
1 3

J Plant Res (2016) 129:423–434
DOI 10.1007/s10265-016-0791-6

REGULAR PAPER

Physiological and biochemical responses of the forage legume 
Trifolium alexandrinum to different saline conditions and nitrogen 
levels

Barhoumi Zouhaier1,2 · Maatallah Mariem1 · Rabhi Mokded1 · Aida Rouached1 · 
Khaldoun Alsane2 · Abdelly Chedly1 · Smaoui Abderrazek1 · Atia Abdallah1 

Received: 16 June 2015 / Accepted: 5 November 2015 / Published online: 27 January 2016 
© The Botanical Society of Japan and Springer Japan 2016

chloride accumulation and increases in total nitrogen con-
centrations, nitrogen use efficiency, and NR and GS activi-
ties in photosynthetic organs. Therefore, T. alexandrinum is 
a legume forage crop that can be cultivated in low-saline 
soils where nitrogen availability is limited.
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Introduction

Abiotic stresses, especially salinity and nutrient deficiency, 
are important factors that reduce crop yields worldwide. 
Salinity, in particular, is an increasing problem affecting 
20 % of the world’s cultivated land and nearly half of the 
irrigated area (FAO 2002; Sosa et al. 2005). Moreover, 
salinity-affected areas are rapidly expanding because of 
faulty irrigation systems and poor water quality. Salinity 
stress affects plant productivity and agricultural sustain-
ability in many areas of the world, especially in arid and 
semi-arid regions (Endris and Mohammed 2007; Feng et al. 
2005). Its effects on plants are complex and may result in 
problems associated with water deficits, ionic imbalance, 
mineral nutrition, stomatal behavior, and photosynthetic 
activity (Bohnert and Jensen 1996; Moghaieb et al. 2001). 
However, plant species differ in their sensitivity or toler-
ance to salts (Brady and Weil 1996).

In saline soils, the concentrations of Na+ and Cl− may 
exceed those of essential macronutrients by an order of 
magnitude. The resulting changes to soil ion activities and 
ratios of Na+ to specific macronutrients may alter nutrient 
uptake by roots and nutrient translocation within the plant. 
Consequently, plants may become susceptible to nutri-
tional disorders (Munns 2005; Niu et al. 1995; Parida and 
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Das 2005). Thus, physiological mechanisms underlying 
interactions between salinity and mineral deficiency can 
only be studied in controlled environments. Additionally, 
plant responses to multiple stresses are highly complex and 
can differ from responses to individual stresses. Moreo-
ver, salt-affected soils are usually deficient in nitrogen (N) 
(Ashraf and McNeilly 1994). Therefore, N deficiency has 
been suggested as a major factor responsible for reducing 
plant growth in saline habitats (Chen 1998; Kao and Chang 
1998).

Nitrogen is an essential nutrient for plants (Marsch-
ner 1995), and it constitutes 1.5–2 % of plant dry matter. 
It promotes rapid growth, increases leaf size and quality, 
hastens crop maturity, and promotes fruit and seed devel-
opment. Nitrogen is a component of amino acids, which 
are required to synthesize proteins and other related com-
pounds. It also has important roles in almost all plant meta-
bolic processes. Nitrogen deficiency alters many morpho-
logical, physiological, and biochemical parameters. For 
example, it causes decreases in growth, leaf number, leaf 
area (Radin and Boyer 1982; Radin and Parker 1979), net 
photosynthetic assimilation (Huang et al. 2004; Shangguan 
et al. 2000; Terashima and Evans 1988; Wong et al. 1985; 
Zhu et al. 2014), chlorophyll content, intrinsic water use 
efficiency (iWUE), and concentrations of phosphorus and 
potassium (Malavolta et al. 2004; Zhu et al. 2014). Nitro-
gen deficiency also causes decreased concentrations of 
different N forms (Rubio-Wilhelmi et al. 2011). The main 
symptoms of N deficiency in plants are leaf senescence 
caused by lipid peroxidation and pigment loss as well as 
protein degradation, leading to reduced photosynthetic 
capacity (Casano et al. 1994). Therefore, considerable 
research has focused on plant responses to N deficiency, 
which is an abiotic stress that plants may experience sev-
eral times during their growth and development (Scheible 
et al. 2004; Wang et al. 2000).

Nitrogen is required by plants as NH4
+ or NO3

−, which 
are the main available forms of N in soils. These com-
pounds are usually taken up from the soil and then assimi-
lated, transformed, and mobilized within plants (Romero 
et al. 2004). Nitrogen assimilation is catalyzed by enzymes, 
including nitrate reductase (NR) and glutamine synthetase 
(GS), which are the first enzymes in the NO3

− and NH4
+ 

assimilation pathways, respectively. Nitrate reductase activ-
ity is a limiting factor of plant growth and development 
(Solomonson and Barber 1990) and is influenced by sev-
eral environmental conditions (Crawford 1995), including 
salinity. Salt-induced modification of NR activity depends 
on many factors, such as plant species, N availability, and 
salt concentration. Glutamine synthetase catalyzes the 
ATP-dependent condensation of ammonium with glutamate 
to yield glutamine, which then provides N groups, either 
directly or via glutamate, for the biosynthesis of all plant 

nitrogenous compounds (Forde and Cullimore 1989). Glu-
tamine synthetase activity increases in response to saline 
conditions in several species such as ryegrass (Sagi et al. 
1998), tomato (Cramer et al. 1999), cowpea (Silveira et al. 
2001), and barley (Kant et al. 2007).

In the present study, we investigated the combined 
effects of salinity and N deficiency on berseem (Trifolium 
alexandrinum), an annual legume forage crop known for 
its high yield and protein content, with the ultimate goal of 
improving the productivity of forage species in salinized 
soils.

Materials and methods

Plant materials, growth conditions, and treatments

Berseem seeds were surface sterilized with 3 % (w/v) cal-
cium hypochlorite solution for 5 min, rinsed several times 
with distilled water, sown in Petri dishes, and incubated at 
25 °C in the dark. Five uniform germinated seedlings were 
grown in 5-L pots filled with 1:20 diluted nutrient solution 
(Hewitt 1966) for 14 days. Seedlings were then grown in 
the same complete nutrient solution containing 1.6 mM 
KH2PO4, 0.6 mM K2HPO4, 1.5 mM MgSO4, 3 mM KCl, 
3.5 mM CaCl2, and 3.0 µM Fe-K-EDTA. Trace elements 
were supplied as follows (µM): 0.05 Zn, 0.5 Mn, 0.04 Cu, 
0.02 Mo, and 0.05 B. Nitrogen was supplied as NH4NO3 at 
0.5 mM (Low N; LN) or 5.0 mM (High N; HN) concentra-
tions. Salt treatments consisted of the addition of 100 mM 
NaCl to the nutrient solution (0 mM NaCl for controls). 
Plants were grown in a controlled environment room with 
a 16-h photoperiod (photosynthetically active radiation at 
plant level of 800–900 µmol m−2 s−1) and day/night condi-
tions of 27/25 °C and 60/75 % relative humidity. The nutri-
ent solution was continuously aerated and renewed every 7 
days. The pH was adjusted to 6.5 ± 0.2.

Plants were harvested at 0 and 45 days after salt treat-
ment, and samples were divided into leaves, stems, and 
roots. The harvested materials were quickly washed with 
distilled water and dried with towels before their fresh 
weights were determined. Dry weight was measured after 
samples were dried for 72 h in a thermo-ventilated oven 
at 65 °C. The relative growth rate (RGR) was determined 
according to the method of Khan et al. (2000).

Mineral analysis

Leaf, stem, and root samples were ground to a fine pow-
der. Cations were extracted from homogenized powder 
with 0.5 % HNO3. Sodium and potassium concentrations 
in plant tissues were determined using flame spectropho-
tometry (Corning 410, UK), and calcium and magnesium 
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contents were measured using atomic absorption spectro-
photometry (Varian 06). Anions were extracted with boil-
ing Milli-Q water (Drihem and Pilbeam 2002) and assayed 
using a Metrohm Model 761 ion chromatograph equipped 
with a Metrosep anion dual 2 column (6.1006.100) with 
2.0 mM NaHCO3/1.3 mM Na2CO3 as the eluent. Total N 
was estimated as the sum of nitrate and reduced N. The lat-
ter was determined using the Kjeldahl method (Bremner 
1965). Nitrogen use efficiency (NUE) was calculated as 
shoot dry weight divided by total shoot N content accord-
ing to an established procedure (Maranville et al. 1980).

Photosynthetic measurements

Photosynthetic rate (A), stomatal conductance (gs), and 
transpiration rate (E) were measured in situ from 10 to 
12 a.m. 1 d before harvest using a portable LCpro+ sys-
tem. The measurement conditions were as follows: pho-
tosynthetically active radiation incident on leaf surface, 
850 µmol m−2 s−1; CO2 reference, 430 ppm; leaf cham-
ber temperature, 28 °C; and boundary resistance to H2O, 
0.3 m2 s mol−1. According to Mediavilla et al. (2002), the 
A/gs ratio was considered an estimate of iWUE. Photosyn-
thetic pigment content (carotenoids and chlorophylls a and 
b) was determined spectrophotometrically in 80 % acetone 
according to the method of Torrecillas et al. (1984).

Nitrate reductase and glutamine synthetase extraction 
and assays

To measure NR activity, frozen leaf and root samples were 
homogenized at 4 °C in an extraction solution containing 
0.1 M potassium phosphate buffer (pH 7.4), 2.5 % (w/v) 
casein, 7.5 mM cysteine, and 1 mM EDTA. After filtration, 
the homogenate was centrifuged at 30,000g for 15 min at 
4 °C. Nitrate reductase activity was determined according 
to the method of Wray and Filner (1970). The extract was 
incubated in 0.1 M potassium buffer phosphate (pH 7.4), 
332 mM EDTA, 1 M KOH, and 0.15 mM NADH at 30 °C 
for 30 min. The reaction was stopped by the addition of 
1 M zinc acetate. The absorbance of the supernatant was 
measured at 540 nm after diazotization of nitrite ions with 
5.8 mM sulfanilamide and 0.8 mM N-(1-naphthyl)-ethylen-
ediamine dihydrochloride.

For GS activity measurements, frozen samples were 
homogenized at 4 °C in grinding medium contain-
ing 50 mM Tris–HCl buffer (pH 7.6), 1 mM EDTA, 
1 mM MgCl2, and 1 % (w/v) polyvinylpyrrolidone. The 
homogenate was centrifuged at 15,000g for 30 min at 
4 °C. Glutamine synthetase activity was determined 
using hydroxylamine as the substrate. The forma-
tion of α-glutamylhydroxamate was determined using 
acidified ferric chloride (Wallsgrove et al. 1979). The 

α-glutamylhydroxamate was quantified using commercial 
glutamine as a standard after determining the absorbance of 
the incubation medium at 540 nm.

Statistical analysis

All data were subjected to two-way ANOVA using salinity 
and N as factors for each parameter. The data are presented 
as the mean ± standard error. Statistical analyses were per-
formed using SPSS 16.0 software.

Results

Growth and morphological parameters

To characterize T. alexandrinum responses to salinity and 
N availability, plant growth parameters were evaluated 
following treatment with NaCl in LN and HN conditions. 
Salinity had a highly significant effect on whole plant 
growth (P < 0.001; F = 8.82), with 100 mM NaCl treat-
ment increasing the total dry weight by about 56 % and 
60 % in LN and HN conditions, respectively (Table 1). 
Salinity (100 mM NaCl) also had a highly significant effect 
on all organ dry weights (P < 0.001; F = 4.02, F = 17.10, 
and F = 0.89 for leaves, stems, and roots, respectively), but 
had no effect on the ratio of above-ground plant dry weight 
and root dry weight (P < 0.05; F = 3.05). Additionally, 
salinity had a highly significant effect on RGR (P < 0.001; 
F = 25.04) with increases of 42 % and 41 % in LN and 
HN conditions, respectively (Table 1). Nitrogen treatment 
significantly decreased whole plant dry weights (P < 0.01; 
F = 3.54) and leaf and root dry weights (P < 0.01; 
F = 4.23 and F = 2.25, respectively; Table 1). However, 
N had no significant effects on stem dry weight and the 
ratio of above-ground plant dry weight and root dry weight. 
Furthermore, N significantly decreased RGR (P < 0.001; 
F = 96.43). However, a combined treatment of salinity and 
N seemed to have a significant effect only on leaf and root 
dry weights (P < 0.05; F = 0.9 and F = 0.22, respectively; 
Table 1).

The effects of salinity, N, and their combined treat-
ment on some morphological parameters are summarized 
in Table 2. Salinity significantly affected stem and root 
lengths and leaf number (P < 0.01; F = 11.37, F = 0.37, 
and F = 3.95 for stem length, root length, and leaf number 
(LfN), respectively). Additionally, root volume (RV) was 
significantly affected by salinity (P < 0.001, F = 14.35), as 
evidenced by RV increases of 130 % and 67 % in LN and 
HN conditions, respectively (Table 2). Nitrogen treatment 
significantly affected only root length and RV (Table 2). 
Similarly, a combined salinity and N treatment only 
affected RV (P < 0.01; F = 1.40).
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Effects of salinity stress on mineral concentrations

Salinity stress substantially increased Na+ concentrations 
in leaves, stems, and roots (F = 97.4, F = 94.2, F = 372.66, 
respectively) regardless of N level (Table 3), with increases 
of about 473, 440, and 420 % in leaves, stems, and roots, 
respectively, in LN conditions. These increases were 
slightly lower than those in HN conditions (Table 3). Treat-
ments of N or salinity and N combined had no significant 

effects on Na+ concentrations in leaves and roots, while a 
highly significant effect was observed for stems (P < 0.001; 
F = 18.25 and F = 16.31 for N and salinity + N, respec-
tively; Table 3).

Salinity had a highly significant effect on K+ concentra-
tions in different organs (P < 0.001; F = 87.19, F = 84.87, 
and F = 99.75 for leaves, stems, and roots, respectively). 
Salinity reduced K+ concentrations in leaves by 31 % 
and 41 %, in stems by 41 % and 47 %, and in roots by 
32 and 37 % in LN and HN conditions, respectively 
(Table 3). However, N had a significant effect only on roots 
(P < 0.001; F = 25.11). The K+ concentration decreased 
by about 20 and 29 % in non-saline and saline conditions, 
respectively (Table 3). The combined salinity and N treat-
ment had no significant effect on K+ concentrations in dif-
ferent plant organs (Table 3).

Exposure to saline conditions reduced Ca2+ acquisi-
tion in leaves by about 20 and 27 %, in stems by 62 and 
22 %, and in roots by 81 and 49 % in LN and HN condi-
tions, respectively (Table 3). Nitrogen treatments also had a 
highly significant effect on Ca2+ concentrations in all plant 
organs (P < 0.001; F = 22.93, F = 29.98, and F = 18.47 
for leaves, stems, and roots, respectively). Increases in N 
availability resulted in decreased Ca2+ concentrations in 
leaves and stems, but increased concentrations in roots. 
Additionally, the combined salinity and N treatment signifi-
cantly affected Ca2+ acquisition in stems and roots, but had 
no effect on leaf Ca2+ concentrations (Table 3).

Salinity had a significant effect on Mg2+ concentra-
tions in leaves, stems, and roots (P < 0.01; F = 1.54, 
F = 2.56, and F = 13.80 for leaves, stems, and roots, 
respectively). Following salinity treatments, Mg2+ concen-
trations increased in leaves and stems in LN conditions, 

Table 1  Interactive effects of 
salinity and nitrogen on the 
dry weight of whole plants 
(WP), leaves (L), shoots (S), 
roots (R), the aerial part and 
root ratio (AP/R), and relative 
growth rate (RGR) of Trifolium 
alexandrinum after 45 days 
treatment

C 0 mM NaCl, S 100 mM NaCl, LN 0.5 mM NH4NO3, HN 5.0 mM NH4NO3

Data are mean values of ten measurements

WP whole plants, L leaves, S shoots, R roots, AP/R the aerial part and root ratio, RGR relative growth rate, 
ns not significance

* Significance at 0.05 probability level

** Significance at 0.01 probability level

*** Significance at 0.001 probability level

Treatment Dry weight per plant (mg) AP/R RGR (g g−1 day−1)

WP L S R

C/LN 355 ± 39 154 ± 13 142 ± 15 59 ± 7 9.4 ± 3.6 0.045 ± 0.01

C/HN 263 ± 28 113 ± 23 128 ± 24 22 ± 2 12.8 ± 3.3 0.039 ± 0.01

S/LN 554 ± 36 262 ± 34 224 ± 21 68 ± 13 8.3 ± 3.1 0.064 ± 0.00

S/HN 421 ± 49 152 ± 13 219 ± 26 49 ± 11 9.1 ± 2.6 0.055 ± 0.00

Analysis of variance (F values)

 S 8.82*** 4.02*** 17.10*** 0.89*** 3.05ns 25.04***

 N 3.54** 4.23** 0.21ns 2.25** 2.24ns 96.43***

 S × N 0.12ns 0.90* 0.60ns 0.22* 0.93ns 3.86ns

Table 2  Interactive effect of salinity and nitrogen on morphological 
parameters; stem length (SL), root length (RL), leaf number (LN) and 
root volume (RV) of Trifolium alexandrinum after 45 days treatment

Data are mean values of ten measurements

C 0 mM NaCl, S 100 mM NaCl, LN 0.5 mM NH4NO3, HN 5.0 mM 
NH4NO3

SL stem length, RL root length, LN leaf number, RV root volume, ns 
not significance

* Significance at 0.05 probability level

** Significance at 0.01 probability level

*** Significance at 0.001 probability level

Treatment Morphological parameters

SL (cm) RL (cm) LN RV (cm3)

C/LN 48.3 ± 4.7 29.1 ± 4.4 13.3 ± 4.7 1.0 ± 0.2

C/HN 49.4 ± 9.1 31.3 ± 5.2 12.4 ± 2.2 1.8 ± 0.6

S/LN 60.8 ± 5.8 35.4 ± 5.0 13.4 ± 2.8 2.3 ± 0.9

S/HN 57.6 ± 5.5 28.4 ± 3.8 17.8 ± 2.7 3.0 ± 1.0

Analysis of variance (F values)

S 11.37** 0.37** 3.95** 14.35***

N 0.12ns 0.75* 1.62ns 0.06**

S × N 0.52ns 2.65ns 3.56ns 1.40**
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but decreased in HN conditions (Table 3). In roots, salin-
ity stress increased Mg2+ accumulation in LN and HN 
conditions. Treatments with N significantly affected Mg2+ 
concentrations in leaves (P < 0.01; F = 11.96), but had no 
effect on stems. For roots, increasing N availability led to 
decreased Mg2+ acquisition in saline and non-saline condi-
tions (Table 3). The combined salinity and N treatment had 
a highly significant effect (P < 0.001; F = 16.11) only on 
leaf Mg2+ concentrations.

Salinity increased Cl− concentrations in leaves, stems, 
and roots in LN and HN conditions. The increases were 
greater in HN conditions regardless of plant organ. The 
highest increase relative to the controls was observed in 
leaves (107 %) (Table 3). Nitrogen treatment had a highly 
significant effect on Cl− concentrations in leaves, stems 
and roots (P < 0.001; F = 22.30, F = 26.28, and F = 1.18, 
respectively). In HN conditions, the leaf and root Cl− con-
centrations increased following exposure to salinity stress, 
but decreased in control plants. The combined salinity and 
N treatment had a highly significant effect on Cl− concen-
trations only in leaves and stems (P < 0.001; F = 58.41 and 
F = 19.40, respectively).

Following salt treatment, leaf nitrate concentrations 
increased in LN conditions and decreased in HN condi-
tions. Additionally, stem and root nitrate concentrations 
decreased in LN and HN conditions (Table 3). Nitrogen 
treatment significantly affected nitrate concentrations in 
leaves and roots (P < 0.001; F = 93.70 and F = 33.34, 
respectively). Higher N contents increased leaf nitrate 
concentrations by almost 310 and 113 % in control and 
salinity-treated plants, respectively. In contrast, increased 
N contents decreased root nitrate concentrations by 33 and 
89 % in control plants and salinity-treated plants, respec-
tively. However, N levels did not influence stem nitrate 
concentrations (Table 3). The combined salinity and N 
treatment significantly affected nitrate concentrations only 
in photosynthetic organs (P < 0.001; F = 69.11; Table 3).

Salinity had a significant effect on PO4
3− concentrations 

in leaves and roots (P < 0.01; F = 15.77 and F = 16.58, 
respectively), but had no effect on stems (P < 0.05; 
F = 2.99; Table 3). In HN conditions, PO4

3− concentrations 
decreased in roots by 76 and 23 % in salinity-treated and 
control plants, respectively, while there were no significant 
changes to leaf and stem PO4

3− concentrations (P < 0.05; 
F = 1.60 and F = 4.27, respectively; Table 3). The com-
bined salinity and N treatment significantly affected PO4

3− 
concentrations only in roots (P < 0.01) (Table 3).

Salinity stress had no significant effect on SO4
2− con-

centrations in leaves (P < 0.05; F = 0.97). However, 
it decreased SO4

2− concentrations in stems by 42 and 
40 %, and in roots by 68 and 36 % in LN and HN con-
ditions, respectively (Table 3). Increasing N availability 
decreased stem and root SO4

2− concentrations in saline 

and non-saline conditions, while no significant effect was 
observed for leaves (Table 3). The combined salinity and 
N treatment had no significant effect on SO4

2− concentra-
tions in leaves and stems, but significantly affected roots 
(P < 0.01; F = 13.32; Table 3).

Effects of salinity stress on nitrogen status

Salinity had a highly significant effect on total nitrogen 
concentration (TNC) in leaves, stems, and roots (P < 0.001; 
F = 91.0, F = 127.0, and F = 27.31, respectively; Table 4). 
Treatment with 100 mM NaCl decreased TNC in leaves 
by 28 and 55 %, in stems by 49 and 50 %, and in roots 
by 35 and 51 %, in LN and HN conditions, respectively 
(Table 4). Nitrogen levels also significantly affected TNC 
in leaves, stems, and roots (P < 0.001; F = 2.24, F = 18.09, 
and F = 128.61, respectively; Table 4). Increasing N avail-
ability decreased TNC in leaves of salinity-treated plants, 
increased it in leaves of control plants, and increased it in 
stems and roots in saline and non-saline conditions. The 
combined salinity and N treatment had a highly signifi-
cant effect on leaf and root TNC (P < 0.001; F = 24.66 and 
F = 27.34, respectively), while no significant effect was 
observed for stems (P < 0.05; F = 2.96; Table 4). Treat-
ment with 100 mM NaCl increased NUE in LN and HN 
conditions. Conversely, NUE decreased in saline and non-
saline conditions with increasing N availability (Table 4). 

Table 4  Interactive effect of salinity and nitrogen on total nitrogen 
concentration (TNC) in leaves (L), stems (S) and roots (R), and nitro-
gen use efficiency (NUE) in Trifolium alexandrinum after 45 days 
treatment

C 0 mM NaCl, S 100 mM NaCl, LN 0.5 mM NH4NO3, HN 5.0 mM 
NH4NO3

Data are mean values of ten measurements

TNC total nitrogen concentration, L leaves, S shoots, R roots, NUE 
nitrogen use efficiency, ns not significance

* Significance at 0.05 probability level

** Significance at 0.01 probability level

*** Significance at 0.001 probability level

Treatment TNC (mg g DW−1) NUE (g DW 
mmol TN−1)

L S R

C/LN 56.3 ± 7.7 44.4 ± 5.3 37.2 ± 5.5 0.271 ± 0.02

C/HN 75.4 ± 7.0 57.3 ± 16.7 72.8 ± 11.6 0.098 ± 0.01

S/LN 40.7 ± 4.0 22.8 ± 4.4 24.1 ± 3.5 0.624 ± 0.10

S/HN 33.6 ± 6.6 28.7 ± 10.2 35.7 ± 7.4 0.475 ± 0.08

Analysis of variance (F values)

 S 91.0*** 127.00*** 127.31*** 12.37***

 N 2.24*** 18.09*** 128.61*** 56.12***

 S × N 24.66*** 2.96ns 27.34*** 112.81***
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The combined salinity and N treatment significantly 
affected NUE (P < 0.001; F = 112.81; Table 4).

Effects of salinity stress on photosynthetic parameters

Photosynthetic parameters were used to investigate plant 
responses to individual or multiple abiotic stresses. Salt 
treatment (100 mM NaCl) had a highly significant effect on 
net photosynthetic assimilation rate, transpiration, and sto-
matal conductance (P < 0.001; F = 45.66, F = 46.75, and 
F = 231.26, respectively; Table 5). Salinity decreased the 
net photosynthetic assimilation rate by 55 and 53 %, tran-
spiration by 41 and 37 %, and stomatal conductance by 80 
and 65 % in LN and HN conditions, respectively (Table 5). 
Nitrogen treatments had a highly significant effect on sto-
matal conductance (P < 0.001; F = 44.26), but had no 
effect on net photosynthetic rate or transpiration. Increasing 
N availability decreased stomatal conductance by 49 and 
10 % in non-saline and saline conditions, respectively. The 
combined salinity and N treatment had a highly significant 
effect on stomatal conductance (P < 0.001; F = 208.78), 
but no effect on net photosynthetic assimilation rate and 
transpiration (Table 5).

The iWUE was significantly influenced by salinity and 
N (P < 0.05; F = 66.59 and F = 32.12, respectively). In 
fact, treatment with 100 mM NaCl increased iWUE by 125 
and 33 % in LN and HN conditions, respectively. Increas-
ing N availability increased iWUE by 96 and 16 % in 
non-saline and saline conditions, respectively (Table 5). 

Similarly, the combined salinity and N treatment signifi-
cantly affected iWUE (P < 0.05; F = 6.55; Table 5).

Concerning photosynthetic pigments, salinity had no 
significant effect on carotenoids and chlorophylls a or 
b (Table 5). Increasing N availability had no significant 
effects on chlorophyll a or b contents, but increased carot-
enoid contents by 20 % in saline and non-saline conditions 
(Table 5). The combined salinity and N treatment had no 
significant effect on leaf pigment contents (Table 5).

Nitrate reductase and glutamine synthetase assays

To clarify the T. alexandrinum responses to N deficiency, 
especially in saline conditions, activities associated with N 
assimilation were investigated. Salinity increased leaf NR 
activity in LN conditions and decreased it in HN condi-
tions. Salt stress increased root NR activity in LN and HN 
conditions (Table 6). Greater N concentrations resulted in 
increases in leaf NR activity by almost 300 % in non-saline 
conditions and decreases in activity by 68 % in saline con-
ditions. In contrast, higher N concentrations had no effects 
on root NR activity (Table 6). The combined salinity and 
N treatment significantly affected NR activity in leaves 
(P < 0.001; F = 78.00), but not in roots (Table 6).

Salinity caused GS activity to increase in leaves by 87 % 
in LN conditions. However, salt treatment resulted in a 6 % 
decrease in leaf GS activity in HN conditions. Additionally, 
leaf GS activity increased with increasing N availability in 
non-saline conditions, but decreased in saline conditions. 

Table 5  Interactive effect of salinity and nitrogen on net photosynthetic assimilation (A), transpiration (E), stomatal conductance (gs), intrinsic 
water use efficiency (iWUE), chlorophylls a and b (Chl a and Chl b), and carotenoids (Carot) in Trifolium alexandrinum after 45 days treatment

C 0 mM NaCl, S 100 mM NaCl, LN 0.5 mM NH4NO3, HN 5.0 mM NH4NO3

Data are mean values of ten measurements

A net photosynthetic assimilation, E transpiration, gs stomatal conductance, iWUE intrinsic water use efficiency, Chl a and Chl b chlorophylls a 
and b, Carot carotenoids, ns not significance

* Significance at 0.05 probability level

** Significance at 0.01 probability level

*** Significance at 0.001 probability level

Treatment Photosynthetic parameters

A µmol CO2 m
−2 

s−1
E mmol H2O m−2 
s−1

gs mmol m−2 s−1 iWUE µmol CO2 
mmol H2O

−1
Chl a mg g FW−1 Chl b mg g FW−1 Carot mg g FW−1

C/LN 8.4 ± 0.7 1.7 ± 0.1 300 ± 13 28.0 ± 2.8 1.3 ± 0.4 0.8 ± 0.1 1.5 ± 0.7

C/HN 8.3 ± 0.7 1.6 ± 0.2 154 ± 16 54.9 ± 2.1 1.5 ± 0.3 0.5 ± 0.2 1.8 ± 0.6

S/LN 3.8 ± 0.5 1.0 ± 0.1 60 ± 9 63.0 ± 4.7 1.6 ± 0.2 0.6 ± 0.1 1.5 ± 0.3

S/HN 3.9 ± 0.5 1.0 ± 0.2 54 ± 9 73.2 ± 15.1 1.4 ± 0.4 0.5 ± 0.1 1.8 ± 0.4

Analysis of variance (F values)

 S 45.66*** 46.75*** 231.26*** 66.59*** 7.09ns 2.37ns 3.98ns

 N 0.01ns 1.15ns 44.26*** 32.12*** 12.36ns 2.69ns 8.87*

 S × N 0.13ns 2.27ns 208.78*** 6.55* 5.57ns 1.98ns 3.66ns
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These effects were reversed in roots (Table 6). The com-
bined salinity and N treatment had highly significant effects 
on GS activity in roots (P < 0.001; F = 28.42) and leaves 
(P < 0.05; F = 7.41; Table 6).

Discussion

Previous studies have reported that salt treatments mark-
edly reduce growth of forage species even at low levels 
(Cordovilla et al. 1996; Delgado et al. 1994). However, 
our findings indicate that T. alexandrinum productivity 
increased when culture media were supplemented with 
100 mM NaCl in LN or HN conditions (Table 1). Our 
results are consistent with those for another legume (Alhagi 
pseudoalhagi) exposed to low salinity environments (Kur-
ban et al. 1999). Based on our data, it is difficult to iden-
tify the main factor that promoted biomass production in 
response to 100 mM NaCl treatment. However, it is likely 
that increased NUE, iWUE, and RV contributed to the 
higher biomass production. The RGRs of plants exposed to 
salinity stress were about 42 and 41 % higher than those of 
controls in LN and HN conditions, respectively (Table 1). 
The application of 100 mM NaCl increased the RV in both 
conditions. The RVs in LN and HN conditions were 130 
and 67 % higher than those of the corresponding controls 
(Table 1).

Mineral nutrients are crucial for plant growth and devel-
opment because the majority of minerals are involved 

in vital plant processes. At least 40 mineral elements are 
necessary for adequate plant nutrition (Marschner 1995; 
Mengel et al. 2001), with six mineral elements (N, P, K, 
Ca, Mg, and S) being required in larger amounts. Opti-
mal growth is rarely achieved in non-agricultural settings 
because most soils are deficient in one or more essential 
minerals, leading to nutrient stress. This may be particu-
larly true for saline environments. Salinity can differen-
tially affect the mineral nutritional status of plants. Nutrient 
imbalances induced by salinity decrease plant growth by 
affecting the availability, transport, and partitioning of min-
eral nutrients. These imbalances result from the competi-
tion of Na+ and Cl− with other nutrients such as K+, Ca2+, 
Mg2+, and NO3

− (Hasegawa et al. 2000; Hu and Schmid-
halter 2005; Munns 2002; Netondo et al. 2004). Our inves-
tigation showed that the addition of 100 mM NaCl to the 
culture media increased the accumulation of Na+ and Cl− 
and decreased the abundance of K+ and Ca2+ in all plant 
organs. These effects occurred independently of available 
N levels and were in agreement with observations from 
other studies (Barhoumi et al. 2010; Tabatabaei 2006). Our 
results showed that the effects of salinity on Mg2+ accu-
mulation in photosynthetic organs depended on N level 
while previous research suggested that Mg2+ accumula-
tion is largely reduced by salinity (Khan et al. 2000). Simi-
larly, the effects of 100 mM NaCl on NO3

− accumulation 
in leaves was dependent on the abundance of available N. 
In HN conditions, 100 mM NaCl reduced NO3

− accumula-
tion in photosynthetic organs, while the opposite effect was 
observed in LN conditions (Table 3). Sulfate accumulation 
in photosynthetic organs was insensitive to 100 mM NaCl 
treatment, while salinity increased PO4

3− accumulation 
independently of available N.

In our study, increasing available N led to higher NO3
− 

accumulation in photosynthetic organs in both saline and 
non-saline conditions. This result was consistent with those 
of a previous study (Santamaria et al. 2002). Nitrogen 
availability had no significant effects on Na+, K+, PO4

3−, 
and SO4

2− accumulation in leaves (Table 3). Interestingly, 
increasing N availability alleviated the adverse effects of 
salinity on Ca2+ accumulation, especially in stems and 
roots. However, increasing N availability increased Cl− 
accumulation in photosynthetic organs and in stems and 
roots in saline conditions (Table 3). These results are incon-
sistent with those of a previous study involving Poaceae 
species, Aeluropus littoralis and Catapodium rigidum, in 
which HN conditions enhanced Cl− accumulation in pho-
tosynthetic organs exposed to salt stress (Barhoumi et al. 
2010).

To date, adaptations to steady-state LN conditions in 
a saline environment have been poorly described. Some 
studies have indicated that N applications to saline soils 
increase N concentrations in salt-tolerant plants, which 

Table 6  Interactive effect of salinity and nitrogen on nitrate reduc-
tase and glutamine synthetase in leaves (L) and roots (R) of Trifolium 
alexandrinum after 45 days treatment

C 0 mM NaCl, S 100 mM NaCl, LN 0.5 mM NH4NO3, HN 5.0 mM 
NH4NO3

Data are mean values of ten measurements

L leaves, R roots, ns not significance

* Significance at 0.05 probability level

** Significance at 0.01 probability level

*** Significance at 0.001 probability level

Treat-
ment

NR (µmol NO2
− g 

FW−1 h−1)
GS (µmol g FW−1 h−1)

L R L R

C/LN 0.85 ± 0.3 0.96 ± 0.1 58.15 ± 12.8 73.13 ± 15.4

C/HN 2.56 ± 0.8 0.88 ± 0.2 104.48 ± 23.2 31.08 ± 10.3

S/LN 6.29 ± 1.7 1.60 ± 0.2 108.46 ± 15.6 47.65 ± 12.9

S/HN 2.00 ± 0.9 1.12 ± 0.6 99.22 ± 13.0 70.36 ± 12.2

Analysis of variance (F values)

 S 51.60*** 7.72* 4.84** 1.29***

 N 14.48** 3.13ns 3.32* 2.53**

 S × N78.00*** 1.59ns 7.41* 28.42***
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may alleviate the negative impact of salinity (Barhoumi 
et al. 2010; Wang and Tian 2011). However, in some salt-
sensitive plants, applying N to saline soils may aggravate 
the deleterious effects of salinity stress and decrease N 
content and dry matter accumulation (Beltrao et al. 2002). 
Our results showed that increasing N availability in saline 
conditions increased TNC in stems and roots, but caused 
a decrease in TNC in photosynthetic organs (Table 4). The 
TNC decreased following 100 mM NaCl treatment in LN 
or HN conditions (Table 4). This result is in agreement with 
previous findings that indicated high salinity inhibits the 
accumulation of N in plants (Garg et al. 1993; Van Hoorn 
et al. 2001) by influencing assimilation pathways (Gouia 
et al. 1994; Rao and Gnanam 1990). Moreover, some plant 
nutrition experts have shown that the effects of the interac-
tions between salinity and N stresses on plants is complex 
because they depend not only on plant type, growth stages, 
organs, and salt composition, but also on N source type and 
amount (Ding et al. 2010). The application of N using com-
mercial fertilizers is expensive and represents the main cost 
during plant production (Singh 2005). Therefore, reducing 
fertilizer input and breeding plants with better NUE are 
major goals of current agricultural research (Hirel et al. 
2007; Lea and Azevedo 2006). According to the NUE data, 
T. alexandrinum can use available N more efficiently under 
saline conditions than under control conditions (Table 4). 
This result is inconsistent with those observed for A. litto-
ralis, Brachypodium distachyum (Barhomi et al. 2010), and 
Capsicum annuum (Huez-Lopez et al. 2011). However, T. 
alexandrinum used the available N less efficiently in HN 
conditions than in LN conditions. The NUE decreased by 
about 64 and 24 % in non-saline and saline conditions, 
respectively (Table 4). Additionally, NUE was signifi-
cantly influenced by the interactions between salinity and 
N stresses.

Photosynthesis is an indispensable process responsible 
for plant growth and productivity. Its activity is often con-
sidered an indicator of plant responses to environmental 
stress (Liu et al. 2008; Nandy et al. 2007). Several studies 
have shown a positive relationship between photosynthetic 
capacity and growth in numerous species (Ashraf 2001; 
Hamilton et al. 2001; Munns 2002; Naumann et al. 2007). 
However, our results revealed a negative relationship 
between growth and photosynthetic capacity. Other studies 
have reported that there is little to no association between 
growth and photosynthetic capacity (Loreto et al. 2003; 
Rogers and Noble 1992). Moreover, previous research has 
suggested that the photosynthetic rate is reduced by salinity 
in several plant species (Long and Baker 1986). Reduced 
photosynthesis in saline environments is generally due to 
limited stomatal conductance, uptake of carbon dioxide, 
carboxylase activity of Rubisco, regeneration of RubP, 
and chlorophyll content (Lambers et al. 2008; Lawlor and 

Cornic 2002), leading to inhibited plant growth (Naumann 
et al. 2007). Other researchers have attributed the decline 
in photosynthesis activity to Na+ and Cl− accumulation 
in leaves (Munns 1993; Tattini and Traversi 2009). In this 
study, the suppression of photosynthesis was mainly caused 
by decreases in stomatal conductance by nearly 80 and 
65 % in LN and HN conditions, respectively (Table 5).

Nitrogen is a basic component of many compounds 
involved in photosynthesis and a large proportion of N in 
plants is localized in leaf chloroplasts. Thylakoid mem-
branes contain about 20–25 % of the total N content in 
leaves. Additionally, N is also an important element in 
Rubisco photosynthetic complexes (Lambers et al. 1998), 
Calvin-Benson cycle enzymes, chlorophyll, and carote-
noids (Correia et al. 2005). Its deficiency leads to reduced 
transpiration, stomatal conductance, and chlorophyll and 
carotenoid contents (Ciompi et al. 1996; Huang et al. 2004; 
Pompelli et al. 2010). However, our results indicated that 
increasing N availability had no significant effect on net 
photosynthetic assimilation rate and chlorophyll contents 
(Table 5). This observation is explained by the fact that T. 
alexandrinum NUE is 277 % (non-saline environment) and 
131 % (saline environment) higher when cultivated in LN 
conditions than in HN conditions. In saline environments, 
T. alexandrinum can use the available water more effi-
ciently than in non-saline environments. This increase in 
efficiency is nearly 125 and 33 % in LN and HN conditions 
(Table 5).

Nitrogen assimilation into carbon skeletons is one of the 
most important physiological processes in plant growth and 
development. Nitrate and ammonium are assimilated into 
amino acids that play a pivotal role as N-transport com-
pounds (Lea and Miflin 2003). Reports on the effects of 
salinity on NR activity in plants have frequently produced 
contradictory results. For example, previous studies have 
concluded that NR activity can be decreased (Silveira et al. 
2001), not affected (Ourry et al. 1992), or increased (Parida 
and Das 2004) by low salinity. Our results showed that 
salinity increased NR activity in roots in LN and HN condi-
tions, while activity levels in leaves depended on N con-
tent. In LN conditions, salinity (100 mM NaCl) increased 
NR activity in leaves by nearly 740 % over that of the con-
trols (Table 6). The effect of N on NR activity in leaves is 
salt dependent. Interestingly, in saline conditions, N defi-
ciency increased NR activity by about 314 % over that of 
the controls, while no effect was observed for NR activity 
in roots (Table 6).

In T. alexandrinum, the effects of salinity on GS activity 
in leaves and roots depended on N content. Additionally, 
the effects of N availability on GS activity in leaves and 
roots depended on salt content (Table 6). Leaf GS activ-
ity was stimulated by LN and saline conditions (Table 6). 
The enhancement of NR and GS activities in leaves in LN 
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conditions and in roots under HN conditions may at least 
partially explain why plant growth increased following salt 
treatment.

In summary, under saline and LN conditions, T. alexan-
drinum exhibited the highest growth rate, which is likely 
because of the high NUE and leaf NR and GS activities. 
Therefore, T. alexandrinum is an interesting legume forage 
crop that can be cultivated in low-saline soils where N is 
lacking.
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