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Abstract
Species of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid 
between B. monoica and B. papyrifera (= B. × kazinoki) known as kōzo and daknamu is still the major source of raw materi-
als for making traditional paper washi and hanji, respectively. Despite their cultural and practical significance, however, the 
origin and taxonomy of kōzo and daknamu remain controversial. Additionally, the long-held generic concept of Broussonetia 
s.l., which included Sect. Allaeanthus and Sect. Broussonetia, was challenged as phylogenetic analyses showed Malaisia is 
sister to the latter section. To re-examine the taxonomic proposition that recognizes Allaeanthus, Broussonetia, and Malaisia 
(i.e., Broussonetia alliance), plastome and nuclear ribosomal DNA (nrDNA) sequences of six species of the alliance were 
assembled. Characterized by the canonical quadripartite structure, genome alignments and contents of the six plastomes 
(160,121–162,594 bp) are highly conserved, except for the pseudogenization and/or loss of the rpl22 gene. Relationships 
of the Broussonetia alliance are identical between plastome and nrDNA trees, supporting the maintenance of Malaisia and 
the resurrection of Allaeanthus. The phylogenomic relationships also indicate that the monoecy in B. monoica is a derived 
state, possibly resulting from hybridization between the dioecious B. kaempferi (♀) and B. papyrifera (♂). Based on the 
hypervariable ndhF-rpl32 intergenic spacer selected by sliding window analysis, phylogeographic analysis indicates that B. 
monoica is the sole maternal parent of B. × kazinoki and that daknamu carries multiple haplotypes, while only one haplotype 
was detected in kōzo. Because hybridizations between B. monoica and B. papyrifera are unidirectional and have occurred 
rarely in nature, our data suggest that daknamu might have originated via deliberate hybrid breeding selected for making hanji 
in Korea. On the contrary, kōzo appears to have a single origin and the possibility of a Korean origin cannot be ruled out.

Keywords Asymmetrical hybridization · daknamu · Homoploid · kōzo · Phylogeography · Traditional papermaking

Introduction

Paper is one of the greatest inventions of all time (Hunter 
1978). Amongst a variety of raw materials used for making 
paper, the moraceous tree species paper mulberry (Brous-
sonetia papyrifera) was essential in the development of the 
technology in ancient China (Barker 2002). Although the 
importance of B. papyrifera in the modern paper industry 
has decreased, hybrid paper mulberry trees known as kōzo 
and daknamu remain essential in the production of washi 
and hanji, traditional paper products from Japan and Korea, 
respectively (Mizumura et al. 2017; Won 2019). Despite 
the cultural and practical importance of washi and hanji, 
however, relationships between kōzo and daknamu and their 
origin(s) have been puzzling (Ohba and Akiyama 2014; Yun 
and Kim 2009). To settle controversies surrounding kōzo 
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and daknamu, the taxonomy of Broussonetia first needs to 
be clarified. However, Corner (1962)’s long-held generic 
concept of Broussonetia (i.e., Broussonetia s.l.) that com-
prised seven species in two sections (i.e., Sect. Allaeanthus 
and Sect. Broussonetia) was recently challenged (Chung 
et al. 2017). This article addresses these issues using phy-
logenomic and phylogeographic approaches.

Corner (1962)’s Broussonetia L’Hér. ex Vent. sect. 
Allaeanthus (Thwaites) Corner included four species dis-
tributed in Madagascar [B. greveana (Baillon) C.C.Berg], 
Sri Lanka [B. zeylanica (Thwaites) Corner], Indochina [B. 
kurzii (Hook.f.) Corner; Fig. 1a, b], and the Philippines [B. 
luzonica (Blanco) Bureau; Fig. 1c, d]. All four species have 
economic and cultural importance, with the tough-fibered 
B. zeylanica historically used for papermaking in Sri Lanka 
(Thwaites 1854), B. luzonica and B. kurzii used as culinary 
ingredients (LaFrankie 2010; Tangkanakul et al. 2006), 
and B. greveana sought after for its valuable wood (Louppe 
2008). Broussonetia sect. Broussonetia comprised three spe-
cies, B. kaempferi Siebold (Fig. 1 h, i), B. monoica Hance 
(Fig. 1j), and B. papyrifera (L.) L’Hér. ex Vent. (Fig. 1k–m) 
distributed in East Asia and northern Indochina (Chung 
et al. 2017). All three species contain long fibers suitable 
for papermaking (Chûjô 1950; Mizumura et al. 2017). In 
addition to papermaking, B. papyrifera is also the prime 
material for making bark cloth by the Austronesian-speaking 
peoples in the Pacific (Chang et al. 2015; Penailillo et al. 
2016) and known for its medicinal and nutritional properties 
and fast-growing habit (Peng and Shen 2018). Consequently, 
this fibrous tree has been widely translocated since prehis-
torical times (Chang et al. 2015) and become an invasive tree 
species worldwide (Chung et al. 2017).

Despite being a small genus, the extensive intraspecific 
morphological variation (Fig. 2), lack of type designation 
(Akiyama et al. 2013; Chung et al. 2017), and long history 
of cultivation, selection and hybrid breeding (Peng and Shen 
2018; Peng et al. 2014) has led to much confusion and con-
troversy in the taxonomy of the multi-purpose Broussonetia 
s.l.. The rationale used by Corner (1962) for reducing Allae-
anthus Thwaites to a section of Broussonetia was: “There 

are no major differences between these sections, which are 
not generically distinct.” Although Sections Allaeanthus and 
Broussonetia appear to be similar in their capitate, globose 
pistillate inflorescences and racemose to spicate staminate 
inflorescences (Corner 1962), the former is a tropical group, 
while the latter is mainly distributed in temperate to subtrop-
ical regions (Chung et al. 2017). Morphologically, reproduc-
tive organs of the two sections are also different. The slender 
catkins characterized by Sect. Allaeanthus (Fig. 1b, d) can 
be distinguished from the cylindric (Fig. 1 h, m) or globose 
(Fig. 1j) staminate inflorescences of Sect. Broussonetia. 
Styles of Sect. Allaeanthus are white (Fig. 1a), while those 
in Sect. Broussonetia are pinkish to purple when mature 
(Fig. 1h, j, k). Corner (1962) also noted that drupes of Sect. 
Broussonetia are stipitate within the sessile perianth, while 
drupes of Sect. Allaeanthus are sessile. The two sections 
can also be distinguished by the fruit color, with green to 
yellowish in Sect. Allaeanthus (Fig. 1c) and orange-red in 
Sect. Broussonetia (Fig. 1 m).

Although Corner (1962)’s circumscription of Brous-
sonetia has been widely followed (e.g., Berg et al. 2006; 
Chang et al. 1998; LaFrankie 2010; Rohwer 1993; Wun-
derlin 1997; Yun and Kim 2009; Zhou and Gilbert 2003), 
whether the genus should be placed in Tribe Artocarpeae 
(Corner 1962), Tribe Broussonetieae (Chang et al. 1998), or 
Tribe Moreae (Berg et al. 2006; Rohwer 1993) has been dis-
puted. Based on the plastid ndhF and nuclear ribosomal 26 S 
subunit sequences, Clement and Weiblen (2009) showed that 
molecular data did not support previous morphology-based 
classifications of Moraceae. In their revised tribal classifica-
tion, Broussonetia was placed in Tribe Dorstenieae (Clement 
and Weiblen 2009). Within Tribe Dorstenieae, molecular 
data also showed that B. papyrifera is sister to the liana-
ceous Trophis scandens (Lour.) Hook. & Arn. [Trophis sect. 
Malaisia (Blanco) C.C.Berg], while other sampled species 
of Trophis form a clade sister to Morus L. (Clement and 
Weiblen 2009). To rectify the polyphyletic Trophis, Clem-
ent and Weiblen (2009) reinstated the generic status of 
Malaisia Blanco [i.e., Malaisia scandens (Lour.) Planch.; 
Fig. 1e–g]. Both the tribal classification of Broussonetia in 
Dorstenieae and its sister group relationship with Malaisia 
are also consistent with recent studies using Hyb-Seq data 
(Gardner et al. 2021; Zerega and Gardner 2019). Meanwhile, 
based on a nearly complete taxon sampling, Chung et al. 
(2017) further showed that, while both Sect. Allaeanthus 
and Sect. Broussonetia are monophyletic, Broussonetia s.l. 
is paraphyletic, with Sect. Broussonetia sister to M. scan-
dens before the former joining Sect. Allaeanthus to form a 
monophyletic Broussonetia s.l.. To rectify the paraphyletic 
Broussonetia s.l., Chung et al. (2017) reinstated Allaeanthus 
to maintain the generic status of Malaisia, avoiding nomen-
clatural changes that would have also generated an expanded 
Broussonetia without obvious diagnostic characters. The 

Fig. 1  Morphology of Allaeanthus, Malaisia, and Broussonetia: (a) 
A. kurzii, pistillate inflorescences, (b) A. kurzii, staminate inflores-
cences, (c) A. luzonicus, pistillate inflorescences, (d) A. luzonicus, 
staminate inflorescences, (e) M. scandens, pistillate inflorescences, 
(f) M. scandens, staminate inflorescences, (g) M. scandens, syncarps, 
(h) B. kaempferi, pistillate inflorescences, (i) B. kaempferi, stami-
nate inflorescences, (j) B. monoica, pistillate (left two) and staminate 
(right two) inflorescences, (k) B. papyrifera, pistillate inflorescences, 
(l) B. papyrifera, staminate inflorescence, (m) B. papyrifera, syn-
carps, (n) kōzo (B. × kazinoki) plantation in Shiroishi, Miyagi, Japan. 
a, b: courtesy of Preecha Karaket; c, i: courtesy of Danilo N. Tan-
dang; d: photo by Forest & Kim Starr/CC BY 3.0 US; e, f: courtesy 
of Pi-Fong Lu; j, k, l, m, n: photos by K.-F. Chung; i: Alan Kwok/
Ada Tai/CC BY-NC 4.0
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three genera can be identified by the following key (Berg 
et al. 2006; Corner 1962):

1. Syncarps globose, thickly set with slender stalked 
bracts of various shapes more or less covering the drupes; 
seeds 2–3 mm long; endocarps crustaceous to ligneous; 
cotyledons equal, conduplicate to plane..........................2
1. Syncarps with few strongly projecting drupes each 
invested by the utricular perianth, the bracts short; seeds 
6–7 mm long; endocarps membranous; cotyledons very 
unequal, the large one thickly fleshy and folded..............
...........................................................................Malaisia
2. Styles white; exocarps green to yellowish, sessile; 
seeds compressed, smooth, ligneous, the keel not double
.....................................................................Allaeanthus
2. Style pinkish to purple; exocarps orange-red, stipitate 
within the sessile perianth; seeds slightly compressed, 
papillate-asperate, crustaceous, the keel double at the base 
....................................................................Broussonetia

Although Malaisia has never been synonymized under 
Broussonetia, Corner (1962) placed the two genera in the 
same couplet of the taxonomic key to the Asian genera of 

Artocarpeae, implicitly suggesting their morphological simi-
larity. Nevertheless, the female florets of M. scandens form 
contracted capitate to short-spicate inflorescences (Fig. 1e) 
which has caused much difficulty in placing it within 
Moraceae (Corner 1962). Geographically, M. scandens is 
distributed from Taiwan and southern China to throughout 
SE Asia and the western Pacific islands (Berg et al. 2006), 
partially overlapping with the Southeast Asian Allaeanthus 
and the mainly East Asian Broussonetia (Chung et al. 2017). 
The unique morphology of Malaisia and its overlapping 
geographic distribution with Allaeanthus and Brousson-
etia stimulated the current study to further test Chung et al. 
(2017)’s recent taxonomic treatment using phylogenomic 
data.

By resolving phylogenetic relationships and taxonomic 
controversies of Allaeanthus, Broussonetia, and Malaisia 
(i.e., the Broussonetia alliance), this study also aims to 
track the origin of the hybrid paper mulberry trees kōzo 
and daknamu used for traditional papermaking in Japan and 
Korea, respectively. Papermaking technology was intro-
duced from China to Korea during the 3rd to 6th century 
(Song and Munn 2004; Yun and Kim 2009), primarily using 
the native Broussonetia papyrifera (Jeong 2015). According 

Fig. 2  Leaf shape variation in Broussonetia kaempferi (a), B. monoica (b), and B. papyrifera (c). ad: adaxial view; ab: abaxial view
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to Nihon Shoki (Chronicles of Japan), papermaking, as well 
as B. papyrifera, was introduced from Korea to Japan in 610 
AD by the Korean monk Dam Jing (Kitamura and Murata 
1980; Mizumura et al. 2017; Song and Munn 2004), though 
there is documentation that papermaking was introduced 
earlier to Japan by the Japanese Buddhist monk Dōkyō 
(Hunter 1978).

In Japan, Broussonetia is called kōzo zoku (zoku means 
‘genus’ in Japanese) and the name ‘kōzo’ has long been 
applied to all Broussonetia species used by craftspeople 
for making washi and growers of these trees (Chûjô 1950). 
Taxonomically, early Japanese botanists regarded B. kazi-
noki Siebold as the correct scientific name for kōzo (Chûjô 
1950; Kitamura and Okamoto 1962; Ohwi 1965). However, 
such definition was challenged after Kitamura and Murata 
(1980) studied the name hime-kōzo (‘hime’ means small in 
Japanese) recorded in two Japanese classic herbal books, 
Honzō Kōmoku Keimō (Dictated Compendium of Materia 
Medica) by Ranzan Ono and Sōmoku-Zusetsu (An Ico-
nography of Herbaceous and Woody Plants of Japan) by 
Yokusai Iinuma. Kitamura and Murata (1980) concluded 
that B. kazinoki should be the correct name for hime-kōzo, 
a monoecious (Fig. 1j) shrub with leaning branches (Chung 
et al. 2017) and variable leaf shapes (Fig. 2b) distributed in 
Japan (Okamoto 2006), Korea (Yun and Kim 2009), China 
(Zhou and Gilbert 2003), and Taiwan (Liao 1996). In ancient 
Japan, hime-kōzo was simply called kōzo and used for paper-
making (Kitamura and Okamoto 1962). By the Edo Period 
(1603–1868 AD), however, a hybrid became the preferred 
material for making washi and gradually the name kōzo 
(Fig. 1n) was applied specifically to the hybrid (Kitamura 
and Murata 1980), inevitably resulting in subsequent and 
widespread confusion regarding its definition. By distin-
guishing hime-kōzo from the broadly defined kōzo (sensu 
Chûjô 1950, Kitamura and Okamoto 1962; Ohwi 1965), 
Kitamura and Murata (1980) applied kōzo specifically to 
those plants cultivated for making washi and regarded kōzo 
as the hybrid between B. kazinoki and B. papyrifera, though 
no evidence was provided.

Although Kitamura and Murata (1980)’s concept of 
Japanese Broussonetia had been immediately and widely 
followed (e.g., Mizumura et  al. 2017; Okamoto 2006; 
Yamazaki 1989), the identity of B. kazinoki remained con-
fusing. In Japan, ‘kazinoki’ has been the common name for 
B. papyrifera since ancient times, and rightfully cited in 
Siebold (1830) when the name B. kazinoki was first pro-
posed (though the name was not validly published until 
1846; Akiyama et al. 2013). However, because the modern 
type concept had not yet been developed in the 19th Cen-
tury (Fosberg 1992), neither Siebold (1830) nor the sub-
sequent work (i.e., Siebold and Zuccarini 1846) specified 
specimens that were essential to resolve the puzzling identity 
of B. kazinoki. To stabilize the taxonomy of Japanese plant 

names, “Siebold collection of Japanese plants” was investi-
gated and names described by Siebold (and Zuccarini) were 
lectotypified (Akiyama et al. 2013). As a result, a specimen 
from Siebold’s collection at Botanische Staatssammlung 
München (i.e., M0120984) was selected as the lectotype of 
Broussonetia kazinoki Siebold, with the comment that “This 
specimen is not the real Japanese “Kazinoki”, i.e., Brous-
sonetia papyrifera (L.) Vent., but Japanese kōzo” (Akiyama 
et al. 2013). Based on their lectotypification, Ohba and 
Akiyama (2014) revised Broussonetia of Japan. Because B. 
kazinoki was taken by the nothospecies kōzo, B. monoica, a 
name long synonymized under B. kazinoki (e.g., Zhou and 
Gilbert 2003), succeeded as the earliest validly published 
and correct name for hime-kōzo (Ohba and Akiyama 2014). 
Subsequently, the multiplication sign was added (i.e., B. × 
kazinoki) by Chung et al. (2017) according to Article H.3 of 
the Code (McNeill et al. 2012).

In Korea, daknamu, also regarded as a hybrid species 
(Kim et al. 1992; Yun and Kim 2009), has been the favored 
material and clonally propagated for making hanji for centu-
ries (Won 2019). Although widely cultivated in Korea since 
ancient times, daknamu was not botanically described until 
Yun and Kim (2009) published the name Broussonetia × 
hanjiana M.Kim. However, while kōzo has long been con-
sidered as a cultivated plant in Japan, Yun and Kim (2009) 
regarded B. × hanjiana a natural hybrid because its type 
specimen was collected in the pristine evergreen broadleaved 
forest of Gageo Island, the only place in Korea where both 
B. monoica and B. papyrifera co-occur naturally with B. × 
hanjiana. Because kōzo and daknamu are both the hybrid 
between B. monoica and B. papyrifera, Chung et al. (2017) 
synonymized B. × hanjiana under B. × kazinoki. Before 
the introduction of machine-made paper, both kōzo and 
daknamu were extensively cultivated and clonally propa-
gated for a wide range of paper products in Japan (Mizumura 
et al. 2017) and Korea (Yun and Kim 2009). If kōzo had 
originated in Japan, the hybridization must have occurred 
after the introduction of Broussonetia papyrifera in the 7th 
Century (Won 2019). Alternatively, kōzo might derive from 
daknamu, given that both B. monoica and B. papyrifera are 
native to Korea (Yun and Kim 2009). Using plastid and 
nuclear markers, Won (2019) confirmed that daknamu is 
indeed a hybrid between B. monoica (♀) and B. papyrif-
era (♂). Additionally, a likely incidence of back-cross and 
introgression of daknamu (♂) to B. monoica (♀) was also 
detected (Won 2019). However, no studies have yet investi-
gated these two hybrids jointly.

This study aims to settle taxonomic disputes of the Brous-
sonetia alliance and track origins of kōzo and daknamu. We 
assembled full plastid genome (plastome) sequences of the 
alliance which so far are only available for B. papyrifera 
(KX828844), “B. kazinoki” (MH223642 and MW465960), 
and the synthetic hybrid paper mulberry “B. kazinoki × B. 
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papyrifera” (Xu et al. 2018). Additionally, nuclear riboso-
mal DNA sequences were assembled to test for the congru-
ence between plastid and nuclear genomes. Based on phy-
logenomic relationships, Chung et al. (2017)’s taxonomic 
proposition is tested and character (e.g., gene loss and 
reproductive syndrome) state evolution is discussed. Based 
on the hypervariable region of plastome sequences identi-
fied in this study, we also address the following questions: 
Do kōzo and daknamu each have single or multiple origins? 
Do they share haplotypes? Have kōzo and daknamu expe-
rienced bottlenecks from the hybridization? Does kōzo or 
daknamu have higher haplotype diversity? If kōzo was intro-
duced from Korea to Japan, as historical documents, had 
kōzo experienced a second bottleneck and showed reduced 
haplotype diversity?

Materials and methods

Plastome and nrDNA assembly

Based on Chung et al. (2017), we sampled six species of 
the Broussonetia alliance, including all three species of 
Broussonetia, two of the four species of Allaeanthus, and 
the monotypic Malaisia scandens. All voucher specimens 
were deposited at the Herbarium, Biodiversity Research 
Center, Academia Sinica, Taipei (HAST). Genomic DNA 
was extracted using CTAB method (Doyle 1991) and fur-
ther purified by Monarch® PCR & DNA Cleanup Kit. Puri-
fied genomic DNAs were sent to the Genomic Core Lab of 
Institute of Molecular Biology, Academia Sinica for library 
preparation using TruSeq® Nano DNA Library Prep Kit 
(Illumina Inc., San Diego, CA, USA). The DNA was frag-
mented into target 350 bp by M220 Focused-ultrasonica-
tor™ (Covaris, Woburn, MA, USA) and ligated to TruSeq 
Single Index adapters. Sequencing was done by MiSeq (Illu-
mina Inc., San Diego, CA, USA) using Illumina Reagent Kit 
v3 (600 cycle) with pair-end mode, read length = 2 × 300 bp, 
and insert size = 350–550 bp (determined by Bioanalyzer 
High Sensitivity DNA Analysis). The samples were multi-
plexed with other Broussonetia samples not included in the 
current study. Plastomes were assembled using Geneious 
software version 11 (Kearse et al. 2012) with the following 
procedure: The adapter and barcode sequences were first 
removed. Then, we removed the low-quality bases at the 
start and the end of the reads by the modified Mott algo-
rithm in Geneious (Error probability limit = 0.05). Then, 
trimmed reads were mapped to the plastome of Morus nota-
bilis C.K.Schneid. (KP939360) using the “Map to Refer-
ence” function in Geneious with “Medium-Low Sensitivity” 
and default settings. Regions that contained indel(s) between 
the focal sample and the reference genome might not be cor-
rectly assembled by the reference-based method and could 

exhibit conflicts in the mapping results. Those regions were 
corrected by extending the reliably assembled regions into 
problematic parts and ‘iteratively mapping’ the reads to the 
contigs to obviate the effect of the reference genome. To 
obtain a complete plastome, the remaining gaps and uncer-
tain regions that could not be resolved by iterative mapping 
were filled by Sanger sequencing using the primers designed 
from the reference genome and PCR condition listed in 
Table S1. Meanwhile, junctions between large single copy 
(LSC), small single copy (SSC), and inverted repeats (IRs) 
were verified by PCR. Nuclear ribosomal DNA (nrDNA) 
sequences, spanning across the partial external transcribed 
spacer (ETS), 18 S rRNA gene, internal transcribed spacer 
(ITS) 1, 5.8 S rRNA gene, ITS2, 26 S rRNA gene, and 
partial nontranscribed spacer (NTS) of the six species of 
Broussonetia alliance were assembled by retrieving the raw 
reads and mapping to the published nrDNA sequences of 
Ficus tikoua Bureau. (JF317367, JF317386, and EU091641) 
using the “Map to Reference” function of Geneious with 
“Medium-Low Sensitivity” and default settings.

Genome annotation and comparison

The newly assembled plastomes were annotated based on 
seven published plastomes of urticalean rosids (i.e., Sytsma 
et al. 2002), including Moraceae [Broussonetia papyrifera 
(KX828844), Ficus carica L. (NC035237; Rabah et  al. 
2017), and Morus notabilis (KP939360; Chen et al. 2016)], 
Urticaceae [Debregeasia saeneb (Forssk.) Hepper & Wood 
(KY419997; Zhang et al. 2017)], Cannabaceae [Humulus 
lupulus L. (KT266264; Vergara et al. 2016) and Cannabis 
sativa (KY084475; Vergara et al. 2016)], and Ulmaceae 
[Ulmus pumila L. (KY244086; Zuo et al. 2017)], using the 
transfer annotation feature in Geneious (similarity = 65%). 
To further verify the identified tRNAs, the structures and 
anti-codons of putative tRNAs were checked in tRNAscan-
SE 2.0 (Lowe and Chan 2016). The genome maps were 
visualized by OrganellarGenomeDraw (Lohse et al. 2013). 
The numbers of variable sites were calculated using PAUP* 
version 4.0 (Swofford 2002). To detect genome rearrange-
ment, multiple genome alignment of the 13 urticalean rosids 
plastomes was conducted using Mauve version 1.1.3 (Dar-
ling et al. 2004) launched in Geneious.

Sliding window analysis of plastomes

To detect evolutionary hotspots in the plastomes for phylo-
geographic and phylogenetic studies, the nucleotide diver-
sity (π) values were calculated based on two datasets using 
sliding window analysis. The first dataset comprised the 
six newly assembled plastomes of the Broussonetia alli-
ance, aiming to find high divergence hotspots for recent 
speciation and phylogeographic studies. The second dataset 
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comprised 13 plastomes of the urticalean rosids for family 
level phylogenetic studies. Plastome sequences were aligned 
using MAFFT (Katoh and Standley 2013). The sliding win-
dow analysis was performed using PopGenome R package 
(Pfeifer et al. 2014) to calculate π (Nei and Li 1979) for the 
window length of 800 bp and step size of 400 bp.

Phylogenomic analyses

A preliminary phylogenomic analysis of the urticalean 
rosids were conducted using 16 plastomes (Fig. S1). 
Because MW465960 (“Broussonetia kazinoki”), MF496038 
(“Broussonetia kazinoki × Broussonetia papyrifera”), and 
MH223642 (“Broussonetia kazinoki”) are almost identical 
and appear to be conspecific with B. monoica (MH189567) 
that was newly assembled in the current study (Fig. S1), the 
former three plastomes were not included in our final analy-
sis. Phylogenomic relationships of the remaining 13 plasto-
mes and eight nrDNA sequences of urticalean rosids were 
reconstructed using maximum likelihood (ML) and Bayesian 
inference (BI) methods. Plastome sequences were aligned 
using MAFFT version 7 with default parameters (Katoh 
and Standley 2013). For plastome sequences, phylogenomic 
relationships were reconstructed based on LSC, SSC and 
a single IR. The nucleotide substitution rates and distribu-
tion shapes were estimated by bModeltest (Bouckaert and 
Drummond 2017), with the model GTR+Г selected for all 
partitions and all analyses. The concatenated plastid data 
were divided into four partitions: protein-coding sequences, 
tRNAs, rRNAs, and other non-coding sequences. Model 
parameters were unlinked across partitions. The nrDNA phy-
logeny was reconstructed based on ITS1, ITS2, and rRNA 
(18 S, 5.8 S, and 26 S) regions. Two partitions (i.e., ITS 
regions and rRNA regions) with unlinked model parameters 
were applied. ML analyses were performed using RAxML 
version 8 (Stamatakis 2014). Twenty heuristic searches with 
1,000 bootstrap replicates were conducted, and the congru-
ence was checked manually. BI tree was reconstructed by 
BEAST2 (Bouckaert et al. 2014) with 100,000,000 genera-
tions and sampling every 5,000 generations. The effective 
sample sizes (ESS) of final posterior probability were con-
firmed in Tracer version 1.7 (Rambaut et al. 2018). If the BI 
tree topology was congruous with the ML tree, the posterior 
probabilities greater than 0.80 were mapped to the backbone 
of the ML tree at corresponding nodes.

Phylogeographic analyses

Based on the sliding window analysis, matK-rps16, rps16-
psbK, rps4-ndhJ, ndhF-rpl32, rpl32-ccsA, and ycf1 were 
identified as the most variable regions suitable for phylo-
geographic analyses (see Results). However, because our 
samples included substantial herbarium materials (Table S2) 

with compromised DNA quality, we first tested the suitabil-
ity of the six potential markers for easiness of PCR ampli-
fication and Sanger sequencing. Consequently, ndhF-rpl32 
intergenic spacer (IGS), which was also adopted by Won 
(2019) based on Chang et al. (2015), was chosen for phylo-
geographic analyses.

In combination with Won (2019)’s samples, a total of 
81 samples were sequenced, including 9 kōzo from 9 washi 
workshops of 3 prefectures of Japan, 9 daknamu from 7 
provinces of South Korea, and 63 B. monoica from China 
(14 samples from 7 provinces), Japan (32 samples from 17 
prefectures), South Korea (4 samples from 3 provinces), and 
Taiwan (13 samples from 7 counties). Table S2 details the 
collecting information of the 81 accessions.

Genomic DNA was extracted using the cetyltrimethyl-
ammonium bromide (CTAB) protocol. Conditions for PCR 
amplification and sequencing were detailed in Won (2019) 
using primers listed in Table S3. Sequences were assem-
bled in Geneious software version 11 (Kearse et al. 2012). 
The assembled sequences were aligned by MAFFT version 
7 (Katoh and Standley 2013) with default parameters. The 
haplotype network was reconstructed and visualized using 
the R package pegas (Paradis 2010). Because pegas cannot 
handle indel and single nucleotide polymorphism (SNP) 
at the same time, two long indels (9-bp and 77-bp) were 
replaced with SNPs to maximize sequence information. 
Gaps, ambiguous nucleotides, mononucleotide repeats, and 
microsatellite-like sequence variation at the junctions of 
the 77-bp indel (Fig. S2) were ignored due to uncertainty 
of objective alignment. The most parsimonious links in the 
haplotype network were determined by the default settings 
in pegas following the algorithm of Templeton et al. (1992). 
The sequences of unique haplotypes are available in Online 
Resource 3. The distribution map of haplotypes was drawn 
using the R package ggplot2. The nucleotide diversity, hap-
lotype diversity, analysis of molecular variance (AMOVA), 
and pairwise  GST were calculated in R package pegas and 
mmod (Winter 2012). The source code is available in Online 
Resource 4.

Results

Characteristics of plastomes

The six newly assembled plastomes display the typical cir-
cular, quadripartite structure of angiosperms (Kwon et al. 
2020; Ruhlman and Jansen 2021), composed of an LSC, 
an SSC, and a pair of IRs (Fig. 3). For assembly quality 
(Table 1), 1,379,002 (Broussonetia papyrifera) to 2,208,733 
(Allaeanthus kurzii) trimmed reads were mapped to the final 
plastomes, with the mean average coverage for each base 
pair ranging between 171.4 ± 58.7 (Malaisia scandens) and 
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566.5 ± 153.9 (A. kurzii). The plastomes of Broussonetia (B. 
kaempferi: 160,625 bp; B. monoica: 160,777 bp; B. papy-
rifera: 160,121 bp) are slightly smaller than the plastomes 
of Malaisia (M. scandens: 161,313 bp) and Allaeanthus (A. 
kurzii: 162,170 bp; A. luzonicus: 162,594 bp). Gene contents 
of the six plastomes of the Broussonetia alliance are identi-
cal, composed of 111 unique genes including 4 rRNA genes, 
30 tRNA genes, and 77 protein-coding genes (Table S4). 
Among the 30 unique tRNA genes, the sequence of the 
trnM-CAU gene in the LSC differs from the trnM-CAU gene 
in IRs and thus they are regarded as different. Introns were 
found in 18 genes, including 12 protein-coding genes and 
6 tRNA genes. Among the 111 unique genes, 17 genes are 
completely duplicated in IRs. In addition, the trans-splicing 
rps12 gene is partially duplicated (2nd and 3rd exon) in IRs. 
Based on plastome sequence alignment using Mauve, rear-
rangements were not detected among the six plastomes nor 

in the other urticalean rosids sampled in the present study 
(Fig. S3). Comparison of 12 plastomes of urticalean rosids 
also shows that the IR boundaries are highly conserved 
within the Broussonetia alliance, with a slight IR contraction 
in the LSC-IRA boundary in Malaisia and an expansion of 
ca. 600 bp in the ycf1 gene in (A) luzonicus in the SSC-IRB 
boundary (Fig. 4). However, as shown in Fig. 5, a premature 
stop codon was identified in the rpl22 gene of plastomes of 
(B) papyrifera, Malaisia scandens, Allaeanthus kurzii, and 
(A) luzonicus, indicating that the gene has pseudogenized. 
Additionally, this locus was completely lost in (B) monoica 
and B. kaempferi.

Evolutionary hotspots in plastomes

The Broussonetia alliance dataset shows that the nucleo-
tide diversity (π) ranges from 0 to 0.04132 with a mean ± 
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standard deviation (SD) of 0.01287 ± 0.00906. Six highly 
variable regions (π > 0.03) including matK-rps16, rps16-
psbK, rps4-ndhJ, ndhF-rpl32, rpl32-ccsA, and ycf1 were 

identified (Fig. S4a). Three of these regions lie in the LSC 
region and three in the SSC region. Five out of six regions 
are non-coding regions located within intergenic spacers. In 
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the urticalean rosids dataset, the nucleotide diversity ranges 
from 0.00116 to 0.06988 with a mean ± SD of 0.02345 ± 
0.01328. The identified hotspot regions [i.e., matK, rpoC2, 
ndhF, and ycf1 (π > 0.045)] are all protein-coding genes (Fig. 
S4b). In both datasets, π is much lower in IR regions than 
LSC and SSC.

Phylogenomic analyses

The alignment of the 13 plastomes of urticalean rosids 
is 151,354 bp (LSC + SSC + a single IR), with 12,424 

parsimony-informative sites (8.21%), 16,913 parsimony-
uninformative sites (11.17%), and 122,017 constant sites 
(80.62%). Phylogenetic analyses using both ML and BI 
methods resolved Moraceae, Urticaceae (Debregeasia sae-
neb), Cannabaceae (Cannabis sativa and Humulus lupulus), 
and Ulmaceae (Ulmus pumila) forming successively sister 
and increasingly more inclusive monophyletic groups with 
full support values (Fig. 6a), congruent with previous studies 
using Sanger sequencing (Sytsma et al. 2002; Zhang et al. 
2011). Within Moraceae, the Broussonetia alliance and 
Ficus form a clade sister to Morus, also congruent with early 
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studies (Chung et al. 2017; Clement and Weiblen 2009). 
Within the Broussonetia alliance, Broussonetia and Malaisia 
form a clade sister to Allaeanthus, identical to relationships 
revealed in Chung et al. (2017). Within Broussonetia, B. 
kaempferi and B. monoica form a clade sister to B. papyrif-
era, as revealed in Chung et al. (2017).

The alignment of the eight nrDNA is 5,899 bp, with 200 
parsimony-informative sites (3.39%), 336 parsimony-unin-
formative sites (5.70%), and 5,363 constant sites (90.91%). 
The topology of the nrDNA phylogeny (Fig. 6b) is com-
pletely congruent with that of the plastome phylogeny 
(Fig. 6a), though supporting values at the Broussonetia + 
Malaisia clade is low (BS = 65%, PP = 0.53).

Phylogeographic analyses

The network depicting evolutionary relationships among the 
16 haplotype is shown in Fig. 7. Based on the calculation 

of pegas, the 77-bp indel (Fig. S2) appears to have evolved 
independently between haplotypes cp-1 and cp-9, cp-2 and 
cp-4, and cp-10 and cp-12 (Fig. 7), likely triggered by the 
presence of the microsatellite-like sequences (Fig. S2). Of 
the 81 accessions of B. monoica and B. × kazinoki sampled 
(Table S2), 16 haplotypes were detected, with two major 
haplotypes (cp-1 and cp-2) carried by a majority (ca. 63%) 
of samples (Fig. 7). Of the 16 ndhF-rpl32 haplotypes, 15 
were detected in B. monoica (N = 63), while only five hap-
lotypes were found in B. × kazinoki (N = 18). Of the 18 
accessions of B. × kazinoki sequenced, five haplotypes were 
detected in daknamu (N = 9), while kōzo (N = 9) carried 
only cp-1.

Overall, continental populations of China and Korea 
have higher nucleotide and haplotype diversities than their 
adjacent island populations of Taiwan and Japan (Table 2). 
According to AMOVA, haplotype compositions between 
regions (China, Korea, Japan and Taiwan) are highly 
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differentiated (Table 3). However, the high within-region 
variance suggests the presence of population structure 
within regions, though a comprehensive sampling is required 
to give detailed information. Estimates of pairwise  GST (Nei 
1973) and G″ST (Hedrick 2005) also indicate the highest 
level of population differentiation between China and Tai-
wan, while the lowest values of both  GST and G″ST are found 
between Korea and Japan (Table 4).
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Fig. 7  Distribution of ndhF-rpl32 haplotypes and haplotype network of Broussonetia monoica and B. × kazinoki (kōzo and daknamu). The num-
bers on the network correspond to the haplotype sequence alignment in the Online Resource 3

Table 2  Nucleotide diversity and haplotype diversity of ndhF-rpl32 
intergenic spacer in Broussonetia monoica and B. monoica 

Regions Nucleotide diversity (π) Haplotype diversity

CHINA (N = 14) 0.003261835 0.879120879
KOREA (N = 13) 0.002519487 0.807692308
JAPAN (N = 41) 0.001722545 0.535365854
TAIWAN (N = 13) 0.001889615 0.628205128
Total (N = 81) 0.002651099 0.725000000

Table 3  Analysis of Molecular Variance

a From1000 times permutation bootstrap

SSD MSD df σ P  valuea

Between regions 7.926025 2.6420084 3 0.11136 < 0.001***
Within regions 50.073975 0.6503114 77 0.65031
Total 58.000000 0.7250000 80

Table 4  Pairwise GST calculated based on Nei (1973)(upper diagonal) 
and Hedrick (2005) (lower diagonal)

CHINA KOREA JAPAN TAIWAN

CHINA – 0.05564099 0.11608003 0.15942529
KOREA 0.5578286 – 0.03524862 0.08095313
JAPAN 0.6619250 0.1947902 – 0.0954929
TAIWAN 1.0000000 0.4819686 0.4011602 –
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Discussion

Taxonomy of Broussonetia alliance

Using the genome skimming approach, complete plastome 
and nrDNA sequences of six species of the Broussonetia 
alliance were assembled and their phylogenomic relation-
ships were reconstructed. Given the identical relationships 
between plastome and nrDNA trees among genera of the 
Broussonetia alliance (Fig. 6), our current data clearly show 
that Broussonetia s.l. is paraphyletic, results that are also 
congruent with those of Chung et al. (2017) and Gardner 
et al. (2021). To rectify the paraphyly of Broussonetia s.l., 
Malaisia can either be synonymized under Broussonetia s.l. 
or the generic status of Sect. Allaeanthus must be resur-
rected as proposed by Chung et al. (2017). To achieve an 
objective generic delimitation, Backlund and Bremer (1998), 
Linder et al. (2010), Heenan and Smissen (2013), and Hsieh 
et al. (2022) advocated five criteria: (1) prioritizing pri-
mary (i.e., family, genus, and species) over secondary ranks 
(i.e., subgenus, section, etc.), (2) maximizing phylogenetic 
information and reducing redundancy in a classification, (3) 
recognizing evolutionarily equivalent (i.e., clade age, phy-
logenetic distance, and morphology) groups as the same 
rank, (4) delimiting genus that is morphologically, ecologi-
cally, and geographically homogenous, and (5) taking into 
account the full taxonomic history of the group and mini-
mizing name changes to maintain nomenclatural stability. 
Although our phylogenetic relationships of the Broussonetia 
alliance is also compatible with an expanded Broussonetia 
that synonymizes both Allaeanthus and Malaisia as sec-
tions, we support Chung et al. (2017)’s proposition because 
Malaisia is morphologically distinct (Corner 1962) and has 
never been subsumed under Broussonetia. Maintaining the 
generic status of Malaisia and resurrecting Allaeanthus also 
prioritizes the primary rank genus over the secondary rank 
section, maximizes our phylogenomic conclusions (Fig. 6), 
delimitates three genera that are morphologically (Fig. 1), 
ecologically, and geographically homogenous, reflects the 
full taxonomic histories of the three groups, and avoids an 
unnecessary name change.

Character evolution and origin of B. monoica

By mapping gene loss/deletion on the robust and congruent 
phylogenomic relationship, the rpl22 gene appears to have 
been pseudogenized prior to the diversification of the Brous-
sonetia alliance and lost completely in the clade composed 
of B. kaempferi and B. monoica (Fig. 6). Additionally, our 
analyses also detected premature stop codons in the rps3 
gene in Cannabaceae and the ndhF gene in Cannabis sativa 

(Fig. 6a) not previously known in the family (e.g., Zhang 
et al. 2018).

The robust and congruent phylogenomic relationships 
among species of the Broussonetia alliance also allow us 
to track the evolution of reproductive systems in the Brous-
sonetia alliance. Except for B. monoica which is monoecious 
(Fig. 1j), all other species of the Broussonetia alliance are 
dioecious (Chung et al. 2017), indicating that the monoecy 
in B. monoica is a derived state (Fig. 6a) and suggesting 
that dioecy is not an evolutionary dead end (Schaefer and 
Renner 2010; Zhang et al. 2019) as commonly assumed 
(Heilbuth 2000). Volz and Renner (2008) surmised that 
transitions between monoecy and dioecy in Cucurbitaceae 
might correlate with polyploidy, resulted from hybridization 
between dioecious diploids and hermaphroditic polyploids. 
In hindsight, the vegetative morphology of the monoecious 
B. monoica, such as its shrubby habit (Chung et al. 2017), 
and the highly variable and oblique leaves (Fig. 2b) appear 
to be intermediate between the lianaceous and oblong-leaved 
B. kaempferi (Fig. 2a) and the arborescent and ovate-leaved 
(but often divided) B. papyrifera (Fig. 2c), suggesting that 
B. monoica could have resulted from hybridization of the 
former two dioecious species (Ďurkovič et al. 2012; Gil 
and Kim 2016; Liu et al. 2019; Tamaki et al. 2021). Cyto-
logically, while chromosome numbers of both B. kaempferi 
(Narita and Yosinaga 1955) and B. papyrifera (Oginuma 
and Tobe 1995) are 2n = 26, Seki (1950) reported 2n = 26 
and 39 for B. monoica (as B. kazinoki). If B. monoica did 
originate through hybridization between B. kaempferi and 
B. papyrifera, the cytological data suggest that B. monoica 
is either a homoploid hybrid or a triploid, supporting Volz 
and Renner (2008)’s speculation that changes in ploidy 
level could trigger the transition of sexual system. Under 
the hybridization scenario, the sister relationship between 
B. kaempferi and B. monoica in the plastome tree (Fig. 6a) 
would also indicate that the former should be the maternal 
parent of the latter species. The proposition on the hybrid 
origin of B. monoica is currently under investigation using 
genomic approaches.

Phylogeography of B. monoica and origin of B. × 
kazinoki

Although the main islands of Japan and Taiwan had been 
intermittently connected to the Asian Continent to various 
degrees by land bridges over recurrent glacial periods, the 
Korea Strait and Taiwan Strait have both been effective geo-
graphic barriers for gene flow since the end of last glacial 
maximum as revealed by phylogeographic studies (Huang 
2011; Park et al. 2000; Qiu et al. 2009, 2011). However, 
while the current study reveals that B. monoica displays a 
marked phylogeographic pattern between populations of 
China and Taiwan, the low values of both  GST and G″ST and 



217Journal of Plant Research (2022) 135:203–220 

1 3

largely overlapping haplotypes carried by B. monoica and 
B. × kazinoki of Korea and Japan indicate that the Korean 
Strait has been a porous barrier for the dispersal of the two 
species (Table 4; Fig. 7).

Because plastids are maternally inherited in Broussonetia 
papyrifera (Zhang et al. 2003), the hypervariable ndhF-rpl32 
IGS (Fig. S4a) provides an ideal marker for investigating 
maternal origins of kōzo and daknamu (B. × kazinoki). In 
our analysis, all haplotypes (except for cp-15 which is one 
mutation away from cp-4) detected in B. × kazinoki are also 
carried by B. monoica (Won 2019). Although our sampling 
of both B. monoica and B. × kazinoki is far from comprehen-
sive, the presence of five haplotypes in kōzo and daknamu 
clearly shows multiple origins of the hybrid (Londo et al. 
2006; Miller and Schaal 2005) and an asymmetrical hybridi-
zation (Hamzeh et al. 2007; Zha et al. 2010) between B. 
monoica and B. papyrifera.

Despite the limited geographic sampling of both B. 
monoica and B. × kazinoki in Korea, high nucleotide and 
haplotype diversities comparable to the Chinese populations 
were detected (Table 2). Additionally, daknamu carries five 
haplotypes (Fig. 7), indicating recurrent and multiple ori-
gins of the hybrid. On the contrary, hybridization between 
B. monoica and B. papyrifera has never been reported in 
China or Taiwan where B. monoica and B. papyrifera are 
both common and often sympatrically distributed, except 
for the synthetic ‘hybrid paper mulberry’ (i.e., B. kazinoki 
× B. papyrifera) bred for the poverty alleviation project 
in China (Ni et al. 2020; Peng et al. 2014). Even in this 
‘hybrid paper mulberry’, B. monoica is the maternal par-
ent (Fig. S1), corroborating our inference that hybridiza-
tion between B. monoica and B. papyrifera is possible only 
when the former species serves as the maternal parent. In 
Korea, B. papyrifera is restricted to islands and coastal areas 
while B. monoica is generally an inland species (Won 2019). 
Although the type specimen of B. × hanjiana was collected 
from the natural broadleaved forest of Gageo Island and 
likely originated naturally (Yun and Kim 2009), the largely 
non-overlapping distribution, the rarity of natural hybridiza-
tion between B. monoica and B. papyrifera elsewhere, and 
asymmetrical hybridization between the two species sug-
gests that the multi-origin daknamu might not have origi-
nated naturally but instead have been the result of deliberate 
and artificial hybridizations, possibly generated and selected 
for making hanji in Korea.

On the contrary, the proposition of a single origin of kōzo 
in Japan cannot be rejected given that all sequenced indi-
viduals of kōzo carry cp-1 (Fig. 7). Although our current 
sampling of kōzo is restricted to three prefectures (Miyagi, 
Nagano, and Tochigi) of Honshu, kōzo used by the washi 
workshop of Shiroishi, Miyagi was introduced from Uwa-
jima, Ehime of Shikoku during the early 17th Century by 
Hidemune Date (Kahoku News, 25 February 2018) for 

encouraging washi production, indicating that kōzo car-
rying cp-1 might have a much wider distribution. The ca. 
900 km translocation of kōzo from Ehime to Miyagi during 
the Edo period also indicates that the current distribution 
of kōzo cannot reflect the precise geographic origin of this 
economically important fiber crop in ancient Japan. Never-
theless, because B. monoica carrying cp-1 is also distributed 
in Japan (Fig. 7), our sampled kōzo could have originated 
indigenously, either naturally or artificially. On the other 
hand, the relatively low population differentiation between 
Japan and Korea (Table 4) and absence of genetic variation 
of kōzo suggests that a Korean origin of kōzo along with 
the introduction of the papermaking technique (Mizumura 
et al. 2017; Song and Munn 2004; Yun and Kim 2009) can-
not be ruled out completely. Future studies using genomic 
approaches and collaborations with traditional washi and 
hanji makers are required to fully understand the origins of 
the intriguing kōzo and daknamu.

Given the importance of kōzo for washi and daknamu for 
hanji, our study not only addresses important evolutionary 
questions but also has profound value for the manufacture of 
traditional Korean and Japanese paper, which are also highly 
relevant to the understanding of the historical paper material 
and paper conservation. Because of the short histories of the 
introduction of papermaking to Korea and Japan, kōzo and 
daknamu also represent a unique study system to understand 
how cultural and societal developments and biological pro-
cess of hybridization (Diamond 2002; Zeder 2015) could 
have shaped the genetic diversity of a hybrid domesticated 
crop species.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10265- 022- 01369-w.
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