and Preuss 2000; Zinkl et al. 1999). In 
the case of dry stigmas, presence of a continuous cuticle 
imposes a major barrier to pollen tube penetration that can 
be surpassed by pollen secreting hydrolytic enzymes such 
as cutinase (Allen et al. 2011; Hiscock et al. 2002). On the 
contrary, in species with wet stigmas, pollen capture is a 
non-specific mechanism and pollen hydration within the 
secretion is passive which is not regulated. In this case, epi-
dermal cells of stigmas lack a continuous cuticle that allows 
for an effortless penetration of the pollen tubes.

As far as Asteraceae species are concerned, stigmas 
mostly characterized as dry type previously (Allen et al. 
2011; Harrison and Shivanna 1977). However, recent stud-
ies on pollen-stigma interactions in poppy, cosmos, heli-
anthus and German chamomile have revealed that stigmas 
of Asteraceae species are not entirely dry as they excrete 
a small amount of surface secretion (Elleman et al. 1992). 
These observations were further supported by assessing 
pollen-stigma interaction in Senecio squalidus, which led 
to a new classification of the Asteraceae stigma as semi-dry 
type. This stigma holds a lipid-rich secretion consisting of 
carbohydrate and protein in the basal regions of stigmatic 
papillae where the cuticle is absent (Hiscock et al. 2002). 
Once the pollen comes in association with the stigma, the 
flow of this secretion gets enhanced irrespective of pollen 
compatibility (Allen et al. 2011; Hiscock et al. 2002).

Pollen‑pistil interactions

Physical separation of female and male gametophytes by the 
carpel has resulted in the evolution of a number of complex 
series of cellular and molecular interactions that are together 
termed as pollen-pistil interactions (Harrison 1975). During 
this molecular courtship, discrete recognition processes get 
associated in actively discriminating incompatible pollen 
at interspecific and intraspecific levels (Hiscock and Allen 
2008). On the other hand, in the case of compatible pollina-
tions, ovules synthesis is limited so as to compete with the 
pollen tubes leading to an additional level of selection on 
the male gametophyte, a consequence of the carpel which 
targets the evolutionary success of angiosperms (Hormazo 
and Herrero 1992).

Incompatible pollen-pistil interactions in Asteraceae 
species (cosmos, ambrosia and helianthus) marked the 
development of exine-held pollen coat prior to pollen and 
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stigma association (Dickinson and Lewis 1975; Vithanage 
and Knox 1977) which eventually led to the inhibition of 
incompatible pollen at the stigma surface and the deposi-
tion of callose in pollen tubes along with its adjacent cells 
on stigma (Allen et al. 2011). In Ambrosia species (self-
compatible) and Cosmos bipinnatus (self-incompatible), 
incompatible pollinations resulted in the rapid release of 
pollen wall material through the sexine pores and colpi of 
pollen grains (containing a diversity of enzymes, carbohy-
drates and lipids) onto the stigma surface within 10–15 min 
after pollination (Howlett et al. 1975).

Pollination events in Cosmos bipinnatus and Helianthus 
annus reported a secretory response of pollen wall mate-
rial by the stigmas directly after pollination (Elleman et al. 
1992). A substantial correlation was also observed between 
possession of dry stigmas and the presence of complex 
pollen coatings on pollen grains (Dickinson 1995; Dickin-
son et al. 2000). These pollen coatings also performed a 
role similar to that of stigmatic exudates. Currently, new 
researches are taken upon to identify molecules that could 
mediate specific events during the pollen-pistil interaction, 
such as pollen adhesion and hydration, pollen tube growth 
and navigation through the pistil, particularly self-incompat-
ibility (Hiscock and Allen 2008).

Chemical compounds

When chemical substances secreted from both stigmas and 
pollen walls do not interact properly, pollen grain germina-
tion is usually prevented on stigmas, ultimately hampering 
pollen tube growth and fertilization (Sun et al. 2010). Cal-
lose production was witnessed on stigmatic papillae within 
15 min after incompatible mating in Cosmos bipinnatus 
(Knox 1973). Synthesis of callose plugs were reported by 
Boyle and Stimart (1986) as a result of inhibition of pollen 
germination and pollen tube growth on the stigmatic surface 
suggesting the activity of sporophytic S-gene in reciprocal 
interpecific crosses between Zinnia angustifolia and Zinnia 
elegans. Samaha et al. (1989) also tested self-incompatibility 
in Zinnia angustifolia clones by determining the amount of 
callose depositions on stigmatic papillae following polli-
nations. It was inferred that callose fluorescence intensity 
ranged from 6.4 to 9.9% with high pollen load and little or 
no callose depositions in stigmatic papillae following com-
patible crosses. In the case of incompatible crosses, pol-
len load was low and callose lenticules were deposited on 
stigmatic papillae with high callose fluorescence intensity 
that ranged from 47.9 to 62.6%. Before pollen germination 
and within hours of the pollination, there is an increase in 

Fig. 2  General microscopic examination of pollen grain structure of chrysanthemum belonging to Asteraceae family. Scale bar is 10 µm



593Journal of Plant Research (2023) 136:587–612 

1 3

ethylene production in the stigma and style. Although, it is 
hypothesized that the fundamental pollination signals from 
plant hormones, auxin, is transmitted directly from pollen to 
the stigma (Kovaleva and Zakharova 2003). In another inves-
tigation on Iberis species, the ß-1, 3-linked glucan, called 
callose, was shown to accumulate in both stigmatic papillae 
and pollen tubes within 4–6 h after an incompatible mating.

Enzymes

In general, cutinase, esterases and pectinases participate 
in incompatibility reactions (Christ 1959). Studies on Tro-
paeolum majus pollen (Takahashi et al. 2010) showed the 
existence of enzymes belonging to four esterase classes 
namely, acetylcholine esterase (EC 3.1.1.6), cholinesterase 
(EC 3.1.1.7), pectin esterase (EC 3.1.1.11) and cutinase (EC 
3.1.1.74) where cutinases and pectin esterases were signifi-
cantly involved in pollen-pistil interaction (Nemaz et al. 
2019). Cutinases and serine cutinases were also needed 
for pollen tube penetration of the wet and dry stigmas after 
pollen-stigma contact (Hiscock et al. 2002) while pectin 
esterases were involved in intercellular pollen tube growth 
in the subsequent phase of pollination.

Proteins

Certain peptides act as pollen signals and identify incompat-
ibility when received by a specific receptor. These include 
S-locus cysteine rich proteins (SCR) or S-locus protein 11 
(SP11). The extremely polymorphic SCR or SP11 is iden-
tified by the similar polymorphic S-locus receptor kinase 
(SRK), which determines the SI specificity (Charlesworth 
2010; Ma et al. 2016). The sudden halt of pollen tube elon-
gation is brought by the S-locus specific S-RNase (S-locus 
ribonuclease), an abundant and extremely polymorphic 
pistil-specific glycoprotein which is released into the extra-
cellular matrix that lines the course of pollen tube expan-
sion (Sijacic et al. 2004). From previous research, it may be 
deduced that the S-locus, also known as the S-haplotype that 
controls self-incompatibility in Asteraceae members spo-
rophytically (Bateman 1955). From research conducted by 
Takasaki et al. (2000) and Koseva et al. (2017), S-locus gly-
coprotein (SLG) was considered as a SI-related gene present 
in stigma which is necessary for full SI response activation 
in addition to the female S determinant. S-locus receptor 
kinase (SRK) with bound serine/threonine was observed to 
be the female S-determinant in the Asteraceae family, which 
upon interaction with SLG (S-locus glycoprotein) helped to 
display self-incompatibility. The two essential genes of the 
SI response were located in the male S-determinant, called 
as SCR (S-locus cysteine-rich protein)/SP11 (S-locus protein 
11) (Charlesworth 2010; Schopfer et al. 1990) a type of pol-
len coat protein (Koseva et al. 2017; Takasaki et al. 2000; 

Wang et al. 2018). It is believed that before self-pollen come 
in contact with the stigma, SRK (S-locus receptor kinase) is 
inhibited by the thioredoxin H proteins (THL1 and THL2) 
(Bower 1996; Haffani 2004). Once self-pollen grains occupy 
space on the stigma, SRK get activated by SCR and is fur-
ther accompanied by another S-locus cytoplasmic receptor 
kinase, M-locus protein kinase (MLPK) (Kakita et al. 2007). 
EXO70A1, a subunit of the exocyst made up of eight subu-
nits, is one of the self-compatibility-related proteins that are 
phosphorylated by activated CRISPR-Cas9, which causes 
ubiquitination and proteasomal destruction of the proteins 
(Samuel et al. 2009; Stone et al. 2003). Safavian et al. (2015) 
tested the remaining seven subunits, SECRETORY-SEC3, 
SEC5, SEC6, SEC8, SEC10, SEC15 and exocyst subunit- 
EXO84, as compatible factors to promote compatible pollen 
grain acceptance. Many other parallel pathways also work 
simultaneously other than ARC1 linear ubiquitin–protea-
some pathway for SI response (Tantikanjana et al. 2010). 
Post pollen stigma interaction, hydration helps pollen grains 
to germinate and pollen tubes to emerge rapidly. To pen-
etrate the stigmatic papilla, the pollen tubes grow through 
the stigmatic cuticle and then enter the outer layer of the 
stigmatic cell wall. At this stage, stigmatic cell wall modi-
fication is required, which is protein dependent involving 
EXO70A1, secreted by the stigmatic papilla that is required 
for the delivery of proteins for pollen tube growth through 
the stigmatic cuticle. Cell wall abundant ribosome proteins 
are identified on stigmatic papillae affecting the pollen tube 
growth and controlling self-incompatibility (Yang et al. 
2018b). Considering the case of Cosmos bipinnatus, the 
rejection or acceptance responses are immediately prevailed 
within 10 min after pollen arrival on the stigma (Howlett 
et al. 1973, 1975). The binding of pollen-wall antigens with 
the stigma surface was augmented by a proteinaceous pel-
licle formulating a site for pollen or stigma recognition reac-
tions (Mattson et al. 1974).

Gene action

In the Asteraceae (syn. Compositae) family, the reproducing 
ability of two individuals relies on the alleles they share at 
a multiallelic S-locus. Stephens et al. (1982) reported that 
a majority of the sporophytic self-incompatible systems are 
regulated by a single highly polymorphic S-locus with at 
least two tightly linked polymorphic genes (S and s) that 
inherit as a single unit, one out of these genes regulates pol-
len identity and the other controls pistil identity (Golz et al. 
2000; Lai et al. 2002; Lewis 1951). Mating between indi-
viduals only occur when both plants share S alleles distinct 
from their own unless the alleles show dominance in the 
pistil or pollen (Ferrer and Avila 2007; Nettancourt 1997). 
The pollen will dehydrate or germinate on the stigmatic 
surface or the pollen tube may not be able to pass through 
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the stigma if the recipient plant's diploid genotype and the 
parent plant's genotype that produces the pollen possessing 
the same S-allele (Brennan et al. 2002; Hiscock and Tabah 
2003). Numerous other genes are recognized to exist at the 
S-locus in addition to these genes which get expressed on the 
stigmatic surface during anthesis (Jeong et al. 2014; Takay-
ama and Isogai 2005).

Aster furcatus (23 populations) distributed across four 
geographical regions (Wisconsin, Illinois, Indiana and Mis-
souri) were examined for self-incompatibility by evaluating 
22 electrophoretic loci and observed deviation at triose phos-
phate isomerase (TPI-1) followed by aspartate aminotrans-
ferase (AAT-2) and aldolase (ALD-1) (Les et al. 1991). Two 
rare alleles with variability at S-locus i.e. TPI-1 indicated 
that maximum genetic variation at the polymorphic locus 
was due to differentiation among populations. In another 
species, Taraxacum koksaghyz differentially expressed 
genes (DEGs) were analysed and three candidate genes 
(LRX4, TUBB and XTH33) were reported (Wollenweber 
et al. 2021). Likewise, MDIS1 INTERACTING RECEPTOR 
LIKE KINASE 2 (MIK 2) was noticed as a crucial candi-
date gene for SSI in cichorium (Palumbo et al. 2023). After 
both compatible and incompatible pollinations, there was an 
expansion in pollen tube growth distinguished by an over-
all enrichment for biological processes including signaling 
and different response mechanisms uplifting transcriptional 
regulation.

External factors

It is generally acknowledged that external influences also 
have a significant impact on pollen germination as the pH 
of the stigma varies significantly between genotypes. This 
genotype-dependent component has been linked to pollen 
germination response which also affects the fertilization 
process and eventually the seed set. During pollen tube 
growth, ionic elements like boron and calcium are engaged 
in the metabolism and may accelerate or impede the process 
depending on the concentration (Caser 2017).

Flexibility in self‑incompatible reaction

There is an exclusive case among chrysanthemum cultivars 
which are mostly self-incompatible with a small proportion 
of self-compatibility. These cultivars project comprehen-
sive separation of self-incompatibility among their progeny 
and transform to become self-compatible in the succeeding 
generations. This condition is cultivar dependent and gets 
affected by environmental conditions (i.e. temperature) dur-
ing flowering. Chrysanthemum has the capability to show-
cast this phenomenon via pseudo self-compatibility and end 
of season pseudo self-compatibility.

Pseudo self‑compatibility (PSC)

Self-incompatibility is widely persistent in the plant king-
dom; even then, many flowering plant families have fre-
quently undergone the evolutionary transition from being 
self-incompatible to self-compatible (Dana and Ascher 
1985; Goodwillie 1999; Igic et al. 2004) and sometimes 
moderately self-incompatible (Stephenson et al. 2000). 
These species are referred to as pseudo-self-compatible 
or pseudo-self-fertile population and they are more preva-
lent in around 10% of the species examined in the family 
Asteraceae (Cheptou et al. 2002; Stout 1917). The term 
"partially self-incompatible" refers to species that show 
quantitative variation in the level of self-incompatibility 
ranging from being partially self-incompatible to self-
compatible (Ferrer and Avila 2007; Levin 1996). The 
self-incompatible system is temporarily or partially inac-
tive under pseudo-self-compatible (PSC) conditions but 
resurfaces in succeeding generations or during periods of 
lower environmental stress. Eschscholtzia californica and 
Abutilon darwinii, which were self-incompatible in Brazil 
behaved as pseudo-self-compatible in England and were 
the first species to record pseudo-self-compatibility (PSC) 
(Darwin 1876).

The occurrence of self-compatible individuals within 
self-incompatible populations is relatively frequent and 
has been observed in Asteraceae species such as Cartha-
mus flavescens (Imrie and Knowles 1971), Stephano-
meria exigua sub sp. coronaria (Brauner and Gottlieb 
1987), Rutidosis leptorrhynchoides (Young et al. 2000) 
and Senecio squalidus (Brennan et al. 2002). Although 
this phenomenon has occurred at a very low frequency 
in Asteraceae, still the pseudo-self-compatibility (PSC) 
was also noticed in garden chrysanthemums (Chrysan-
themum × morifolium Ramat.) by Ronald and Ascher 
(1975a). As per recent macro phylogenetic study in the 
family Asteraceae, pseudo-self-compatibility is not con-
sidered a standard condition and it could change back 
to both self-incompatibility (SI) and self-compatibility 
(SC) which could transform the garden chrysanthemums 
to greenhouse types (Ferrer and Avila 2007; Ronald and 
Ascher 1975c). Keeping this phenomenon in mind, mat-
ing of greenhouse (SI) × garden (PSC) cultivars yielded  F1 
hybrid in 1:1 ratio (PSC: SI) that demonstrated the pseudo-
self-compatible occurrence in chrysanthemums produc-
ing both SI and PSC progeny (Ronald and Ascher 1975a, 
b). Transitions from being self-incompatible to partially 
self-compatible require the breakdown of a genetic self-
incompatible (SI) system (Koseva et al. 2017). Pseudo-
selfing species generally have flowers that are reduced in 
size and floral parts similar to their outcrossing relatives, 
a feature referred as selfing syndrome (Sicard and Lenhard 



595Journal of Plant Research (2023) 136:587–612 

1 3

2011). In addition to a high percentage of self-seed, selfing 
species have fewer, smaller and less showy flowers, lower 
pollen: ovule ratios and smaller anther-stigma separation 
relative to outcrossing relatives. This sort of floral mor-
phology was comparatively reported in Tolpsis coronopi-
folia (Crawford et al. 2019; Koseva et al. 2017). Ortiz et al. 
(2006) observed in H. salzmanniana that self-compatible 
populations had fewer flowers per head, reduced flower 
head diameter and a shorter period of anthesis than self-
incompatible populations. Contrastingly, in a few species 
of Asteraceae, the self-incompatible plants have big-
ger heads than the congeneric self-compatible ones. In 
another relevant study carried out by Gibbs et al. (1975), 
out of five species of Senecio, three were self-incompatible 
namely S. joppensis, S. aetnensis and S. squalidus that 
had a larger head diameter than the self-compatible spe-
cies (S. viscosus and S. vulgaris). Such a pattern was also 
reported in Hypochaeris radicata by Parker (1975). Self-
ing syndrome was also reported in other self-incompati-
bility systems, as in Eriotheca (Oliveira et al. 1992) with 
late-acting self-incompatibility and Anagallis (Gibbs and 
Talavera 2001) possessing gametophytic self-incompatible 
system etc. These species transition to self-compatibility 
may be influenced by alterations in the pre-eminence rela-
tionships among S-alleles (Brennan et al. 2002; Reinartz 
and Les 1994), the availability of unlinked modifier loci 
(Avila et al. 2008), differential rejection of self-pollen 
in case of interspecific and allozygous populations, and 
a variety of abiotic factors including temperature, flower 
age and the occurrence of developing fruits (Lafuma and 
Maurice 2007; Levin 1996), etc. In Hypochaeris species, 
self-compatibility has arisen through loss of allelic diver-
sity at the S locus (S alleles with unequal frequencies) due 
to bottleneck events and genetic drift. In Aster furcatus, 
self-compatibility has evolved as a result of bottleneck-
induced genetical losses of S-alleles. Self-compatibility 
was correlated with mean number of ovules per inflores-
cence in Aster furcatus demonstrating that self-compati-
bility appeared to be under partial environmental influence 
(Reinartz and Les 1994).

Pseudo-self-compatibility is inherited quantitatively as 
a continuous distribution in inbred populations. Studies 
revealed that if inbreeding depression exceeded 0.5, then, 
there was no mutational enhanced self-compatibility rate 
(Charlesworth 1980; Lande and Schemske 1985). It was 
observed that high PSC levels were not highly heritable 
when realized heritability (RH) ranged from 0.05 to 10.19% 
in chrysanthemum (Anderson and Ascher 1996). Inbred off-
spring with greater PSC levels made up 43–50% of the self 
or crossings between low PSC × low PSC parents. High PSC 
levels stimulated non-additive gene activity, whereas low 
to mid PSC selection brought the PSC threshold with addi-
tive action of genes (Anderson and Ascher 1996). Continued 

inbreeding is thought to be the best strategy when homozy-
gosity at S loci is increased, resulting in the segregation of 
the different incompatibility classes in order to determine 
the functional relationship of loci to each other (Drewlow 
et al. 1973).

Factors like the degree of pollen limitation, the strength 
of the S-linked loci, background genetic load, linkage status 
of S-locus modifiers and mutations to the functional S-locus 
could bring changes elsewhere in the genome that can vary 
quantitatively owing to mutations at multiple, unlinked loci 
causing a change in the compatibility status of plants (Avila 
et al. 2008; Ferrer and Avila 2007; Hancock et al. 2003; 
Levin 1996; Porcher and Lande 2005). Mutations in two can-
didate genes leading to self-incompatibility breakdown were 
observed in Tolpsis coronopifolia (Koseva et al. 2017). Each 
gene had a coding sequence insertion or deletion mutation 
within the self-compatible species that produced a truncated 
protein. Homologs of each gene were implicated in pollen 
development, pollen germination and pollen tube growth in 
other species. The initial increase in self-compatibility under 
environmental conditions was strongly influenced by the 
extent of its heterozygous effect. If plants were heterozygous 
for an SC mutation, there was an incremental reduction in 
self-sterility and the plants could generate progeny at a much 
higher rate by selfing (Koseva et al. 2017). In the family 
Asteraceae, if the number of S alleles at the S locus becomes 
low and the mate availability is limited, then self-compatible 
individuals are selected to make the population strongly self-
fertile (Hiscock and Tabah 2003; Imrie and Knowles 1971). 
Pollen limitation is considered to be another condition favor-
ing the breakdown of self-incompatibility (Charlesworth and 
Charlesworth 1979). Loss of function due to mutations in 
genes that are essential for self-incompatibility is the most 
common genetic mechanism that could collapse self-incom-
patibility (Nasrallah 2017).

End of season pseudo self‑compatibility 
(ESC)

Sometimes, the self-incompatible reaction weakens towards 
the completion of their blooming season as seen in nicotiana 
(East and Park 1917), Beta vulgaris (Owen 1942), trifolium 
(Townsend 1965) and brassica (Johnson 1971). Additionally, 
the weaker state of plants and increased temperatures also 
progress the condition of PSC (Litzow and Ascher 1983). In 
natural populations, having both SI and PSC serves useful 
functions by encouraging outcrossing. SI preserves genetic 
diversity whereas PSC and ESC guards against the extinc-
tion of the original parental genotype. This phenomenon 
of end of season pseudo self-compatibility (ESC) does not 
persist in chrysanthemum genotypes. According to Ander-
son and Ascher (1996), exposure to heat can considerably 
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enhance the self-seed set by promoting pseudo self-incom-
patible condition in chrysanthemum (Ronald and Ascher 
1975a).

Late‑acting self‑incompatibility

A sizeable cohort of Asteraceae species are self-incompati-
ble despite the pollen tube that reaches to ovary and in most 
cases, penetrates into ovules before they get inhibited prior 
to fertilization. This phenomenon is called as late-acting 
self-incompatibility (LSI) (Gibbs 2014) or pistillate sorting 
(Sage et al. 1994) or ovarian incompatibility. Seavey and 
Bawa (1986) observed absence of fruit set following selfing 
despite successful growth of self-pollen tube towards the 
ovary. This condition operates through two different mecha-
nisms which are discussed as below.

Pre‑zygotic self‑incompatibility

In this incompatibility system, self-pollen tubes grow into 
the ovary but cannot penetrate into ovules (Beardsell et al. 
1993; Gibbs 2014) although in some cases, if self-pollen 
tubes penetrate ovules, the pollen tube growth arrests within 
the micropyle (Gibbs 2014). This causes very few germi-
nated pollen grains on stigmas and abnormal growth of pol-
len tubes before fertilization.

Post‑zygotic self‑incompatibility

The failure of syngamy occurs after discharge of male 
gametes into the embryo sac leading to post-zygotic self-
incompatibility causing embryo abortion or hybrid inviabil-
ity (Cope 1962; Gibbs 2014; Sparrow and Pearson 1948).

Both pre-and post-fertilization barriers are the main fac-
tors causing the failure of wide hybridization between Chry-
santhemum grandiflorum and Chrysanthemum nankingense 
(Sun et al. 2009a, b, 2010, 2011). Perhaps, the post-fertiliza-
tion barriers (embryo abortion) can be partially overcome by 
means of in vitro ovary and embryo culture in chrysanthe-
mum (Deng et al. 2010; Tang et al. 2009; Sun et al. 2011).

Pre-zygotic or late-acting self-incompatibility has suf-
fered a neglect that is disproportionate to its likely occur-
rence. It is usually assumed that all plants that fail to set 
seeds following selfing must be under the possession of self-
incompatibility. It is now known that if pistils are rejected 
after successful penetration into the ovules, then early act-
ing inbreeding depression must be the cause (Dorken and 
Husband 1999). Early acting inbreeding depression (EID) 
causes early rejection of self-fertilized ovules due to del-
eterious recessive alleles in the population as hypothesized 
by Bittencourt et al. (2003). Contrastingly, another proposal 
stated no-fusion when both male and female gametes carry 

the dominant allele (Cope 1962). However, the exact reason 
for delayed pistil abscission in autogamous pollinations of 
incompatible species still needs to be investigated (Hao et al. 
2012). Hence, further studies are necessary to provide new 
insights into this enigmatic breeding system.

Table 1 depicts the progressive work carried out by scien-
tists all over the globe in past concerning self- incompatibil-
ity and other pre-fertilization barriers in diverse floricultural 
families that allows us to open new horizons for unveiling 
the unexplored work needed to carry forward particularly in 
the family Asteraceae.

Methods to assess self‑incompatibility

The majority of cultivars belonging to Asteraceae family 
are self-incompatible, baring few that set the seed with low 
frequency when provided with favorable environmental con-
ditions. Therefore, a variety of approaches, including the 
pollination method, cytological and molecular techniques 
have been followed to evaluate self-compatibility in flower 
crops of Asteraceae.

Pollination method

This method involves the bagging of unopened inflores-
cences with butter paper bags 3 days before anthesis which 
ensures self-pollination. In some cases, artificial self-polli-
nation is performed with the pollen collected from the same 
plant (in case of pollen shy cultivars) and the bagged flowers 
are left for seed formation. Seed set usually occurs 2 months 
after pollination in chrysanthemum and the bagged inflores-
cences are generally harvested after 60 days. The amount 
of self-incompatibility reaction is governed by counting the 
number of seeds produced per capitulum. When more seeds 
are produced, it is due to self-compatibility while less seed 
production is a determinant of self-incompatibility. The 
major drawback of this method is that it requires long time to 
evaluate the self-incompatibility reaction (Wang et al. 2014). 
The number of seeds produced is also influenced by a vari-
ety of abiotic and biotic factors (viz., temperature, humid-
ity, the prevalence of pests and diseases and many others). 
Apart from that, frequency of pollinations also influences 
seeds in chrysanthemum (Chrysanthemum × morifolium). 
One report has suggested that repeated pollinations for 1–2 
times per week gave high seed set in chrysanthemum which 
was specific to the structure of the inflorescence (Miler and 
Kulus 2022). According to Drewlow et al. (1973), inbreed-
ing caused an increase in homozygosity and vigour loss by 
reducing the amount of heterozygous S loci while some-
times, inbred parents produced more self-seed than outcross 
seed (Zagorski et al. 1983).
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In another research, when autogamy between the self-
compatible (SC) species Tolpis coronopifolia and its self-
incompatible (SI) relative Tolpis santosii was performed, it 
was inferred that self-seed set obtained from recombinant 
plants within two  F2 populations gave self-compatibility 
(Lai et al. 2002). In parallel to this, Wang et al. (2014) 
observed seed set in 10 out of 24 chrysanthemum geno-
types (Chrysanthemum x morifolium) evaluated through 
selfing where seed set of these genotypes varied between 
0.03 and 56.50% and compatible indexes ranged between 
0.04 and 87.50 respectively. Highest seed set was noticed in 
the cultivar “Q10-33–1” (seed set (56.50%) and compatible 
index 87.50) with ten of its progenies showing a wide range 
of variation in seed set (0–37.23%) and compatible index 
(0–68.65) indicating that there was a comprehensive separa-
tion of self-incompatibility among progeny from the same 
self-pollinated self-compatible chrysanthemum cultivar. 
Self-pollination was observed to be successful in Silphium 
integrifolium, S. perfoliatum and their interspecific hybrids 
but the strength of self-incompatibility varied across geno-
types and populations (Reinert et al. 2020). Storage condi-
tions can also affect the pollen germination as mentioned by 
Miler and Wozny (2021) who reported an overall increase 
in in vitro pollen germinability and seed set efficiency by 
storing pollen at – 80 ℃ temperature prior to pollination.

Cytological method

This method involves the self-incompatibility reaction being 
judged by assessing the pollen germination on stigma, pollen 
tube growth and embryo development after selfing. Pollina-
tion is semi-compatible if only one pollen tube penetrates 
the surface; otherwise, it is compatible if many pollen tubes 
penetrate the surface and it is incompatible if no pollen tubes 
penetrate the style (Vijayakumar et al. 2018). In the case 
of compatible pollination, stigma penetration occurs within 
30 min after pollination (Wollenweber et al. 2021). Inhibi-
tion of pollen tube growth and improper pistil receptivity are 
the primary factors preventing chrysanthemums from set-
ting seeds. In the case of compatible pollination, the pollen 
tube enters the ovary through the style and completes double 
fertilization to develop an embryo whereas no embryo will 
be formed in an incompatible case. After self-pollination, 
the pollen tubes get arrested on the stigma surface and the 
callose rejection response is detected within 15 min of auto-
gamous pollination (Howlett et al. 1975).

Ovary development is directly related to seed set in chry-
santhemum, where ovary abortion has been noticed with 
the progression of time after self-pollination. A typical 
compatible ovary produces full ovules that gradually turn 
dark until the seed forms, whereas incompatible ovaries are 
smaller and white or lighter in color (Wang et al. 2018). 
Heart shaped embryos start to develop in the ovaries 12 days 

after selfing, while torpedo or cotyledon embryos begin to 
grow in the ovaries 18 days after selfing in compatible polli-
nations. A nucleus and nucleolus, as well as several common 
cell organelles such as golgi complex, mitochondria and vac-
uoles get developed in normal embryonic cells. Tetra nucle-
ate embryo sacs with one egg cell, one central cell and two 
synergids near to the micropylar end are seen in self-com-
patible reaction; on the other hand, degraded megaspores are 
formed in cases of embryo abortion. At the earliest phases 
of embryo abortion, the cytoplasmic vacuolation, condensed 
cytoplasm and degenerating cell organelles are seen in the 
abortive embryonic cells. Incompatible ovaries experience 
thickening of the integument and degeneration of the embryo 
sac with the progression of time following self-pollination 
in Chrysanthemum × morifolium (Wang et al. 2018) and 
Paeonia ludlowii (Chen et al. 2022). Bivalent formations 
are highly regular at metaphase-I in the pollen mother cells 
along with sporadic distribution of univalent and quadriva-
lents. In subsequent stages of microsporogenesis of self-
incompatible cultivars, significant abnormalities, such as 
lagging chromosomes and chromosome bridges at telophase-
I, II and unequal sizes and aberrant number of microspores 
at tetrad stage (Roxas et al. 1995) are noticed. Wollenweber 
et al. (2021) conducted self and cross-pollinations between 
two compatible Russian dandelion (Taracaxum koksaghyz) 
varieties (TkMS2 and TkMS3) and found pollen swelling at 
the pollen tube apex in autogamous pollinations which is a 
classical character governed by sporophytic self-incompati-
bility. On the contrary, cross-pollinations were characterized 
by pollen germination and penetration of pollen tubes into 
stigmas. Figure 3 shows fluorescent microscopic examina-
tion of pollen grains on stigma of chrysanthemum, a promi-
nent Asteraceae member.

Molecular method

In recent times, molecular studies have enabled transfor-
mation of self-incompatibility (SI) to self-compatibility 
(SC) by using marker assisted selection and related tech-
niques established on RNA interference, transcriptome 
analysis, gene silencing (CRISPR-Cas9) and recombinant 
technologies related to self-incompatibility factors. To 
date, coherent findings recognizing the SI linked molecu-
lar factors is evident in various families viz., Brassicaceae, 
Plantaginaceae, Papaveraceae, Rubiaceae, Rosaceae and 
Solanaceae, yet, a plethora of studies are underway in 
additional species, particularly in chrysanthemum and 
many more from the Asteraceae family (Sanz et al. 2020). 
Even though, in chrysanthemum, some SI-related genes 
were identified via RNA-sequencing (Wang et al. 2018), 
still their regulation remain unexplored. Nakano et al. 
(2019) isolated a natural self-compatible mutant of Chry-
santhemum seticuspe named Gojo-0 which was a diploid 
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and self-compatible, pure line developed through repeated 
selfing and selection. Due to simplicity and homogeneity 
of its genome, this strain is ideal for front-line breeding 
including genetic analyses and molecular biological analy-
sis like whole genome sequencing. During the year 2021, 
Nakano et al. presented a reference genome sequence of 
3.05 Gb chromosome that covered 97% of the genome 
which was amenable for positional cloning. They also 
reported recent segmental duplication and retrotranspo-
son expansion (SbdRT) accounting 72% in C. seticuspe.

Achieving self‑compatibility

There are a few techniques by which sporophytic self-
incompatibility can be temporarily overcome such as dif-
ferential pollination techniques (early bud pollination, 
mixed or mentor pollination and delayed pollination), high 
temperature treatment, exposure to ionizing radiations 
(gamma rays) and chemical sprays (growth hormones, 
sodium chloridel, amino acids and carbon dioxide) (Kuc-
era et al. 2006). Other mechanical methods include simply 
removing stigma and washing the surface of stigma with 
organic solvents (Ockendon 1978) to remove or soften the 
waxy substances covering the papillae (Roggen and Van 
1973). Figure 4 classifies different techniques to break 
down self-incompatibility in ornamentals of Asteraceae.

Physical treatments

Gamma irradiation

Artificial self-pollination using the pollen, irradiated 
with gamma rays, can improve the self-compatibility in 
Asteraceae species. Gamma rays can be widely applied 
to induce haploidy as such radiations offer uncomplicated 
application, strong penetration, repeatability, high muta-
tion frequency and minimal disposal issues (Chahal and 
Gosal 2002; Kundu et al. 2017). Although pollen irra-
diation is proven to be successful for inducing haploidy, 
other parameters, including genotype, environmental 
conditions, irradiation dose, size and shape of the pollen 
grain and pollen wall thickness are found to have a signifi-
cant impact on the embryo production (Giles and Prakash 
1987). However, so far there is no reporting on usage of 
gamma irradiation in Asteraceae, but this technique has 
been frequently used in fruit crops to induce self-com-
patibility such as the case of x-ray irradiation of pollen 
employed in a sweet cherry breeding experiment at the 
John Innes Center in the year 1940. These studies resulted 
in the creation of numerous self-compatible cultivars with 
SFB4 allele mutations (Sonneveld et al. 2005; Ushijima 
et al. 2004). The first diploid pollen part mutations (PPM) 
were also detected by employing gamma-irradiation to the 
pollen from the self-incompatible Japanese pear “Kosui,” 
(Sawamura et al. 2013).

Fig. 3  Visualization of pollen grains on stigma of chrysanthemum 
at 48 h after self-pollination under a Compound microscope b Fluo-
rescent microscope indicating numbers of pollen grains germinating 

per stigma. Abbreviations: Pg: pollen grain, St: stigma and Sty: style. 
Scale bar is 100 μm
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High temperature treatment

At high temperatures, specific temperature sensitive T-genes 
interact with self-incompatibility expressing S-gene and 
its alleles to induce high temperature self-compatibility 
(Townsend 1971). As per the reports from Ronald (1974), 
high temperature (16 and 21 ℃ in alternating regime) 
induces partial compatibility in self-incompatible clones 
of chrysanthemum. Some garden chrysanthemum clones 
respond to a heat treatment of 35–40 ℃ for 24–48 h by pro-
ducing selfed seeds as high temperature treatments affect the 
stylar part of self-incompatibility (Drewlow 1971; Townsend 
1966). In addition to it, a stylar protein CLE45 (belonging to 
the CLE family) could protect pollen tube growth in high-
temperature conditions (Endo et al. 2013). Temperature 
induced self-compatibility is a viable breeding tool for pro-
ducing compatible clones in inbred progenies but prolonged 
periods of exposure to high temperatures (21 ℃) may affect 
both floral and inflorescence development causing compres-
sion in the development of floret, thus, lowering the seed 

yield (Ling et al. 1966). The critical temperatures required 
to overcome self-incompatibility are genotype-specific and 
need to be investigated further (Ronald and Ascher 1975a).

Surgical method

In sporophytic systems, the self-incompatibility reaction is 
expressed at the stigmatic surface in one particular investiga-
tion where decapitation or maceration of the stigma removed 
self-incompatibility (Sears 1937). This technique involved 
penetration of steel brush on stigmatic surface (Roggen and 
Van 1973) and pre-pollination electric spark treatments 
(Roggen and Van 1973) to induce self-compatibility. On the 
other hand, work carried out by Gerstel and Riner (1950) 
instigated that stigma amputation had no effect in overcom-
ing self-incompatibility in chrysanthemum as the failures 
with stigmatic amputation and stylar shortening occurred 
due to difficulties in lodging pollen directly on the nutri-
tive transmitting tissue of the style (Ascher 1976). Perhaps, 
treatments to pollen or styles appeared to be unsuccessful in 

Fig. 4  The above illustration provides an insight into different tech-
niques to overcome pre-fertilization barriers, precisely self-incompat-
ibility in Asteraceae flower crops. Abbreviations: NaCl-Sodium Chlo-

ride;  CO2-Carbon dioxide; Zn/Cu-Zinc/Copper; IAA-Indole acetic 
acid;  GA3-Gibberellic Acid
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chrysanthemum. The zest of these studies explains the need 
to bring modifications in these methods so as to generate 
significant results in hampering self-incompatibility.

Pollination time

Researchers have potentially employed a variety of strategies 
to overcome the pre-and post-fertilization barriers and boost 
seed production or breeding efficiency. Among these, unique 
pollination strategies including early bud pollination, men-
tor pollination and delayed bud pollinations are extensively 
practiced.

Early bud pollination

Bud pollination refers to pollination that occurs when the 
flower is in the bud stage. Generally, it happens in flowers 
where the stigma and pollen grains develop or mature even 
before the bud opens. In this case, flower buds are pollinated 
artificially using fresh pollen at two days prior to anthesis. 
At this stage, chemicals or factors responsible for incompat-
ibility will not be synthesized on stigmas leading to normal 
growth of pollen tubes resulting in an effective fertilization 
(Cabin et al. 1996).

Mentor or mixed pollination

This method involves immersion of fresh pollen from the 
self-incompatible cultivar in ethanol (70%v/v) for 10 min 
before being dried in a vacuum evaporator. The fresh pollen 
of the male parent is mixed with the ethanol treated pol-
len (also known as mentor pollen) and this pollen mixture 
is used for artificial pollination (Sun et al. 2011). When a 
stigma is pollinated with pollen mix, proteins released from 
the compatible pollen facades the inhibition reaction at the 
stigmatic surface, thus, making the cross compatible. The 
mentor pollen provides chemical substances that help incon-
gruent pollen to adhere and germinate (Richards 1997; Sun 
et al. 2011). The recognition compounds released by pollen 
grains are what cause the mentor pollen to be stimulating, 
and the elements contained in the pollen surface's inner 
layer are connected to pollen germination and pollen tube 
development on the surface of this stigma (Knox et al. 1972; 
Pandey 1977). Thus, it may be possible to use mentor pollen 
to overcome pre-fertilization hurdles for the incompatible 
cross between the cultivated and the wild species of chry-
santhemum. Ronald and Ascher (1975b) noticed an improve-
ment in cross compatibility of chrysanthemum clones by 
involving self-compatible male parents in the crosses. Self-
incompatibility was partially overcome with pollen mixes 
of compatible and fresh incompatible, self-pollen (Howlett 
1975). Chase or cross pollinations were obtained by supply-
ing a mixture of selfed or cross pollen loads on the stigmas 

with 2–33% viable selfed seeds in Ipomopsis aggregata 
(Waser and Price 1991). A significant amount of seed yield 
was achieved in selfed progenies of sunflower by supplying 
a combination of self and foreign pollen in crosses involv-
ing self-incompatible wild species. i.e. Helianthus annuus 
and Helianthus petiolaris (Desrochers and Rieseberg 1998). 
Autogamously derived progeny was lower in the genus Pilo-
sella, varying between 6.2% in diploid Pilosella lactucella 
and 13% in tetraploid Pilosella officinarum (Krahulcova and 
Krahulec 1999). This technique was successfully adopted 
in a number of ornamental taxa including populus (Knox 
et al. 1972), cosmos (Howlett et al. 1975), petunia (Sastri 
and Shivanna 1976) and Cyrtanthus breviflorus (Vaughton 
et al. 2010).

Delayed pollination

This method allows for artificial pollination on the eighth 
day after emasculation using fresh pollen from the male 
parent. Withholding the pollination for few days following 
anthesis degrades the activity of pollen-inhibiting chemicals 
secreted by stigmas resulting in an effective pollination (Jing 
2000). As the selectivity of pollen recognizing and inhibiting 
chemicals on the stigmatic surface is partially or completely 
degraded in delayed pollination, this method significantly 
overcomes the reproductive barriers and increases the pollen 
grain germination and seed set (Sun et al. 2011).

Chemical treatments

Coupling with different chemical reagents and growth hor-
mones allow for the possibility to break self-incompatibility 
in a variety of members of the Asteraceae family. The role 
of enlisted chemicals is defined in this section.

NaCl treatment

This treatment is easy to operate as well as cost effective 
and helps to develop self-compatible lines for hybrid breed-
ing (Yang et al. 2018b). In Senecio squalidus, a member of 
Asteraceae forced inbreeding using 5% salt treatment helped 
in overcoming self-incompatibility by producing pseudo-
self-compatible individuals with reduced self-incompatibil-
ity along with weakened stigmatic S-specific discrimination 
(Hiscock 2000).

Gibberellic acid  (GA3) treatment

GA3 treatment prior to pollination improves the physio-
logical environment on stigma for pollen germination and 
pollen tube growth on the stigmatic surface leading to high 
seed set (Chen and Zhang 2004; Hu 2005). It has been 
observed that treating emasculated flower stigmas with 
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gibberellic acid @ 50 mg  L−1 at anthesis would induce 
self-fertility in chrysanthemum. Post 1 h, artificial pol-
lination is carried out using fresh pollen from the male 
parent which will uplift physiological conditions for bet-
ter pollen germination and pollen tube growth on stigmas 
(Sun et al. 2011).

Amino acid sprays

The fact that proteins perform a crucial role in self-incom-
patibility has led to the use of agents that can disturb pro-
tein synthesis, structure, stability and function to promote 
self-compatibility. Researchers have observed an increase in 
amino acids i.e., r-amino butyric acid, alanine and a decrease 
in glutamic acid following compatible pollination in chry-
santhemum. A similar tendency of elevated levels of valine, 
leucine and asparagine (Nasrallah and Wallace 1967) was 
observed following compatible reactions by Anderson and 
Ascher (1996) (where S-allele specific proteins might differ 
by amino acid substitution. The presence or synthesis of 
serine or related compounds in pistils increases the activities 
of pollen tube growth and its penetration through the style by 
inhibiting the mechanism of self-incompatibility. A higher 
seed set was reported by spraying with amino acids viz., 
serine, arginine, lysine in chrysanthemum but the effect was 
not higher than cross combination (Sachiko 1985).

Polyploidy (colchicine doubling)

In some cases, seeds are difficult to obtain due to a mismatch 
in the ploidy levels of parents. This type of ploidy barrier 
usually occurs due to abnormal endosperm formation and 
hampered development of seeds. This sort of pre-fertiliza-
tion barrier can be overcome by manipulating the ploidy 
levels of one or both parents to match before the hybridiza-
tion (Bharadwaj 2015). Colchicine doubling may increase 
self-compatibility in hexaploid chrysanthemum species, a 
member of Asteraceae family, involving crosses with single 
allele differences. It causes production of homozygous S 
alleles as a result of the centromere and S-locus crossing 
over during quadrivalent association and double reduction. 
Dowrick (1953) reported that quadrivalent associations exist 
in chrysanthemum species. In garden chrysanthemums, dou-
ble reduction might reduce the diversity of S alleles and 
increase its compatibility with more of its siblings (Sibs). In 
order to achieve the success in cross between Dendranthema 
indicum var. Aromaticum (diploid, 2n = 2x = 18) and Den-
dranthema × grandiflora (polyploid, 2n = 6x = 54), chromo-
some doubling has been employed through colchicine in D. 
indicum var. Aromaticum, to maximize the chances of suc-
cess in the cross between both the parents (He et al. 2016).

Use of polyamines

The most abundantly found polyamines in plants are putres-
cine (Put), spermine (Spm) and spermidine (Spd). They 
play an important role in fertilization by acting either as 
signaling molecules or by performing structural roles after 
cross-linking to proteins and cell wall components with 
the help of the transglutaminase (TGase) enzyme (Aloisi 
et al. 2016). An increase in polyamine content appears to 
be crucial during emergence and elongation of pollen tubes 
(Antognoni and Bagni 2008). Polyamines act as a substrate 
for polyamine oxidases and regulate cell wall deposition and 
wall stiffening during fertilization (Aloisi et al. 2015). When 
stigmas are sprayed with naturally occurring polyamines like 
spermine, pollen growth and extension of the pollen tubes is 
promoted in many floriculture crops (Caser 2017).

Use of phosphatidic acid (PA)

Stigmatic lipids are vital for pollen development and pollen 
tube growth on the stigma. After entering inside the pistil, 
other molecules such as receptor kinases and their ligands, 
lipid-transfer proteins (LTPs) and arabinogalactan glyco-
proteins significantly influences the growth of the pollen 
tube (Mayfield et al. 2001). Phosphatidic acid is a minor 
phospholipid constituting 1% of total glycerophospholip-
ids whose level changes in response to stimuli (Vu et al. 
2012). During SI response, Phospholipase Da1 (PLD a1) 
may be targeted for down regulation (Scandola and Samuel 
2019). Hence, exogenous supplementation of phosphatidic 
acid (PA) helps to uplift PLDa1 levels to rescue pollination 
defects and halt the SI response, thereby, favoring pollen 
adhesion and subsequent pollen tube growth.

In vitro techniques

Tissue culture can be successfully used to overcome pre 
and post fertilization barriers by carrying out in vitro polli-
nation (Kanta 1962). Placental pollination by culturing the 
ovules in optimum nutrient medium helps to promote both 
pollen development as well as the fertilization of ovules. 
This procedure yields better results as the ovules are cul-
tured intact in placental tissue. Germination media con-
taining agar, boric acid  (H3BO3), putrescine and sucrose at 
pH 5.0 is favorable to use for in vitro pollen germination 
of rose. This method involves direct loading of the media 
in petri dishes and sprinkling the fresh pollen straight onto 
sterile media. Later, optimal conditions for in vitro pollen 
germination and pollen tube elongation i.e., temperature @ 
23–30 ℃ and relative humidity @ 60–65% are maintained. 
The average percentage of pollen germination in hybrid 
tea roses is positively associated with the average propor-
tion of normal pollen (Caser 2017). In vitro experiments 
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have shown that SRNase governing self-incompatibility is 
inhibited by supplementing with mixtures of copper and 
divalent zinc ions in nutrient media (Kim et al. 2001).

Molecular methods

Self-compatibility has been introduced in ornamental 
crops by utilizing both traditional breeding and molecular 
techniques that directly influencing S-gene expression. 
Different molecular techniques are used to engineer break-
down of self-incompatibility that include CRISPR-Cas9 
technology, gene silencing, mutations in non-S-locus fac-
tors, pollen part mutation etc. CRISPR-Cas9 technology 
can be efficiently utilized to generate self-compatible lines 
by knocking out SRNase genes. Using self-compatible 
lines could help in avoiding the linkage drag of unwanted 
traits linked with S-locus inhibitor (Rodriguez et al. 2019; 
Ye et al. 2018). Gene silencing through RNAi is a cellular 
mechanism in which double-stranded RNA (dsRNA) leads 
to the cleavage of complementary endogenous mRNA 
leading to gene silencing (Geley and Muller 2004). A 
breakdown in self-incompatibility would result from muta-
tions in genes being unrelated to the S locus that encode 
downstream components of the mechanism or affects the 
self-recognition responses which are broadly called modi-
fier genes (Nasrallah 2017). In perennial grasses, muta-
tions in the Z and S loci along with other loci (e.g., T and 
SF loci), primarily influence pollen (Do Canto et al. 2018).

Sporophytic self-incompatibility breakdown can also 
occur when two different pollen S-haplotypes expresses 
in the same pollen grain that results in the down regu-
lation of multiple genes leading to loss of pollen gene 
function (Ascher 1976; Chantha et al. 2013). The loss of 
pistils’ ability to reject their own pollen can be achieved 
by adding an additional S factor or SLF (Qiao et al. 2004; 
Sijacic et al. 2004). In Petunia species, 16–20 SLF genes 
were identified and grouped into 18 types. Each of these 
SLF genes could repress a subset of S-RNases (Kubo 
et al. 2015). Depending on the mechanism governing self-
incompatibility, pollen part mutations are broadly classi-
fied into two types. In the first type, the segmental dupli-
cation of a chromosome or the competition between two 
unlike pollen S factors (e.g., SLF or SFB) occurs within 
an individual pollen grain during polyploidization leading 
to the breakdown of pollen S function while in the second 
type, the insertion of a transposon into an S-related gene 
that encodes an F-box protein or a genetic deletion leads 
to a loss of pollen S function (Mase et al. 2014). Simi-
larly, the duplication of pollen S (S-locus F-box) also led 
to breakdown of SI in Petunia axillaris and antirrhinum 
(Golz et al. 2001; Tsukamoto et al. 2005).

Self‑incompatibility: a boon as well

In spite of acting as a pre-fertilization barrier, self-incom-
patibility plays a dichotomous role serving both positive 
and negative purpose in the case of Asteraceae crops. Self-
incompatibility offers an alternative to tedious hand emas-
culation and subsequent hand pollination in the production 
of ornamentals because many of these species are non-
domesticated where natural self-incompatibility systems are 
fully functional as reported in dahlia (Munoz et al 2015) and 
chrysanthemum (Wang et al. 2018). It also promotes out-
crossing which increases heterozygosity and variability that 
creates new gene recombination resulting in the evolution 
of new crops. Self-incompatible lines can be directly used 
for forward and reverse crossings as well as to create double 
and three-way hybrids. A key domestication trait selected by 
early farmers and modern plant breeders in many crops is the 
ability to self-pollinate that allows for unmasking of reces-
sive traits and enforcement of favorable gene interactions, 
for example, silphium, a genus selected for domestication in 
Europe where degree of self-pollination is genotype depend-
ent allowing it to be a target for selection (DeHaan et al. 
2016; Reinert et al. 2020). Inbreeding in these species facili-
tate fixation of domestication trait genes in the germplasm 
pool, enhancement of the efficiency of selection in breeding 
and production of uniform cultivars/inbred lines that can be 
incorporated into functionally diverse landscapes. The flex-
ibility of reproductive biology to allow for maximal use of 
genetic pools, efficient selection and curation of the genetic 
diversity, will enhance the probability to add biodiversity 
and restore ecosystem services to the landscape. However, 
regardless of the breeding methods used, it is critical to 
select a strong self-incompatible reaction without pseudo 
self-compatibility (PSC) in seed production to continue the 
selection for self-incompatibility throughout the develop-
ment of the cultivar (Ascher 1976).

Conclusion

The concept of self-incompatibility (SI) has profound impli-
cations in optimizing plant breeding methods for the under-
standing of mating systems in Asteraceae, an underutilized 
family of plants with great potential for additional domes-
ticated species. This mechanism limits the seed setting in 
species causing a redundancy in further research on inbred 
lines. Therefore, it is peremptory to explore the mechanism 
of SI and screen self-compatible (SC) mutants for effective 
breeding. As seed setting and seed yield are the primary 
goals in any crop cultivation, it is crucial to gather advance 
genetic knowledge on SI traits. There are numerous meth-
ods involved where compatibility of selfed plants could be 
assessed for further examinations like pollen germination, 
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pollen tube growth, pollen viability and embryo develop-
ment by employing numerous techniques such as physical, 
chemical, pollination time and tissue culture. In addition, 
studying the cell-to-cell interactions underlying pollen-pistil 
recognition is of potential importance. Even though efforts 
to elucidate the molecular features of SI were initiated only 
during the past thirty years, the progress is steady and prom-
ising. Advances in omics and genome editing technologies 
are increasing the pace of identification of new SI factors. 
Besides, analyzing the role of individual genes is increas-
ingly adopting a more quantitative approach with respect to 
environmental influences, phenotypic plasticity, and epige-
netics. Full molecular dissection of known SI systems may 
provide additional gene targets for creating SC lines as seen 
in canola (Glyoxylase I) and apricot (ParMDO). Nonethe-
less, our current knowledge of SI environment interactions 
at the molecular level is very sparse and it remains to be 
explored. Linking molecular approaches (Genome Wide 
Association Studies-GWAS, transcriptomic analysis) with 
phenotypic traits and applying genetic manipulations (gene 
silencing, CRISPR-Cas9) to break effectiveness of SI which 
otherwise could hinder seed setting rate, require further 
studies. Nevertheless, at the same time, this floral trait is 
a useful breeding strategy in hybridization to alleviate the 
tedious process of hand emasculation and pollination in the 
 F1 hybrid seed production. This mechanism also increases 
heterozygosity and variability that result in the evolution of 
new crops. Although, a lot of work related to self-incompat-
ibility is carried out in diverse species of Asteraceae, still, 
many loopholes need to be fixed to assess and study this 
mechanism in commercially promising ornamental crops.
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