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Abstract
Nitrogen (N) resorption from senescing leaves enables plants to reuse N, thereby making them less dependent on current 
N uptake from the environment. Therefore, N resorption is important for survival and fitness, particularly for plants grow-
ing under low N supply. We studied N resorption from senescing leaves of 25 legumes and 25 nonlegumes in a temperate 
region of Japan to test the hypothesis that high N resorption has not evolved in legumes that fix atmospheric N2. The extent 
of N resorption was quantified by N resorption proficiency that is measured as the level to which leaf N concentration was 
reduced during senescence, i.e., the lower the senesced leaf N concentration, the lower the N loss through leaf fall and 
higher the N resorption proficiency. In support of the hypothesis, senesced leaf N concentration was higher in legumes 
than in nonlegumes, but there was considerable overlap between the groups. The higher senesced leaf N concentration of 
legumes was associated with a lower proportion of leaf N resorbed during senescence, particularly in species with higher 
leaf N concentrations. According to a hierarchical partitioning analysis, there was a large contribution of species to the total 
variance in the senesced leaf N concentration as opposed to a minor contribution of functional group (legume/nonlegume). 
This study reveals that legumes are not proficient at resorbing N from senescing leaves but that N2-fixation might not be the 
single most important determinant of N resorption.

Keywords  Biological N2-fixation · Hierarchical partitioning analysis · Leguminosae · Nitrogen resorption efficiency · 
Nitrogen resorption proficiency

Introduction

Nitrogen (N) resorption from senescing leaves is an adap-
tive strategy of plants for N conservation. It enables plants 
to reuse N, thereby making them less dependent on current 
N uptake from the environment, leading to a higher growth, 
survival, and fitness, particularly under low N supply. Nitro-
gen resorption also plays a role in influencing ecosystem N 
cycling as N that is not resorbed returns to soils later on as 
litterfall and fertilize ecosystems. The extent of N resorption 
from senescing leaves has been quantified by the N concen-
tration in senesced leaves; the lower the N concentration in 
the senesced leaves, the lower the N loss through leaf fall 
and higher the N resorption proficiency (Killingbeck 1996). 
Many researchers have investigated the relationship between 
senesced leaf N concentration and soil fertility, most of them 
reporting that the senesced leaf N concentration was lower 
in species growing in N-poor environments than species 
growing in N-rich environments (e.g., del Arco et al. 1991; 
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Drenovsky et al. 2019; Hayes et al. 2014; Lal et al. 2001; 
Rejmánková 2005). Thus, natural selection for N conserva-
tion may have acted to reduce N concentration in senesced 
leaves (Killingbeck 1996).

These observations have led to the hypothesis that legume 
(Fabaceae) species that form root nodules and are capable of 
fixing atmospheric N2 have not evolved efficient N resorp-
tion, if the energetic cost of resorbing leaf N is higher than 
that of fixing atmospheric N (Killingbeck and Whitford 
2001). The tendency for N concentration of green leaves 
to be higher in legumes than in nonlegumes was reported 
in literature data compilations (Adams et al. 2016; Water-
man 1994) while no consistent difference has been found in 
the proportion of N resorbed from their green leaves dur-
ing senescence (Hayes et al. 2014; Norris and Reich 2009). 
Therefore, it is expected that N concentration in senesced 
leaves is higher in legumes than in nonlegumes. However, 
there has been mixed support for the hypothesis (e.g., 
Chuyong et al. 2000; Hayes et al. 2014; Inagaki et al. 2011; 
Killingbeck and Whiford 2001; Lal et al. 2001; Liang et al. 
2015; Norris and Reich 2009; Yuan et al. 2005), which may 
be attributable partly to the small number of legume species 
studied.

Biological categories such as growth habit or taxon also 
can be the predictor variables which affect N resorption from 
senescing leaves (Drenovsky et al. 2019; González-Zurdo 
et al. 2015; Norris and Reich 2009; Vergutz et al. 2012; 
Yuan and Chen 2009). It would be particularly interesting 
to see if N resorption is different among legume subfami-
lies. As far as is known, most species of subfamilies Papil-
ionoideae and Mimosoideae form N2-fixing root nodules, 
whereas very few species of subfamily Caesalpinioideae are 
known to nodulate1 (de Faria et al. 1989; Doyle 1998; Sprent 
2001). If the availability of N is different among the sub-
families, they may exhibit different extents of N resorption, 
leading to a large variation in N resorption within the group.

In this study, we investigated N resorption from senescing 
leaves of 25 legumes and 25 sympatrically growing non-
legumes in a temperate region of Japan. The samples were 
collected from relatively small areas, thereby minimizing 
potential influence of climates on N resorption. Our aim was 
to test the following hypotheses: (1) senesced leaf N con-
centration is higher (i.e., N resorption proficiency is lower) 
in legumes than in nonlegumes. (2) The higher N concen-
tration in senesced leaves of legumes is associated with a 
higher N concentration in green leaves. In addition, the rela-
tive importance of functional group (legume/nonlegume), 

legume subfamily, species and growth habit to senesced leaf 
N concentration was explored using a hierarchical partition-
ing approach.

Materials and methods

Selection of species and sites

Study sites were chosen to include legume species that are 
common in temperate regions in Japan (Table 1). Most spe-
cies in papilionoid and mimosoid subfamilies are known 
to nodulate. For the caesalpinioid species, previous reports 
found no nodulation, with the exception of Chamaecrista 
nomame (Doyle and Luckow 2003; Sprent 2001), which is 
consistent with our field observation of the roots in these 
species. Nonlegume species that grew sympatrically with the 
legume species and varied in growth habit and phylogenetic 
position were chosen (Table 1). In this paper, plant system-
atics follows Yonekura and Kajita (2003). All wild species, 
with the exceptions of Glycine max subsp. soja and Senna 
obtusifolia, were sampled at road verges, abandoned fields, 
riparian forests, and shaded understory and edges of second-
ary deciduous forests. G. max subsp. soja and S. obtusifolia 
were obtained from an experimental garden at Ibaraki Uni-
versity. Crop species were raised at the experimental gar-
den following standard agronomic practice in this region. 
For G. max subsp. max, Phaseolus vulgaris, Psophocarpus 
tetragonolobus, Vigna angularis var. angularis, Cucurbita 
maxima, Raphanus sativus var. hortensis, Spinacia olera-
cea, the seeds were sown in germination trays, and the seed-
lings were transplanted to a plowed field. The remaining 
two crops (Apios americana and Colocasia esculenta) were 
raised from tubers in the field. All crops were grown under 
full sunlight and were watered and sprayed with insecticides 
whenever necessary. The mean annual air temperature taken 
at a meteorological observatory at Mito, Ibaraki (36° 23ʹN, 
140° 28′E) was 14.8 °C in 2015, 14.8 °C in 2016 and 15.5 °C 
in 2017. The annual precipitation was 1227 mm, 1426 mm 
and 1103 mm, respectively.

Leaf sampling and nitrogen measurements

Leaves that were discolored (often brown, yellow and red 
in color) and detached easily from the plants by gentle 
flicking were defined as “fully senescent” for the major-
ity of study species, and collected from various positions 
within the leaf canopy. For Adenocaulon himalaicum, 
Colocasia esculenta, Commelina communis, Miscanthus 
sinensis, Raphanus sativus var. hortensis and Spinacia 
oleracea, leaves that were discolored and apparently phys-
iologically disconnected from the plants were cut off with 
scissors and collected. Leaves presenting any symptoms 

1  Recently, a new subfamilial classification of Fabaceae was pro-
posed (Azani et al. 2017), but in this study, we adopt the traditional 
classification system in which the information on difference in nodu-
lation status among subfamilies is well organized.
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Table 1   The 25 legume (Fabaceae) species and the 25 non-legume species used in this study, along with their family, legume subfamily, growth 
habit, sampling site, year of sampled and the number of leaves sampled

Species Family Legume subfamily Growth habit Site Year sampled No. of 
green 
leaves

No. of 
dead 
leaves

Albizia julibrissin Durazz. Fabaceae Mimosoideae Tree 1 2015–2017 13 15
Amorpha fruticosa L. Fabaceae Papilionoideae Shrub 2 2015–2017 20 20
Apios americana Medik. Fabaceae Papilionoideae Herb 3 2016–2017 6 8
Caesalpinia decapetala (Roth) Alston var. 

japonica (Siebold et Zucc.)
Fabaceae Caesalpinioideae Shrub/liana 1 2015–2017 11 16

Caragana sinica (Buc’hoz) Rehder Fabaceae Papilionoideae Shrub 4 2015–2016 12 16
Cercis chinensis Bunge Fabaceae Caesalpinioideae Tree 4 2015–2017 15 10
Chamaecrista nomame (Makino) H.Ohashi Fabaceae Caesalpinioideae Herb 2 2016–2017 8 7
Desmodium paniculatum (L.) DC. Fabaceae Papilionoideae Herb 2 2015–2017 10 10
Dumasia truncata Siebold et Zucc. Fabaceae Papilionoideae Herb 5 2016–2017 7 9
Euchresta japonica Hook.f. ex Maxim. Fabaceae Papilionoideae Shrub 6 2015 9 9
Gleditsia japonica Miq. Fabaceae Caesalpinioideae Tree 7 2015–2017 14 17
Glycine max (L.) Merr. subsp. max (cv. 

Tachinagaha)
Fabaceae Papilionoideae Herb 3 2015–2017 15 14

Glycine max (L.) Merr. subsp. soja (Siebold 
et Zucc.) H.Ohashi

Fabaceae Papilionoideae Herb 3 2015–2017 10 14

Indigofera pseudotinctoria Matsum. Fabaceae Papilionoideae Shrub 2 2015–2017 15 13
Lespedeza bicolor Turcz. Fabaceae Papilionoideae Shrub 2 2015–2017 10 14
Lespedeza cuneata (Dum.Cours.) G.Don Fabaceae Papilionoideae Herb 2 2015–2017 13 10
Lespedeza pilosa (Thunb.) Siebold et Zucc. Fabaceae Papilionoideae Herb 2 2016–2017 6 6
Phaseolus vulgaris L. (cv. Kentucky Wonder) Fabaceae Papilionoideae Herb 3 2015–2017 13 6
Psophocarpus tetragonolobus (L.) DC. Fabaceae Papilionoideae Herb 3 2015–2017 15 12
Pueraria lobata (Willd.) Ohwi Fabaceae Papilionoideae Shrub/liana 2 2015–2017 18 18
Robinia pseudoacacia L. Fabaceae Papilionoideae Shrub 8 2015–2017 17 16
Senna obtusifolia (L.) H.S.Irwin et Barneby Fabaceae Caesalpinioideae Herb 3 2016–2017 10 7
Vigna angularis (Willd.) Ohwi et H.Ohashi 

var. angularis (cv. Tanbadainagon)
Fabaceae Papilionoideae Herb 3 2015–2017 13 13

Vigna angularis (Willd.) Ohwi et H.Ohashi 
var. nipponensis (Ohwi) Ohwi et H.Ohashi

Fabaceae Papilionoideae Herb 1 2015–2017 5 13

Wisteria floribunda (Willd.) DC. Fabaceae Papilionoideae Shrub/liana 5 2015–2017 11 12
Acer crataegifolium Siebold et Zucc. Sapindaceae Tree 5 2015–2017 30 20
Adenocaulon himalaicum Edgew. Asteraceae Herb 7 2017 5 5
Akebia trifoliata (Thunb.) Koidz. Lardizabalaceae Shrub/liana 5 2016–2017 7 5
Aucuba japonica Thunb. var. japonica Aucubaceae Shrub 5 2015–2017 15 16
Calystegia pubescens Lindl. f. major 

(Makino) Yonek.
Convolvulaceae Herb 4 2015 5 6

Camellia japonica L. Theaceae Tree 5 2015–2016 9 10
Carpinus tschonoskii Maxim. Betulaceae Tree 5 2015–2017 19 28
Castanea crenata Siebold et Zucc. Fagaceae Tree 5 2015–2017 13 9
Cerasus jamasakura (Siebold ex Koidz.) 

H.Ohba
Rosaceae Tree 5 2015–2017 10 18

Chenopodium album L. Amaranthaceae Herb 4 2015–2017 15 13
Colocasia esculenta (L.) Schott (cv. Yatsuga-

shira)
Araceae Herb 3 2016–2017 8 4

Commelina communis L. Commelinaceae Herb 2 2017 5 5
Cornus controversa Hemsl. ex Prain Cornaceae Tree 5 2016–2017 9 7
Cucurbita maxima Duchesne ex Lam. (cv. 

Kurikabocha)
Cucurbitaceae Herb 3 2015–2017 9 4

Daphniphyllum macropodum Miq. Daphniphyllaceae Tree 5 2016–2017 5 9
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of shrinkage and damage by herbivory or other factors, or 
those that had fallen on the ground were avoided. Collec-
tion dates ranged from August to December as the tim-
ing of leaf senescence varied among species. For each 
species, 4–28 fully senesced leaves were collected from 
several clumps or individuals, which were living within a 
0.5 km radius in most cases, for three years (2015–2017, 
Table 1). Fresh green leaves were also sampled from the 
outer canopy between June and August (5–30 leaves per 
species). Care was taken to select fully expanded leaves 
that did not show symptoms of senescence, damage by 
herbivores, or any disease.

Leaf blades (hereafter “leaves”) were scanned on a flat-
bed scanner (GT-X750, Seiko Epson Corporation, Nagoya, 
Japan) and their projected area was measured with an image-
processing software (Image J, National Institutes of Health, 
Maryland, USA). Leaf samples were weighed after oven-
drying at 70 °C for at least 48 h, and the N concentration 
(mass-based) was determined using an N/C analyzer (Sumi-
graph NC-95A; Sumika-Bunseki, Osaka, Japan). Area-based 
leaf N concentration was calculated by multiplying mass-
based N concentration by leaf dry mass per unit leaf area 
(LMA). Quantification of N resorption using senesced leaf N 
concentration can be confounded by changes in the measure-
ment basis (i.e., leaf mass and area) during leaf senescence. 
A literature survey by van Heerwaarden et al. (2003a) sug-
gested that senescence-related changes in leaf mass were 
particularly large. Thus, to account for senescence-related 
changes in leaf mass, we corrected the mass-based N con-
centration by multiplying it with the mass loss correcting 

factor (m, van Heerwaarden et al. 2003a, Vergutz et al. 
2012):

Senesced leaf N concentration was related to green leaf N 
concentration and the proportion of leaf N resorbed during 
senescence (rN) using the following equation:

Data analyses

Although most statistical analyses assume all observations 
to be independent, interspecific comparisons of N resorption 
could violate this assumption if closely related species have 
similar trait values due to their shared phylogenetic history 
(Felsenstein 1985). In this study, we treated the observations 
for each species to be independent because our preliminary 
analyses did not show significant phylogenetic signals in 
the senesced leaf N concentration (Electronic supplementary 
material 1).

Mean leaf N concentration of each functional group (leg-
ume or nonlegume) was calculated as the sum of the mean 
leaf N concentration of species in each group, divided by 
the number of species. Mean leaf N concentration of each 
subfamily (Papilionoideae or Caesalpinioideae) was calcu-
lated as well; it was not calculated for Mimosoideae as we 

(1)m = 1 −

(

1 −
Dry mass of senesced leaf

Dry mass of green leaf

)

.

(2)

Senesced leaf N concentration

= Green leaf N concentration ×

(

1 − r
N

)

.

Site: 1 road verges, Hitachiohmiya, Ibaraki [36° 36′N, 140° 18′E], 2 road verges, Mito, Ibaraki [36° 25′N, 140° 22′E], 3 an experimental garden, 
Mito, Ibaraki [36° 24′N, 140° 26′E], 4 abandoned fields, Mito, Ibaraki [36° 24′N, 140° 26′E], 5 secondary deciduous forests, Mito, Ibaraki [36° 
25′N, 140° 22′E], 6 secondary decidulus forests, Kamogawa, Chiba [35° 09′N, 140° 08′E], 7 secondary deciduous forests, Shirosato, Ibaraki [36° 
32ʹN, 140° 19′E], 8 riparian forests, Mito, Ibaraki [36° 22′N, 140° 27′E])
Nomenclature follows Yonekura and Kajita (2003)

Table 1   (continued)

Species Family Legume subfamily Growth habit Site Year sampled No. of 
green 
leaves

No. of 
dead 
leaves

Dendropanax trifidus (Thunb.) Makino ex 
H.Hara

Araliaceae Tree 5 2015–2017 8 11

Eurya japonica Thunb. var. japonica Ternstroemiaceae Shrub 6 2015 7 6
Mallotus japonicus (L.f.) Müll.Arg. Euphorbiaceae Tree 1 2015–2017 14 12
Miscanthus sinensis Andersson Poaceae Herb 1 2016–2017 10 10
Padus grayana (Maxim.) C.K.Schneid. Rosaceae Tree 5 2015–2017 5 14
Quercus glauca Thunb. Fagaceae Tree 5 2015–2017 13 13
Quercus myrsinifolia Blume Fagaceae Tree 5 2015–2017 11 15
Raphanus sativus L. var. hortensis Backer 

(cv. Haruyutaka)
Brassicaceae Herb 3 2015–2017 15 16

Solidago altissima L. Asteraceae Herb 1 2015–2017 10 16
Spinacia oleracea L. (cv. Asagiri) Amaranthaceae Herb 3 2015 5 5
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had only one species. Mean leaf N concentration of woody 
(tree, shrub, and liana) and herbaceous species was also cal-
culated for each group. Data on leaf N concentration over the 
years were pooled as we observed no consistent interannual 
trend among species. Welch’s t test was used to compare leaf 
variables (leaf N concentration and LMA) between legumes 
and nonlegumes, Papilionoideae and Caesalpinioideae, and 
woody and herbaceous species. Pearson’s correlation coef-
ficient test was used to find whether senesced leaf N con-
centration varied as a function of green leaf N concentration 
or rN, and the difference in the regression slope between 
functional group was tested using analysis of covariance 
(ANCOVA). All statistical analyses were conducted using 
an open source statistical software R, version 3.5.1 (R Core 
Team 2019).

A hierarchical partitioning analysis was used to deter-
mine the relative importance of four categorical variables 
to senesced leaf N concentration: functional group (legume/
nonlegume), subfamily (Papilionoideae/Caesalpinioideae), 
species and growth habit (woody/herbaceous species). This 
analysis investigated the average increase in the goodness-
of-fit of all models with a particular variable compared with 
the equivalent model without that variable. We specified a 
linear model using a gamma distribution with r2 value as the 
measure of goodness-of-fit. Analyses were carried out using 
the hier.part function in the hier.part package of R (Walsh 
and Mac Nally 2013).

Results

Senesced leaf N concentration per unit mass was signifi-
cantly higher in legumes than in nonlegumes (t = 4.24, 
P < 0.001), but with considerable overlap between the 
functional groups (Fig. 1a). Quantification of N resorption 
using senesced leaf N concentration per unit mass can be 
largely confounded by senescence-related changes in leaf 
mass (see “Materials and methods”), but we found that the 
correction factor (m, Eq. 1) was similar between the leg-
umes (mean ± standard deviation, m = 0.99 ± 0.31) and the 
nonlegumes (m = 0.93 ± 0.26), indicating that the corrected 
values (Fig. 1a) were useful for comparing between the func-
tional groups. The difference between functional groups was 
marginally significant when N concentration was expressed 
on an area basis (t = 1.73, P = 0.090, Fig. 1b). Green leaf N 
concentration was higher in legumes than in nonlegumes 
when expressed on a leaf mass basis (t = 3.63, P < 0.001, 
Fig. 1d), but it was not different between the groups when 
expressed on a leaf area basis (t = 0.16, P = 0.877, Fig. 1e). 
The LMA was lower in legumes than in nonlegumes for both 
senesced leaves (t = − 2.51, P = 0.016, Fig. 1c) and green 
leaves (t = − 3.00, P = 0.005, Fig. 1f).

The senesced leaf N concentration per unit area was 
lower in caesalpinioid species than in papilionoid species, 
but the replication of Caesalpinioideae was low (5 species) 
and the difference was not statistically significant (t = − 0.38, 
P = 0.717, Table 2). Albizia julibrissin, the only species in 
this study belonging to the subfamily Mimosiodeae, showed 
the highest senesced leaf N concentration across all species 
(1.44 g m−2). Senesced leaf N concentration was marginally 
significantly higher in woody than herbaceous species in 
legume (t = − 1.90, P = 0.070), and there was no significant 
difference in nonlegume (t = 0.15, P = 0.886) (Table 3).

Senesced leaf N concentration was positively correlated 
with green leaf N concentration in both legumes (r = 0.54, 
P = 0.006) and nonlegumes (r = 0.49, P = 0.013) (Fig. 2a). 
The slope of the regression line was steeper in legumes than 
in nonlegumes (significant green leaf N concentration-by-
group interaction in ANCOVA, P < 0.001), indicating that 
rN (Eq. 2) was lower in legumes than in nonlegumes when 
species with high leaf N concentration were compared. 
Senesced leaf N concentration negatively correlated with 
rN in both legumes (r = 0.71, P < 0.001) and nonlegumes 
(r = 0.57, P = 0.010), and the slope of the regression line 
was not significantly different between the functional groups 
(P = 0.255, Fig. 2b).

Using hierarchical partitioning to assess the importance 
of each of the four categorical variables (functional group, 
subfamily, species and growth habit) on the total variance 
in senesced leaf N concentration per unit area, we found 
that functional group and subfamily had low independent 
contributions (2.0% and 7.6%, respectively) (Fig. 3). The 
joint contributions of functional group and subfamily were 
3.8% and 9.8%, respectively. The total variance in senesced 
leaf N concentration was largely explained by species (the 
independent and the joint contributions were 89.7% and 
10.3%, respectively), in agreement with the observation that 
the interspecific difference in senesced leaf N concentra-
tion was very large in each functional group (Fig. 1a). The 
independent and the joint contributions of growth habit were 
negligible.

Discussion

Our results supported the hypothesis that legumes retain 
more N in their senesced leaves than nonlegumes do, con-
sistent with the synthesis of existing data from different ter-
restrial biomes worldwide (Drenovsky et al. 2019; Vergutz 
et al. 2012). The present study investigated many sympat-
rically growing species subjected to similar climatic con-
ditions, by which confounding effects of temperature and 
rainfall on N resorption (Yuan and Chen 2009) would have 
been minimized. While we focused on Fabaceae, the third 
largest flowering family, Stewart et al. (2008) studied many 
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actinorhizal species (mostly Alnus) and arrived at the same 
conclusion. Taken together, we conclude that selection pres-
sures for N conservation have been lower in N2-fixing plants 
than in non-N2-fixing plants.

The higher senesced leaf N concentration in legumes was 
associated with a lower proportion of green leaf N resorbed 
during leaf senescence (rN). Some studies also found that 
the rN was lower in legumes than in nonlegumes (Norris 
and Reich 2009; Yuan et al. 2005) but others did not (Finzi 
et al. 2001; Hayes et al. 2014). We further found that the 
difference in rN between functional groups (i.e., the differ-
ence in senesced leaf N concentration between legumes and 
nonlegumes at a given green leaf N concentration, Fig. 2a) 
increased with increasing green leaf N concentration, and 
both the rN and the senesced leaf N concentration were simi-
lar between legumes and nonlegumes when their green leaf 
N concentration was low (see also Electronic supplementary 
material 2). This suggests that N resorption is as critical for 
legumes as nonlegumes when plant N status is poor, and 
may explain the inconsistent results among studies. Occa-
sionally, rN is referred to as “N resorption efficiency” and 
has been used to measure N resorption ability (e.g., Aerts 
1996; Aerts and Chapin 2000), but we analyzed it as an 
explanatory factor of “N resorption proficiency” (senesced 
leaf N concentration, Eq. 2). N resorption proficiency is 
more appropriate for quantifying N resorption because it 
is not subject to the temporal variation in green leaf N con-
centration, and thus to the timing of sampling (Killingbeck 
1996; Kobe et al. 2005; Norris and Reich 2009; van Heer-
waarden et al. 2003b). In addition, previous studies found 
that N resorption proficiency was more responsive to plant 
N status than N resorption efficiency (Killingbeck 1996; 
Oikawa et al. 2017; Ratnam et al. 2008). Thus, we consid-
ered N resorption proficiency as a suitable metric for detect-
ing differences in N resorption ability between legumes and 
nonlegumes.

We found that the extent of N resorption was lower in 
legume species with greater plant N status than other species 
with lower N status, but which steps in a series of N resorp-
tion processes (e.g., degradation of leaf proteins, phloem 
loading and abscission of leaves) are the targets of selection 
remains unclear. Recently, we quantified levels of leaf pro-
tein degradation that occurred preceding N resorption, and 

found that legumes retained more proteins (in particular, the 
cell wall proteins) in their senesced leaves than nonlegume 
did (Ryo Tanabe and Shimpei Oikawa, unpublished results). 
The greater cell wall proteins in senesced leaves were attrib-
utable to the lower protein degradability of legumes, and no 
difference in the cell wall protein in green leaves between 
legumes and nonlegumes was found. Further, the degrada-
bility of other proteins was not different between the groups. 
These observations may suggest that symbiotic N2-fixation 
was less costly than degradation of cell wall proteins, and 
therefore, the rN of legumes was lower, with more N remain-
ing in the senesced leaves.

Senesced leaf N concentration was higher in legumes 
than in nonlegumes, whereas green leaf N concentration 
was not different between functional groups when they were 
expressed on an area basis (Fig. 1b, e). On the other hand, 
the N concentration per unit mass was higher in legumes 
than in nonlegumes for both senesced and green leaves 
(Fig. 1a, d). Adams et al. (2016) also found that the differ-
ence in green leaf N concentration between legumes and 
nonlegumes was more evident when N concentration was 
expressed on a leaf mass basis than on a leaf area basis. 
Area-based and mass-based N concentrations are linked by 
LMA: area-based N concentration = mass-based N concen-
tration × LMA. In the present study, the average LMA was 
lower in legumes than in nonlegumes because 7 of the 25 
nonlegumes had sclerophyllous, evergreen leaves, whereas 
there was only 1 evergreen species among the legumes as 
evergreen legumes were very rare in the study area. The 
lower LMA of the legume species offset the higher mass-
based N concentration, and the area-based N concentration 
was close to that of nonlegumes. Thus, area-based N con-
centration should be interpreted carefully when distribution 
of evergreen species between legumes and nonlegumes is 
uneven.

It should be emphasized that the contributions of species 
to the total variance in the senesced leaf N concentration 
was overwhelmingly greater than those of other predictor 
variables (Fig. 3), in agreement with the large interspecific 
differences in the senesced leaf N concentration in each 
functional group (Fig. 1). What are the factors explaining 
the interspecific differences in senesced leaf N concentra-
tion? The interspecific differences in green leaf N concentra-
tion and rN would explain part of the difference in senesced 
leaf N concentration (Fig. 2). Species with high senesced 
leaf N concentration, green leaf N concentration and low 
rN are abundant in nutrient-rich (Drenovsky et al. 2019; Li 
et al. 2020; Vergutz et al. 2012) and high-temperature and 
high-rainfall environments (Yuan and Chen 2009; Zhao et al. 
2017). In the current study, however, air temperature and 
rainfall would not be very different among species because 
the sampling was conducted within relatively narrow geo-
graphic areas. The soil N status also did not differ greatly 

Fig. 1   Nitrogen concentration expressed on a leaf mass basis (a, d) 
and on a leaf area basis (b, e), and leaf mass per unit area (c, f) of 
senesced leaf and green leaf of legumes (n = 25) and nonlegumes 
(n = 25). Solid black lines represent the medians, top and bottom of 
boxes the first and last quartiles, whiskers the interquartile distance 
multiplied by 1.5 and open circles the outliers. Senesced leaf N con-
centration expressed on a leaf mass basis was corrected for changes in 
leaf mass during leaf senescence. ***, **, * and + indicate a signifi-
cance level of P < 0.001, P < 0.010, P < 0.050 and P < 0.100, respec-
tively

◂
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among study sites, and no significant correlation between 
the soil N availability and green leaf N concentration, rN, 
or senesced leaf N concentration was detected in the cur-
rent study (Electronic supplementary material 3), as was 
observed in an understory shrub guild in the United States 
(Killingbeck and Costigan 1988). Unfortunately, we have no 
data that allows further speculation the interspecific varia-
tion in N resorption.

There was no significant difference detected in the 
senesced leaf N concentration between subfamilies (Table 2), 
and the contribution of subfamily to the total variance in 
the senesced leaf N concentration was very small (Fig. 3). 
However, the nodulating caesalpinioid species C. nomame 
showed similar levels of N resorption (0.79 g N m−2) to 
other nodulating legume species (mean, 0.78 g N m−2), and 
the senesced leaf N concentration of non-nodulating cae-
salpinioid species (mean, 0.68 g N m−2) was comparable 
to that of nonlegume species (mean, 0.62 g N m−2). These 
observations would also support the idea that N resorption 
proficiency is low in N2-fixing species. The lack of a statisti-
cally significant difference might be partly due to the small 
number of available caesalpinioid species in the study area. 
The tropics may offer excellent opportunities to further test 
this hypothesis, because majority of caesalpinioid species 
are distributed in the tropics, similar to those in Papilio-
noideae and Mimosoideae (Sprent 2001).

Table 2   Nitrogen concentration of fully senesced leaf of Papilio-
noideae and Caesalpinoideae

Mean ± standard error. Leaf N concentration showed no significant 
difference between the subfamilies (Welch’s t test, P < 0.05)

Papilionoideae Caesalpinioideae

Number of species 19 5
Senesced leaf N concentra-

tion (g N m−2)
0.74 ± 0.07 0.69 ± 0.13
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Fig. 2   a Senesced leaf nitrogen concentration of legume (circles) and 
nonlegume (squares) in relation to green leaf nitrogen concentration. 
b Senesced leaf nitrogen concentration in relation to proportion of 
green leaf nitrogen resorbed during senescence (rN). Each point rep-
resents the mean value for each species
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In conclusion, legume species were not proficient at 
resorbing N from senescing leaves. This agrees with a gener-
ally accepted view that N-rich legume litters contribute sig-
nificantly to N input in natural- and agricultural ecosystems. 
However, much of the variation in senesced leaf N concen-
tration was explained by species, and the range of legumes 
and nonlegumes overlapped considerably. Our results sug-
gest that species identity may be a stronger predictor of N 
resorption level, and that examining N2-fixer vs non-N2-fixer 
dichotomy may not always be appropriate when trying to 
understand the ecological and economical significance, and 
underlying mechanisms contributing to N resorption.
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