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Abstract
To obtain accurate spatially continuous reflectance from Unmanned Aerial Vehicle (UAV) remote sensing, UAV data needs 
to be integrated with the data on the ground. Here, we tested accuracy of two methods to inverse reflectance, Ground-UAV-
Linear Spectral Mixture Model (G-UAV-LSMM) and Minimum Noise Fraction-Pixel Purity Index-Linear Spectral Mixture 
Model (MNF-PPI-LSMM). At wavelengths of 550, 660, 735 and 790 nm, which were obtained by UAV multispectral obser-
vations, we calculated the canopy abundance based on the two methods to acquire the inversion reflectance. The correlation 
of the inversion and measured reflectance values was stronger in G-UAV-LSMM than MNF-PPI-LSMM. We conclude that 
G-UAV-LSMM is the better model to obtain the canopy inversion reflectance.
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Introduction

The basis of quantitative remote sensing is acquiring accu-
rate reflectance (Jin et  al. 1986). Although reflectance 
measured by ground hyperspectrometer has higher preci-
sion (Du et al. 2011; Lee et al. 2004; Maire et al. 2004; 
Wei et al. 2017), it is only discrete single point data. We 
need accurate reflectance for spatially continuous regions. 
Unmanned Aerial Vehicle (UAV) remote sensing is widely 
used in agricultural quantitative remote sensing monitoring 
for spatially continuous regions. Because it is important to 

acquire accurate reflectance for UAV remote sensing, the 
UAV sensor reflectance accuracy needs improvement.

Decomposition of mixed pixels is a vital method for 
improving the accuracy of reflectance. Endmember is an 
important component of spectral mixture model. At pre-
sent, endmember extraction algorithms mainly include 
minimum noise fraction method, pure pixel index method, 
principal component transformation method, field measure-
ment method, model simulation method and so on (Adams 
et al. 1995; De Asis and Omasa 2007; Dennison and Rob-
erts 2003; Hu et  al. 2004; Townshend et  al. 2000; Zhu 
2005). Many studies applied Multiple Endmember Spectral 
Mixture Analysis (MESMA) on remote sensing images, 
and allowed a linear combination of endmembers to vary 
in number and type on each pixel to explore the optimal 
endmember combination (Degerickx et al. 2019; Dennison 
and Roberts 2003; Fan 2015; Fernández-Manso et al. 2012; 
Quintano et al. 2013; Thorp et al. 2013). Some researchers 
(Cai 2010; Gu et al. 2007) extracted endmember spectrum 
of remote sensing images by Minimum Noise Fraction-Pure 
Pixel Index (MNF-PPI) method. Shanmugam et al. (2006) 
used endmember extraction algorithm to obtain endmember 
spectral characteristics of three kinds of ground objects after 
classification of ground objects from Indian remote sens-
ing satellite IRS image and Landsat 5 TM image, including 
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vegetation, soil and water. Bian et al. (2014) derived each 
endmember from HJ satellite images by an adaptive selec-
tion endmember method.

Previous studies have extracted the spectral reflectance 
of the endmember from the satellite remote sensing images, 
or used the spectral mixture models to integrate the ground 
and satellite remote sensing data (Wang et al. 2012, 2013). 
However, the ground measured data was not used to inte-
grate the UAV remote sensing data for reflectance inversion.

We chose the apple orchard as the research district, as 
apple cultivation is widespread in China (An et al. 2019; 
Fang et al. 2019; Han et al. 2019). We explored a better 
method for improving the inversion accuracy of apple tree 
canopy reflectance by comparing Minimum Noise Fraction-
Pure Pixel Index-Linear Spectral Mixture Model (MNF-
PPI-LSMM) and Ground-Unmanned Aerial Vehicle-Linear 
Spectral Mixture Model (G-UAV-LSMM), which were the 
two representative methods of mixed pixel decomposition 
with G-UAV integrated remote sensing data and only UAV 
remote sensing data.

Materials and methods

Study area

The study was executed outdoors in an apple orchard in 
Yedian town, Mengyin county, Linyi city, Shandong Prov-
ince (Fig. 1) in eastern China on 10th, June 2019. Mengyin 
county is located in the central and southern of Shandong. 
The geographical scope is 117°45′—118°15′ E, 35°27′ 
—36°02′ N, belonging to a temperate continental monsoon 
climate.

Experimental design

The data sources of the research were ground hyperspectral 
data and UAV multispectral data. The acquiring processing 
for the data is the following.

(1) Radiometric calibration was performed on the calibra-
tion board (whose reflectance is 1) of Sequoia sensor before 
flying. Low-altitude UAV was used for aerial photography, 
and four control points were set at four corners of the sam-
pling area.

(2) 15 sample squares of 5 m × 5 m were arranged in 
the sampling area (50 m × 50 m) randomly. We located the 
coordinates of the center points of the sample squares. The 
multispectral images were taken with mosaic and radiomet-
ric calibration. Then the image was geometrically corrected 
using GPS coordinates of the four control points. The 15 
sample squares were located on the UAV image to obtain 
multispectral reflectance.

(3) For each sample square, the apple tree canopy near the 
central point was selected to collect the canopy spectrum on 
the ground. The four spectrums of bare soil on the ground 
were measured at the north, south, west and east of the apple 
tree canopy. The average reflectance of 15 apple tree canopy 
samples and the 60 bare soil samples were taken as the end-
member of apple tree canopy and bare soil. The reflectance 
of 15 apple tree canopy samples were used to validate the 
inversion reflectance.

UAV remote sensing data acquisition 
and preprocessing

We used the Dajiang Matrice 600 Pro UAV to carry the 
sensor, and a Parrot Sequoia Multispectral Camera, for 
aerial photography. There were four multispectral bands, 
including green band (GRE: 530–570 nm), red band (RED: 
640–680 nm), red edge band (REG: 730–740 nm) and near-
infrared band (NIR: 770–810 nm). The four center wave-
lengths of the bands were 550, 660, 735 and 790 nm. The 
flying altitude was 50 m. The multispectral remote sens-
ing image was of the coordinates of WGS-84. The ground 
spatial resolution of the multispectral image was 5 cm. A 
total of 292 multispectral images of the aerial photography 
area were obtained. Pix4D software was used to take mosaic 

Fig. 1  Location of the study area. a Location of Linyi City in Shandong Province. b Location of study area in Yedian Town, Mengyin County. c 
Image of study area acquired by UAV. The green dots represent the sampling points
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and radiate the multispectral images to obtain multispectral 
images with surface mixed reflectance data.

Acquisition of ground hyperspectral data

During UAV aerial photography, the spectral collection of 
apple tree canopy was conducted by FieldSpec4 (ASD Inc., 
USA). The spectral range of FieldSpec 4 is 350–2500 nm. 
Between 350 and 1000 nm, the spectral sampling interval 
is 1.4 nm and the spectral resolution is 3 nm. Between 1000 
and 2500 nm, the sampling interval is 2 nm and spectral 
resolution is 8 nm.

The determination time was 10:00–12:00. The weather 
was clear and cloudless. We optimized the reflectance of 
the UAV images with a standard whiteboard (a reference 
with the reflectance of 1). During the canopy spectral meas-
urement, the measuring probe was aligned downward verti-
cally, so that the probe center was above the canopy directly, 
where the vertical height was 1.5 m from the top of canopy. 
According to the appropriate adjustment of canopy size, 
the field of view was 25°. We carried out the spectral data 
acquisition 5 times at each canopy sample (5 m × 5 m) with 
its average as reflectance of the canopy sample. When deter-
mining the spectrum of bare soil, we ensured that the probe 
center was directly above the target at 1.5 m. According to 
the target size, the field of view was also 25°. We collected 
five times at each bare soil sample for spectral data, with its 
average as the reflectance of the bare soil sample.

Mixed pixel decomposition method

Mixed pixel decomposition is the process where we research 
the composition and proportion of mixed pixels by remote 
sensing images, including endmember extraction and abun-
dance inversion. Endmember extraction refers to determin-
ing the basic features that make up the mixed pixel, and 
abundance inversion refers to calculating the proportion of 
each basic feature in the mixed pixel (De Asis and Omasa 
2007). The inversion reflectance can be defined as the prod-
uct of the spectral reflectance of different endmember com-
ponents and their abundance (Wang et al. 2012). G-UAV-
LSMM took the measured hyperspectral data of canopy and 
bare soil as the endmember, and then we used LSMM for 
abundance inversion to obtain the G-UAV-LSMM canopy 
inversion reflectance. MNF-PPI-LSMM can distinguish 
canopy and bare soil by visual interpretation. The endmem-
ber reflectance of the canopy and bare soil, whose PPI val-
ues are the maximum value, can be extracted by MNF-PPI 
method, respectively. Then, we used the LSMM for abun-
dance inversion to obtain MNF-PPI-LSMM canopy inver-
sion reflectance.

G‑UAV‑LSMM

To unify the hyperspectral data obtained by the ground spec-
trometer with the multi-spectral image data of the low-altitude 
UAV, we selected the measured hyperspectral data at wave-
lengths of 550, 660, 735 and 790 nm. We took the linear mixed 
pixel decomposition for the average surface mixed reflectance 
( �a ) of each band at every sample square by the measured 
canopy and bare soil endmember reflectance at these wave-
lengths. G-UAV-LSMM canopy inversion reflectance ( �b ) was 
obtained with the multiple of the abundance and the canopy 
endmember spectrum. The formula of LSMM (Liu and Yao 
2009) is:

In formula (1), ri is the surface mixed reflectance. �ij is 
the weight of ej in ri , which is called abundance. ej is the 
endmember spectral reflectance. εj is the error term, which 
reflects the random noise of the data. The physical meaning 
of �ij is the area ratio of the jth endmember in the ith pixel. m 
is the total number of endmembers. Therefore, the constraint 
conditions should be followed, as shown in formula (2–3):

MNF‑PPI‑LSMM

Each wavelength of UAV multispectral remote sensing image 
was taken with the MNF-PPI processing, and the canopy and 
bare soil endmember spectral reflectance was obtained. We 
took the linear mixed pixel decomposition for the surface 
mixed reflectance of each band at every sample square using 
these canopy and bare soil spectral reflectance, then we got the 
canopy abundance value of every sample square. The canopy 
abundance value multiplied by canopy endmember spectral 
reflectance of each sample square was MNF-PPI-LSMM 
canopy inversion reflectance ( �c).

The researchers (Green et al. 1988; Lee et al. 1990) took 
MNF conversion and then modified it. The high-pass filter 
template is used to filter the whole image data block with the 
same quality, and the noise covariance matrix CN is obtained, 
which is diagonally transformed into the matrix DN.

(1)ri =

m
∑

j=1

�ijej + εj

(2)�ij ≥ 0,∀i, j

(3)
m
∑

j=1

�ij = 1, i = 1, 2, ..., n

(4)DN = UTCNU
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In formula (4), DN is the diagonal matrix whose eigenvalues 
of CN are arranged in descending order. U is an orthogonal 
matrix of eigenvectors.

In formula (5–6), I is the identity matrix. P is the transfor-
mation matrix. When P is applied to the image X , the origi-
nal image is projected into the new space through Y = PX 
transformation. The noise has unit variance and is not corre-
lated among the bands in the generated transformation data. 
Standard principal component transformation is performed 
on noise data.

In formula (7), CD is the covariance matrix of image. CD−adj 
is the matrix after P transformation, which is further diago-
nalized to the matrix DD−adj.

In formula (8), DD−adj is the diagonal matrix whose eigen-
values are arranged in descending order by CD−adj . V  is 
an orthogonal matrix of eigenvectors. Through the above 
two steps, the transformation matrix TMNF is obtained, 
TMNF = PV .

The reflectance of apple tree canopy and bare soil pixel 
with the highest PPI values in various quadrates was used to 
represent the reflectance of canopy and bare soil endmem-
ber through MNF processing. Then the LSMM was used to 
inverse the abundance. The formula and constraint condi-
tions of LSMM are the same as formulas (1–3).

Inversion accuracy evaluation

The determination coefficient (R2), Root Mean Square Error 
(RMSE) and Residual Prediction Deviation (RPD) are used 
to evaluate the reflectance accuracy of canopy inversion. 
R2 is the measure of the degree of correlation between 
variables, which determines the degree of correlation. The 
larger R2 is, the closer the predicted value is to the meas-
ured value. RMSE is used to measure the deviation between 
the predicted value and the measured value. The less the 
RMSE is, the better the prediction effect is. RPD is an effec-
tive indicator to judge the prediction effect of the model. 
SD is standard deviation. When RPD > 2, it indicates that 
the model has a good effect and can be used for quanti-
tative analysis. When 1.8 < RPD < 2.0, it indicates that the 
model is effective and can be used for quantitative estima-
tion. When 1.4 < RPD < 1.8, it indicates that the model can 
roughly estimate the sample. When RPD < 1.4, the model 

(5)I = PTCNP

(6)P = UD
−1∕2

N

(7)CD−adj = PTCDP

(8)DD−adj = VTCD−adjV

is less effective (Gaston et al. 2010). Formula (9–12) is the 
calculation formula of each indicator:

In the formula (9–12), x is the measured canopy reflectance. 
x is the average measured canopy reflectance. y is the inver-
sion reflectance.y is the average inversion reflectance. N is 
the amount of samples. i is the number of the samples.

Results

Figure 2 refers to the average ground hyperspectral and UAV 
multispectral curves of the 15 canopy samples, which reflect 
their spectral characteristics. As can be seen from Fig. 2, the 

(9)R2 =

(
N
∑

i=1

(yi − y)(xi − x))2

N
∑

i=1

(yi − y)2
N
∑

i=1

(xi − x)2

(10)RMSE =

√

√

√

√
1

N

N
∑

i=1

(yi − xi)
2

(11)RPD =
SD

RMSE

(12)SD =

√

√

√

√
1

N − 1

N
∑

i=1

(xi − x)2

Fig. 2  Apple tree  canopy average hyperspectral and multispectral 
curves
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hyperspectral curve has an absorption valley at 690 nm, and 
the reflectance increases at 735 nm sharply, while it is rela-
tively stable at 760—790 nm. The multispectral curve shows 
a trend of decline from 550 to 660 nm. The reflectance rises 
gradually from 660 to 735 nm. There is an obvious absorp-
tion valley at 660 nm because of the strong absorption to the 
red band. The curve presents an increasing tendency from 
735 to 790 nm, owing to the strong reflection of the near 
infrared band. Through the comparison for the hyperspectral 
and multispectral curves, it is found that the hyperspectral 
curve can reflect the continuous spectral characteristics, and 
the multispectral curve is a line connected by discrete points.

Splicing and radiometric calibration of the multispectral 
image were both completed in Pix4D software. Then �a was 
obtained directly, and we used �a to inverse reflectance based 
on G-UAV-LSMM and MNF-PPI-LSMM. We obtained the 
measured canopy and bare soil endmember spectral reflec-
tance by the ground spectrometer. They were selected at the 
central wavelengths of 550, 660, 735 and 790 nm. Figure 3a 
shows the canopy abundance of each pixel obtained by the 
G-UAV-LSMM method. The results show that the canopy 
abundance value is higher at the top of the tree canopy, while 
the canopy abundance value is lower at the edge of the tree 
canopy, which is caused by the greater influence of bare soil 
spectrum on the edge. The G-UAV-LSMM canopy inver-
sion reflectance is the measured hyperspectral reflectance 
selected at the central wavelengths of the UAV multispectral 
data multiplied by the abundance �.

We used the MNF-PPI method to obtain the canopy and 
bare soil endmember spectral reflectance from the multi-
spectral image. Figure 3b shows the canopy abundance val-
ues of each pixel obtained by MNF-PPI-LSMM method. 

The results show that the canopy abundance value at the 
top of the canopy was higher, but the canopy abundance 
value at the edge of the canopy was lower, which was caused 
by the great influence of bare soil spectrum on the edge. It 
is consistent with the law of the canopy abundance value 
obtained by the G-UAV-LSMM method. The MNF-PPI-
LSMM canopy inversion reflectance is canopy abundance � 
multiplied by ej , of which PPI is the highest.

Figure 4a–d are 1:1 scatter plots between the measured 
and inversion reflectance values based on G-UAV-LSMM 
method at central wavelengths of 550, 660, 735 and 790 nm, 
respectively. The results show that the R2 of fitting equa-
tion composed by measured reflectance ( � ) and �b are 0.845, 
0.869, 0.861 and 0.871. The RMSE are 0.005, 0.007, 0.017 
and 0.025. The RPD are 2.432, 1.891, 2.507 and 2.275 by 
the G-UAV-LSMM method, respectively.

Figure 5a–d are the 1:1 scatter plots of the measured and 
predicted canopy reflectance values based on MNF-PPI-
LSMM method at the central wavelength of 550, 660, 735 
and 790 nm respectively. The results show that the R2 of fit-
ting equation composed by � and �c are 0.709, 0.728, 0.760 
and 0.794. The RMSE are 0.012, 0.010, 0.024 and 0.042. The 
RPD are 1.013, 1.324, 1.776 and 1.354 by the MNF-PPI-
LSMM method. The comparison shows that G-UAV-LSMM 
can better inverse the canopy reflectance of apple trees.

Discussion

The surface mixed reflectance mentioned in this study was 
the reflectance of radiance values of multispectral image 
after radiometric calibration. Canopy inversion reflectance 

Fig. 3  Canopy abundance based on a G-UAV-LSMM and b MNF-PPI-LSMM
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is the canopy reflectance obtained after mixed pixel decom-
position (Wang et al. 2012, 2013), including the canopy 
inversion reflectivity obtained by MNF-PPI-LSMM and 
G-UAV-LSMM methods. In this study, the reflectance inver-
sion methods were mixed pixel decomposition methods.

This research introduced the canopy reflectance inversion 
method, G-UAV-LSMM, which integrated the ground hyper-
spectral and UAV remote sensing data. Its accuracy was 
higher than that of MNF-PPI-LSMM, because it obtained 
the endmember spectrum through the ground hyperspec-
tral data. The PPI algorithm used the spectral reflectance 
with maximum PPI as components. PPI algorithm accuracy 
depended on the endmember spectrum which was chosen 
(Zeng et al. 2009). The accuracy of PPI was affected by the 
phenomenon of the different spectrum in the same kind of 
item, which led to the lower accuracy of canopy inversion 
reflectance obtained by the MNF-PPI-LSMM method.

The accuracy of canopy inversion reflectance is affected 
by soil background (Liu et al. 2018). At the same time, the 
inversion of canopy reflectance taken by the G-UAV-LSMM 
method requires the support of the measured hyperspectral 
data on the ground. Because of the limitation of actual con-
ditions, it is impossible to obtain the measured hyperspectral 
reflectance of all locations in the aerial photography area. 

Therefore, the most representative sites in the aerial pho-
tography area, such as the four corners and center point, 
are selected to obtain the measured average hyperspectral 
reflectance data of the canopy and bare soil as the endmem-
ber spectral reflectance of all pixels of the study area. Every 
time we get UAV multispectral images, we should obtain the 
measured ground reflectance data of the canopy and bare 
soil as the endmember spectrum on the most representative 
sites of the aerial photography area. The aim is to make sure 
that the endmember spectrum can represent the canopy and 
bare soil spectrum for each aerial photography area.

Our study also had some shortcomings. It did not con-
sider the influence of the spectral resolution of UAV mul-
tispectral and ground measured hyperspectral data on the 
G-UAV-LSMM model. It ignored the influence of cloud, 
which needs further research to be incorporated to the 
model. Also, we need to study how the difference in spectral 
resolution and the sky condition affect the inversion accu-
racy. With the improvement of the related technologies and 
parameters, the inversion accuracy will be improved. More 
accurate canopy reflectance data will be obtained by G-UAV 
remote sensing data.

Fig. 4  1:1 scatter plots of meas-
ured and inversion reflectance 
based on G-UAV-LSMM at 
wavelengths of a 550 nm, b 
660 nm, c 735 nm and d 790 nm
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Conclusion

We explored the integrating method of ground and UAV 
remote sensing data to inverse the canopy reflectance. The 
accuracy of the canopy inversion reflectance obtained by 
G-UAV-LSMM was higher than that of MNF-PPI-LSMM at 
the central wavelengths of 550, 660, 735 and 790 nm. There-
fore, G-UAV-LSMM had a better effect on the reflectance 
inversion for apple tree canopy.
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