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Abstract

Assessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for under-
standing forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated
short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here,
we used 26 years (1993-2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that
contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in
aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased
steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic
units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods
despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by
compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the
measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean
air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and
autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF
is not fully explained by the warming. Future studies should consider global and regional environmental factors such as
elevated CO, concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range
to improve our understanding on biomass accumulation in this type of forests under climate change.

Keywords Forest biomass - Kanumazawa Riparian Research Forest - Long-term data - Temperature

0<1 Mahoko Noguchi Introduction

mahoko @ffpri.affrc.go.jp

Old-growth forests are widely recognized to play an
important role in the carbon cycle (Harmon et al. 1990).
It has been commonly accepted that old-growth forests
are carbon neutral (Odum 1969) and their living biomass
is at ‘steady state’ (Bormann and Likens 1979). However,
recent studies indicate that they work as carbon sinks with
increasing biomass over centuries (Luyssaert et al. 2008;
Tan et al. 2011). Continuous increases in aboveground bio-
mass (AGB) have also been found in temperate (e.g., Fos-
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the other hand, in boreal forests biomass growth is more
susceptible to climate change in old-growth forests than
in young forests, resulting in negative net biomass change
(Chen et al. 2016). Thus, assessing climate effects on
long-term biomass accumulation in old-growth forests is
essential for understanding forest ecosystem functions in
a changing climate (McDowell et al. 2020).

Long-term changes in biomass result from the accumula-
tion of short-term changes in the form of gain due to tree
growth and loss due to mortality (Hoshizaki et al. 2004).
Therefore, to understand how climate affects changes in
AGB, the effects of climatic factors on each component
need to be taken into account (Chen and Luo 2015; Pefia
et al. 2018). In addition, endogenous processes such as gap
filling in small-scale canopy openings can drive biomass
change (McDowell et al. 2020; Phillips et al. 2009): at the
local scale, gap formation may cause first a decrease and
then an increase in AGB caused by growth promotion of
trees around the gap. Repeatedly measured tree census data
with tree location can be useful in revealing these processes.

Environmental factors such as topographic position affect
both forest biomass (Kubota et al. 2004; Valencia et al.
2009) and tree species composition (Chen and Luo 2015;
Kuuluvainen et al. 2017; Ohmann and Spies 1998). For
instance, on northern Honshu, Japan, Fagus crenata often
dominates forest stands on hillslopes, whereas more tree spe-
cies occur in riparian areas (Suzuki et al. 2002). Tree species
in riparian forests have diverse life history traits (e.g., both
shorter and longer lifespans, heavy sprouting (Nakamura
and Inahara 2007; Sakio 2020)). Therefore, hillslope and
riparian stands are expected to differ in the dynamics (i.e.,
growth and mortality) and, consequently, the pattern of bio-
mass changes in component species. In addition, a recent
analysis of long-term tree census data in northern Japan has
revealed different responses among species to changing cli-
mate and consequent changes in stand structure and species
composition (Hiura et al. 2019). Thus, stands with different
topographic characteristics can show different responses to
climate change.

Here, we quantify decadal changes in AGB and their
processes in relation to endogenous processes and climatic
factors, using tree census data measured repeatedly over
26 years (1993-2019) in an old-growth, cool-temperate
mixed deciduous forest with different types of topographic
units in northern Japan. We ask the following questions: (1)
Did AGB show net increase or decrease over the whole for-
est and study period? (2) Did tree species contribute differ-
ently to biomass change among the different types of topo-
graphic units? (3) How did gain and loss contribute to the
overall changes in stand biomass? (4) Did climatic factors
and endogenous processes such as canopy gap formation
and recovery influence short-term changes in AGB at the
local scale?
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Materials and methods
Study site

The study was conducted in the Kanumazawa Riparian
Research Forest (KRRF) in Yokodake-Maeyama National
Forest, Iwate, northern Japan (39° 06" 37" N, 140° 51' 17"
E), an old-growth forest with no record of significant anthro-
pogenic disturbances. In KRRF, tree community dynamics
have been repeatedly measured since the establishment of a
4.71-ha permanent plot in 1993 (Fig. 1; Suzuki et al. 2002).
This site is one of the core research sites of the Japan Long-
Term Ecological Research Network (JaLTER). KRRF has
a cool-temperate climate with a mean annual temperature
of 8.8 °C and a warmth index (Kira 1991) of 71 °C month
(Mahoko Noguchi and Kazuhiko Hoshizaki unpublished
data). The mean annual precipitation is 2000 mm, and snow
cover lasts 5 months with maximum snow depth of approxi-
mately 2 m (Oki et al. 2013). The vegetation depends on the
topographic unit. The riparian area is covered with a species-
rich deciduous broadleaved forest consisting of both riparian
specialists (Cercidiphyllum japonicum, Aesculus turbinata,
Acer mono, Pterocarya rhoifolia, and Ulmus laciniata) and
habitat generalists (Fagus crenata and Quercus crispula)
(Masaki et al. 2008; Suzuki et al. 2002). The upper slopes
and terrace are dominated by F. crenata and Q. crispula.
Detailed information on the ecology of component spe-
cies is available in Hoshizaki et al. (1997, 1999), Masaki
et al. (2005), and Osumi (2006). The age of the largest C.
Jjaponicum individual is estimated to be more than 500 years
(Osumi 2006), indicating that this forest is sufficiently old-
growth. The natural disturbance regime in KRRF is charac-
terized by canopy gap formation and fluvial sediment move-
ments (Oki et al. 2013). Gap-creating disturbance occurs
about every 1-3 years, with gap size ranging from tens to
hundreds of square meters (Oki et al. 2013). Recent fluvial
sediment movements were recorded in 1988, 1998, and
2007, causing ground disturbance with sizes ranging from
144 to 680 m? but no damage to canopy trees.

Field measurement

The 4.71-ha permanent plot was divided to 471
10-m X 10-m quadrats (Fig. 1). The plot ranges in eleva-
tion from 400 to 460 m a.s.l., and includes three topo-
graphic units: riparian (3.11 ha), terrace (1.03 ha), and
denuded slope between them (0.57 ha). In the whole plot,
all stems greater than 5 cm in diameter at breast height
(DBH) were tagged for identification and mapped, and
DBH was measured at the same marked location on each
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Fig. 1 Topographic map of the
Kanumazawa Riparian Research
Forest (KRRF). The solid

frame represents the 4.71-ha
KRREF plot. Colors denote the
three topographic units: blue,
riparian (3.11 ha); orange,
denuded slope (0.57 ha); green,
terrace (1.03 ha). Black dotted
lines show the 10-m X 10-m
quadrats; thin red lines show the
20-m X 20-m subplots. Contour
interval is 2 m

500 m

450 m

stem in September or October every 2 years from 1993 to
1999 and every 4 years from then to 2019.

Estimation of AGB change and its components

We calculated tree AGB, basal area (BA), and stem density
in each topographic unit. Individual tree AGB was estimated
by using a general allometric equation for tree species in
Japan (Ishihara et al. 2015):

In(y) = —1.196 + 1.162 X In (D) + 0.338
x (In(D))? — 0.044 x (In(D))” + 0.708 X In (p) 0

—

(77

450 m

Riparian
m Denuded slope
Terrace

where y is AGB; D is stem DBH, and p is the wood specific
gravity of each species (Editorial Board of Wood Industry
1966; Hiroko Kurokawa, Masahiro Aiba and Yusuke Onoda
unpublished data; Fujiwara et al. 2007). Confidence intervals
of changes in AGB, BA, and stem density were estimated
via bootstrapping across 10-m X 10-m quadrats following the
method of Valencia et al. (2009).

To overview trends in AGB change during the study
period and net annual change in AGB, we calculated AGB
for three tree size classes: large (> 50 cm DBH), medium
(15-50 cm DBH), and small (5-15 cm DBH). The net
annual change in AGB (in Mg ha~! y=!) was calculated each
4-year period from 1996 to 2019 from the tree DBH data of
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1995-2019. It was then dissected into annual AGB gain and
annual AGB loss. Annual AGB gain was calculated sepa-
rately for growth of trees in each size class and ingrowth,
and AGB loss was calculated for mortality of trees in each
size class.

Analysis of factors affecting short-term AGB gain
atlocal scale

We examined the effects of climatic condition in each meas-
urement period, canopy gap formation and topography on
local-scale AGB gain using two linear mixed-effect models
(LMMs). For both models, variables were calculated for
every 20-m X 20-m subplot in each 4-year period from 1996
to 2019. Subplot size was determined as an appropriate area
to detect gap formation and subsequent recovery in consid-
eration of the range of gap size in KRRF. Each 20-m X 20-m
subplot was assigned to one of the three topographic units
according to the area of the major topographic unit (based
on the number of 10-m X 10-m quadrats therein). When the
number of 10-m X 10-m quadrats within a 20-m X 20-m sub-
plot were same between two types of topographic units, we
referred to the original map of topographic type and identi-
fied the area. Both models used AGB gain as the response
variable and included subplot as a random effect.

In model 1, we aimed to investigate whether the amount
of AGB gain differed among the measurement periods with
the effects of topographic unit and gap formation in the
current and previous measurement periods. Fixed effects
were initial AGB in the current measurement period, AGB
losses in the current and previous measurement periods,
topographic unit, and the five 4-year measurement periods
between 2000 and 2019, with topographic unit and meas-
urement period as categorical variables. Initial AGB was
included as it is expected to be the “capital” for AGB gain
by tree growth. AGB losses were indices of gap formation
in the current and previous measurement periods.

In model 2, the effect of climate was analyzed separately
from the effect of measurement period to avoid multicolline-
arity. Fixed effects in model 2 were initial AGB in the current
measurement period, AGB loss in the current and previous
measurement periods, topographic unit, and mean air tem-
perature during the previous autumn (September—Novem-
ber) and the current summer (June—August) over the meas-
urement periods. For example, mean air temperature during
the previous autumn of the measurement period 1996-1999
is the mean air temperature during September—November,
1995-1998, and that of the current summer is the mean dur-
ing June—August, 1996-1999.Both types of mean air tem-
perature have a major influence on annual DBH growth of
individual trees in most dominant species of KRRF (Michi-
nari Matsushita, Daiki Sugiura and Kazuhiko Hoshizaki
manuscript in preparation). As the on-site temperature data
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do not cover the entire study period, we used data from the
nearest weather station, at Wakayanagi (39° 08’ N, 141° 04’
E; 97 m a.s.l.: Japan Meteorological Agency, https://www.
data.jma.go.jp/gmd/risk/obsdl/index.php), 18 km east of the
study site. In addition to the aforementioned factors, interac-
tions between the topographic unit and climatic factors were
included in the model’s fixed effects of the model to examine
whether different topographic characteristics shows different
responses to climatic factors (model 2.1).

These models were fitted by the Ime4 v.1.1-21 pack-
age (Bates et al. 2015) in R 3.6.3 (R Core Team 2020). All
variables except for categorical variables (i.e., topographic
unit and measurement period) were standardized before the
analyses. To evaluate the variance explained by the models,
we calculated two R? values for mixed-effect models fol-
lowing the method of Nakagawa and Schielzeth (2013) and
Nakagawa et al. (2017): marginal R? (RZLMM(m)), which is
the proportion of the variance explained by fixed effects,
and conditional R? (RZLMM(C)), which is the proportion of the
variance explained by both fixed and random effects. These
were calculated by the MuMIn v. 1.43.15 package (Barton
2020) in R.

Results
Overall changes in AGB at plot scale

BA in 1993 was greatest in the riparian unit (34.2 m* ha™!)
and least in the denuded slope unit (Table 1). From 1993 to
2019, BA increased significantly in all topographic units.
AGB was greatest in the terrace unit (246.0 Mg ha™') at
the beginning of the study period (Table 1). It increased
significantly in all topographic units during the study period,
increasing in most 4-year periods except for some short
pauses; for instance, from 2011 to 2015 in the riparian and
denuded slope units (Fig. 2). AGB of large trees (>50 cm
DBH) in 1993 occupied 76.7% of total AGB in riparian,
70.6% in denuded slope, and 77.7% in terrace units. Trends
of increasing total AGB in the riparian and terrace units
were similar to those of large-tree AGB. During the study
period, stem density declined in the riparian and terrace
units but increased in the denuded slope unit (Table 1). The
change in stem density was significant only in the riparian
unit.

In the riparian unit, C. japonicum had the largest AGB at
the beginning of the study period, followed by F. crenata, A.
turbinata, Q. crispula, and A. mono (Table 2). AGB of these
species, except for Q. crispula, increased during the study
period. Pterocarya rhoifolia had the greatest increment in
AGB over the study period, accounting for 52.3% of the total
increment in the riparian unit, followed by A. turbinata at
25.4%. In contrast, several other species with relatively small
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Table 1 Basal area, 1993 2019 Change

aboveground biomass, and

stem density at the study site Basal area (m? ha™)

at the beginning (1993) and N B

end (2019) of the study period Riparian 34.2 (28.7-40.5) 38.6 (32.4-457.7) 4.5(2.4-6.5)

with overall changes in three Denuded slope 21.5 (15.3-28.3) 26.6 (20.2-33.8) 5.1 (2.2-7.8)
topographic units (riparian, Terrace 32.3 (26.6-37.7) 36.6 (30.4-42.6) 4.3 (1.5-6.7)

denuded slope, and terrace)
Riparian
Denuded slope
Terrace
Stem density (stems ha™!)

Aboveground biomass (Mg ha™")

244.1 (202.7-289.4)
156.8 (100.3-216.0)
246.0 (202.4-293.5)

274.2 (230.1-326.2)
191.5 (136.1-252.7)
276.7 (225.8-336.4)

30.1 (14.0-45.6)
34.7 (13.2-56.1)
30.6 (8.0-53.4)

Riparian 583 (519-648) 509 (452-581) =73 (=111 to—36)
Denuded slope 781 (637-939) 877 (704-1046) 96 (—35-235)
Terrace 952 (833-1061) 906 (785-1031) —47 (-118-24)

Values in parentheses are 95% confidence intervals. When CIs do not include 0, the changes are significant

AGB at the beginning, such as Zelkova serrata and Ulmus
laciniata, showed a decline in AGB during the study period.
The denuded slope and terrace units were dominated by F.
crenata and Q. crispula, and the denuded slope by A. mono
as well (Table 2). All these species had an increase in AGB
during the study period, maintaining the AGB-based rank
of species composition.

Annual gain in AGB remained at approximately
3 Mg ha™! year™! with some differences among the meas-
urement periods: larger in 2008-2011 and 2016-2019 in all
topographic units (Fig. 3). In the riparian and terrace units,
large- and medium-sized trees accounted for most of the
annual gain. Annual losses in AGB fluctuated among the
4-year periods, and were largest in 2012-2015 in all topo-
graphic units. Regardless of topographic unit, measurement
periods with greater loss of AGB of large trees tended to
have greater total loss of AGB. As a consequence, net annual
change in AGB ranged from —0.6 to+2.6 Mg ha™! year™!
but stayed positive except in 2012-2015 in the riparian and
denuded slope units.

Effects of climate and gap formation on short-term
AGB gain at local scale

Local-scale AGB gain in the 20-m X 20-m subplots was
positively influenced by initial AGB in each measure-
ment period with the largest effect size among the numeric
explanatory variables (LMM model 1: Table 3, Fig. 4). It
was significantly greater in subplots with larger AGB loss
in the previous measurement period but smaller in subplots
with larger AGB loss in the current measurement period.
It was not significantly affected by topographic unit. It dif-
fered significantly among the measurement periods: smaller
in 2004-2007 and larger in 2008-2011 and 2016-2019. In
model 1, R? \pvim =0.31 and R?| o, =0.76, indicating that
31% of the variation was explained by fixed effects and 76%

by fixed and random effects. In model 2 (Table 4), the effects
of initial AGB, AGB loss in the current and previous meas-
urement periods, and topographic unit were almost identi-
cal to those in model 1. Local-scale AGB gain was larger
in measurement periods with higher mean air temperature
during the current summer but smaller in those with higher
mean air temperature during the previous autumn. The abso-
lute effect size of these two variables was almost equivalent.
Model 2 explained almost identical variation as model 1,
with R%\jvim) =0.30 and R ) =0.75. None of the inter-
actions between the topographic unit and climatic factors
(i.e., mean air temperature during the previous autumn and
the current summer) were significant (model 2.1, Table S2).
Additionally, the interactions did not improve performance
of the model with Ry =0.30 and R?| yjy,=0.75 in
model 2.1.

Discussion

AGB of KRREF increased steadily over the 26 years in all
topographic units, with increments of 30-35 Mg ha~! in
each (Table 1). BA also increased over the study period,
even though it was initially equivalent to values reported in
other cool-temperate old-growth forests in Japan (Masaki
et al. 1992; Nakashizuka 1988; Seiwa et al. 2013), indicating
that the forest had already been well stocked. These results
are consistent with reports that temperate old-growth forests
continuously gain biomass over the long term (Keeton et al.
2011; Luyssaert et al. 2008). This continuous stand-scale
biomass increment was attributable mainly to an increase in
AGB of large trees, in agreement with the reported global
importance of large trees in determining stand AGB (Lutz
et al. 2018; Slik et al. 2013).

@ Springer
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Fig.2 Trends in total aboveground biomass (AGB) over 26 years in
the three topographic units. AGB is shown for stand total and stems

in three size classes: large (diameter at breast height [DBH] > 50 cm),

medium (DBH, 15-50 cm), and small (DBH, 5-15 cm)

Patterns of tree growth or stand-biomass-change vary
across tree species composition and diversity, as well as

with environmental conditions such as topography (Kubota
et al. 2004; Valencia et al. 2009). In KRRF, topography has
been reported to determine tree species distribution through

affecting seedling survival and growth differently across
species (Masaki et al. 2005). They argued that decreased
seedling survival and growth in the terrace unit was caused
by lower water availability. However, a steady increase in
AGB was common to all three topographic units (Table 1;
Fig. 2). Furthermore, neither topographic units (Tables 3 and
4) nor their interaction with climate (Table S2) had distinct
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Table 3 Results of the
generalized linear mixed-effect
model (model 1) testing the
effects of initial aboveground
biomass (AGB), canopy gap
formation, topographic unit,
and measurement period on
the AGB gain in 20-m X 20-m

subplots

Estimate Standard error df t-value P-value

Initial AGB 0.124 0.015 135.8 8.255 <0.001
AGB loss by mortality

Previous 0.016 0.006 511.7 2.819 0.005

Current -0.016 0.006 481.0 —2.782 0.006
Topographic unit (v. Riparian)

Denuded slope 0.023 0.047 109.3 0.501 0.618

Terrace -0.018 0.039 109.0 —0.461 0.646
Measurement period (v. 2000-2003)

2004-2007 —-0.050 0.015 442.1 —3.301 0.001

2008-2011 0.038 0.015 445.1 2.514 0.012

2012-2015 —0.005 0.015 450.5 —0.327 0.743

2016-2019 0.040 0.015 4559 2.606 0.009

All explanatory variables were standardized except for categorical variables (i.e., topographic unit and
measurement period)
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Fig.4 Local-scale aboveground
biomass (AGB) gain per 4-year
measurement period in relation

Color:
AGB loss in the previous
measurement period

°
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Table 4, Resglts of tl}e Estimate Standard error df t-value P-value
generalized linear mixed-effect
H;?del (III:?dQ %) testing the Initial AGB 0.124 0.015 137.9 8.294 <0.001
ef ects of initial aboveground AGB loss by mortality
biomass (AGB), canopy gap
formation, topographic unit, and Previous 0.016 0.006 508.0 2.925 0.004
climate (mean air temperature) Current -0.014 0.006 481.7 —-2.550 0.011
of each rnea.sur.ernent period on Topographic unit (v. Riparian)
gﬁ) 3&? gain in 20-mx20-m Denuded slope 0.023 0.047 109.4 0.498 0.619
Terrace -0.018 0.038 109.1 -0.462 0.645
Mean air temperature
Previous autumn —0.040 0.007 443.0 —5.865 <0.001
Current summer 0.040 0.007 450.8 5.803 <0.001

All explanatory variables were standardized except for categorical variables (i.e., topographic unit)

influence on local-scale AGB gain. These results suggest
that topography-induced differences in water availability do
not contribute to spatio-temporal variations in AGB gain of
adult trees in KRRF under the recent climate.

We attribute the synchronous increase in AGB among
the topographic units with different tree species composi-
tion primarily to the AGB increment in F. crenata, which is
dominant in all three topographic units (Table 2). A growing
abundance of F. crenata has been documented in several
stable old-growth forests (Seiwa et al. 2013; Yamamoto and
Nishimura 1999). Increases in both AGB and stem density
of F. crenata in KRRF may be due to lack of remarkable
disturbance even in the riparian unit during the study period.
In the riparian unit, however, the contribution of F. crenata
to the AGB increment is lower than in other topographic
units, partially due to the smaller initial dominance of this
species. Instead, Pterocarya rhoifolia, a riparian specialist of
cool-temperate forests in Japan (Sakio et al. 2002), made the
largest contribution to the stand AGB increment (Table 2).
Despite the substantial decline in its stem density (Table S1),
its AGB at the end of the study period was 3 times the initial
value. It is likely that the fast growth of P. rhoifolia (Sakio
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1993) is associated with its rapid increase in AGB. Although
AGB decreased in some species such as Z. serrata and U.
laciniata in the riparian unit, P. rhoifolia compensated for
the decrease and resulted in the stand-level AGB increase.
Mortality is the major cause of reduced growth or decline
in AGB (Schuster et al. 2008; Xu et al. 2012). Although
large disturbances such as strong typhoons, insect outbreaks,
or severe flooding in the riparian unit were not recorded
during the 26 years, the loss of AGB in KRRF varied
substantially among the topographic units and among the
4-year measurement periods (Fig. 3). These variations were
explained mainly by the spatio-temporal variation in mor-
tality of large trees. A significant contribution of large-tree
mortality to the AGB loss has also been reported in other
old-growth forests (Hoshizaki et al. 2004). A large amount
of AGB loss in 2012-2015 is due to the mortality of larger-
sized trees in this period (Mahoko Noguchi and Kazuhiko
Hoshizaki unpublished data). Despite these temporal and
spatial variations, the AGB loss generally remained smaller
than the AGB gain, bringing about a positive change in AGB
in most of the measurement periods. The temporal change of
stand-level AGB appears to be inconsistent with the assumed
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long-term balance between biomass loss caused by canopy
gap formation and subsequent gain during gap recovery.

In contrast to AGB loss, temporal fluctuations in AGB
gain tended to synchronize across the topographic units at
the stand scale (Fig. 3). The results of model 1 indicate that
local-scale AGB gain also differed among measurement
periods even after adjustment for initial AGB and distur-
bance during each period (Table 3). As expected, initial
AGB positively influenced local-scale AGB gain (Fig. 4).
Larger AGB loss in the previous measurement period caused
greater AGB gain, suggesting that variations in local-scale
AGB gain are partially explained by recovery in and around
canopy gaps. Local-scale AGB gain also substantially dif-
fered among the measurement periods. The results of model
2 suggest that the observed temporal variations in AGB gain
are caused by climatic factors: a warmer current summer had
positive effects whereas a warmer previous autumn had neg-
ative effects on AGB gain (Table 4). The positive response
of tree growth rates to high temperature in the growing sea-
son has been reported in deciduous broadleaved species in
cool-temperate forests in northern Japan (Hiura et al. 2019).
In KRREF, this response is consistent with that of individual-
based annual tree growth (Matsushita et al. manuscript in
preparation), which often shows considerable inter-annual
variations (Ohtsuka et al. 2009) in response to climatic fac-
tors (Nabeshima et al. 2010). The negative effect of warmer
previous autumn on annual tree growth of deciduous broad-
leaved species is also found in KRRF (Matsushita et al.
manuscript in preparation) and in a cool-temperate forest
in central Japan (Shen et al. 2020). Also, over the Northern
Hemisphere, autumn warming causes a larger increment in
respiration than in photosynthesis and leads to net carbon
loss (Piao et al. 2008).

Our models incorporating mean air temperature explained
a considerable amount of variation in local AGB gain,
although the analysis did not include other potential fac-
tors that enhance tree growth such as change in precipitation
(Hiura et al. 2019). Both the summer and autumn tempera-
tures at the weather station nearest to KRRF have shown
a substantial rise over the past 40 years (Fig. S1). As the
positive and negative effects of summer and autumn tem-
peratures were equivalent in absolute size (Table 4), the
influences of summer and autumn warming on AGB growth
appeared to be counteracting. Therefore, the observed steady
AGB increase in KRRF is not fully explained by decadal
trends of warming. The simulation results of European tem-
perate forests show that elevated CO, concentrations and
nitrogen deposition underpins current high stand growth
under the recent climate (Pretzsch et al. 2014). Future stud-
ies should consider these global and regional environmental
factors, and include cool-temperate forests with a broader
temperature range to improve our understanding on biomass
accumulation in this type of forests under climate change.
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