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Abstract
Mosses are one of the earliest land plants that diverged from fresh-water green algae. They are considered to have acquired a 
higher capacity for thermal energy dissipation to cope with dynamically changing solar irradiance by utilizing both the “algal-
type” light-harvesting complex stress-related (LHCSR)-dependent and the “plant-type” PsbS-dependent mechanisms. It is 
hypothesized that the formation of photosystem (PS) I and II megacomplex is another mechanism to protect photosynthetic 
machinery from strong irradiance. Herein, we describe the analysis of the PSI–PSII megacomplex from the model moss, Phy-
scomitrella patens, which was resolved using large-pore clear-native polyacrylamide gel electrophoresis (lpCN-PAGE). The 
similarity in the migration distance of the Physcomitrella PSI–PSII megacomplex to the Arabidopsis megacomplex shown 
during lpCN-PAGE suggested that the Physcomitrella PSI–PSII and Arabidopsis megacomplexes have similar structures. 
Time-resolved chlorophyll fluorescence measurements show that excitation energy was rapidly and efficiently transferred 
from PSII to PSI, providing evidence of an ordered association of the two photosystems. We also found that LHCSR and 
PsbS co-migrated with the Physcomitrella PSI–PSII megacomplex. The megacomplex showed pH-dependent chlorophyll 
fluorescence quenching, which may have been induced by LHCSR and/or PsbS proteins with the collaboration of zeaxan-
thin. We discuss the mechanism that regulates the energy distribution balance between two photosystems in Physcomitrella.
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Introduction

Plants contain photosystems that absorb light energy and 
transfer it to the reaction center to drive photosynthetic 

electron transfer. Oxygenic photosynthesis requires the co-
operative work of two photosystems (PSI and PSII); there-
fore, the regulation of excitation energy distribution between 
PSI and PSII is important to enable plants to avoid pho-
tooxidative damage (Minagawa and Tokutsu 2015; Niyogi 
and Truong 2013; Ruban 2015; Xu et al. 2015; Wobbe et al. 
2016). Therefore, rapid mechanisms for the fine-tuning of 
energy distribution between these two photosystems are 
essential for adaption to terrestrial environments, where the 
intensity of sunlight dynamically fluctuates, even over the 
short term (Minagawa and Tokutsu 2015; Ruban 2015; Xu 
et al. 2015). One such mechanism is non-photochemical 
quenching (NPQ), which enables PSII to dissipate excess 
light energy harmlessly as heat (Goss and Lepetit 2015; 
Minagawa and Tokutsu 2015; Niyogi and Truong 2013; 
Ruban 2015, 2016; Wobbe et al. 2016; Xu et al. 2015). NPQ 
is induced and relaxed, depending on the pH gradient across 
thylakoid membranes, from within seconds to minutes. State 
transition during photosynthesis is another mechanism 
that rapidly regulates the excitation energy distribution 
between the two photosystems by the reversible allocation 
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of the light-harvesting complex II (LHCII) between them 
(Minagawa and Tokutsu 2015; Wobbe et al. 2016; Xu et al. 
2015). This transition is regulated by the phosphorylation of 
mobile LHCII, which is performed by redox-active kinases 
(Bellafiore et al. 2005; Pesaresi et al. 2009). The induction 
and relaxation of the state transition can also occur within 
minutes.

In addition to NPQ and state transition, the spillover of 
excitation energy between the two photosystems can con-
tribute to the regulation of the balance of energy distribu-
tion between them. First, Järvi et al. (2011) reported the 
presence of large protein complexes comprising both PSI 
and PSII in Arabidopsis thaliana (hereafter Arabidopsis). 
Additionally, Yokono et al. (2015) provided spectrochemical 
evidence showing that the excitation energy can be shared 
between the two photosystems in the Arabidopsis PSI–PSII 
megacomplexes. It is also hypothesized that the megacom-
plex is formed in the marginal region of the appressed grana 
membranes, where PSI and PSII are present (Suorsa et al. 
2014). In addition to Arabidopsis, PSI–PSII megacomplex 
formation was also reported in an early-branched vascular 
plant Selaginella martensii (Ferroni et al. 2016) and a green 
alga Neochloris oleoabundans (Giovanardi et al. 2017). Fur-
thermore, the spillover from PSII to PSI can be observed in a 
wide variety of green plants, including green algae (Yokono 
et al. 2019). These findings showed that the spillover within 
the PSI–PSII megacomplex occur widely in the green line-
age. The amount of the PSI–PSII megacomplex may rapidly 
change, depending on light conditions, which contributes to 
the regulation of energy distribution between PSI and PSII 
(Ferroni et al. 2016; Suorsa et al. 2015; Yokono et al. 2015).

The moss, Physcomitrella patens (Hedw.) (hereafter 
Physcomitrella), is a model plant for understanding the 
evolutionary changes in photosystems from green algae 
to land plants. It belongs to an early terrestrial group in 
the green lineage and displays photosynthetic regulation 
characteristics intermediate between green algae and 
higher plants (Niyogi and Truong 2013). Specifically, Phy-
scomitrella possesses both PsbS- and LHCSR-dependent 
NPQ (Iwai and Yokono 2017; Niyogi and Truong 2013; 
Peers et al. 2009). To date, PsbS- and LHCSR-dependent 
NPQ have been reported in the green lineage (Niyogi and 
Truong 2013; Peers et al. 2009). Higher plants only pos-
sess PsbS-dependent energy-dependent (qE) quenching 
because they have lost the LHCSR protein during evo-
lution (Niyogi and Truong 2013). Although green algae 
possess both PsbS- and LHCSR-dependent NPQ, LHCSR-
dependent NPQ is the primary NPQ in green algae. A 
recent study (Correa-Galvis et al. 2016a, b) reported that 
Chlamydomonas reinhardtii (hereafter Chlamydomonas) 
PsbS is required to activate the LHCSR-dependent NPQ, 

suggesting that PsbS works cooperatively with LHCSR in 
green algae. In contrast, in Physcomitrella, the sub-thyla-
koid localization of PsbS is different from that of LHCSR 
(Pinnola et al. 2015). A single loss of PsbS or LHCSR 
leads to a similar decrease in NPQ, while the simultaneous 
loss of PsbS and LHCSR proteins reduced NPQ to almost 
zero (Alboresi et al. 2010; Gerotto et al. 2011). In addition, 
the mutant plants lacking both PsbS and LHCSR were 
more susceptible to high light intensities than the single 
mutant (Alboresi et al. 2010). These data showed that both 
PsbS and LHCSR have an essential role in NPQ in Phy-
scomitrella. In this sense, Physcomitrella has an interme-
diate characteristic for the NPQ that is different from green 
algae and higher plants. Furthermore, Physcomitrella has 
a strong capacity to dissipate excess light energy as heat, 
because both PsbS- and LHCSR-dependent NPQ occurred 
additively (Alboresi et al. 2010). This should contribute 
to the early adaptation to the strong and fluctuating light 
conditions in the terrestrial environment (Alboresi et al. 
2010).

In the present study, we demonstrate the presence of the 
PSI–PSII megacomplex in the protonemata of P. patens, 
which can share excitation energy between the two photosys-
tems. The megacomplex possesses low-energy chlorophylls 
in PSI–LHCI, similar to higher plants (Yokono et al. 2015). 
Low-energy chlorophylls can mediate P700+ quenching 
(Croce and van Amerongen 2013) and may possibly mediate 
zeaxanthin-dependent quenching (Ballottari et al. 2014). In 
addition, the megacomplex showed a pH-dependent quench-
ing ability, most likely due to its interaction with LHCSR 
and PsbS, which can contribute to the early adaptation to 
the strong and fluctuating light conditions in the terrestrial 
environment.

Materials and methods

Plant materials

Physcomitrella patens protonemata were cultured on a layer 
of cellophane overlaid on BCDAT (BCD medium (Nishiy-
ama et al. 2000) supplemented with 1 mM CaCl2 and 5 mM 
di-ammonium [+]-tartrate) solidified with 0.8% (w/v) agar 
at 25 °C under continuous light (40 µmol photons m−2 s−1). 
Four-day-old cultured protonemata were used as the low-
light sample. Several of the 4-day-old cultured protone-
mata were further illuminated with strong light (500 µmol 
photons m−2 s−1) for 1 h with cold spot fiber optics (PCS-
UMX250, NPI, Tokyo, Japan), and were used as the strong 
light sample.
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Isolation of thylakoid membranes

The isolation of thylakoid membranes was performed largely 
according to the method described by Järvi et al. (2011). All 
procedures were performed on ice or at 4 °C. The protone-
mata were suspended in a grinding buffer [50 mM Hepes/
KOH (pH 7.5), 330 mM sorbitol, 2 mM EDTA, 1 mM 
MgCl2, 5 mM ascorbate, 0.05% BSA, 10 mM sodium fluo-
ride, and 0.25 mg mL−1 Pefabloc (Sigma-Aldrich, St. Louis, 
MO, USA)]. Approximately 1 mL of the suspension was 
transferred to a 2 mL vial containing 1 g of glass beads 
(0.5 mm diameter) and the protonemata were disrupted by 
three × 10 s-disruption treatments using a Mini-Bead Beater 
(Waken B Tech Co., Ltd, Kyoto, Japan). The homogenate 
was immediately centrifuged at 5,000×g for 4 min at 4 °C 
and resuspended in a shock buffer (50 mM Hepes/KOH (pH 
7.5), 5 mM sorbitol, 5 mM MgCl2, and 10 mM sodium fluo-
ride). After centrifugation at 5,000×g for 4 min at 4 °C, the 
pellet was resuspended in a storage buffer (50 mM Hepes/
KOH (pH 7.5), 100  mM sorbitol, 10  mM MgCl2, and 
10 mM sodium fluoride) at a concentration of 1.5 mg mL−1 
chlorophyll.

Clear‑native (CN)‑PAGE

CN-PAGE was performed in accordance with the methodol-
ogy used by Umetani et al. (2018). The isolated thylakoid 
membranes were resuspended in a solubilization buffer 
(50  mM imidazole/HCl (pH 7.0), 20% glycerol, 5  mM 
6-aminocaproic acid, and 1 mM EDTA). An equal volume 
of 2% α-dodecyl maltoside (DM) and 0.01-volumes of pro-
tease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, 
USA) were added to the resuspended thylakoids and the 
chlorophyll-protein complexes were solubilized on ice for 
1 min. Insoluble material was removed from the samples 
by centrifugation at 21,600×g at 4 °C for 1 min. After the 
addition of a 0.5-volumes of 20 mg mL−1 amphipol A8-35 
(Anatrace, OH, USA) to the supernatant, the samples were 
separated on 4–13% polyacrylamide gradient gels at 4 °C 
using an anode buffer [50 mM imidazole/HCl (pH 7.0 at 
4 °C)] and a cathode buffer [50 mM Tricine and 15 mM 
imidazole/HCl (pH 7.0 at 4 °C)].

Large‑pore (lp)CN‑PAGE

The lpCN-PAGE was performed using the procedure 
described by Järvi et  al. (2011). A 25BTH20G buffer 
(25 mM BisTris/HCl (pH 7.0), 20% (w/v) glycerol, and 
0.25 mg mL−1 Pefabloc) was added to the thylakoid mem-
brane suspension to achieve a concentration of 1 mg mL−1 
chlorophyll. To solubilize the thylakoid protein complexes 
with digitonin, an equal volume of 2% digitonin in the 
25BTH20G buffer was added to the thylakoid suspension 

and incubated at 20 °C in the dark for 5 min with continuous 
stirring. After centrifugation to remove insoluble materials, 
a 1/6 volume of 20 mg mL−1 amphipol A8-35 (Anatrace, 
OH, USA) was added to the supernatant. The samples were 
loaded onto lpCN gels immediately after the solubiliza-
tion process. The separation gels contained 3.5–13% (w/v) 
polyacrylamide, which is composed of acrylamide and 
bisacrylamide in the ratio of 29:1. The sample gels con-
tained 3% polyacrylamide, which is composed of acryla-
mide and bisacrylamide in a ratio of 4:1. Electrophoresis was 
performed using an anode buffer [50 mM BisTris/HCl (pH 
7.0 at 4 °C)] and a cathode buffer (50 mM Tricine, 15 mM 
BisTris/HCl (pH 7.0 at 4 °C), and 0.01% amphipol A8-35).

Two‑dimensional lpCN/SDS‑PAGE

Two-dimensional (2D)-lpCN/SDS-PAGE was performed 
using the procedure described by Umetani et al. (2018). 
Proteins in an lpCN-PAGE gel strip were denatured in a 
solubilization buffer (1% SDS and 1% 2-mercaptoethanol) 
for 60 min at 30 °C and separated on a 14% acrylamide 
gel containing 4 M urea, using the Laemmli system. Silver-
staining was performed using the Pierce Silver Stain kit 
(ThermoFisher Scientific, Rockford, IL, USA), according 
to the manufacturer’s instructions.

Immunoblotting

The separated proteins were transferred to a polyvinylidene 
fluoride membrane (PolyScreen PVDF transfer membrane, 
PerkinElmer Life Sciences, MA, USA) and detected by 
using specific antibodies and a Western Lightning Plus-ECL 
(PerkinElmer Life science, MA, USA). All antibodies used 
in the present study were purchased from Agrisera (Vännäs, 
Sweden). Anti-PsbB (AS04 038) and anti-PsbC antibodies 
(AS11 1787) were used for detection of PSII core subunits. 
Anti-PsaD antibodies (AS09 461) were used to detect a core 
subunit of PSI. Anti-Lhcb2 (AS01 003) and Lhcb3 (AS01 
002) antibodies were used to detect the major LHCII pro-
teins. Anti-LHCSR1 antibodies (AS15 3081) were used for 
the detection of an LHCSR protein.

Spectroscopic analyses

Time-resolved fluorescence measurements and analysis 
were performed at pH 7 and pH 4.5 by using the PSI–PSII 
megacomplexes from the control and the 1 h-strong light 
illuminated plants, as described by Yokono et al. (2015). 
The PSI–PSII megacomplex in the lpCN gel was soaked 
for 5 min at 4 °C using a buffer containing 50 mM BisTris/
HCl (pH 7 or pH 4.5) and 0.5 M 6-aminocaproic acid. The 
excitation wavelength was 408 nm and the repetition rate 
was 2 MHz, which did not interfere with measurements 
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up to 100 ns (24.4 ps per channel × 4,096 channels). To 
improve the time resolution, time-resolved fluorescence 
was also measured up to 10 ns (2.4 ps per channel × 4,096 
channels). After a global analysis of the fluorescence kinet-
ics, fluorescence decay-associated spectra were constructed. 
Steady-state fluorescence spectra were measured by using an 
F-2500 spectrophotometer (Hitachi). The optical slit widths 
for excitation and emission were 10 and 2.5 nm, respec-
tively. Steady-state absorption spectra at room tempera-
ture (20–25 °C) were measured based on the methodology 
described by Umetani et al. (2018).

Pigment determination

To extract pigments, Physcomitrella protonemata cells were 
homogenized in acetone with stainless beads (5 mm in diam-
eter, TCS0-0100, Bio medical science, Tokyo) for 1 min 
using the ShakeMaster bead shaker (BioMedical Science 
Co. Ltd, Tokyo, Japan). The homogenates were centrifuged 
at 21,600×g for 5 min, and the supernatant was loaded onto 
a C18 column (YMC AL303 250 × 4.6 mm, 5 μm, YMC Co., 
Ltd., Kyoto, Japan). The sample was eluted with an isocratic 
flow of solvent A (100% methanol) for 17 min, followed by 
a linear gradient from solvent A to B (60% methanol, 20% 
ethanol, 20% hexane) in 5 min and with an isocratic flow 
of solvent B at a flow rate of 0.8 mL/min. The eluates were 
monitored by a L-2450 photodiode array detector (HITACHI 
High Technologies Science Corporation, Tokyo, Japan) at 
450 nm. The pigments were identified and quantified by 
comparing their absorption spectra with relevant standard 
pigments.

Results

Isolation of a Physcomitrella PSI–PSII megacomplex 
by lpCN‑PAGE

The PSI–PSII megacomplex is one of the largest known 
plant complexes and is estimated to be larger than 3,000 kDa 
(calculated based on the structural model of the Arabidopsis 
megacomplex in Yokono et al. 2019). Only a few techniques 
currently exist that can resolve the size of the complex—
such as size-exclusion chromatography and sucrose-density 
gradient centrifugation. To the best of our knowledge, only 
native PAGE systems have been successful in resolving the 
PSI–PSII megacomplex thus far (Ferroni et al. 2016; Gio-
vanardi et al. 2017; Järvi et al. 2011; Yokono et al. 2015). 
Moreover, standard blue-native (BN) and clear-native 
(CN)-PAGE systems cannot be used to isolate the PSI–PSII 
megacomplex because it is too large to enter the separa-
tion gel and must, therefore, remain in the sample gel (Järvi 
et al. 2011). Therefore, for this study, we used large-pore 

CN-PAGE (lpCN-PAGE)—a process that consists of using 
large-pore acrylamide gel that allows the separation of the 
megacomplex from the rest of the photosynthetic complexes 
and the insolubilized thylakoid membranes.

We began by solubilizing the thylakoid protein complexes 
using digitonin from cells grown under low-light conditions 
and from cells illuminated with strong light for 1 h. DOC 
is typically used to provide the negative charge required to 
separate the solubilized protein complexes by lpCN-PAGE 
at a neutral pH. However, we replaced DOC with amphipol 
A8-35 for this study.

Amphipols are a new class of amphipathic polymer that 
enable protein complexes to enhance their stability in deter-
gent-free solutions. Amphipol A8-35, in particular, has been 
widely used in the stabilization of membrane proteins (Popot 
et al. 2011; Watanabe et al. 2019). As a result of using this 
technique, we succeeded in resolving several pigment-pro-
tein complexes (Fig. 1). As far as we know, this is the first 
study demonstrating the use of lpCN-PAGE using amphi-
pols. Based on 2D-lpCN/SDS-PAGE, immunoblotting anal-
ysis (Fig. 2), and silver-staining (Fig. S1), the three major 
pigment-protein bands resolved by lpCN-PAGE were iden-
tified as a PSI–PSII megacomplex, a PSI–LHCI and PSII 
dimer, and an LHCII trimer, respectively. The PSII–LHCII 
was not clearly observed, because the grana core where the 
PSII–LHCII is mostly localized, is only partially solubi-
lized by digitonin. Passing the PSI–PSII megacomplex band 
through the sample gel during lpCN-PAGE showed that it 
was a protein complex rather than insufficiently solubilized 
membrane particles. The Physcomitrella PSI–PSII mega-
complex contained PSI, PSII, and LHCII proteins (Fig. 2), 
as found in the Arabidopsis megacomplex (Yokono et al. 
2015). The molecular weights of the PSI–LHCI and PSII 
dimer were typically quite similar, which resulted in similar 
migration distances (Fig. 1). Smaller PSI–PSII complexes, 
which had similar migration distances, might be present in 
the band (Yokono et al. 2015), although no further analysis 
was conducted in the present study.

Recently, we reported a structural model of the Arabidop-
sis PSI–PSII megacomplex, based on the negatively-stained 
particles observed by electron microscopy (Yokono et al. 
2019). In this model, one PSII dimer was sandwiched by 
two PSI–LHCI complexes with two-fold rotational symme-
try, and additional LHCII trimers surrounded peripherally. 
If the Physcomitrella PSI–PSII megacomplex had a similar 
structure to this model, its molecular size should be similar 
to that of the Arabidopsis megacomplex. To compare the 
molecular sizes of the Physcomitrella PSI–PSII megacom-
plex and the Arabidopsis megacomplex, we resolved the dig-
itonin-solubilized thylakoid protein complexes from Arabi-
dopsis and Physcomitrella by lpCN-PAGE using different 
acrylamide concentrations (3–13% and 3.25–13%) (Fig. 3). 
The subunit compositions of the Physcomitrella PSI–PSII 



871Journal of Plant Research (2019) 132:867–880	

1 3

megacomplexes resolved by the two different gels [3.5–13% 
(Fig. 1) and 3.25–13% (Fig. 3)] appeared almost identical, 
based on the silver-stained 2D-lpCN/SDS-PAGE (Figs. S1, 
S2). The green band, other than the PSI–PSII megacomplex, 
did not appear around it even when the gel concentrations 
were altered (Figs. 1, 3). This supports the hypothesis that 
band contamination, such as PSII–LHCII megacomplexes, 
was negligible. On the other hand, the PSI–PSII mega-
complex band appeared somewhat smeared (Figs. 1, 3). 
This is most likely due to the structural heterogeneity of 
the megacomplex, which includes the varied binding pat-
terns of peripheral LHCIIs to the PSI–PSII megacomplex as 
shown and discussed by Yokono et al. (2019). The migration 

distances of the Physcomitrella PSI–PSII megacomplexes 
were similar to those of Arabidopsis, which demonstrated 
that the molecular mass of the PSI–PSII megacomplexes in 
Arabidopsis and Physcomitrella were similar to each other 
(Fig. 3). These data suggested that the structure of the Phy-
scomitrella PSI–PSII megacomplex is similar to that of the 
Arabidopsis PSI–PSII megacomplex.

LHCSR is involved in the NPQ formation of both PSI and 
PSII in Physcomitrella, though the protein is localized in the 
stroma lamellae and grana margin, where PSII is scarcely 
distributed (Pinnola et al. 2015). As the PSI–PSII megacom-
plex likely localizes in the stroma lamellae, we hypothesized 
that LHCSR binds to the PSI–PSII megacomplex and dissi-
pates the absorbed energy as heat. To verify this hypothesis, 
we further performed immunoblotting analysis of LHCSR 
after 2D-lpCN/SDS-PAGE using anti-LHCSR antibodies 
(Fig. 2). The results showed that LHCSR co-migrated in 
the PSI–PSII megacomplex, in addition to their monomeric 
form, suggesting that the Physcomitrella PSI–PSII mega-
complex contained LHCSR. As LHCSR has been lost in 
higher plants during plant evolution, the presence of LHSCR 
in the PSI–PSII megacomplex represents a significant dif-
ference in the PSI–PSII megacomplexes of Physcomitrella 
and Arabidopsis. In addition, the immunoblotting analysis 
(Fig. S3) showed that PsbS co-migrated with the PSI–PSII 
megacomplex as well in our lpCN-PAGE analysis. The 
results are consistent with a previous report showing the co-
migration of PsbS and the PSI–PSII megacomplex in Arabi-
dopsis (Suorsa et al. 2015). The presence of both LHCSR 
and PsbS proteins in the PSI–PSII megacomplex implies that 
they might contribute to dissipating the excess energy in the 
megacomplex as heat.

Steady‑state fluorescence emission spectra 
of the PSI–PSII megacomplex at 77 K

The PSI–PSII megacomplex separated by lpCN-PAGE 
(Fig. 1) was further characterized by its steady-state fluo-
rescence emission spectra at 77 K (Fig. 4). Because the indi-
vidual fluorescence emission spectra of the PSI–LHCI, the 
PSII–LHCII, and the LHCII trimer are required to analyze 
the PSI–PSII megacomplex as references, we solubilized the 
thylakoid protein complexes by α-DM and resolved them 
with a CN-PAGE standard (Fig. S4). We used α-DM as a 
detergent in this experiment, as it can solubilize the grana 
core where the majority of the PSII–LHCII is localized. We 
observed the PSII–LHCII bands (Fig. S4), which were not 
clearly shown in the lpCN-PAGE gel, using the digitonin-
solubilized protein complexes (Figs. 1, 3). It should be noted 
that α-DM could inhibit energy transfer from PSII to PSI 
within the PSI–PSII megacomplex (Supplementary Fig. 14 
in Yokono et al. 2015). Thus, digitonin is a better detergent 
for the solubilization of the PSI–PSII megacomplex.
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Fig. 1   Separation of thylakoid pigment-protein complexes in Phy-
scomitrella by lpCN-PAGE with Amphipol A8-35. The thylakoid 
membrane proteins from the protonemata cells grown under low-light 
(40 µmol photons m−2 s−1) conditions and the cells illuminated under 
strong light (500 µmol photons m−2 s−1) for 1 h were solubilized with 
1% digitonin and were separated by 3.5–13% polyacrylamide
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Then, we measured the fluorescence emission spectra of 
the PSI–LHCI, the PSII–LHCII, and the LHCII trimer (Fig. 
S5). The identification of resolved bands was performed by 
silver-staining (Fig. S6) and immunoblot analysis using the 
specific antibodies against PSI, PSII, LHCII, and LHCSR 
(Fig. S7). The spectra of the Physcomitrella PSI–PSII mega-
complex (Fig. 4) was found to be very similar to those of the 
PSI–PSII megacomplex isolated from Arabidopsis (Yokono 
et al. 2015). A large fluorescence peak at approximately 
725 nm (Fig. 4) corresponded to low-energy chlorophylls in 
the PSI–LHCI (Fig. S5). In addition, a much smaller broad 
peak at approximately 690 nm was observed. As the DM-
solubilized PSII–LHCII and LHCII trimer resolved by CN-
PAGE showed fluorescence peaks at approximately 693 nm 
and 678 nm (Fig. S5), the much smaller peak at approxi-
mately 690 nm might have been emitted by PSII–LHCII 
(Fig. 4). These data suggested that the efficient energy 
transfer from PSII to PSI occurred within the Physcom-
itrella PSI–PSII megacomplex, as observed in Arabidop-
sis (Yokono et al. 2015). The small differences observed 
in the different fluorescence spectra before and after 1 h of 

strong illumination (Fig. 4) implied that the strong illumina-
tion induced the Physcomitrella PSI–PSII megacomplex to 
transfer more excitation energy to low-energy chlorophylls 
in PSI, which may help Physcomitrella adapt to strong light 
conditions (Yokono et al. 2019).

Time‑resolved fluorescence of the PSI–PSII 
megacomplex

To elucidate the fate of the excitation energy absorbed by 
the PSI–PSII megacomplex, we analyzed the fluorescence 
kinetics of the PSI–PSII megacomplex before and after 
1 h of strong illumination (Fig. 5). The 1 h of illumina-
tion appeared to slightly increase the amounts of LHCSR 
and PsbS proteins (Fig. S8). In addition, 1 h of illumination 
strongly induced the conversion of violaxanthin to zeaxan-
thin (Table S1), which is required to achieve a high degree of 
NPQ in both the LHCSR- and PsbS-dependent pathways in 
Physcomitrella (Pinnola et al. 2013). It has previously been 
shown that PSII–LHCII supercomplexes with LHCSR have 
a greater quenching ability at low pH than that at neutral 

Fig. 2   Immunoblot analyses of 
PsbB (PSII), PsbC (PSII), PsaB 
(PSI), Lhcb2 (LHCII), Lhcb3 
(LHCII), and LHCSR proteins 
after 2D-lpCN/SDS-PAGE of 
the thylakoid protein complexes 
in Physcomitrella protonemata 
grown under low-light condi-
tions
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pH in Chlamydomonas (Tokutsu and Minagawa 2013). In 
addition, Chlamydomonas LHCSR1 is known to enhance 
energy transfer from LHCII to PSI at low pH (Kosuge et al. 
2018). This implied that the Physcomitrella PSI–PSII mega-
complex with LHCSR might show greater quenching ability 
at low pH. To test whether the PSI–PSII megacomplex with 
LHCSR showed a greater quenching ability at low pH, we 
measured the bands after soaking them in buffers that were 
adjusted to neutral pH (pH 7.0) or low pH (pH 4.5). The 
absorption spectrum of the PSI–PSII megacomplexes was 
not significantly changed at low pH and under strong light 
illumination (Fig. S9).

The fluorescence decay-associated spectra of the 
PSI–PSII megacomplex isolated from the Physcomitrella 

cells without strong illumination are shown in Fig.  5a. 
Fluorescence lifetimes are summarized in Table S2. Under 
neutral pH conditions (Fig. 5a; solid lines), the kinetics were 
similar to those in the Arabidopsis megacomplex (Yokono 
et al. 2015). The first-lifetime component (~ 50 ps) reflects 
the fast energy migration between the PSII core anten-
nae and the PSI core antennae. The fast energy migration 
between the PSII and the PSI core antennae strongly sug-
gests that the binding between the PSII and the PSI was 
well-ordered, which also supports our hypothesis that the 
structure of Physcomitrella PSI–PSII megacomplex is simi-
lar to that of Arabidopsis megacomplex. In addition, the sec-
ond to fifth components reflect trappings at the reaction cent-
ers and low-energy chlorophylls after energy migration. The 
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Fig. 3   Separation of the Arabidopsis and Physcomitrella thylakoid 
protein complexes by lpCN-PAGE using gels of different acrylamide 
concentrations (a 3–13%; b 3.25–13%). Thylakoid protein complexes 

were solubilized in 1% digitonin. The sample gel (C20) was made 
by using an acrylamide solution of 3% T and 20% C (Strecker et al. 
2010)
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sixth-lifetime component is the delayed fluorescence spectra, 
which reflects the excitation energy distribution after the 
direct excitation of the PSII reaction center. A larger peak 
originated from PSI–LHCI than that from PSII–LHCII in 
the sixth lifetime, which was suggestive of efficient energy 
transfer from PSII to PSI within the PSI–PSII megacomplex. 
The estimated spillover ratio did not show large changes 
under the different conditions (Table S2), suggesting that 
the balance of the energy distribution between the two pho-
tosystems was regulated without modification of the direct 
PSI–PSII interaction. This behavior was also observed in the 
green algae Chlamydomonas reinhardtii and Chlorella vari-
abilis (Ueno et al. 2018), but not in Arabidopsis (Yokono 
et al. 2015).

At a low pH, fast fluorescence decay was enhanced at 
approximately 710 nm (Fig. 5a, second-lifetime component). 
This tendency became more prominent under strong light 
growth conditions (Fig. 5b, second-lifetime component), 
indicating that the enhanced accumulation of zeaxanthin 
and/or the higher levels of the LHCSR and the PsbS induced 
fast fluorescence decay. The fluorescence at approximately 
710 nm was thought to be emitted by an energy-dissipa-
tive state of LHCII and/or PSI (Iwai et al. 2010; Kosuge 
et al. 2018; Vasil’ev et al. 1997). The fast decrease in the 

fluorescence at approximately 710 nm (~ 200 ps) could 
be caused by quenching of the energy-dissipative state of 
LHCII or by the subsequent trapping at the PSI core (Bos 
et al. 2017; Mimuro et al. 2010). Conversely, the amplitude 
of the fluorescence at 740 nm, which reflects the trapping 
of the low-energy chlorophylls in LHCI (Iwai et al. 2015; 
Mazor et al. 2015) was decreased at low pH (Fig. 5, fifth-
lifetime component). This also implies that the energy was 
dissipated around LHCII and/or was trapped in the PSI core 
before it reached LHCI. The enhanced 710 nm peak was 
also observed in the delayed fluorescence spectra (Fig. 5, 
sixth-lifetime component), reflecting the diversification of 
the destination of the energy transfer from PSII.

Discussion

Isolation of the PSI–PSII megacomplex with LHCSR 
in Physcomitrella by lpCN‑PAGE

In the present study, the PSI–PSII megacomplex in the pro-
tonemata of Physcomitrella was resolved by the lpCN-PAGE 
(Figs. 1, 3). The movement of the Physcomitrella PSI–PSII 
megacomplex band through the sample gel showed that the 
band was not partially solubilized membrane particles, but a 
huge protein complex (< 10 MDa) (Strecker et al. 2010). The 
similar migration distance of the Physcomitrella PSI–PSII 
megacomplex to the Arabidopsis megacomplex in lpCN-
PAGE (Fig. 3) showed that these complexes are similar in 
size (Yokono et al. 2019). We recently proposed the first 
structural model of the Arabidopsis PSI–PSII megacomplex 
that consists of one PSII dimer sandwiched between two 
PSI–LHCI complexes with the additional LHCII trimers sur-
rounded peripherally, based on the negatively stained EM 
particles (Yokono et al. 2019). The similarities in molecu-
lar size, the 77 K steady-state fluorescence spectra (Fig. 4), 
and the fluorescence kinetics (Fig. 5) of the Physcomitrella 
PSI–PSII megacomplex to the Arabidopsis megacomplex 
strongly suggest that the molecular structures of the Phy-
scomitrella PSI–PSII and Arabidopsis megacomplexes are 
similar (Yokono et al. 2019). However, further studies will 
be required to confirm this.

In addition, fast energy transfer occurred from the PSII 
to PSI cores in the Physcomitrella PSI–PSII megacomplex 
(Fig. 5, first-lifetime component), which suggests a direct 
interaction between the PSII and PSI cores (Yokono and 
Akimoto 2018; Yokono et al. 2015). It should be noted that 
only the co-migration of the PSII and the PSI did not show 
energy transfer between them as seen in our previous data 
(w2 and w3 bands shown in Fig. 1c in Yokono et al. 2015), 
suggesting that a well-ordered assembly of the PSI–PSII 
megacomplex is essential for achieving a rapid energy trans-
fer from PSII to PSI (Fig. 5).
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In addition to the PSI, PSII, and LHCs that are also found 
in the Arabidopsis PSI–PSII megacomplexes, the Physcom-
itrella PSI–PSII megacomplex contained LHCSR, which 
plays an important role in the protection of photosystems 
by dissipating excess energy in Chlamydomonas (Peers et al. 
2009) and Physcomitrella (Alboresi et al. 2010). The co-
migration of PSII–LHCII with LHCSR was also observed 
by CN-PAGE (Fig. S7), suggesting that LHCSR associates 
not only with the PSI–PSII megacomplex but also with the 
PSII–LHCII megacomplex in Physcomitrella (Fig. S7). Fur-
thermore, we also found the presence of PsbS in the Phy-
scomitrella PSI–PSII megacomplex (Fig. S3). This finding is 
consistent with a previous report that PsbS is included in the 

Arabidopsis PSI–PSII megacomplex (Suorsa et al. 2015). 
The presence of LHCSR and PsbS in the Physcomitrella 
PSI–PSII megacomplex implies that heat dissipation of the 
excitation energy absorbed by them plays an important role 
in mitigating photo-oxidative damage in the megacomplex.

pH‑dependent quenching in the PSI–PSII 
megacomplex

At low pH conditions, fast trapping (~ 200 ps) at approxi-
mately 710 nm was enhanced and, concomitantly, trapping at 
low-energy chlorophylls in LHCI (740 nm) was suppressed 
(Fig. 5). We assumed that the fast decay in the chlorophyll 
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fluorescence at approximately 710 nm originated from the 
energy-dissipative state of LHCII and/or by subsequent trap-
ping at the PSI core. The energy transfer rate from the PSII 
core to the PSI core was not altered, even at low pH (first 
lifetime component (~ 50 ps) in Fig. 5). This implied that 
the enhancement of fast trapping at approximately 710 nm 
was not responsible for the change in the PSI core itself in 
response to the low pH conditions but was responsible for 
the change in the peripheral LHCII in the PSI–PSII mega-
complex of Physcomitrella. It should be noted that the exist-
ence of an energy transfer pathway from LHCII to PSI that 
does not involve LHCI has already been reported (Benson 
et al. 2015; Ferroni et al. 2018). If an additional quenching 
site is activated in the peripheral LHCII at a low pH, it will 
accept energy from the PSI core.

A recent study suggested that LHCSR might bind to 
LHCII in PSI–LHCI/II in Physcomitrella (Pinnola et al. 
2015) and that LHCSR mediates pH-dependent quenching 
(Pinnola et al. 2017; Tokutsu and Minagawa 2013). Pin-
nola et al. (2015) suggested that LHCSR does not directly 
quench PSI–LHCI, but instead quench it by modulating the 
lifetime of an LHCII population (Pinnola et al. 2015, 2017). 
Moreover, Chlamydomonas cells that possessed both LHCII 
and LHCSR exhibited a 710-nm fluorescence maximum at 
77 K and displayed pH-dependent quenching (Dinc et al. 
2016). Combined with these data, we suggested that LHCSR 
binds to peripheral LHCII in the Physcomitrella PSI–PSII 
megacomplex and quenches the excitation energy via a pH- 
or zeaxanthin-dependent manner.

In addition to LHCSR, previous studies showed that PsbS 
also binds to LHCII in the PSII–LHCII and contributes to 
forming NPQ in both a pH- and a zeaxanthin-dependent 
manner (Correa-Galvis et al. 2016a, b; Sacharz et al. 2017). 
Thus, it is possible to speculate that both LHCSR and PsbS 
can contribute the pH-dependent quenching in the Physcom-
itrella megacomplex.

P. patens utilization of shallower low‑energy 
chlorophylls

Plants possess various low-energy chlorophylls in the 
PSI–LHCI. In the fluorescence decay-associated spectrum 
of the Physcomitrella PSI–PSII megacomplex (Fig. 5), flu-
orescence at 710 nm, 720 nm, 730 nm, and 740 nm was 
detected in the second to fifth-lifetime components (sum-
marized in Table 1), respectively. Meanwhile, the Arabidop-
sis PSI–PSII megacomplex showed fluorescence peaks at 
720 nm, 725 nm, 735 nm, and 740 nm (Fig. S3b in Yokono 
et al. (2015)). The difference in the composition of the low-
energy chlorophylls between Arabidopsis and Physcom-
itrella might reflect the variations in the LHCI proteins in 
Physcomitrella (Busch et al. 2013).

From a functional perspective, low-energy chlorophylls 
are classified into two types, shallower and deeper low-
energy chlorophylls, depending on their energy levels. In the 
green lineage, the PSI core possesses shallower low-energy 
chlorophylls, whereas LHCI possesses deeper low-energy 
chlorophylls (Kunugi et al. 2016). Typically, shallower low-
energy chlorophylls show fluorescence maxima at approxi-
mately 720 nm or shorter and possess a large Förster overlap 
integral at P700. They can transfer excitation energy to P700 
via the uphill energy transfer process (Melkozernov and 
Blankenship 2005; Melkozernov et al. 2004). Conversely, 
deeper low-energy chlorophylls in PSI–LHCI can dissipate 
excitation energy as heat by the following two mechanisms 
(reviewed by Yokono and Akimoto 2018). The first mecha-
nism depends on their ability to transfer excitation energy 
to P700+ (Schlodder et al. 2011; Shubin et al. 1995). Their 
fluorescence maxima of approximately 725 nm or longer 
enables them to possess a large Förster overlap integral at 
P700+. Since P700+ is an excellent quencher (Croce and van 
Amerongen 2013), their ability to transfer energy to P700+ 
should contribute to the dissipation of excess energy as heat.

The second mechanism depends on their ability to form 
a charge-transfer state with a carotenoid, which also ena-
bles them to dissipate excess energy as heat (Ballottari 
et al. 2014). Owing to these two mechanisms, PSI–LHCI 
tends to tolerate high levels of illumination as it has deeper 
low-energy chlorophylls (Yokono et al. 2019). Both Phy-
scomitrella and Arabidopsis possess shallower and deeper 
low-energy chlorophylls. In the Physcomitrella PSI–PSII 
megacomplex, 72% of the amplitude was occupied by the 
shallower low-energy chlorophylls, whereas in the Arabi-
dopsis PSI–PSII megacomplex, 72% of the amplitude was 
occupied by the deeper low-energy chlorophylls (Table 1). 
The amplitude reflects the probability of energy acceptance 
of each low-energy chlorophyll. Therefore, the excitation 
energy absorbed by Physcomitrella PSI–PSII was mainly 

Table 1   The amplitude ratio of low-energy chlorophylls

Peak wavelength Lifetime Amplitude Amplitude 
ratio (%)

Deeper 
ratio 
(%)

Physcomitrella patens
 710 nm 200 ps 1.5 36 28
 720 nm 750 ps 1.5 36
 730 nm 1.9 ns 1.1 26
 740 nm 4.1 ns 0.08 2

Arabidopsis thaliana [from Yokono et al. (2015)]
 720 nm 240 ps 0.35 28 72
 725 nm 1.0 ns 0.26 20
 735 nm 2.2 ns 0.44 35
 740 nm 3.3 ns 0.22 17
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transferred to P700 to perform photosynthesis, and the heat-
dissipation processes may show lower efficiency depend-
ing on the deeper low-energy chlorophylls. In contrast, the 
excitation energy absorbed by Arabidopsis PSI–PSII was 
primarily dissipated as heat rather than being utilized for 
photosynthesis. The difference between Physcomitrella 
and Arabidopsis might be related to the structural differ-
ences in PSI–LHCI. Arabidopsis PSI–LHCI possesses 
one layer of the LHCI belt containing four Lhca proteins, 
which are all in the range of the Förster critical distance 
from P700+ (< 80–90 Å) (Mazor et al. 2015; van Grondelle 
1985). Therefore, all the deeper low-energy chlorophylls 
in the LHCI belt in Arabidopsis might participate in the 
energy transfer to P700+ to dissipate the excitation energy 
(Yokono and Akimoto 2018). Conversely, Physcomitrella 
possesses two layers of the LHCI belt containing eight Lhca 
proteins (Iwai et al. 2018), although the second layer may be 
beyond the range of the Förster critical distance. Thus, even 
if the second layer of the LHCI belt possesses the deeper 
low-energy chlorophylls, they may not efficiently perform 
P700+-dependent quenching. Alternatively, Physcomitrella 
possesses LHCSR and PsbS that could bind to the peripheral 
LHCII around PSI–LHCI (Pinnola et al. 2015, 2017) and 
PSII–LHCII (Correa-Galvis et al. 2016a, b; Sacharz et al. 
2017) and act as a quencher that possibly works with shal-
lower low-energy chlorophylls.

Possible photoprotection strategy in P. patens

In Physcomitrella, the shallower low-energy chlorophylls 
can efficiently transfer absorbed energy to P700 to perform 
photosynthesis (Yokono and Akimoto 2018). When the 
light becomes strong, Physcomitrella induces the accumu-
lation of PsbS and LHCSR proteins (Gerotto et al. 2011). 
Recent studies have shown that Chlamydomonas LHCSR 
proteins are induced by blue light (Petroutsos et al. 2016) 
and UV (Allorent et al. 2016; Tilbrook et al. 2016; Tokutsu 
et  al. 2019). If mosses possess similar mechanisms to 
induce LHCSR proteins in response to blue light and UV, 
this should contribute to their adaptation to terrestrial 
environments. However, PsbS localizes in the grana stack 
and can dissipate the excitation energy that is absorbed by 
PSII–LHCII as heat (Pinnola et al. 2015). Thus, under high 
levels of illumination, linear electron transfer is suppressed 
by the PsbS-dependent NPQ and can be reduced in favor 
of cyclic electron flow (Allahverdiyeva et al. 2015). P700+ 
may accumulate within the PSI–PSII megacomplex in the 
grana margin and excitation energy trapped by the deeper 
low-energy chlorophylls in the PSI–PSII megacomplex 
is efficiently dissipated by P700+. This scenario is likely 
occurring in Arabidopsis (Fig. 6). However, the energy 
transfer capacity of the deeper low-energy chlorophylls 
was limited in Physcomitrella (Fig. 5, Table S2). Instead, 

PSI core has shallower 
low-energy Chls (<720nm).
[Jordan et al. 2001]

1st LHCI belt has depper 
low-energy Chls (~735nm).
[Mazoe et al. 2015]

LHCII could transfer energy to LHCI, 
where deeper low-energy Chls exist.

P. patens has
2nd LHCI belt.
[Iwai et al. 2018]

Arabidopsis thaliana Physcomitrella patens

PSIIPSI

LHCII LHCSR

LHCSR

Additional shallower low-energy Chls may exist in the additional LHCII 
under high-light condition. Energy can be quenched by LHCSR. 
[Bonente et al. 2011, Kondo et al. 2017].

LHCII may transfer energy directly to 
PSI core, where shallower low-energy 
Chls exist. It may be enhanced by 
LHCSR [Kosuge et al. 2018].

PsbS may also help the 
quenching [Sacharz et al. 2017].

PsbS

Fig. 6   Schematic model of the PSI–PSII megacomplex in Arabi-
dopsis and Physcomitrella. The large and small circles represent the 
LHCII trimer and monomer, respectively. If the energy was trapped 
by the deeper low-energy chlorophylls (Chls), it could be dissipated 
efficiently. However, if the energy was trapped by the shallower low-
energy Chls, uphill energy transfer occurred to P700 under physiolog-
ical temperatures, and the energy could then be utilized for photosyn-
thesis. In Arabidopsis, the PSI core has shallower low-energy Chls, 
whereas the LHCI belt has deeper low-energy Chls. Digitonin-sensi-

tive LHCII could transfer energy to the PSI core via LHCI (Benson 
et al. 2015). In contrast, the PSI in Physcomitrella has a second LHCI 
belt, which was not found in Arabidopsis, in addition to the first 
LHCI belt. Shallower low-energy Chls may exist in the additional 
LHCII of the Physcomitrella PSI–PSII megacomplex, which might 
transfer energy directly to the PSI core. Differences in the LHCII 
binding sites may affect the course of the excitation energy. Under 
strong light conditions, LHCSR in the Physcomitrella PSI–PSII meg-
acomplex probably dissipates the excitation energy
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LHCSR can dissipate the excitation energy trapped by PSI 
(Pinnola et al. 2015), which may help survive in strong 
light conditions. The 710 nm chlorophylls in the putative 
peripheral LHCII of the Physcomitrella PSI–PSII mega-
complex might shift the energy distribution toward the 
quenching site, which may enhance energy dissipation effi-
ciency under low pH conditions (Yokono et al. 2018). This 
hypothetical scheme should work well under high light 
conditions (Fig. 6), although further studies are required 
to verify this hypothesis.

One limitation of this study is that no information was 
obtained on how changes in the PSI–PSII megacomplex 
related to the developmental stages of Physcomitrella. 
Future studies, including the comparison of the PSI–PSII 
megacomplex in the protonemata and gametophore, will be 
important for understanding the function of PSI–PSII mega-
complex in the developmental of Physcomitrella.

Conclusion

In this study, we isolated a Physcomitrella PSI–PSII mega-
complex, which is also present in Arabidopsis thaliana 
(Yokono et al. 2015), Selaginella martensii (Ferroni et al. 
2016), and Neochloris oleoabundans (Giovanardi et  al. 
2017). The presence of the PSI–PSII megacomplex in these 
green plants suggests that the PSI–PSII megacomplex is 
widely prevalent among land plants. However, the presence 
of LHCSR in the Physcomitrella PSI–PSII megacomplex is 
unique and does not occur in Arabidopsis. Given the molec-
ular and physiological function of LHCSR, the LHCSR, 
together with PsbS in the megacomplex might assist in dis-
sipating excess light energy as heat. We also observed that 
the chlorophyll fluorescence spectra with a peak of 710 nm 
were enhanced under low pH conditions—something that 
was not observed in the Arabidopsis PSI–PSII megacom-
plex. This observation can be explained by assuming that 
LHCSR and/or PsbS bind at the additional LHCII that was 
not present in the Arabidopsis PSI–PSII megacomplex and 
enhances heat dissipation under the high light illumination.

In conclusion, our results from this study provide new 
insights into the regulation of photosynthesis in response to 
light conditions in Physcomitrella.
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