
1 3

J Plant Res (2016) 129:379–395
DOI 10.1007/s10265-016-0816-1

JPR SYMPOSIUM

Photosynthetic response to fluctuating environments 
and photoprotective strategies under abiotic stress

Wataru Yamori1,2 

Received: 20 January 2016 / Accepted: 6 March 2016 / Published online: 29 March 2016 
© The Botanical Society of Japan and Springer Japan 2016

Keywords Alternative pathway · Electron 
transport · Fluctuating environment · Photoinhibition · 
Photoprotection · Photosynthesis

Introduction

Researches on regulations of steady-state photosynthesis in 
response to variations in light intensity (Evans et al. 1993; 
Ögren and Evans 1993; Yamori et al. 2010a), CO2 concen-
tration (Farquhar et al. 1980; Yamori et al. 2005; Yamori 
and von Caemmerer 2009), temperature (Yamori et al. 
2005, 2006, 2010b), and humidity (Bunce 1997; Lu et al. 
2015; Rawson et al. 1977) have been extensively exam-
ined under controlled laboratory conditions. Predicting the 
environmental responses of the steady-state photosynthetic 
rate is central to many models of changes in the future 
global carbon cycle and terrestrial biosphere (Bernac-
chi et al. 2013; Groenendijk et al. 2011; Zhu et al. 2004). 
However, plants in natural environments must cope with 
highly dynamic and unpredictable conditions during the 
day. Models of steady-state photosynthesis tend to overesti-
mate photosynthesis under fluctuating light (Naumburg and 
Ellsworth 2002; Timm et al. 2004). To improve models of 
dynamic photosynthesis under fluctuating environmental 
conditions, a better understanding of the responses of pho-
tosynthesis to fluctuating environments is needed.

Light intensity is the most variable factor in natural envi-
ronments; during the day, it changes on the order of sec-
onds, minutes, or hours because of changes in leaf angle, 
cloud cover, and overshadowing canopy. Leaves could 
receive 50–300 sunflecks per day (some shorter than 10 s) 
in the understory (Pearcy 1988; Pfitsch and Pearcy 1989). 
Sunflecks longer than 120 s represent only 5 % of the total 
number but contribute more than 75 % of total daily light, 
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and therefore such sunflecks in forest understories would 
be more important for photosynthesis than the short ones. 
Previous researches on photosynthetic responses to fluctu-
ating light have focused on their mechanisms and interspe-
cific variations (Pearcy 1990; Pearcy and Way 2012). Pho-
tosynthetic responses to sunflecks differ among and within 
species depending on sunfleck duration, frequency, and 
intensity (Chazdon and Pearcy 1986; Leakey et al. 2004; 
Sims and Pearcy 1993; Watling et al. 1997; Yin and John-
son 2000). A sudden increase in light intensity typically 
leads to a hyperbolic increase in the leaf photosynthetic 
rate (e.g., Bai et al. 2008; Han et al. 1999; Pearcy 1990; 
Valladares et al. 1997). Because of biochemical and sto-
matal limitations, there is a time lag from onset of light to 
achievement of the maximum rate of photosynthesis (Allen 
and Pearcy 2000; Bai et al. 2008; Chen et al. 2011; Han 
et al. 1999; Pearcy 1990; Rijkers et al. 2000; Yamori et al. 
2012, 2016a).

In contrast, the effects of fluctuations in temperature, 
CO2 concentration, relative humidity, and leaf-to-air vapor 
pressure deficit (VPD, which combines temperature and 
relative humidity into a single value) on dynamic photo-
synthesis have not been examined (Kaiser et al. 2015; Way 
and Pearcy 2012). The leaves of many plants are thin and 
have only minimal heat capacity; when exposed to strong 
sunlight, they can warm up substantially above air tem-
perature, especially when stomata are closed. Leaves with 
low transpiration rates (e.g., oak leaves) suffer frequent 
high-temperature episodes, during which leaf temperature 
can increase above air temperature by as much as 10–15 °C 
within 1 min (Hanson et al. 1999; Singsaas et al. 1999; 
Singsaas and Sharkey 1998). In cotton leaves, which have 
high transpirational cooling, the temperature repeatedly 
exceeded 40 °C and fluctuated by as much as 8–10 °C in 
a matter of seconds (Wise et al. 2004). Since leaf tempera-
ture and thus VPD often change in parallel with light inten-
sity (Peak and Mott 2011; Schymanski et al. 2013), fluctua-
tion of leaf temperature and VPD as well as light intensity 
would affect the photosynthetic rate.

CO2 concentration at the leaf surface also fluctuates, 
since active photosynthesis could significantly reduce the 
CO2 concentration in the air at the leaf surface. Subsequent 
air flow at the leaf surface could transiently restore it to 
near ambient. Thus, the frequency of fluctuations in CO2 
at the leaf surface would be highly variable and determined 
by photosynthetic rate and wind conditions.

Plant growth and yield depend largely on photosynthesis 
(Long et al. 2006; Yamori et al. 2016b; Zhu et al. 2010). 
Understanding not only steady-state photosynthetic char-
acteristics but also non-steady-state photosynthetic char-
acteristics under fluctuating environments is needed for 
improving dynamic photosynthesis models and for using 

biotechnological strategies to improve photosynthetic per-
formance under natural conditions (Yamori 2013). In this 
review article, after introducing the magnitude of environ-
mental fluctuations under natural conditions, the effects of 
fluctuations in light intensity, CO2 concentration, leaf tem-
perature, and relative humidity on dynamic photosynthesis 
has been analyzed in rice. Finally, photoprotective strate-
gies that allow plants to maintain the photosynthesis under 
stressful fluctuating environments have been summarized. 
The present work clearly showed that various fluctuating 
environmental factors led to reductions in photosynthetic 
rate in a stepwise manner at every environmental fluctua-
tion, resulting in photoinhibition. Thus, it is concluded that 
fluctuating environments have a large impact on photosyn-
thetic performance and are stressful for plants.

Light-dependent reactions of photosynthesis

Light is absorbed by light-harvesting systems, which con-
tain chlorophylls and carotenoids. The energy captured by 
the photosynthetic pigments is transferred to the reaction 
centers of photosystem I (PSI) and photosystem II (PSII) 
in the thylakoid membranes of chloroplasts (Fig. 1). Elec-
trons derived from water splitting in PSII are ultimately 
transferred to NADP+ via PSI, resulting in NADPH pro-
duction. This process is known as linear electron transport 
(Fig. 1). This linear electron transport, in which electrons 
pass through the cytochrome (Cyt) b6/f complex, gener-
ates a proton (H+) gradient across the thylakoid membrane 
(ΔpH) (Allen 2003). Together with protons generated by 
the water-splitting complex, ΔpH induces the qE compo-
nent of non-photochemical quenching (NPQ) of excitation 
energy. The ΔpH and transmembrane electrical potential 
(Δψ) enable ATP production by ATP synthase (Fig. 1). In 
contrast to linear electron transport, cyclic electron trans-
port around PSI depends solely on PSI; the electrons also 
pass through the Cyt b6/f complex (Fig. 1). Cyclic electron 
transport around PSI can generate ΔpH and drives ATP 
synthesis without NADPH accumulation (Yamori and Shi-
kanai 2016). Generated ATP and NADPH fuel the Calvin–
Benson cycle and other metabolic pathways in the chlo-
roplast stroma. Because of a concentration gradient, CO2 
diffuses from the air through the stomata and then through 
intercellular airspaces into cells and ultimately chloro-
plasts, where it is fixed into carbohydrates (Fig. 1).

Photosynthesis is sensitive to various environmental 
changes, because it needs to balance absorbed light energy 
with the energy consumed by various metabolic pathways. 
The rate of photosynthesis rises with the increase in light 
intensity until saturation (Fig. 2). Low light limits photo-
synthesis and thus plant growth, whereas excessive light 
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can cause photoinhibition of PSII, which results in reduc-
tions in photosynthetic rate (Aro et al. 1993; Takahashi 
and Badger 2011). PSII is very sensitive to light stress 
and is rapidly inactivated under strong light, a phenom-
enon that is referred to as PSII photoinhibition (Aro et al. 
1993; Powles 1984). The light-induced photodamage to 
PSII and the repair of photodamaged PSII occur simulta-
neously. PSII photoinhibition becomes apparent when the 
photodamage rate exceeds the repair rate. Photosynthetic 
rate is also limited by other factors such as low or high 
temperature, low humidity, and low CO2 concentration, 
where light intensity would be frequently in excess of that 
required for CO2 assimilation, which can lead to photoin-
hibition (Fig. 2). Thus, photoinhibition is common even at 
light intensities that would be otherwise optimal (Murchie 
et al. 1999).

Dynamic photosynthetic responses to fluctuating 
environments

The rate of photosynthesis is determined by not only the 
rate of steady-state photosynthesis but also the speed of 
photosynthetic responses to fluctuating environments 
(Way and Pearcy 2012). In the present study, chlorophyll 
fluorescence, P700 redox state, and gas exchange were 
simultaneously measured in rice (Oryza sativa ‘Hitome-
bore’) plants exposed to fluctuating environments (for 
Materials and methods, see Fig. 3). Under constant con-
ditions, the rates of CO2 assimilation and electron trans-
port around PSI (ETR I) and PSII (ETR II) were constant 
for 5 h, and the reduction level of the plastoquinone pool 
(1 − qL) and NPQ (an indicator of thermal dissipation 
of excess energy) were constant. Under fluctuating light, 

Fig. 1  Scheme of photosynthetic reactions in C3 higher plants [modi-
fied from Yamori and Shikanai (2016)]. Light energy captured by 
chlorophyll and light-harvesting complexes drives electron transport, 
which is used to reduce NADP+–NADPH. Electron transport drives 
proton (H+) translocation from the stroma into the lumen, generat-
ing an H+ electrochemical gradient and enabling ATP production. 
ATP and NADPH are used to fix CO2 (photosynthesis) and to react 
with O2 (photorespiration); both processes are catalyzed by Rubisco. 
In photosynthesis, ATP and NADPH are used in the Calvin–Benson 
cycle to produce triose phosphates for carbohydrate metabolism (i.e., 

sugar and starch). They are also used in a range of metabolic activi-
ties in the chloroplast (e.g., nitrogen and sulfur metabolism). The 
solid black arrows show electron transport in the thylakoid mem-
branes, the solid red arrow shows cyclic electron flow around PSI, 
the dotted blue arrows show the movement of protons (H+), and the 
dashed/dotted black arrows show metabolic pathways in which the 
ATP and NADPH are used. PSII photosystem II, PQ plastoquinone, 
Cyt b6f cytochrome b6/f complex, PSI photosystem I, Fd ferredoxin, 
FNR ferredoxin-NADP reductase, Pi inorganic phosphate (color fig-
ure online)
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ETR I, ETR II, and CO2 assimilation rate decreased and 
1 − qL increased in a stepwise manner at every transition 
to low light, whereas NPQ was slightly suppressed dur-
ing both the low-light and high-light phases (Fig. 3). After 
5 h of fluctuating light, ETR I, ETR II, and CO2 assimi-
lation rate during both low- and high-light phases were 
decreased. Under fluctuating temperature (moderate–low 
or moderate–high), relative humidity (moderate–low), and 
CO2 concentration (ambient–low or ambient–high), all the 
photosynthetic parameters (i.e., ETR I, ETR II, and CO2 
assimilation rate) decreased in a stepwise manner at every 
transition, whereas 1 − qL and NPQ gradually increased 
over 5 h (Fig. 3).

The maximum level of the P700 signal (Pm; full oxida-
tion of P700) in the dark and the maximum quantum yield 
of PSII (Fv/Fm) were measured before and after exposure 
to constant or fluctuating conditions for 5 h (Fig. 4). Fluc-
tuating CO2 concentration, leaf temperature, and relative 
humidity significantly reduced Fv/Fm in comparison with 
constant conditions, indicating that PSII is susceptible to 
fluctuating environments (Figs. 4, 5). On the other hand, 
only fluctuating light significantly reduced Pm, indicating 

that PSI is more susceptible to fluctuating light than to 
constant high light or other fluctuating conditions (Figs. 4, 
5). In fluctuating environments, the electron transport sys-
tem accumulates excess reducing power, which cannot be 
dissipated as heat and may cause a strong reducing burst 
(Fig. 3), eventually leading to photoinhibition of PSI or 
PSII (Fig. 4). As a result, plants decreased their CO2 assim-
ilation rate via a reduction in ETR I and ETR II (Fig. 3). 
Thus, these experiments showed that fluctuating conditions 
are stressful for rice plants (Fig. 5).

Various components of photosynthesis respond to envi-
ronmental fluctuations with very different time constants. 
For example, when light intensity is increased suddenly 
after a prolonged period of darkness or low light, photo-
synthetic rate increases gradually over the course of sev-
eral minutes to tens of minutes and approaches a new 
steady-state level (e.g., Yamori et al. 2012). In this phase 
of photosynthetic induction, the initial reactions involved 
in electron transport respond to changes in light intensity 
immediately (for a review, see Pearcy 1990). During the 
first 1–2 min of light induction, the photosynthetic rate is 
limited by the build-up of metabolic pools, especially by 
RuBP regeneration (Sassenrath-Cole and Pearcy 1992; 
Way and Pearcy 2012). Light fluctuation within a few sec-
onds would not have a drastic effect on the Calvin–Benson 
cycle, because the activation of enzymes under light and 
their inactivation in the dark take several minutes to tens 
of minutes (Buchanan 1980, 1991). Because light controls 

Fig. 2  Photosynthesis and photoinhibition in leaves. Dashed line 
represents light energy absorbed by plants, and solid line is the 
light response curve of photosynthesis. The difference between the 
amounts of energy absorbed and used in photosynthesis (red areas) 
represents excess energy that needs to be removed. a Favorable (non-
stressful) conditions, b unfavorable conditions (e.g., low temperature 
or drought) (color figure online)

Fig. 3  Responses of photosynthetic parameters to constant and 
fluctuating conditions in rice (O. sativa ‘Hitomebore’). Plants were 
grown at 400 μmol mol−1 CO2, relative humidity of 70 %, 28 °C, and 
500 μmol photons m−2 s−1. Measurements of chlorophyll fluores-
cence, P700 redox state and also gas exchange were performed simul-
taneously with a Dual-PAM-100 and a GFS-3000 measuring system 
(Walz, Effeltrich, Germany) in uppermost, fully expanded new leaves 
of 60–80 day old plants as described in Yamori et al. (2011). The 
rates of electron transport around PSI (ETR I) and around PSII (ETR 
II), the ETR I/ETR II ratio, CO2 assimilation rate, the redox state of 
the plastoquinone pool (1 − qL), and non-photochemical quenching 
(NPQ) were simultaneously measured under the growth conditions 
with the following modifications: a constant light (1,500 μmol pho-
tons m−2 s−1), b fluctuating light (100 μmol m−2 s−1 for 10 min and 
1,500 μmol m−2 s−1 for 10 min), c fluctuating temperature (18 °C for 
10 min and 28 °C for 10 min) with constant light (1,500 μmol pho-
tons m−2 s−1), d fluctuating temperature (28 °C for 10 min and 38 °C 
for 10 min) with constant light (1,500 μmol photons m−2 s−1), e 
fluctuating relative humidity (40 % for 10 min and 70 % for 10 min) 
with constant light (1,500 μmol photons m−2 s−1), f fluctuating CO2 
concentration (100 μmol mol−1 for 10 min and 400 μmol mol−1 
for 10 min) with constant light (1,500 μmol photons m−2 s−1), g 
fluctuating CO2 concentration (400 μmol mol−1 for 10 min and 
1,200 μmol mol−1 for 10 min) with constant light (1,500 μmol pho-
tons m−2 s−1). ETR I (or ETR II) was calculated by multiplying the 
quantum yield of PSI (or PSII) and the estimated energy absorption 
in PSI (or PSII) (=PPFD x 0.84 x 0.5), where 0.84 represents the leaf 
absorbance and 0.5 is the proportion of absorbed light energy allo-
cated to PSI or PSII. Values are mean ± SE, n = 3

▸
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the activity of a number of Calvin–Benson cycle enzymes 
and ATP synthase via the ferredoxin/thioredoxin system, 
the changes in light intensity within minutes may be critical 
for CO2 assimilation in the Calvin–Benson cycle [which 
includes ribulose-1,5-bisphosphate carboxylase/oxyge-
nase (Rubisco), chloroplast fructose-1, 6-bisphosphatase 
(FBPase), sedoheptulose-1,7-bisphosphatase (SBPase), 
phosphoribulokinase (PRK)] (Kirschbaum and Pearcy 
1988; Sassenrath-Cole and Pearcy 1992, 1994). Light 
fluctuation for several tens of minutes may affect stomatal 
conductance (Cardon and Berry 1992; Lawson et al. 2002; 
Morison 1998). Because these reactions affect photosyn-
thesis as a whole, drastic fluctuations in light intensity can 
cause photoinhibition and reduce plant growth (Kono et al. 
2014; Tikkanen and Aro 2012; Yamori et al. 2016a).

Temperature changes have a strong impact on photosyn-
thetic reactions. The temperature response curve of pho-
tosynthetic rate is generally parabolic, often with an opti-
mum at the growth temperature (for reviews, see Way and 
Yamori 2014; Yamori et al. 2014). A decrease in tempera-
ture by 10 °C (e.g., from 20 to 10 °C) will reduce the activ-
ity of Calvin–Benson cycle enzymes by 50 %. This usually 
reduces the demand for the reducing equivalent (NADPH) 
and causes subsequent accumulation of reductants. High 
temperatures reduce the activity of the Calvin–Benson 

cycle enzymes, especially Rubisco. The activation state 
of Rubisco is regulated by Rubisco activase (Portis 2003), 
which fails to maintain a high Rubisco activation state at 
high temperatures because of its thermolability (Crafts-
Brandner and Salvucci 2000; Salvucci and Crafts-Brand-
ner 2004). Thus, fluctuating temperature (moderate–low or 
moderate–high) in combination with high light could lead 
to over-reduction of the photosynthetic electron transport 
chain and eventually to photoinhibition.

Drought stress induces stomatal closure, which lim-
its CO2 transfer into leaves and limits photosynthesis 
(Chaves et al. 2009; Cornic 2000; Flexas and Medrano 
2002). This limitation can decrease the activity of the Cal-
vin–Benson cycle enzymes and result in over-reduction 
of the photosynthetic electron transport chain, similar to 
the effect of temperature. High CO2 concentrations reduce 
stomatal conductance (Ainsworth et al. 2002; Ainsworth 
and Rogers 2007; Medlyn et al. 2001). In Phaseolus vul-
garis, fluctuations in CO2 concentration decreased CO2 
assimilation rate via a reduction in stomatal conductance 
(Cardon et al. 1994, 1995). Although changes in CO2 
concentration, temperature, and humidity may be more 
gradual than changes in light intensity, fluctuating condi-
tions causing stomatal closure under high light can lead to 
photoinhibition.

Fig. 4  Effect of fluctuating 
conditions on photoinhibition 
of PSI and PSII. The maximum 
level of the P700 signal of PSI 
(Pm, full oxidation of P700) and 
the maximum quantum yield 
of PSII (Fv/Fm) were measured 
with a Dual-PAM-100 and a 
GFS-3000 measuring system 
(Walz, Effeltrich, Germany) 
before and after exposure 
to constant or fluctuating 
conditions for 5 h. Values were 
measured after dark incuba-
tion for 30 min. Constant and 
fluctuating environments were 
as in Fig. 3. The extent of 
photoinhibition of PSI and PSII 
is relative to the initial Pm and 
Fv/Fm values (%). Values are 
mean ± SE, n = 3
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Photoinhibition of photosystems I and II

Photoinhibition may represent downregulation of the pho-
tosynthetic apparatus when harvested light energy exceeds 
energy that can be used by the chloroplast. In our experi-
ments, fluctuating conditions other than light damaged 
PSII (Fig. 4). Many studies also have reported the sensi-
tivity of PSII to photodamage, and PSII has an efficient 
and dynamic repair machinery (for reviews, see Aro et al. 

1993, 2005). The damaged PSII proteins, primarily D1, are 
replaced with newly synthesized proteins after partial PSII 
disassembly (Takahashi and Badger 2011). ROS generated 
under various stresses inhibit PSII repair (Takahashi and 
Murata 2008). The dynamic control of active PSII reaction 
centers via a photoinhibition–repair cycle may rescue PSI 
from photodamage under high light (Tikkanen et al. 2014).

In contrast to PSII, PSI lacks efficient repair, and thus its 
recovery is extremely slow (Kudoh and Sonoike 2002). PSII 
photodamage increases linearly with light intensity, whereas 
PSI damage appears only when the electron flow from PSII 
exceeds the capacity of PSI electron acceptors. PSI has 
generally been regarded as more stable than PSII in vivo 
(Sonoike 2011). However, under natural conditions, PSI pho-
todamage could be much more frequent than anticipated. PSI 
is potentially susceptible to fluctuating light even in wild-
type Arabidopsis (Kono et al. 2014; Suorsa et al. 2012; Tik-
kanen et al. 2010) and rice (Figs. 4, 5; Yamori et al. 2016a). 
Selective photoinhibition of PSI by moderate light treatment 
of intact leaves at chilling temperatures occurs in several 
plant species, including cotton (Kornyeyev et al. 2003a, b), 
cucumber (Sonoike and Terashima, 1994; Terashima et al. 
1994), and potato (Havaux and Davaud 1994). Thus, PSI 
is the primary site of photoinhibition in many plant species 
under certain conditions (e.g., fluctuating light or chilling 
temperature with moderate light intensity), and PSI photoda-
mage could limit crop growth in temperate climates.

Fig. 5  Summary of photoinhibition under various environmental 
conditions. a Under non-stressful (favorable) conditions, photoinhibi-
tion does not occur. b Under constant light stress and various fluctuat-
ing conditions (temperature, relative humidity, or CO2 concentration), 
the electron transport system accumulates excess reducing power 
which cannot be dissipated as heat, causing photoinhibition of PSII. 
c Under fluctuating light, strong reduction of the entire electron trans-
port system for a couple of hours causes a strong reducing burst at the 
acceptor side of PSI, leading to PSI photoinhibition

Fig. 6  Time scale of various photoprotective mechanisms to prevent 
photoinhibition [modified from Eberhard et al. (2008)]. CEF-PSI: 
cyclic electron transport around PSI, water–water cycle: Mehler-
ascorbate peroxidase pathway, qE: energy-dependent quenching com-
ponent of nonphotochemical quenching (NPQ) of absorbed light, qT: 
state transitions to balance the excitation of PSII and PSI, enzyme 
activation: activation of key enzymes in the Calvin–Benson cycle by 
thioredoxin, malate-OAA shuttle: malate–oxaloacetate shuttle, chlo-
roplast movement: light-induced movement and arrangement of chlo-
roplasts, qI: photoinhibitory processes
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Photoprotective strategies to prevent 
photoinhibition

Rapid photosynthetic responses to fluctuating environments 
which operate on the proper timescale should determine 
their viability and survival under such stressful environment 
conditions. A number of photoprotective mechanisms over 
a wide range of time scales have been reported (Fig. 6); (1) 
photoprotection by avoiding exposure to light and (2) pho-
toprotection by coping with excess light absorbed by pho-
tosynthetic pigments (Baena-Gonzalez and Aro 2002; Holt 
et al. 2004; Takahashi and Badger 2011). Below, I review 
various photoprotective strategies, with emphasis on photo-
protection by coping with excess absorbed light.

Photoprotection by avoiding exposure to light at the 
leaf or chloroplast levels

Leaf movement, such as paraheliotropism, is an efficient 
strategy to reduce light interception and thus to avoid 

excess light energy absorption (Arena et al. 2008; Jiang 
et al. 2006; Ludlow and Bjorkman 1984; Pastenes et al. 
2005), and also to reduce heat and transpirational water 
loss which confers the plant to protect against photoinhi-
bition (Forseth and Ehleringer 1982; Gamon and Pearcy 
1989). Paraheliotropism protects against photoinhibition in 
bean (Bielenberg et al. 2003; Pastenes et al. 2005), soybean 
(Jiang et al. 2006), and wild grape (Gamon and Pearcy 
1989, 1990). Another type of leaf movement is leaf rolling, 
which protects leaves from dehydration because it reduces 
the effective leaf area and therefore transpiration. At the 
same time, leaf rolling protects leaves from photodamage 
(Corlett et al. 1994).

Chloroplasts alter their positions to optimize the use of 
light (Suetsugu and Wada 2007; Wada et al. 2003). Under 
strong light, they move from the cell surface to the side 
walls of cells. This so-called “avoidance response” pro-
tects against photoinhibition (Kasahara et al. 2002) because 
chloroplast movements decrease light interception by the 
photosynthetic apparatus and may reduce light absorptance 

Fig. 7  Major photoprotective mechanisms that prevent photoinhi-
bition. a The qE component of NPQ dissipates excess light energy 
absorbed by photosynthetic pigments (chlorophyll and carotenoids) as 
heat. b Cyclic electron transport around PSI (CEF-PSI) includes the 
PGR5/PGRL1-dependent and NDH-dependent pathways and helps to 
generate ΔpH across the thylakoid membrane. c Plastoquinol terminal 
oxidase (PTOX). Electrons are transferred from plastoquinol (PQH2) 
via PTOX, which oxidizes plastoquinone (PQ) and reduces O2–H2O. 
d ROS scavenging through the water–water cycle: photoreduction of 
O2–H2O at the reducing side of PSI. O2

− produced at PSI is scavenged 

by superoxide dismutase (SOD) and, subsequently by ascorbate per-
oxidase (APX), which consume NADPH. e Metabolic interactions 
between chloroplasts and mitochondria: the malate–oxaloacetate 
(OAA) shuttle. NADPH generated by electron transport in the chlo-
roplast can be re-oxidized by the mitochondrial respiratory chain, in 
which NADPH is consumed by the reduction of OAA–malate; and 
some of the malate is exported from the chloroplast to the mitochon-
drion to synthesize ATP. Malate can also be oxidized back to OAA in 
the cytosol to produce NADH. f The photorespiration pathway. Pho-
torespiration requires ATP and releases previously fixed CO2
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by approximately 20 % (Brugnoli and Bjorkman 1992). 
Chloroplasts move at velocities above 1 µm min−1 (Kagawa 
and Wada 2004), and thus their avoidance response would 
be completed in approximately 20 min. Two photorecep-
tors for chloroplast movement, phototropin 1 (PHOT1) and 
phototropin 2 (PHOT2), have been identified in Arabidop-
sis thaliana. Only PHOT2 participates in the avoidance 
response, but both play a role in chloroplast accumulation 
in illuminated cell areas under low light to maximize light 
absorption for photosynthesis (Wada et al. 2003).

Photoprotection by coping with excess light absorbed 
by photosynthetic pigments

Several photoprotective processes involving in the photo-
synthetic electron transport have been proposed (Fig. 7).

Thermal energy dissipation of absorbed excess light energy

Plants possess a rapidly (on the time scale of seconds) 
inducible NPQ mechanism, termed ΔpH-dependent 
quenching (qE), for harmless thermal dissipation of excess 
light energy absorbed in the light-harvesting antenna of 
PSII (Fig. 7a). The mechanism responsible for qE compo-
nent is associated with the conversion of violaxanthin via 
antheraxanthin to zeaxanthin by violaxanthin de-epoxi-
dase and the protonation of the PSII subunit PsbS, which 
functions as a sensor of lumen pH in plants (Li et al. 
2000; Niyogi et al. 2005). Both reactions are enhanced 
by low lumen pH, which is accompanied by ΔpH gen-
eration through electron transport at high light (Niyogi 
1999). Thus, qE component of NPQ can be considered as 
feedback regulation of the light-dependent reactions of 
photosynthesis.

Thermal dissipation might protect PSII from photoinhi-
bition by decreasing the rate of PSII photodamage under 
strong light (Havaux and Niyogi 1999; Li et al. 2002). 
However, a recent study on Arabidopsis mutants defective 
in NPQ revealed that defects in thermal dissipation inhib-
ited PSII repair without notable effects on PSII photodam-
age; this inhibition was attributed to suppression of de novo 
protein synthesis, especially that of D1 (Takahashi et al. 
2009). ROS accelerated photoinhibition by inhibiting PSII 
repair rather than by being directly involved in photodam-
age (Nishiyama et al. 2006). Thus, it appears that thermal 
dissipation plays a role in preventing ROS generation and 
avoiding ROS-mediated inhibition of de novo D1 synthe-
sis. There is still a possibility that the ROS could damage 
PSII depending on the light conditions, types of ROS (e.g., 
O2

−, H2O2 and OH·) and the ROS concentrations (Blot 
et al. 2011; Fan et al. 2016), since it has been also reported 
that ROS can photodamage PSII directly (Fan et al. 2016; 
Hideg et al. 2011; Kornyeyev et al. 2010).

Cyclic electron transport around PSI

Cyclic electron transport around PSI enhances generation 
of ΔpH across the thylakoid membrane by increasing elec-
tron transfer from PSI to the plastoquinone pool, and then 
back to PSI through the proton-pumping Cyt b6/f complex 
(Fig. 7b). Cyclic electron transport around PSI is proposed 
to be essential for balancing the ATP/NADPH production 
ratio by increasing ΔpH to increase ATP synthesis (Yamori 
and Shikanai 2016). In addition, the additional genera-
tion of ΔpH induces qE to dissipate excess absorbed light 
energy (Müller et al. 2001; Niyogi 1999). The electron 
flow through the Cyt b6/f complex slows as ΔpH increases. 
Thus, ΔpH plays a regulatory roles via the acidification 
of the thylakoid lumen by the down-regulation of elec-
tron transport through the Cyt b6/f complex (Golding et al. 
2004; Kramer et al. 2004; Suorsa et al. 2012; Tikkanen 
et al. 2014). Therefore, cyclic electron transport around PSI 
protects both photosystems from damage caused by stro-
mal over-reduction (Miyake 2010; Takahashi and Badger 
2011; Yamori and Shikanai 2016). It is worth noting that 
cyclic electron transport around PSII, which requires only 
PSII photochemical reactions, has been proposed to operate 
efficiently under excess light conditions (Miyake and Oka-
mura 2003; Prasil et al. 1996), although its physiological 
roles and molecular mechanisms are still not clear.

In angiosperms, two alternative pathways of cyclic 
electron transport around PSI have been identified (for a 
review, see Yamori and Shikanai 2016). The major path-
way in Arabidopsis depends on two proteins, PROTON 
GRADIENT REGULATION 5 (PGR5) (Munekage et al. 
2002, 2004) and PGR5-Like PHOTOSYNTHETIC PHE-
NOTYPE 1 (PGRL1) (DalCorso et al. 2008; Hertle et al. 
2013), whereas the minor pathway is mediated by the chlo-
roplast NADH dehydrogenase-like (NDH) complex (Bur-
rows et al. 1998; Horváth et al. 2000; Kofer et al. 1998; 
Shikanai et al. 1998), which forms a supercomplex with 
PSI (Peng et al. 2011). Both the PGR5/PGRL1-dependent 
pathway (DalCorso et al. 2008; Hertle et al. 2013; Munek-
age et al. 2002, 2004) and the NDH-dependent pathway 
(Yamamoto et al. 2011; Yamamoto and Shikanai 2013) are 
involved in ferredoxin-dependent cyclic electron transport 
around PSI. In C3 plants, approximately ≤10–15 % of total 
electron transport is derived from cyclic electron transport 
around PSI in the steady state (e.g., Fan et al. 2007; Kramer 
et al. 2004; Kuvykin et al. 2011; Laisk et al. 2005, 2007; 
Miyake et al. 2005). However, when demand for ATP is 
higher than that for NADPH (e.g., during photosynthetic 
induction, at high or low temperature, at low CO2 concen-
tration, or under drought), cyclic electron transport around 
PSI is likely to be activated (for a recent review, see Yamori 
and Shikanai 2016). Complete inhibition of both cyclic 
electron transports around PSI in the Arabidopsis crr2 pgr5 
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double mutant severely impairs photosynthesis and growth 
(Munekage et al. 2004), indicating that cyclic electron 
transport around PSI is essential for photosynthesis in C3 
species.

Plastoquinol terminal oxidase (PTOX)

Plastoquinol terminal oxidase (PTOX) serves as an alter-
native electron sink, which oxidizes plastoquinol (PQH2) 
and reduces O2–H2O when the plastoquinone pool is over-
reduced (McDonald et al. 2011; Nawrocki et al. 2015; 
Peltier and Cournac 2002). In principle, PTOX could con-
tribute to ATP production, and it plays a role in the con-
trol of the redox poise in chloroplasts (Fig. 7c). It has been 
proposed that PTOX is capable of modulating the balance 
between linear electron transport and cyclic electron trans-
port around PSI during the dark-to-light transition (Trouil-
lard et al. 2012). The alpine plant species Ranunculus gla-
cialis has high levels of PTOX, which may act in effective 
alternative electron transport (Streb et al. 2005). However, 
because PTOX is expressed at very low levels in most C3 
plants (e.g., Arabidopsis or tomato), it is likely to act as a 
safety valve to keep the plastoquinone pool oxidized and 
to prevent photo-oxidative damage under stress conditions 
(Josse et al. 2000; McDonald et al. 2011).

It is likely that PTOX is involved in chloroplast devel-
opment (McDonald et al. 2011). During carotenoid syn-
thesis, desaturation requires plastoquinone and is driven 
by a redox chain in which PTOX is likely to re-oxidize 
the reduced plastoquinone (Carol and Kuntz 2001; Kuntz 
2004). The lack of PTOX causes the variegated leaf phe-
notype of the Arabidopsis immutans mutant and the tomato 
ghost mutant, in which the bleached spots originate at early 
stage during chloroplast biogenesis as a result of shortage 
in carotenoid synthesis (Carol and Kuntz 2001). Therefore, 
PTOX appears to play a role in carotenoid synthesis. It is 
likely that the relative importance of PTOX to electron 
transport could vary depending on the developmental and 
physiological context.

ROS scavenging through the water–water cycle

The water–water cycle (Asada 1999, 2006), which includes 
the Mehler reaction of O2 reduction by PSI (Mehler 1951), 
occurs by the photoreduction of O2–H2O at the reduc-
ing side of PSI via electrons generated from H2O in PSII 
(H2O → PSII → PSI → O2 → H2O) (Fig. 7d). The super-
oxide (O2

−) formed in this reaction is scavenged by super-
oxide dismutase (SOD) and ascorbate peroxidase (APX) 
with consumption of NADPH (Asada 1999, 2006). The 
consumption of NADPH by the water–water cycle allows 
linear electron transport to continue, thereby producing 
ATP. Thus, the water–water cycle is eventually coupled to 

the generation of ΔpH, which drives ATP synthesis with-
out NADPH accumulation. It should be noted that ROS 
production under excess light is accelerated not only at 
PSI but also at PSII, although each photosystem produces 
different ROS types; superoxide (O2

−) and hydrogen per-
oxide (H2O2) in PSI and singlet-state oxygen (1O2) in PSII 
(for a review, see Asada 2006). To avoid such oxidative 
stress, chloroplasts detoxify ROS effectively using multiple 
enzymes, including SOD, APX and peroxiredoxin (Prx).

In the leaves of most C3 species, the water–water cycle 
contributes <5 % of linear electron transport even when 
CO2 assimilation is inhibited (Clarke and Johnson 2001; 
Ruuska et al. 2000), but in rice leaves this cycle appears to 
operate at a substantial level during photosynthetic induc-
tion (Makino et al. 2002). Thus, the water–water cycle 
likely plays a photoprotective role by ROS detoxification 
and dissipation of excess energy, and could also balance the 
levels of ATP and reductants (for reviews, see Asada 1999; 
Miyake 2010; Ort and Baker 2002).

It should be noted that, to minimize the effects of oxida-
tive stress, plants have also evolved a non-enzymatic anti-
oxidant system, such as low-molecular weight antioxidants 
of plant cells (e.g., glutathione, ascorbate, tocopherol and 
carotenoids) (for a review, see Apel and Hirt 2004; Del-
laPenna and Pogson 2006; Foyer et al. 2006). Mutants 
with decreased contents of ascorbic acid are hypersensi-
tive to stress (Conklin et al. 1996). Moreover, overexpres-
sion of β-carotene hydroxylase in Arabidopsis leads to 
increased amounts of xanthophyll in chloroplasts, result-
ing in enhanced tolerance to oxidative stress (Davison et al. 
2002). Studies using various double knockout mutants in 
Arabidopsis showed compensatory effects of ROS scaven-
gers, including tocopherol, ascorbate and glutathione (Kan-
wischer et al. 2005). The enhancement of chloroplast anti-
oxidant defenses has proved to be one of the most effective 
ways of protecting plant cells from abiotic stress (Chang 
et al. 2009; Ishikawa and Shigeoka 2008).

Metabolic interactions between chloroplasts 
and mitochondria: the malate–oxaloacetate (OAA) shuttle

NADPH generated by photosynthetic electron transport 
under high light can be re-oxidized by the mitochondrial 
respiratory chain, in which NADPH is consumed by the 
reduction of OAA to malate and the malate is exported 
from chloroplasts to mitochondria (Fig. 7e). This path-
way is called ‘malate–OAA shuttle’ (Noguchi and Yoshida 
2008; Scheibe 2004).

Although metabolic interactions between chloroplasts 
and mitochondria have multiple physiological conse-
quences, the contribution of the mitochondria as an elec-
tron sink for photosynthesis in vivo is still unclear (for a 
review, see Noctor et al. 2004). The malate–OAA shuttle 
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appears to have low capacity to regulate the ATP/NADPH 
ratio (Scheibe et al. 2005). However, in transgenic potato 
with reduced levels of malate dehydrogenase (MDH), the 
malate–OAA shuttle can contribute up to 10 % of total 
electron flow from PSII (Laisk et al. 2007). Thus, mito-
chondrial respiration could neutralize excess photosyn-
thetic reducing power and prevent oxidative damage of thy-
lakoid membranes and other cellular components (Noguchi 
and Yoshida 2008; Raghavendra and Padmasree 2003).

The photorespiration pathway

Since any efficient sink for electrons produced by water 
splitting in PSII may lower the risk of photoinhibition, it 
is relevant to include reactions of CO2 assimilation itself 
and photorespiration (Fig. 7f). In the Calvin–Benson cycle, 
Rubisco can fix both CO2 in photosynthesis and O2 in pho-
torespiration (Bauwe et al. 2010). Photosynthetic carbon 
fixation produces two 3-phosphoglycerate (PGA) mol-
ecules for every carbon fixed, whereas photorespiration 
produces one PGA and one 2-phosphoglycolate, which is 
recycled to PGA with the loss of CO2 and ammonia. Thus, 
the photorespiratory pathway can be considered to con-
sist of the photorespiratory carbon and nitrogen cycles. 
Photosynthesis results in net fixation of CO2, whereas the 
photorespiratory pathway requires ATP and releases pre-
viously fixed CO2. Photorespiration rate increases with a 
decrease in the CO2/O2 ratio in the chloroplast, and also 
under drought and high temperature (Ogren 1984; Sage 
et al. 2012). At current atmospheric CO2 concentrations 
and 30 °C, the rate of photorespiratory CO2 release from 
the mitochondria is approximately 25 % of the rate of net 
CO2 assimilation (Sage et al. 2012).

Although photorespiration is generally seen as a waste-
ful pathway, photorespiration is thought to act as a mecha-
nism by which excess light energy can be used, reducing 
photodamage in the chloroplast (André 2011). The impair-
ment of the photorespiratory pathway diminishes CO2 
assimilation (because of the shortage of metabolites in the 
Calvin–Benson cycle and accumulation of intermediates of 
the photorespiratory pathway that can inhibit the Calvin–
Benson cycle) and accelerates photoinhibition (Kozaki and 
Takeba 1996; Osmond 1981). In Arabidopsis mutants with 
impairments of ferredoxin-dependent glutamate synthase, 
serine hydroxymethyltransferase, glutamate/malate trans-
porter, and glycerate kinase, photoinhibition caused by the 
impairment of the photorespiratory pathway is due to inhi-
bition of the repair of photodamaged PSII, not acceleration 
of PSII photodamage (Takahashi et al. 2007). Therefore, 
the photorespiratory pathway could play a role in maintain-
ing PSII repair by maintaining energy utilization in the Cal-
vin–Benson cycle, which is important for decreasing ROS 
generation under stress.

Recent findings on the regulatory mechanisms 
of photosynthesis under fluctuating light

Analysis in several Arabidopsis mutants indicates that 
PGR5/PGRL1-dependent cyclic electron transport around 
PSI is crucial for photosynthesis regulation under fluctu-
ating light (for a review, see Yamori and Shikanai 2016), 
especially at early developmental stages (Suorsa et al. 
2012). In wild type, rapid induction of NPQ upon increase 
in light intensity prevents over-reduction of the plastoqui-
none pool. The pgr5 mutant and the NPQ mutants npq1 
and npq4 induce little NPQ; fluctuating light hardly gives 
damage to the npq1 and npq4 mutants (Tikkanen et al. 
2010), but it is lethal for the pgr5 mutant (Kono et al. 
2014; Suorsa et al. 2012; Tikkanen et al. 2010). Unlike the 
npq4 mutant (Grieco et al. 2012; Tikkanen et al. 2015), the 
pgr5 mutant cannot oxidize P700 under high light, and this 
defect leads to PSI photodamage (Munekage et al. 2002). 
Thus, the absence of NPQ seems only to play an indirect 
role in response to fluctuating light. Similar to Arabidop-
sis pgr5 mutants, PGR5-knockdown rice (Yamori et al. 
2016a) suffers from fluctuating light, with PSI as the pri-
mary target of photodamage and a stunted phenotype. The 
cumulative strong reduction of the entire electron trans-
port system under fluctuating light for a couple of hours 
would cause a strong reducing burst at the acceptor side 
of PSI, leading to photodamage at PSI (Kono et al. 2014; 
Yamori et al. 2016a). Therefore, in higher plants the 
PGR5/PGRL1-dependent pathway is essential for effective 
responses to considerable fluctuations of light intensity 
and for avoiding photodamage (for a review see, Yamori 
and Shikanai 2016).

In rice, the impairment of NDH-dependent cyclic elec-
tron transport around PSI reduces photosynthetic rate 
under fluctuating light, leading to PSI photoinhibition, 
and consequently reduces biomass (Yamori et al. 2016a). 
During low-light phases, the NDH-dependent pathway 
maintains the electron transport chain on the acceptor side 
of PSI oxidized, which seems to be essential to prevent 
PSI over-reduction during subsequent high-light phases. 
This finding is supported by the important role of NDH-
dependent PSI cyclic electron transport in regulation of 
the chloroplast redox state under constant low light, when 
light reactions limit photosynthesis (Yamori et al. 2015). 
In Arabidopsis, even the complete absence of the NDH 
complex does not reduce growth and photosynthesis under 
fluctuating light (Kono et al. 2014; Suorsa et al. 2012), 
indicating an interspecific difference in the physiological 
role of NDH-dependent cyclic electron transport around 
PSI under fluctuating light. This difference may depend 
on the activity of other alternative electron transport path-
ways, including the water–water cycle (Yamori and Shika-
nai 2016).
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During acclimation to growth light environments, many 
plants change biochemical composition and morphology 
(e.g., Smith 1982; Terashima et al. 2005). Acclimation 
to low light enhances nitrogen allocation to components 
involved in light acquisition (e.g., chlorophylls and light-
harvesting complexes), whereas acclimation to high light 
enhances components involved in light energy utilization 
(e.g., Rubisco and other Calvin–Benson cycle enzymes) 
and photoprotective potential. Photosynthetic acclimation 
to fluctuating light would require specific mechanisms, 
because plants acclimated to low light cannot cope with 
high light, and plants acclimated to high light cannot use 
low light efficiently. In rice, both PGR5/PGRL1-depend-
ent and NDH-dependent cyclic electron transport around 
PSI sustain photosynthesis and plant growth under fluc-
tuating light (Yamori et al. 2016a). The highly responsive 
regulatory system controlled by cyclic electron trans-
port around PSI could optimize photosynthesis and plant 
growth under naturally fluctuating light (Yamori and Shi-
kanai 2016).

Future perspectives

Despite extensive research on improving photosynthesis to 
increase crop yields (Yamori 2013; Yamori et al. 2016b), 
the photosynthetic responses to naturally fluctuating envi-
ronments remains unclear. To optimize energy gain at low 
light and to protect the photosynthetic machinery at high 
light, plants have various photosynthetic regulation mecha-
nisms that are either constitutively active or are activated 
when needed (Fig. 7; Demmig-Adams and Adams 1992; 
Niyogi 2000). It has not been clarified what would be the 
strategy to cope with fluctuations in each environmental 
factor (e.g., humidity, temperature, CO2). Thus, it would 
be needed to examine a role of each photoprotective strat-
egy in avoidance of photoinhibition under various fluctuat-
ing environmental factors. Photoprotection is an essential 
adaptation to prevent severe photoinhibition and reduc-
tion of photosynthesis and thus plant growth. Therefore, 
understanding the physiological and molecular basis of 
photoprotection under fluctuating environments would 
help to develop selection markers for breeding aimed at 
enhancing stress tolerance in crops and ensuring food secu-
rity. Recent advances in nuclear or chloroplast genome 
transformation facilitate manipulation of photosynthesis. 
Analysis of mutants or transformants could considerably 
improve our understanding of photosynthetic regulation 
under fluctuating conditions. Additionally, understanding 
of the responses of photosynthesis to fluctuating environ-
ments could lead to improvements of model predictions of 
dynamic photosynthesis under fluctuating environments in 
nature.
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